Properties

Label 4000.2.c.d.1249.2
Level $4000$
Weight $2$
Character 4000.1249
Analytic conductor $31.940$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4000,2,Mod(1249,4000)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4000, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4000.1249");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4000 = 2^{5} \cdot 5^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4000.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(31.9401608085\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\Q(\zeta_{20})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{6} + x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{8} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1249.2
Root \(0.951057 - 0.309017i\) of defining polynomial
Character \(\chi\) \(=\) 4000.1249
Dual form 4000.2.c.d.1249.8

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.90211i q^{3} +1.17557i q^{7} -0.618034 q^{9} +O(q^{10})\) \(q-1.90211i q^{3} +1.17557i q^{7} -0.618034 q^{9} +2.35114 q^{11} -3.23607i q^{13} +2.00000i q^{17} -1.45309 q^{19} +2.23607 q^{21} +1.17557i q^{23} -4.53077i q^{27} -1.38197 q^{29} +9.95959 q^{31} -4.47214i q^{33} -3.70820i q^{37} -6.15537 q^{39} -5.85410 q^{41} +1.00406i q^{43} +7.15942i q^{47} +5.61803 q^{49} +3.80423 q^{51} -4.00000i q^{53} +2.76393i q^{57} +2.35114 q^{59} +3.61803 q^{61} -0.726543i q^{63} -6.15537i q^{67} +2.23607 q^{69} +10.8576 q^{71} -11.2361i q^{73} +2.76393i q^{77} +13.2088 q^{79} -10.4721 q^{81} -2.62866i q^{83} +2.62866i q^{87} -8.09017 q^{89} +3.80423 q^{91} -18.9443i q^{93} -8.18034i q^{97} -1.45309 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 8 q + 4 q^{9} - 20 q^{29} - 20 q^{41} + 36 q^{49} + 20 q^{61} - 48 q^{81} - 20 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4000\mathbb{Z}\right)^\times\).

\(n\) \(1377\) \(2501\) \(2751\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 1.90211i − 1.09819i −0.835761 0.549093i \(-0.814973\pi\)
0.835761 0.549093i \(-0.185027\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 1.17557i 0.444324i 0.975010 + 0.222162i \(0.0713114\pi\)
−0.975010 + 0.222162i \(0.928689\pi\)
\(8\) 0 0
\(9\) −0.618034 −0.206011
\(10\) 0 0
\(11\) 2.35114 0.708896 0.354448 0.935076i \(-0.384669\pi\)
0.354448 + 0.935076i \(0.384669\pi\)
\(12\) 0 0
\(13\) − 3.23607i − 0.897524i −0.893651 0.448762i \(-0.851865\pi\)
0.893651 0.448762i \(-0.148135\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 2.00000i 0.485071i 0.970143 + 0.242536i \(0.0779791\pi\)
−0.970143 + 0.242536i \(0.922021\pi\)
\(18\) 0 0
\(19\) −1.45309 −0.333361 −0.166680 0.986011i \(-0.553305\pi\)
−0.166680 + 0.986011i \(0.553305\pi\)
\(20\) 0 0
\(21\) 2.23607 0.487950
\(22\) 0 0
\(23\) 1.17557i 0.245123i 0.992461 + 0.122562i \(0.0391109\pi\)
−0.992461 + 0.122562i \(0.960889\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) − 4.53077i − 0.871947i
\(28\) 0 0
\(29\) −1.38197 −0.256625 −0.128312 0.991734i \(-0.540956\pi\)
−0.128312 + 0.991734i \(0.540956\pi\)
\(30\) 0 0
\(31\) 9.95959 1.78880 0.894398 0.447272i \(-0.147604\pi\)
0.894398 + 0.447272i \(0.147604\pi\)
\(32\) 0 0
\(33\) − 4.47214i − 0.778499i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) − 3.70820i − 0.609625i −0.952412 0.304812i \(-0.901406\pi\)
0.952412 0.304812i \(-0.0985938\pi\)
\(38\) 0 0
\(39\) −6.15537 −0.985648
\(40\) 0 0
\(41\) −5.85410 −0.914257 −0.457129 0.889401i \(-0.651122\pi\)
−0.457129 + 0.889401i \(0.651122\pi\)
\(42\) 0 0
\(43\) 1.00406i 0.153117i 0.997065 + 0.0765586i \(0.0243932\pi\)
−0.997065 + 0.0765586i \(0.975607\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 7.15942i 1.04431i 0.852851 + 0.522155i \(0.174872\pi\)
−0.852851 + 0.522155i \(0.825128\pi\)
\(48\) 0 0
\(49\) 5.61803 0.802576
\(50\) 0 0
\(51\) 3.80423 0.532698
\(52\) 0 0
\(53\) − 4.00000i − 0.549442i −0.961524 0.274721i \(-0.911414\pi\)
0.961524 0.274721i \(-0.0885855\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 2.76393i 0.366092i
\(58\) 0 0
\(59\) 2.35114 0.306092 0.153046 0.988219i \(-0.451092\pi\)
0.153046 + 0.988219i \(0.451092\pi\)
\(60\) 0 0
\(61\) 3.61803 0.463242 0.231621 0.972806i \(-0.425597\pi\)
0.231621 + 0.972806i \(0.425597\pi\)
\(62\) 0 0
