Properties

Label 4000.2.a.r
Level 40004000
Weight 22
Character orbit 4000.a
Self dual yes
Analytic conductor 31.94031.940
Analytic rank 00
Dimension 88
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4000,2,Mod(1,4000)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4000, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4000.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 4000=2553 4000 = 2^{5} \cdot 5^{3}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 4000.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,0,0,18,0,0,0,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 31.940160808531.9401608085
Analytic rank: 00
Dimension: 88
Coefficient field: 8.8.578340050000.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x821x6+129x4220x2+80 x^{8} - 21x^{6} + 129x^{4} - 220x^{2} + 80 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 22 2^{2}
Twist minimal: yes
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β71,\beta_1,\ldots,\beta_{7} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qβ1q3+β7q7+(β2+2)q9+(β7β5+β1)q11+(β6+2)q13+(β6+β3+1)q17+(β7+β4+2β1)q19++(β7+β5++7β1)q99+O(q100) q - \beta_1 q^{3} + \beta_{7} q^{7} + (\beta_{2} + 2) q^{9} + (\beta_{7} - \beta_{5} + \beta_1) q^{11} + (\beta_{6} + 2) q^{13} + (\beta_{6} + \beta_{3} + 1) q^{17} + (\beta_{7} + \beta_{4} + 2 \beta_1) q^{19}+ \cdots + ( - \beta_{7} + \beta_{5} + \cdots + 7 \beta_1) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q+18q9+12q13+18q21+24q2926q33+22q37+18q41+26q49+32q5350q57+22q61+32q6950q73+36q77+60q81+10q89+16q93+46q97+O(q100) 8 q + 18 q^{9} + 12 q^{13} + 18 q^{21} + 24 q^{29} - 26 q^{33} + 22 q^{37} + 18 q^{41} + 26 q^{49} + 32 q^{53} - 50 q^{57} + 22 q^{61} + 32 q^{69} - 50 q^{73} + 36 q^{77} + 60 q^{81} + 10 q^{89} + 16 q^{93}+ \cdots - 46 q^{97}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x821x6+129x4220x2+80 x^{8} - 21x^{6} + 129x^{4} - 220x^{2} + 80 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== ν25 \nu^{2} - 5 Copy content Toggle raw display
β3\beta_{3}== (ν6+25ν4161ν2+116)/68 ( -\nu^{6} + 25\nu^{4} - 161\nu^{2} + 116 ) / 68 Copy content Toggle raw display
β4\beta_{4}== (ν7+25ν5161ν3+116ν)/68 ( -\nu^{7} + 25\nu^{5} - 161\nu^{3} + 116\nu ) / 68 Copy content Toggle raw display
β5\beta_{5}== (ν7+25ν5229ν3+728ν)/136 ( -\nu^{7} + 25\nu^{5} - 229\nu^{3} + 728\nu ) / 136 Copy content Toggle raw display
β6\beta_{6}== (9ν6157ν4+701ν2568)/68 ( 9\nu^{6} - 157\nu^{4} + 701\nu^{2} - 568 ) / 68 Copy content Toggle raw display
β7\beta_{7}== (3ν758ν5+296ν3263ν)/34 ( 3\nu^{7} - 58\nu^{5} + 296\nu^{3} - 263\nu ) / 34 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β2+5 \beta_{2} + 5 Copy content Toggle raw display
ν3\nu^{3}== 2β5+β4+9β1 -2\beta_{5} + \beta_{4} + 9\beta_1 Copy content Toggle raw display
ν4\nu^{4}== β6+9β3+11β2+48 \beta_{6} + 9\beta_{3} + 11\beta_{2} + 48 Copy content Toggle raw display
ν5\nu^{5}== 2β722β5+23β4+94β1 2\beta_{7} - 22\beta_{5} + 23\beta_{4} + 94\beta_1 Copy content Toggle raw display
ν6\nu^{6}== 25β6+157β3+114β2+511 25\beta_{6} + 157\beta_{3} + 114\beta_{2} + 511 Copy content Toggle raw display
ν7\nu^{7}== 50β7228β5+346β4+1017β1 50\beta_{7} - 228\beta_{5} + 346\beta_{4} + 1017\beta_1 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
3.33481
2.72684
1.39511
0.705030
−0.705030
−1.39511
−2.72684
−3.33481
0 −3.33481 0 0 0 −1.78602 0 8.12097 0
1.2 0 −2.72684 0 0 0 −2.84526 0 4.43565 0
1.3 0 −1.39511 0 0 0 4.73991 0 −1.05368 0
1.4 0 −0.705030 0 0 0 −2.69218 0 −2.50293 0
1.5 0 0.705030 0 0 0 2.69218 0 −2.50293 0
1.6 0 1.39511 0 0 0 −4.73991 0 −1.05368 0
1.7 0 2.72684 0 0 0 2.84526 0 4.43565 0
1.8 0 3.33481 0 0 0 1.78602 0 8.12097 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.8
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 1 -1
55 +1 +1

