gp: [N,k,chi] = [4000,2,Mod(1,4000)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4000, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("4000.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [8,0,0,0,0,0,0,0,18,0,0,0,12]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , … , β 7 1,\beta_1,\ldots,\beta_{7} 1 , β 1 , … , β 7 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 8 − 21 x 6 + 129 x 4 − 220 x 2 + 80 x^{8} - 21x^{6} + 129x^{4} - 220x^{2} + 80 x 8 − 2 1 x 6 + 1 2 9 x 4 − 2 2 0 x 2 + 8 0
x^8 - 21*x^6 + 129*x^4 - 220*x^2 + 80
:
β 1 \beta_{1} β 1 = = =
ν \nu ν
v
β 2 \beta_{2} β 2 = = =
ν 2 − 5 \nu^{2} - 5 ν 2 − 5
v^2 - 5
β 3 \beta_{3} β 3 = = =
( − ν 6 + 25 ν 4 − 161 ν 2 + 116 ) / 68 ( -\nu^{6} + 25\nu^{4} - 161\nu^{2} + 116 ) / 68 ( − ν 6 + 2 5 ν 4 − 1 6 1 ν 2 + 1 1 6 ) / 6 8
(-v^6 + 25*v^4 - 161*v^2 + 116) / 68
β 4 \beta_{4} β 4 = = =
( − ν 7 + 25 ν 5 − 161 ν 3 + 116 ν ) / 68 ( -\nu^{7} + 25\nu^{5} - 161\nu^{3} + 116\nu ) / 68 ( − ν 7 + 2 5 ν 5 − 1 6 1 ν 3 + 1 1 6 ν ) / 6 8
(-v^7 + 25*v^5 - 161*v^3 + 116*v) / 68
β 5 \beta_{5} β 5 = = =
( − ν 7 + 25 ν 5 − 229 ν 3 + 728 ν ) / 136 ( -\nu^{7} + 25\nu^{5} - 229\nu^{3} + 728\nu ) / 136 ( − ν 7 + 2 5 ν 5 − 2 2 9 ν 3 + 7 2 8 ν ) / 1 3 6
(-v^7 + 25*v^5 - 229*v^3 + 728*v) / 136
β 6 \beta_{6} β 6 = = =
( 9 ν 6 − 157 ν 4 + 701 ν 2 − 568 ) / 68 ( 9\nu^{6} - 157\nu^{4} + 701\nu^{2} - 568 ) / 68 ( 9 ν 6 − 1 5 7 ν 4 + 7 0 1 ν 2 − 5 6 8 ) / 6 8
(9*v^6 - 157*v^4 + 701*v^2 - 568) / 68
β 7 \beta_{7} β 7 = = =
( 3 ν 7 − 58 ν 5 + 296 ν 3 − 263 ν ) / 34 ( 3\nu^{7} - 58\nu^{5} + 296\nu^{3} - 263\nu ) / 34 ( 3 ν 7 − 5 8 ν 5 + 2 9 6 ν 3 − 2 6 3 ν ) / 3 4
(3*v^7 - 58*v^5 + 296*v^3 - 263*v) / 34
ν \nu ν = = =
β 1 \beta_1 β 1
b1
ν 2 \nu^{2} ν 2 = = =
β 2 + 5 \beta_{2} + 5 β 2 + 5
b2 + 5
ν 3 \nu^{3} ν 3 = = =
− 2 β 5 + β 4 + 9 β 1 -2\beta_{5} + \beta_{4} + 9\beta_1 − 2 β 5 + β 4 + 9 β 1
-2*b5 + b4 + 9*b1
ν 4 \nu^{4} ν 4 = = =
β 6 + 9 β 3 + 11 β 2 + 48 \beta_{6} + 9\beta_{3} + 11\beta_{2} + 48 β 6 + 9 β 3 + 1 1 β 2 + 4 8
b6 + 9*b3 + 11*b2 + 48
ν 5 \nu^{5} ν 5 = = =
2 β 7 − 22 β 5 + 23 β 4 + 94 β 1 2\beta_{7} - 22\beta_{5} + 23\beta_{4} + 94\beta_1 2 β 7 − 2 2 β 5 + 2 3 β 4 + 9 4 β 1
2*b7 - 22*b5 + 23*b4 + 94*b1
ν 6 \nu^{6} ν 6 = = =
25 β 6 + 157 β 3 + 114 β 2 + 511 25\beta_{6} + 157\beta_{3} + 114\beta_{2} + 511 2 5 β 6 + 1 5 7 β 3 + 1 1 4 β 2 + 5 1 1
25*b6 + 157*b3 + 114*b2 + 511
