Properties

Label 4001.2.a.a.1.31
Level $4001$
Weight $2$
Character 4001.1
Self dual yes
Analytic conductor $31.948$
Analytic rank $1$
Dimension $149$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4001,2,Mod(1,4001)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4001, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4001.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4001 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4001.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(31.9481458487\)
Analytic rank: \(1\)
Dimension: \(149\)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.31
Character \(\chi\) \(=\) 4001.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.75222 q^{2} -2.39793 q^{3} +1.07026 q^{4} -1.87948 q^{5} +4.20169 q^{6} -0.610730 q^{7} +1.62910 q^{8} +2.75008 q^{9} +3.29326 q^{10} +2.33584 q^{11} -2.56641 q^{12} +1.51936 q^{13} +1.07013 q^{14} +4.50687 q^{15} -4.99506 q^{16} -6.58782 q^{17} -4.81873 q^{18} -2.33384 q^{19} -2.01154 q^{20} +1.46449 q^{21} -4.09290 q^{22} +6.92929 q^{23} -3.90648 q^{24} -1.46754 q^{25} -2.66225 q^{26} +0.599300 q^{27} -0.653641 q^{28} -3.90459 q^{29} -7.89702 q^{30} +0.969877 q^{31} +5.49422 q^{32} -5.60118 q^{33} +11.5433 q^{34} +1.14786 q^{35} +2.94330 q^{36} +3.91378 q^{37} +4.08938 q^{38} -3.64333 q^{39} -3.06187 q^{40} -4.63610 q^{41} -2.56610 q^{42} -7.06881 q^{43} +2.49996 q^{44} -5.16873 q^{45} -12.1416 q^{46} +4.03611 q^{47} +11.9778 q^{48} -6.62701 q^{49} +2.57145 q^{50} +15.7971 q^{51} +1.62612 q^{52} -10.3645 q^{53} -1.05010 q^{54} -4.39017 q^{55} -0.994942 q^{56} +5.59638 q^{57} +6.84168 q^{58} +6.78540 q^{59} +4.82353 q^{60} +4.95132 q^{61} -1.69943 q^{62} -1.67955 q^{63} +0.363058 q^{64} -2.85562 q^{65} +9.81448 q^{66} +10.0456 q^{67} -7.05069 q^{68} -16.6160 q^{69} -2.01129 q^{70} +4.45183 q^{71} +4.48016 q^{72} +0.0554320 q^{73} -6.85779 q^{74} +3.51906 q^{75} -2.49781 q^{76} -1.42657 q^{77} +6.38391 q^{78} +4.37186 q^{79} +9.38814 q^{80} -9.68731 q^{81} +8.12345 q^{82} -13.1767 q^{83} +1.56739 q^{84} +12.3817 q^{85} +12.3861 q^{86} +9.36293 q^{87} +3.80532 q^{88} +11.6764 q^{89} +9.05672 q^{90} -0.927922 q^{91} +7.41615 q^{92} -2.32570 q^{93} -7.07214 q^{94} +4.38641 q^{95} -13.1748 q^{96} +13.8586 q^{97} +11.6120 q^{98} +6.42374 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 149 q - 6 q^{2} - 28 q^{3} + 116 q^{4} - 19 q^{5} - 31 q^{6} - 47 q^{7} - 15 q^{8} + 115 q^{9} - 48 q^{10} - 31 q^{11} - 61 q^{12} - 54 q^{13} - 44 q^{14} - 65 q^{15} + 58 q^{16} - 26 q^{17} - 23 q^{18}+ \cdots - 131 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.75222 −1.23900 −0.619502 0.784995i \(-0.712665\pi\)
−0.619502 + 0.784995i \(0.712665\pi\)