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4000.2.a.r yes 8
4.b odd 2 1 inner 4000.2.a.r yes 8
5.b even 2 1 4000.2.a.q 8
5.c odd 4 2 4000.2.c.h 16
8.b even 2 1 8000.2.a.ca 8
8.d odd 2 1 8000.2.a.ca 8
20.d odd 2 1 4000.2.a.q 8
20.e even 4 2 4000.2.c.h 16
40.e odd 2 1 8000.2.a.cb 8
40.f even 2 1 8000.2.a.cb 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
4000.2.a.q 8 5.b even 2 1
4000.2.a.q 8 20.d odd 2 1
4000.2.a.r yes 8 1.a even 1 1 trivial
4000.2.a.r yes 8 4.b odd 2 1 inner
4000.2.c.h 16 5.c odd 4 2
4000.2.c.h 16 20.e even 4 2
8000.2.a.ca 8 8.b even 2 1
8000.2.a.ca 8 8.d odd 2 1
8000.2.a.cb 8 40.e odd 2 1
8000.2.a.cb 8 40.f even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(Γ0(4000))S_{2}^{\mathrm{new}}(\Gamma_0(4000)):

T3821T36+129T34220T32+80 T_{3}^{8} - 21T_{3}^{6} + 129T_{3}^{4} - 220T_{3}^{2} + 80 Copy content Toggle raw display
T7841T76+524T742605T72+4205 T_{7}^{8} - 41T_{7}^{6} + 524T_{7}^{4} - 2605T_{7}^{2} + 4205 Copy content Toggle raw display
T11849T116+684T1142445T112+5 T_{11}^{8} - 49T_{11}^{6} + 684T_{11}^{4} - 2445T_{11}^{2} + 5 Copy content Toggle raw display
T1346T13317T132+78T13+149 T_{13}^{4} - 6T_{13}^{3} - 17T_{13}^{2} + 78T_{13} + 149 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T8 T^{8} Copy content Toggle raw display
33 T821T6++80 T^{8} - 21 T^{6} + \cdots + 80 Copy content Toggle raw display
55 T8 T^{8} Copy content Toggle raw display
77 T841T6++4205 T^{8} - 41 T^{6} + \cdots + 4205 Copy content Toggle raw display
1111 T849T6++5 T^{8} - 49 T^{6} + \cdots + 5 Copy content Toggle raw display
1313 (T46T3++149)2 (T^{4} - 6 T^{3} + \cdots + 149)^{2} Copy content Toggle raw display
1717 (T433T2++176)2 (T^{4} - 33 T^{2} + \cdots + 176)^{2} Copy content Toggle raw display
1919 T880T6++3125 T^{8} - 80 T^{6} + \cdots + 3125 Copy content Toggle raw display
2323 T891T6++20480 T^{8} - 91 T^{6} + \cdots + 20480 Copy content Toggle raw display
2929 (T412T3++20)2 (T^{4} - 12 T^{3} + \cdots + 20)^{2} Copy content Toggle raw display
3131 T829T6++80 T^{8} - 29 T^{6} + \cdots + 80 Copy content Toggle raw display
3737 (T411T3+320)2 (T^{4} - 11 T^{3} + \cdots - 320)^{2} Copy content Toggle raw display
4141 (T49T36T2++95)2 (T^{4} - 9 T^{3} - 6 T^{2} + \cdots + 95)^{2} Copy content Toggle raw display
4343 T8234T6++3872000 T^{8} - 234 T^{6} + \cdots + 3872000 Copy content Toggle raw display
4747 T8176T6++17405 T^{8} - 176 T^{6} + \cdots + 17405 Copy content Toggle raw display
5353 (T416T3++2501)2 (T^{4} - 16 T^{3} + \cdots + 2501)^{2} Copy content Toggle raw display
5959 T8196T6++85805 T^{8} - 196 T^{6} + \cdots + 85805 Copy content Toggle raw display
6161 (T411T3+2620)2 (T^{4} - 11 T^{3} + \cdots - 2620)^{2} Copy content Toggle raw display
6767 T881T6++80 T^{8} - 81 T^{6} + \cdots + 80 Copy content Toggle raw display
7171 T8694T6++849686480 T^{8} - 694 T^{6} + \cdots + 849686480 Copy content Toggle raw display
7373 (T4+25T3+4124)2 (T^{4} + 25 T^{3} + \cdots - 4124)^{2} Copy content Toggle raw display
7979 T8546T6++3494480 T^{8} - 546 T^{6} + \cdots + 3494480 Copy content Toggle raw display
8383 T8576T6++8192000 T^{8} - 576 T^{6} + \cdots + 8192000 Copy content Toggle raw display
8989 (T45T3+2000)2 (T^{4} - 5 T^{3} + \cdots - 2000)^{2} Copy content Toggle raw display
9797 (T4+23T3+244)2 (T^{4} + 23 T^{3} + \cdots - 244)^{2} Copy content Toggle raw display
show more
show less