ν 7 \nu^{7} ν 7 = = =
50 β 7 − 228 β 5 + 346 β 4 + 1017 β 1 50\beta_{7} - 228\beta_{5} + 346\beta_{4} + 1017\beta_1 5 0 β 7 − 2 2 8 β 5 + 3 4 6 β 4 + 1 0 1 7 β 1
50*b7 - 228*b5 + 346*b4 + 1017*b1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
p p p
Sign
2 2 2
− 1 -1 − 1
5 5 5
+ 1 +1 + 1
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 2 n e w ( Γ 0 ( 4000 ) ) S_{2}^{\mathrm{new}}(\Gamma_0(4000)) S 2 n e w ( Γ 0 ( 4 0 0 0 ) ) :
T 3 8 − 21 T 3 6 + 129 T 3 4 − 220 T 3 2 + 80 T_{3}^{8} - 21T_{3}^{6} + 129T_{3}^{4} - 220T_{3}^{2} + 80 T 3 8 − 2 1 T 3 6 + 1 2 9 T 3 4 − 2 2 0 T 3 2 + 8 0
T3^8 - 21*T3^6 + 129*T3^4 - 220*T3^2 + 80
T 7 8 − 41 T 7 6 + 524 T 7 4 − 2605 T 7 2 + 4205 T_{7}^{8} - 41T_{7}^{6} + 524T_{7}^{4} - 2605T_{7}^{2} + 4205 T 7 8 − 4 1 T 7 6 + 5 2 4 T 7 4 − 2 6 0 5 T 7 2 + 4 2 0 5
T7^8 - 41*T7^6 + 524*T7^4 - 2605*T7^2 + 4205
T 11 8 − 49 T 11 6 + 684 T 11 4 − 2445 T 11 2 + 5 T_{11}^{8} - 49T_{11}^{6} + 684T_{11}^{4} - 2445T_{11}^{2} + 5 T 1 1 8 − 4 9 T 1 1 6 + 6 8 4 T 1 1 4 − 2 4 4 5 T 1 1 2 + 5
T11^8 - 49*T11^6 + 684*T11^4 - 2445*T11^2 + 5
T 13 4 − 6 T 13 3 − 17 T 13 2 + 78 T 13 + 149 T_{13}^{4} - 6T_{13}^{3} - 17T_{13}^{2} + 78T_{13} + 149 T 1 3 4 − 6 T 1 3 3 − 1 7 T 1 3 2 + 7 8 T 1 3 + 1 4 9
T13^4 - 6*T13^3 - 17*T13^2 + 78*T13 + 149
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 8 T^{8} T 8
T^8
3 3 3
T 8 − 21 T 6 + ⋯ + 80 T^{8} - 21 T^{6} + \cdots + 80 T 8 − 2 1 T 6 + ⋯ + 8 0
T^8 - 21*T^6 + 129*T^4 - 220*T^2 + 80
5 5 5
T 8 T^{8} T 8
T^8
7 7 7
T 8 − 41 T 6 + ⋯ + 4205 T^{8} - 41 T^{6} + \cdots + 4205 T 8 − 4 1 T 6 + ⋯ + 4 2 0 5
T^8 - 41*T^6 + 524*T^4 - 2605*T^2 + 4205
11 11 1 1
T 8 − 49 T 6 + ⋯ + 5 T^{8} - 49 T^{6} + \cdots + 5 T 8 − 4 9 T 6 + ⋯ + 5
T^8 - 49*T^6 + 684*T^4 - 2445*T^2 + 5
13 13 1 3
( T 4 − 6 T 3 + ⋯ + 149 ) 2 (T^{4} - 6 T^{3} + \cdots + 149)^{2} ( T 4 − 6 T 3 + ⋯ + 1 4 9 ) 2
(T^4 - 6*T^3 - 17*T^2 + 78*T + 149)^2
17 17 1 7
( T 4 − 33 T 2 + ⋯ + 176 ) 2 (T^{4} - 33 T^{2} + \cdots + 176)^{2} ( T 4 − 3 3 T 2 + ⋯ + 1 7 6 ) 2
(T^4 - 33*T^2 + 20*T + 176)^2
19 19 1 9
T 8 − 80 T 6 + ⋯ + 3125 T^{8} - 80 T^{6} + \cdots + 3125 T 8 − 8 0 T 6 + ⋯ + 3 1 2 5
T^8 - 80*T^6 + 1645*T^4 - 5500*T^2 + 3125
23 23 2 3
T 8 − 91 T 6 + ⋯ + 20480 T^{8} - 91 T^{6} + \cdots + 20480 T 8 − 9 1 T 6 + ⋯ + 2 0 4 8 0
T^8 - 91*T^6 + 2329*T^4 - 15680*T^2 + 20480
29 29 2 9
( T 4 − 12 T 3 + ⋯ + 20 ) 2 (T^{4} - 12 T^{3} + \cdots + 20)^{2} ( T 4 − 1 2 T 3 + ⋯ + 2 0 ) 2