\(63\) − 0.726543i − 0.0915358i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) − 6.15537i − 0.751998i −0.926620 0.375999i \(-0.877300\pi\)
0.926620 0.375999i \(-0.122700\pi\)
\(68\) 0 0
\(69\) 2.23607 0.269191
\(70\) 0 0
\(71\) 10.8576 1.28857 0.644283 0.764787i \(-0.277156\pi\)
0.644283 + 0.764787i \(0.277156\pi\)
\(72\) 0 0
\(73\) − 11.2361i − 1.31508i −0.753419 0.657541i \(-0.771597\pi\)
0.753419 0.657541i \(-0.228403\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 2.76393i 0.314979i
\(78\) 0 0
\(79\) 13.2088 1.48610 0.743052 0.669233i \(-0.233377\pi\)
0.743052 + 0.669233i \(0.233377\pi\)
\(80\) 0 0
\(81\) −10.4721 −1.16357
\(82\) 0 0
\(83\) − 2.62866i − 0.288532i −0.989539 0.144266i \(-0.953918\pi\)
0.989539 0.144266i \(-0.0460822\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 2.62866i 0.281821i
\(88\) 0 0
\(89\) −8.09017 −0.857556 −0.428778 0.903410i \(-0.641056\pi\)
−0.428778 + 0.903410i \(0.641056\pi\)
\(90\) 0 0
\(91\) 3.80423 0.398791
\(92\) 0 0
\(93\) − 18.9443i − 1.96443i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) − 8.18034i − 0.830588i −0.909687 0.415294i \(-0.863679\pi\)
0.909687 0.415294i \(-0.136321\pi\)
\(98\) 0 0
\(99\) −1.45309 −0.146041
\(100\) 0 0
\(101\) 6.09017 0.605995 0.302997 0.952991i \(-0.402013\pi\)
0.302997 + 0.952991i \(0.402013\pi\)
\(102\) 0 0
\(103\) 10.8576i 1.06984i 0.844904 + 0.534918i \(0.179657\pi\)
−0.844904 + 0.534918i \(0.820343\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 6.60440i − 0.638471i −0.947675 0.319235i \(-0.896574\pi\)
0.947675 0.319235i \(-0.103426\pi\)
\(108\) 0 0
\(109\) −2.90983 −0.278711 −0.139356 0.990242i \(-0.544503\pi\)
−0.139356 + 0.990242i \(0.544503\pi\)
\(110\) 0 0
\(111\) −7.05342 −0.669481
\(112\) 0 0
\(113\) − 17.7082i − 1.66585i −0.553388 0.832924i \(-0.686665\pi\)
0.553388 0.832924i \(-0.313335\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 2.00000i 0.184900i
\(118\) 0 0
\(119\) −2.35114 −0.215529
\(120\) 0 0
\(121\) −5.47214 −0.497467
\(122\) 0 0
\(123\) 11.1352i 1.00402i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 16.5640i 1.46982i 0.678167 + 0.734908i \(0.262775\pi\)
−0.678167 + 0.734908i \(0.737225\pi\)
\(128\) 0 0
\(129\) 1.90983 0.168151
\(130\) 0 0
\(131\) 14.3188 1.25104 0.625522 0.780207i \(-0.284886\pi\)
0.625522 + 0.780207i \(0.284886\pi\)
\(132\) 0 0
\(133\) − 1.70820i − 0.148120i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) − 5.41641i − 0.462755i −0.972864 0.231377i \(-0.925677\pi\)
0.972864 0.231377i \(-0.0743232\pi\)
\(138\) 0 0
\(139\) −5.60034 −0.475014 −0.237507 0.971386i \(-0.576330\pi\)
−0.237507 + 0.971386i \(0.576330\pi\)
\(140\) 0 0
\(141\) 13.6180 1.14685
\(142\) 0 0
\(143\) − 7.60845i − 0.636251i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) − 10.6861i − 0.881378i
\(148\) 0 0
\(149\) −0.381966 −0.0312919 −0.0156459 0.999878i \(-0.504980\pi\)
−0.0156459 + 0.999878i \(0.504980\pi\)
\(150\) 0 0
\(151\) −16.1150 −1.31142 −0.655708 0.755014i \(-0.727630\pi\)
−0.655708 + 0.755014i \(0.727630\pi\)
\(152\) 0 0
\(153\) − 1.23607i − 0.0999302i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 7.52786i 0.600789i 0.953815 + 0.300394i \(0.0971183\pi\)
−0.953815 + 0.300394i \(0.902882\pi\)
\(158\) 0 0
\(159\) −7.60845 −0.603390
\(160\) 0 0
\(161\) −1.38197 −0.108914
\(162\) 0 0
\(163\) − 16.7355i − 1.31083i −0.755271 0.655413i \(-0.772495\pi\)
0.755271 0.655413i \(-0.227505\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 1.34708i 0.104240i 0.998641 + 0.0521202i \(0.0165979\pi\)
−0.998641 + 0.0521202i \(0.983402\pi\)
\(168\) 0 0
\(169\) 2.52786 0.194451
\(170\) 0 0
\(171\) 0.898056 0.0686761
\(172\) 0 0
\(173\) − 14.0000i − 1.06440i −0.846619 0.532200i \(-0.821365\pi\)
0.846619 0.532200i \(-0.178635\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) − 4.47214i − 0.336146i
\(178\) 0 0
\(179\) 25.1765 1.88178 0.940890 0.338713i \(-0.109991\pi\)
0.940890 + 0.338713i \(0.109991\pi\)
\(180\) 0 0
\(181\) 19.5623 1.45405 0.727027 0.686608i \(-0.240901\pi\)
0.727027 + 0.686608i \(0.240901\pi\)
\(182\) 0 0
\(183\) − 6.88191i − 0.508725i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 4.70228i 0.343865i
\(188\) 0 0
\(189\) 5.32624 0.387427
\(190\) 0 0
\(191\) −6.15537 −0.445387 −0.222693 0.974889i \(-0.571485\pi\)
−0.222693 + 0.974889i \(0.571485\pi\)
\(192\) 0 0
\(193\) − 22.1803i − 1.59658i −0.602276 0.798288i \(-0.705739\pi\)
0.602276 0.798288i \(-0.294261\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 9.05573i 0.645194i 0.946536 + 0.322597i \(0.104556\pi\)
−0.946536 + 0.322597i \(0.895444\pi\)
\(198\) 0 0
\(199\) 10.8576 0.769678 0.384839 0.922984i \(-0.374257\pi\)
0.384839 + 0.922984i \(0.374257\pi\)
\(200\) 0 0
\(201\) −11.7082 −0.825833
\(202\) 0 0
\(203\) − 1.62460i − 0.114024i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) − 0.726543i − 0.0504982i
\(208\) 0 0
\(209\) −3.41641 −0.236318
\(210\) 0 0
\(211\) −21.9273 −1.50954 −0.754769 0.655991i \(-0.772251\pi\)
−0.754769 + 0.655991i \(0.772251\pi\)
\(212\) 0 0
\(213\) − 20.6525i − 1.41508i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 11.7082i 0.794805i
\(218\) 0 0
\(219\) −21.3723 −1.44420
\(220\) 0 0
\(221\) 6.47214 0.435363
\(222\) 0 0
\(223\) − 17.4620i − 1.16934i −0.811269 0.584672i \(-0.801223\pi\)
0.811269 0.584672i \(-0.198777\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 24.3440i − 1.61576i −0.589344 0.807882i \(-0.700614\pi\)
0.589344 0.807882i \(-0.299386\pi\)
\(228\) 0 0
\(229\) 7.03444 0.464849 0.232425 0.972614i \(-0.425334\pi\)
0.232425 + 0.972614i \(0.425334\pi\)
\(230\) 0 0
\(231\) 5.25731 0.345906
\(232\) 0 0
\(233\) − 0.472136i − 0.0309307i −0.999880 0.0154653i \(-0.995077\pi\)
0.999880 0.0154653i \(-0.00492296\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) − 25.1246i − 1.63202i
\(238\) 0 0
\(239\) −10.3026 −0.666421 −0.333211 0.942852i \(-0.608132\pi\)
−0.333211 + 0.942852i \(0.608132\pi\)
\(240\) 0 0
\(241\) −19.1459 −1.23330 −0.616648 0.787239i \(-0.711510\pi\)
−0.616648 + 0.787239i \(0.711510\pi\)
\(242\) 0 0
\(243\) 6.32688i 0.405870i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 4.70228i 0.299199i
\(248\) 0 0
\(249\) −5.00000 −0.316862
\(250\) 0 0
\(251\) −27.5276 −1.73753 −0.868765 0.495225i \(-0.835085\pi\)
−0.868765 + 0.495225i \(0.835085\pi\)
\(252\) 0 0
\(253\) 2.76393i 0.173767i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 20.9443i 1.30647i 0.757156 + 0.653234i \(0.226588\pi\)
−0.757156 + 0.653234i \(0.773412\pi\)
\(258\) 0 0
\(259\) 4.35926 0.270871
\(260\) 0 0
\(261\) 0.854102 0.0528676
\(262\) 0 0
\(263\) 21.2663i 1.31133i 0.755050 + 0.655667i \(0.227613\pi\)
−0.755050 + 0.655667i \(0.772387\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 15.3884i 0.941756i
\(268\) 0 0
\(269\) −14.0000 −0.853595 −0.426798 0.904347i \(-0.640358\pi\)
−0.426798 + 0.904347i \(0.640358\pi\)
\(270\) 0 0
\(271\) −7.60845 −0.462181 −0.231090 0.972932i \(-0.574229\pi\)
−0.231090 + 0.972932i \(0.574229\pi\)
\(272\) 0 0
\(273\) − 7.23607i − 0.437947i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) − 12.4721i − 0.749378i −0.927151 0.374689i \(-0.877749\pi\)
0.927151 0.374689i \(-0.122251\pi\)
\(278\) 0 0
\(279\) −6.15537 −0.368512
\(280\) 0 0
\(281\) −17.0344 −1.01619 −0.508095 0.861301i \(-0.669650\pi\)
−0.508095 + 0.861301i \(0.669650\pi\)
\(282\) 0 0
\(283\) 26.0746i 1.54997i 0.631979 + 0.774986i \(0.282243\pi\)
−0.631979 + 0.774986i \(0.717757\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) − 6.88191i − 0.406226i
\(288\) 0 0
\(289\) 13.0000 0.764706
\(290\) 0 0
\(291\) −15.5599 −0.912139
\(292\) 0 0
\(293\) − 23.2361i − 1.35747i −0.734385 0.678733i \(-0.762529\pi\)
0.734385 0.678733i \(-0.237471\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) − 10.6525i − 0.618119i
\(298\) 0 0
\(299\) 3.80423 0.220004
\(300\) 0 0
\(301\) −1.18034 −0.0680337
\(302\) 0 0
\(303\) − 11.5842i − 0.665494i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 23.1029i 1.31855i 0.751902 + 0.659275i \(0.229137\pi\)
−0.751902 + 0.659275i \(0.770863\pi\)
\(308\) 0 0
\(309\) 20.6525 1.17488
\(310\) 0 0
\(311\) −15.7719 −0.894344 −0.447172 0.894448i \(-0.647569\pi\)
−0.447172 + 0.894448i \(0.647569\pi\)
\(312\) 0 0
\(313\) − 13.8885i − 0.785027i −0.919746 0.392513i \(-0.871606\pi\)
0.919746 0.392513i \(-0.128394\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 27.1246i 1.52347i 0.647889 + 0.761735i \(0.275652\pi\)
−0.647889 + 0.761735i \(0.724348\pi\)
\(318\) 0 0
\(319\) −3.24920 −0.181920
\(320\) 0 0
\(321\) −12.5623 −0.701160
\(322\) 0 0
\(323\) − 2.90617i − 0.161704i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 5.53483i 0.306077i