(T^4 - 12*T^3 + 21*T^2 + 70*T + 20)^2
31 31 3 1
T 8 − 29 T 6 + ⋯ + 80 T^{8} - 29 T^{6} + \cdots + 80 T 8 − 2 9 T 6 + ⋯ + 8 0
T^8 - 29*T^6 + 209*T^4 - 460*T^2 + 80
37 37 3 7
( T 4 − 11 T 3 + ⋯ − 320 ) 2 (T^{4} - 11 T^{3} + \cdots - 320)^{2} ( T 4 − 1 1 T 3 + ⋯ − 3 2 0 ) 2
(T^4 - 11*T^3 - 11*T^2 + 280*T - 320)^2
41 41 4 1
( T 4 − 9 T 3 − 6 T 2 + ⋯ + 95 ) 2 (T^{4} - 9 T^{3} - 6 T^{2} + \cdots + 95)^{2} ( T 4 − 9 T 3 − 6 T 2 + ⋯ + 9 5 ) 2
(T^4 - 9*T^3 - 6*T^2 + 95*T + 95)^2
43 43 4 3
T 8 − 234 T 6 + ⋯ + 3872000 T^{8} - 234 T^{6} + \cdots + 3872000 T 8 − 2 3 4 T 6 + ⋯ + 3 8 7 2 0 0 0
T^8 - 234*T^6 + 17109*T^4 - 473200*T^2 + 3872000
47 47 4 7
T 8 − 176 T 6 + ⋯ + 17405 T^{8} - 176 T^{6} + \cdots + 17405 T 8 − 1 7 6 T 6 + ⋯ + 1 7 4 0 5
T^8 - 176*T^6 + 8069*T^4 - 51460*T^2 + 17405
53 53 5 3
( T 4 − 16 T 3 + ⋯ + 2501 ) 2 (T^{4} - 16 T^{3} + \cdots + 2501)^{2} ( T 4 − 1 6 T 3 + ⋯ + 2 5 0 1 ) 2
(T^4 - 16*T^3 - 59*T^2 + 1084*T + 2501)^2
59 59 5 9
T 8 − 196 T 6 + ⋯ + 85805 T^{8} - 196 T^{6} + \cdots + 85805 T 8 − 1 9 6 T 6 + ⋯ + 8 5 8 0 5
T^8 - 196*T^6 + 11809*T^4 - 202760*T^2 + 85805
61 61 6 1
( T 4 − 11 T 3 + ⋯ − 2620 ) 2 (T^{4} - 11 T^{3} + \cdots - 2620)^{2} ( T 4 − 1 1 T 3 + ⋯ − 2 6 2 0 ) 2
(T^4 - 11*T^3 - 61*T^2 + 980*T - 2620)^2
67 67 6 7
T 8 − 81 T 6 + ⋯ + 80 T^{8} - 81 T^{6} + \cdots + 80 T 8 − 8 1 T 6 + ⋯ + 8 0
T^8 - 81*T^6 + 369*T^4 - 380*T^2 + 80
71 71 7 1
T 8 − 694 T 6 + ⋯ + 849686480 T^{8} - 694 T^{6} + \cdots + 849686480 T 8 − 6 9 4 T 6 + ⋯ + 8 4 9 6 8 6 4 8 0
T^8 - 694*T^6 + 178669*T^4 - 20224700*T^2 + 849686480
73 73 7 3
( T 4 + 25 T 3 + ⋯ − 4124 ) 2 (T^{4} + 25 T^{3} + \cdots - 4124)^{2} ( T 4 + 2 5 T 3 + ⋯ − 4 1 2 4 ) 2
(T^4 + 25*T^3 + 123*T^2 - 670*T - 4124)^2
79 79 7 9
T 8 − 546 T 6 + ⋯ + 3494480 T^{8} - 546 T^{6} + \cdots + 3494480 T 8 − 5 4 6 T 6 + ⋯ + 3 4 9 4 4 8 0
T^8 - 546*T^6 + 78069*T^4 - 1154440*T^2 + 3494480
83 83 8 3
T 8 − 576 T 6 + ⋯ + 8192000 T^{8} - 576 T^{6} + \cdots + 8192000 T 8 − 5 7 6 T 6 + ⋯ + 8 1 9 2 0 0 0
T^8 - 576*T^6 + 90624*T^4 - 2867200*T^2 + 8192000
89 89 8 9
( T 4 − 5 T 3 + ⋯ − 2000 ) 2 (T^{4} - 5 T^{3} + \cdots - 2000)^{2} ( T 4 − 5 T 3 + ⋯ − 2 0 0 0 ) 2
(T^4 - 5*T^3 - 245*T^2 + 1900*T - 2000)^2
97 97 9 7
( T 4 + 23 T 3 + ⋯ − 244 ) 2 (T^{4} + 23 T^{3} + \cdots - 244)^{2} ( T 4 + 2 3 T 3 + ⋯ − 2 4 4 ) 2
(T^4 + 23*T^3 + 19*T^2 - 1418*T - 244)^2
show more
show less