\(328\) 0 0
\(329\) −8.41641 −0.464012
\(330\) 0 0
\(331\) 8.50651 0.467560 0.233780 0.972290i \(-0.424890\pi\)
0.233780 + 0.972290i \(0.424890\pi\)
\(332\) 0 0
\(333\) 2.29180i 0.125590i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) − 12.6525i − 0.689224i −0.938745 0.344612i \(-0.888010\pi\)
0.938745 0.344612i \(-0.111990\pi\)
\(338\) 0 0
\(339\) −33.6830 −1.82941
\(340\) 0 0
\(341\) 23.4164 1.26807
\(342\) 0 0
\(343\) 14.8334i 0.800928i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 5.53483i − 0.297125i −0.988903 0.148563i \(-0.952535\pi\)
0.988903 0.148563i \(-0.0474646\pi\)
\(348\) 0 0
\(349\) −34.2705 −1.83446 −0.917229 0.398360i \(-0.869579\pi\)
−0.917229 + 0.398360i \(0.869579\pi\)
\(350\) 0 0
\(351\) −14.6619 −0.782593
\(352\) 0 0
\(353\) 21.1246i 1.12435i 0.827018 + 0.562175i \(0.190035\pi\)
−0.827018 + 0.562175i \(0.809965\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 4.47214i 0.236691i
\(358\) 0 0
\(359\) 12.8658 0.679029 0.339515 0.940601i \(-0.389737\pi\)
0.339515 + 0.940601i \(0.389737\pi\)
\(360\) 0 0
\(361\) −16.8885 −0.888871
\(362\) 0 0
\(363\) 10.4086i 0.546311i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) − 22.3358i − 1.16592i −0.812500 0.582961i \(-0.801894\pi\)
0.812500 0.582961i \(-0.198106\pi\)
\(368\) 0 0
\(369\) 3.61803 0.188347
\(370\) 0 0
\(371\) 4.70228 0.244130
\(372\) 0 0
\(373\) 2.18034i 0.112894i 0.998406 + 0.0564469i \(0.0179771\pi\)
−0.998406 + 0.0564469i \(0.982023\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 4.47214i 0.230327i
\(378\) 0 0
\(379\) 18.8091 0.966160 0.483080 0.875576i \(-0.339518\pi\)
0.483080 + 0.875576i \(0.339518\pi\)
\(380\) 0 0
\(381\) 31.5066 1.61413
\(382\) 0 0
\(383\) − 17.4620i − 0.892269i −0.894966 0.446134i \(-0.852800\pi\)
0.894966 0.446134i \(-0.147200\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) − 0.620541i − 0.0315439i
\(388\) 0 0
\(389\) 20.5066 1.03972 0.519862 0.854250i \(-0.325983\pi\)
0.519862 + 0.854250i \(0.325983\pi\)
\(390\) 0 0
\(391\) −2.35114 −0.118902
\(392\) 0 0
\(393\) − 27.2361i − 1.37388i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) − 31.5967i − 1.58580i −0.609355 0.792898i \(-0.708571\pi\)
0.609355 0.792898i \(-0.291429\pi\)
\(398\) 0 0
\(399\) −3.24920 −0.162663
\(400\) 0 0
\(401\) −7.14590 −0.356849 −0.178425 0.983954i \(-0.557100\pi\)
−0.178425 + 0.983954i \(0.557100\pi\)
\(402\) 0 0
\(403\) − 32.2299i − 1.60549i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) − 8.71851i − 0.432161i
\(408\) 0 0
\(409\) −15.5066 −0.766751 −0.383375 0.923593i \(-0.625238\pi\)
−0.383375 + 0.923593i \(0.625238\pi\)
\(410\) 0 0
\(411\) −10.3026 −0.508191
\(412\) 0 0
\(413\) 2.76393i 0.136004i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 10.6525i 0.521654i
\(418\) 0 0
\(419\) −1.79611 −0.0877458 −0.0438729 0.999037i \(-0.513970\pi\)
−0.0438729 + 0.999037i \(0.513970\pi\)
\(420\) 0 0
\(421\) 16.5066 0.804481 0.402241 0.915534i \(-0.368232\pi\)
0.402241 + 0.915534i \(0.368232\pi\)
\(422\) 0 0
\(423\) − 4.42477i − 0.215140i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 4.25325i 0.205829i
\(428\) 0 0
\(429\) −14.4721 −0.698721
\(430\) 0 0
\(431\) 10.3026 0.496260 0.248130 0.968727i \(-0.420184\pi\)
0.248130 + 0.968727i \(0.420184\pi\)
\(432\) 0 0
\(433\) 18.7639i 0.901737i 0.892590 + 0.450869i \(0.148886\pi\)
−0.892590 + 0.450869i \(0.851114\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 1.70820i − 0.0817145i
\(438\) 0 0
\(439\) −6.15537 −0.293780 −0.146890 0.989153i \(-0.546926\pi\)
−0.146890 + 0.989153i \(0.546926\pi\)
\(440\) 0 0
\(441\) −3.47214 −0.165340
\(442\) 0 0
\(443\) 3.18368i 0.151261i 0.997136 + 0.0756307i \(0.0240970\pi\)
−0.997136 + 0.0756307i \(0.975903\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0.726543i 0.0343643i
\(448\) 0 0
\(449\) 31.8885 1.50491 0.752457 0.658642i \(-0.228869\pi\)
0.752457 + 0.658642i \(0.228869\pi\)
\(450\) 0 0
\(451\) −13.7638 −0.648113
\(452\) 0 0
\(453\) 30.6525i 1.44018i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 0.944272i 0.0441712i 0.999756 + 0.0220856i \(0.00703063\pi\)
−0.999756 + 0.0220856i \(0.992969\pi\)
\(458\) 0 0
\(459\) 9.06154 0.422956
\(460\) 0 0
\(461\) 6.09017 0.283647 0.141824 0.989892i \(-0.454703\pi\)
0.141824 + 0.989892i \(0.454703\pi\)
\(462\) 0 0
\(463\) 21.0948i 0.980356i 0.871622 + 0.490178i \(0.163068\pi\)
−0.871622 + 0.490178i \(0.836932\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 37.2097i 1.72186i 0.508723 + 0.860930i \(0.330118\pi\)
−0.508723 + 0.860930i \(0.669882\pi\)
\(468\) 0 0
\(469\) 7.23607 0.334131
\(470\) 0 0
\(471\) 14.3188 0.659778
\(472\) 0 0
\(473\) 2.36068i 0.108544i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 2.47214i 0.113191i
\(478\) 0 0
\(479\) 28.4257 1.29880 0.649402 0.760446i \(-0.275019\pi\)
0.649402 + 0.760446i \(0.275019\pi\)
\(480\) 0 0
\(481\) −12.0000 −0.547153
\(482\) 0 0
\(483\) 2.62866i 0.119608i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) − 38.4913i − 1.74421i −0.489322 0.872103i \(-0.662756\pi\)
0.489322 0.872103i \(-0.337244\pi\)
\(488\) 0 0
\(489\) −31.8328 −1.43953
\(490\) 0 0
\(491\) 16.6700 0.752306 0.376153 0.926558i \(-0.377247\pi\)
0.376153 + 0.926558i \(0.377247\pi\)
\(492\) 0 0
\(493\) − 2.76393i − 0.124481i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 12.7639i 0.572541i
\(498\) 0 0
\(499\) 20.2622 0.907061 0.453531 0.891241i \(-0.350164\pi\)
0.453531 + 0.891241i \(0.350164\pi\)
\(500\) 0 0
\(501\) 2.56231 0.114475
\(502\) 0 0
\(503\) 42.1240i 1.87822i 0.343622 + 0.939108i \(0.388346\pi\)
−0.343622 + 0.939108i \(0.611654\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) − 4.80828i − 0.213543i
\(508\) 0 0
\(509\) 16.8328 0.746101 0.373051 0.927811i \(-0.378312\pi\)
0.373051 + 0.927811i \(0.378312\pi\)
\(510\) 0 0
\(511\) 13.2088 0.584322
\(512\) 0 0
\(513\) 6.58359i 0.290673i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 16.8328i 0.740306i
\(518\) 0 0
\(519\) −26.6296 −1.16891
\(520\) 0 0
\(521\) −10.2148 −0.447518 −0.223759 0.974645i \(-0.571833\pi\)
−0.223759 + 0.974645i \(0.571833\pi\)
\(522\) 0 0
\(523\) 1.69011i 0.0739034i 0.999317 + 0.0369517i \(0.0117648\pi\)
−0.999317 + 0.0369517i \(0.988235\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 19.9192i 0.867693i
\(528\) 0 0
\(529\) 21.6180 0.939915
\(530\) 0 0
\(531\) −1.45309 −0.0630585
\(532\) 0 0
\(533\) 18.9443i 0.820568i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) − 47.8885i − 2.06654i
\(538\) 0 0
\(539\) 13.2088 0.568943
\(540\) 0 0
\(541\) 8.72949 0.375310 0.187655 0.982235i \(-0.439911\pi\)
0.187655 + 0.982235i \(0.439911\pi\)
\(542\) 0 0
\(543\) − 37.2097i − 1.59682i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) − 5.53483i − 0.236652i −0.992975 0.118326i \(-0.962247\pi\)
0.992975 0.118326i \(-0.0377528\pi\)
\(548\) 0 0
\(549\) −2.23607 −0.0954331
\(550\) 0 0
\(551\) 2.00811 0.0855485
\(552\) 0 0
\(553\) 15.5279i 0.660312i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 33.7771i 1.43118i 0.698520 + 0.715591i \(0.253842\pi\)
−0.698520 + 0.715591i \(0.746158\pi\)
\(558\) 0 0
\(559\) 3.24920 0.137426
\(560\) 0 0
\(561\) 8.94427 0.377627
\(562\) 0 0
\(563\) − 34.7931i − 1.46635i −0.680039 0.733176i \(-0.738037\pi\)
0.680039 0.733176i \(-0.261963\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) − 12.3107i − 0.517002i
\(568\) 0 0
\(569\) 7.09017 0.297235 0.148618 0.988895i \(-0.452518\pi\)
0.148618 + 0.988895i \(0.452518\pi\)
\(570\) 0 0
\(571\) 15.2169 0.636808 0.318404 0.947955i \(-0.396853\pi\)
0.318404 + 0.947955i \(0.396853\pi\)
\(572\) 0 0
\(573\) 11.7082i 0.489117i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) − 22.4721i − 0.935527i −0.883854 0.467764i \(-0.845060\pi\)
0.883854 0.467764i \(-0.154940\pi\)
\(578\) 0 0
\(579\) −42.1895 −1.75334
\(580\) 0 0
\(581\) 3.09017 0.128202
\(582\) 0 0
\(583\) − 9.40456i − 0.389497i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 40.1814i 1.65846i 0.558905 + 0.829232i \(0.311222\pi\)
−0.558905 + 0.829232i \(0.688778\pi\)
\(588\) 0 0
\(589\) −14.4721 −0.596314
\(590\) 0 0
\(591\) 17.2250 0.708543
\(592\) 0 0
\(593\) − 12.2918i − 0.504764i −0.967628 0.252382i \(-0.918786\pi\)
0.967628 0.252382i \(-0.0812139\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) − 20.6525i − 0.845250i
\(598\) 0 0
\(599\) 19.7072 0.805214 0.402607 0.915373i \(-0.368104\pi\)
0.402607 + 0.915373i \(0.368104\pi\)
\(600\) 0 0
\(601\) 20.9787 0.855740 0.427870 0.903840i \(-0.359264\pi\)
0.427870 + 0.903840i \(0.359264\pi\)
\(602\) 0 0
\(603\) 3.80423i 0.154920i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) − 26.0746i − 1.05833i −0.848518 0.529167i \(-0.822505\pi\)
0.848518 0.529167i \(-0.177495\pi\)
\(608\) 0 0
\(609\) −3.09017 −0.125220
\(610\) 0 0
\(611\) 23.1684 0.937292
\(612\) 0 0
\(613\) − 22.8328i − 0.922209i −0.887346 0.461104i \(-0.847453\pi\)
0.887346 0.461104i \(-0.152547\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 46.7214i 1.88093i 0.339889 + 0.940466i \(0.389610\pi\)
−0.339889 + 0.940466i \(0.610390\pi\)
\(618\) 0 0
\(619\) 11.9677 0.481023 0.240511 0.970646i \(-0.422685\pi\)
0.240511 + 0.970646i \(0.422685\pi\)
\(620\) 0 0
\(621\) 5.32624 0.213735
\(622\) 0 0
\(623\) − 9.51057i − 0.381033i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 6.49839i 0.259521i
\(628\) 0 0
\(629\) 7.41641 0.295712
\(630\) 0 0
\(631\) 18.6781 0.743564 0.371782 0.928320i \(-0.378747\pi\)
0.371782 + 0.928320i \(0.378747\pi\)
\(632\) 0 0
\(633\) 41.7082i 1.65775i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) − 18.1803i − 0.720331i
\(638\) 0 0
\(639\) −6.71040 −0.265459
\(640\) 0 0
\(641\) −25.8541 −1.02118 −0.510588 0.859826i \(-0.670572\pi\)
−0.510588 + 0.859826i \(0.670572\pi\)
\(642\) 0 0
\(643\) − 14.9394i − 0.589152i −0.955628 0.294576i \(-0.904822\pi\)
0.955628 0.294576i \(-0.0951784\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) − 2.13914i − 0.0840982i −0.999116 0.0420491i \(-0.986611\pi\)
0.999116 0.0420491i \(-0.0133886\pi\)
\(648\) 0 0
\(649\) 5.52786 0.216988
\(650\) 0 0
\(651\) 22.2703 0.872843
\(652\) 0 0
\(653\) 40.0689i 1.56802i 0.620750 + 0.784008i \(0.286828\pi\)
−0.620750 + 0.784008i \(0.713172\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 6.94427i 0.270922i
\(658\) 0 0
\(659\) −9.06154 −0.352987 −0.176494 0.984302i \(-0.556476\pi\)
−0.176494 + 0.984302i \(0.556476\pi\)
\(660\) 0 0
\(661\) −30.3262 −1.17955 −0.589777 0.807566i \(-0.700784\pi\)
−0.589777 + 0.807566i \(0.700784\pi\)
\(662\) 0 0
\(663\) − 12.3107i − 0.478109i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) − 1.62460i − 0.0629047i
\(668\) 0 0
\(669\) −33.2148 −1.28416
\(670\) 0 0
\(671\) 8.50651 0.328390
\(672\) 0 0
\(673\) 39.0132i 1.50385i 0.659251 + 0.751923i \(0.270874\pi\)
−0.659251 + 0.751923i \(0.729126\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 14.8328i 0.570071i 0.958517 + 0.285036i \(0.0920055\pi\)
−0.958517 + 0.285036i \(0.907995\pi\)
\(678\) 0 0
\(679\) 9.61657 0.369050
\(680\) 0 0
\(681\) −46.3050 −1.77441
\(682\) 0 0
\(683\) 24.5155i 0.938058i 0.883183 + 0.469029i \(0.155396\pi\)
−0.883183 + 0.469029i \(0.844604\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) − 13.3803i − 0.510490i
\(688\) 0 0
\(689\) −12.9443 −0.493137
\(690\) 0 0
\(691\) 30.2218 1.14969 0.574846 0.818262i \(-0.305062\pi\)
0.574846 + 0.818262i \(0.305062\pi\)
\(692\) 0 0
\(693\) − 1.70820i − 0.0648893i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) − 11.7082i − 0.443480i
\(698\) 0 0
\(699\) −0.898056 −0.0339676
\(700\) 0 0
\(701\) −2.36068 −0.0891616 −0.0445808 0.999006i \(-0.514195\pi\)
−0.0445808 + 0.999006i \(0.514195\pi\)
\(702\) 0 0
\(703\) 5.38834i 0.203225i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 7.15942i 0.269258i
\(708\) 0 0
\(709\) 7.03444 0.264184 0.132092 0.991237i \(-0.457831\pi\)
0.132092 + 0.991237i \(0.457831\pi\)
\(710\) 0 0
\(711\) −8.16348 −0.306154
\(712\) 0 0
\(713\) 11.7082i 0.438476i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 19.5967i 0.731854i
\(718\) 0 0
\(719\) −17.2250 −0.642385 −0.321192 0.947014i \(-0.604084\pi\)
−0.321192 + 0.947014i \(0.604084\pi\)
\(720\) 0 0
\(721\) −12.7639 −0.475354
\(722\) 0 0
\(723\) 36.4177i 1.35439i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) − 6.26137i − 0.232221i −0.993236 0.116111i \(-0.962957\pi\)
0.993236 0.116111i \(-0.0370427\pi\)
\(728\) 0 0
\(729\) −19.3820 −0.717851
\(730\) 0 0
\(731\) −2.00811 −0.0742728
\(732\) 0 0
\(733\) 43.2361i 1.59696i 0.602021 + 0.798480i \(0.294362\pi\)
−0.602021 + 0.798480i \(0.705638\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) − 14.4721i − 0.533088i
\(738\) 0 0
\(739\) 33.1280 1.21863 0.609316 0.792927i \(-0.291444\pi\)
0.609316 + 0.792927i \(0.291444\pi\)
\(740\) 0 0
\(741\) 8.94427 0.328576
\(742\) 0 0
\(743\) 27.1846i 0.997307i 0.866802 + 0.498653i \(0.166172\pi\)
−0.866802 + 0.498653i \(0.833828\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 1.62460i 0.0594410i
\(748\) 0 0
\(749\) 7.76393 0.283688
\(750\) 0 0
\(751\) −3.11817 −0.113784 −0.0568919 0.998380i \(-0.518119\pi\)
−0.0568919 + 0.998380i \(0.518119\pi\)
\(752\) 0 0
\(753\) 52.3607i 1.90813i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 22.6525i 0.823318i 0.911338 + 0.411659i \(0.135051\pi\)
−0.911338 + 0.411659i \(0.864949\pi\)
\(758\) 0 0
\(759\) 5.25731 0.190828
\(760\) 0 0
\(761\) 38.3820 1.39135 0.695673 0.718359i \(-0.255106\pi\)
0.695673 + 0.718359i \(0.255106\pi\)
\(762\) 0 0
\(763\) − 3.42071i − 0.123838i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) − 7.60845i − 0.274725i
\(768\) 0 0
\(769\) 24.3951 0.879711 0.439855 0.898069i \(-0.355030\pi\)
0.439855 + 0.898069i \(0.355030\pi\)
\(770\) 0 0
\(771\) 39.8384 1.43474
\(772\) 0 0
\(773\) 10.8328i 0.389629i 0.980840 + 0.194815i \(0.0624105\pi\)
−0.980840 + 0.194815i \(0.937589\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) − 8.29180i − 0.297467i
\(778\) 0 0
\(779\) 8.50651 0.304777
\(780\) 0 0
\(781\) 25.5279 0.913459
\(782\) 0 0
\(783\) 6.26137i 0.223763i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 39.0463i 1.39185i 0.718114 + 0.695925i \(0.245006\pi\)
−0.718114 + 0.695925i \(0.754994\pi\)
\(788\) 0 0
\(789\) 40.4508 1.44009
\(790\) 0 0
\(791\) 20.8172 0.740176
\(792\) 0 0
\(793\) − 11.7082i − 0.415771i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 4.18034i − 0.148075i −0.997255 0.0740376i \(-0.976412\pi\)
0.997255 0.0740376i \(-0.0235885\pi\)
\(798\) 0 0
\(799\) −14.3188 −0.506564
\(800\) 0 0
\(801\) 5.00000 0.176666
\(802\) 0 0
\(803\) − 26.4176i − 0.932256i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 26.6296i 0.937406i
\(808\) 0 0
\(809\) −52.8115 −1.85675 −0.928377 0.371639i \(-0.878796\pi\)
−0.928377 + 0.371639i \(0.878796\pi\)
\(810\) 0 0
\(811\) 20.4742 0.718947 0.359473 0.933155i \(-0.382956\pi\)
0.359473 + 0.933155i \(0.382956\pi\)
\(812\) 0 0
\(813\) 14.4721i 0.507560i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) − 1.45898i − 0.0510433i
\(818\) 0 0
\(819\) −2.35114 −0.0821555
\(820\) 0 0
\(821\) 10.4508 0.364737 0.182369 0.983230i \(-0.441624\pi\)
0.182369 + 0.983230i \(0.441624\pi\)
\(822\) 0 0
\(823\) 28.9807i 1.01020i 0.863060 + 0.505102i \(0.168545\pi\)
−0.863060 + 0.505102i \(0.831455\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 22.0583i − 0.767043i −0.923532 0.383522i \(-0.874711\pi\)
0.923532 0.383522i \(-0.125289\pi\)
\(828\) 0 0
\(829\) −23.2705 −0.808218 −0.404109 0.914711i \(-0.632418\pi\)
−0.404109 + 0.914711i \(0.632418\pi\)
\(830\) 0 0
\(831\) −23.7234 −0.822956
\(832\) 0 0
\(833\) 11.2361i 0.389307i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) − 45.1246i − 1.55973i
\(838\) 0 0
\(839\) −0.212002 −0.00731913 −0.00365957 0.999993i \(-0.501165\pi\)
−0.00365957 + 0.999993i \(0.501165\pi\)
\(840\) 0 0
\(841\) −27.0902 −0.934144
\(842\) 0 0
\(843\) 32.4014i 1.11596i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) − 6.43288i − 0.221036i
\(848\) 0 0
\(849\) 49.5967 1.70216
\(850\) 0 0
\(851\) 4.35926 0.149433
\(852\) 0 0
\(853\) 47.4164i 1.62351i 0.584000 + 0.811753i \(0.301487\pi\)
−0.584000 + 0.811753i \(0.698513\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 51.0132i 1.74258i 0.490772 + 0.871288i \(0.336715\pi\)
−0.490772 + 0.871288i \(0.663285\pi\)
\(858\) 0 0
\(859\) −38.0423 −1.29799 −0.648993 0.760795i \(-0.724809\pi\)
−0.648993 + 0.760795i \(0.724809\pi\)
\(860\) 0 0
\(861\) −13.0902 −0.446112
\(862\) 0 0
\(863\) 9.89408i 0.336798i 0.985719 + 0.168399i \(0.0538598\pi\)
−0.985719 + 0.168399i \(0.946140\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) − 24.7275i − 0.839789i
\(868\) 0 0
\(869\) 31.0557 1.05349
\(870\) 0 0
\(871\) −19.9192 −0.674936
\(872\) 0 0
\(873\) 5.05573i 0.171110i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) − 45.2361i − 1.52751i −0.645504 0.763757i \(-0.723353\pi\)
0.645504 0.763757i \(-0.276647\pi\)
\(878\) 0 0
\(879\) −44.1976 −1.49075
\(880\) 0 0
\(881\) −10.2016 −0.343702 −0.171851 0.985123i \(-0.554975\pi\)
−0.171851 + 0.985123i \(0.554975\pi\)
\(882\) 0 0
\(883\) − 16.0494i − 0.540107i −0.962845 0.270053i \(-0.912959\pi\)
0.962845 0.270053i \(-0.0870414\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) − 29.2582i − 0.982395i −0.871048 0.491198i \(-0.836559\pi\)
0.871048 0.491198i \(-0.163441\pi\)
\(888\) 0 0
\(889\) −19.4721 −0.653074
\(890\) 0 0
\(891\) −24.6215 −0.824850
\(892\) 0 0
\(893\) − 10.4033i − 0.348132i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) − 7.23607i − 0.241605i
\(898\) 0 0
\(899\) −13.7638 −0.459049
\(900\) 0 0
\(901\) 8.00000 0.266519
\(902\) 0 0
\(903\) 2.24514i 0.0747136i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) − 16.7355i − 0.555693i −0.960625 0.277847i \(-0.910379\pi\)
0.960625 0.277847i \(-0.0896207\pi\)
\(908\) 0 0
\(909\) −3.76393 −0.124842
\(910\) 0 0
\(911\) 15.7719 0.522547 0.261274 0.965265i \(-0.415857\pi\)
0.261274 + 0.965265i \(0.415857\pi\)
\(912\) 0 0
\(913\) − 6.18034i − 0.204539i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 16.8328i 0.555869i
\(918\) 0 0
\(919\) 37.6992 1.24358 0.621791 0.783183i \(-0.286405\pi\)
0.621791 + 0.783183i \(0.286405\pi\)
\(920\) 0 0
\(921\) 43.9443 1.44801
\(922\) 0 0
\(923\) − 35.1361i − 1.15652i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) − 6.71040i − 0.220398i
\(928\) 0 0
\(929\) 16.8541 0.552965 0.276483 0.961019i \(-0.410831\pi\)
0.276483 + 0.961019i \(0.410831\pi\)
\(930\) 0 0
\(931\) −8.16348 −0.267547
\(932\) 0 0
\(933\) 30.0000i 0.982156i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) − 20.3607i − 0.665154i −0.943076 0.332577i \(-0.892082\pi\)
0.943076 0.332577i \(-0.107918\pi\)
\(938\) 0 0
\(939\) −26.4176 −0.862105
\(940\) 0 0
\(941\) 7.52786 0.245401 0.122701 0.992444i \(-0.460844\pi\)
0.122701 + 0.992444i \(0.460844\pi\)
\(942\) 0 0
\(943\) − 6.88191i − 0.224106i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 23.8294i 0.774352i 0.922006 + 0.387176i \(0.126549\pi\)
−0.922006 + 0.387176i \(0.873451\pi\)
\(948\) 0 0
\(949\) −36.3607 −1.18032
\(950\) 0 0
\(951\) 51.5941 1.67305
\(952\) 0 0
\(953\) 43.1935i 1.39917i 0.714547 + 0.699587i \(0.246633\pi\)
−0.714547 + 0.699587i \(0.753367\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 6.18034i 0.199782i
\(958\) 0 0
\(959\) 6.36737 0.205613
\(960\) 0 0
\(961\) 68.1935 2.19979
\(962\) 0 0
\(963\) 4.08174i 0.131532i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 20.1562i 0.648180i 0.946026 + 0.324090i \(0.105058\pi\)
−0.946026 + 0.324090i \(0.894942\pi\)
\(968\) 0 0
\(969\) −5.52786 −0.177581
\(970\) 0 0
\(971\) −53.0472 −1.70236 −0.851182 0.524870i \(-0.824114\pi\)
−0.851182 + 0.524870i \(0.824114\pi\)
\(972\) 0 0
\(973\) − 6.58359i − 0.211060i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 42.7214i 1.36678i 0.730055 + 0.683389i \(0.239495\pi\)
−0.730055 + 0.683389i \(0.760505\pi\)
\(978\) 0 0
\(979\) −19.0211 −0.607918
\(980\) 0 0
\(981\) 1.79837 0.0574177
\(982\) 0 0
\(983\) − 56.5084i − 1.80234i −0.433469 0.901168i \(-0.642711\pi\)
0.433469 0.901168i \(-0.357289\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 16.0090i 0.509571i
\(988\) 0 0
\(989\) −1.18034 −0.0375326
\(990\) 0 0
\(991\) 14.1068 0.448119 0.224059 0.974575i \(-0.428069\pi\)
0.224059 + 0.974575i \(0.428069\pi\)
\(992\) 0 0
\(993\) − 16.1803i − 0.513468i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) − 9.05573i − 0.286798i −0.989665 0.143399i \(-0.954197\pi\)
0.989665 0.143399i \(-0.0458032\pi\)
\(998\) 0 0
\(999\) −16.8010 −0.531561
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4000.2.c.d.1249.2 8
4.3 odd 2 inner 4000.2.c.d.1249.7 8
5.2 odd 4 4000.2.a.e.1.1 4
5.3 odd 4 4000.2.a.f.1.4 yes 4
5.4 even 2 inner 4000.2.c.d.1249.8 8
20.3 even 4 4000.2.a.f.1.1 yes 4
20.7 even 4 4000.2.a.e.1.4 yes 4
20.19 odd 2 inner 4000.2.c.d.1249.1 8
40.3 even 4 8000.2.a.bg.1.4 4
40.13 odd 4 8000.2.a.bg.1.1 4
40.27 even 4 8000.2.a.bh.1.1 4
40.37 odd 4 8000.2.a.bh.1.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4000.2.a.e.1.1 4 5.2 odd 4
4000.2.a.e.1.4 yes 4 20.7 even 4
4000.2.a.f.1.1 yes 4 20.3 even 4
4000.2.a.f.1.4 yes 4 5.3 odd 4
4000.2.c.d.1249.1 8 20.19 odd 2 inner
4000.2.c.d.1249.2 8 1.1 even 1 trivial
4000.2.c.d.1249.7 8 4.3 odd 2 inner
4000.2.c.d.1249.8 8 5.4 even 2 inner
8000.2.a.bg.1.1 4 40.13 odd 4
8000.2.a.bg.1.4 4 40.3 even 4
8000.2.a.bh.1.1 4 40.27 even 4
8000.2.a.bh.1.4 4 40.37 odd 4