\(3\) −2.39793 −1.38445 −0.692223 0.721683i \(-0.743369\pi\)
−0.692223 + 0.721683i \(0.743369\pi\)
\(4\) 1.07026 0.535131
\(5\) −1.87948 −0.840531 −0.420265 0.907401i \(-0.638063\pi\)
−0.420265 + 0.907401i \(0.638063\pi\)
\(6\) 4.20169 1.71533
\(7\) −0.610730 −0.230834 −0.115417 0.993317i \(-0.536820\pi\)
−0.115417 + 0.993317i \(0.536820\pi\)
\(8\) 1.62910 0.575975
\(9\) 2.75008 0.916692
\(10\) 3.29326 1.04142
\(11\) 2.33584 0.704282 0.352141 0.935947i \(-0.385454\pi\)
0.352141 + 0.935947i \(0.385454\pi\)
\(12\) −2.56641 −0.740860
\(13\) 1.51936 0.421396 0.210698 0.977551i \(-0.432426\pi\)
0.210698 + 0.977551i \(0.432426\pi\)
\(14\) 1.07013 0.286005
\(15\) 4.50687 1.16367
\(16\) −4.99506 −1.24877
\(17\) −6.58782 −1.59778 −0.798890 0.601477i \(-0.794579\pi\)
−0.798890 + 0.601477i \(0.794579\pi\)
\(18\) −4.81873 −1.13579
\(19\) −2.33384 −0.535419 −0.267709 0.963500i \(-0.586267\pi\)
−0.267709 + 0.963500i \(0.586267\pi\)
\(20\) −2.01154 −0.449794
\(21\) 1.46449 0.319578
\(22\) −4.09290 −0.872608
\(23\) 6.92929 1.44486 0.722429 0.691445i \(-0.243026\pi\)
0.722429 + 0.691445i \(0.243026\pi\)
\(24\) −3.90648 −0.797406
\(25\) −1.46754 −0.293508
\(26\) −2.66225 −0.522111
\(27\) 0.599300 0.115335
\(28\) −0.653641 −0.123527
\(29\) −3.90459 −0.725064 −0.362532 0.931971i \(-0.618088\pi\)
−0.362532 + 0.931971i \(0.618088\pi\)
\(30\) −7.89702 −1.44179
\(31\) 0.969877 0.174195 0.0870975 0.996200i \(-0.472241\pi\)
0.0870975 + 0.996200i \(0.472241\pi\)
\(32\) 5.49422 0.971251
\(33\) −5.60118 −0.975041
\(34\) 11.5433 1.97966
\(35\) 1.14786 0.194023
\(36\) 2.94330 0.490550
\(37\) 3.91378 0.643422 0.321711 0.946838i \(-0.395742\pi\)
0.321711 + 0.946838i \(0.395742\pi\)
\(38\) 4.08938 0.663386
\(39\) −3.64333 −0.583400
\(40\) −3.06187 −0.484125
\(41\) −4.63610 −0.724037 −0.362019 0.932171i \(-0.617912\pi\)
−0.362019 + 0.932171i \(0.617912\pi\)
\(42\) −2.56610 −0.395958
\(43\) −7.06881 −1.07798 −0.538992 0.842311i \(-0.681195\pi\)
−0.538992 + 0.842311i \(0.681195\pi\)
\(44\) 2.49996 0.376883
\(45\) −5.16873 −0.770508
\(46\) −12.1416 −1.79018
\(47\) 4.03611 0.588727 0.294364 0.955694i \(-0.404892\pi\)
0.294364 + 0.955694i \(0.404892\pi\)
\(48\) 11.9778 1.72885
\(49\) −6.62701 −0.946716
\(50\) 2.57145 0.363657
\(51\) 15.7971 2.21204
\(52\) 1.62612 0.225502
\(53\) −10.3645 −1.42367 −0.711836 0.702346i \(-0.752136\pi\)
−0.711836 + 0.702346i \(0.752136\pi\)
\(54\) −1.05010 −0.142901
\(55\) −4.39017 −0.591971
\(56\) −0.994942 −0.132955
\(57\) 5.59638 0.741259
\(58\) 6.84168 0.898357
\(59\) 6.78540 0.883384 0.441692 0.897167i \(-0.354378\pi\)
0.441692 + 0.897167i \(0.354378\pi\)
\(60\) 4.82353 0.622716
\(61\) 4.95132 0.633951 0.316976 0.948434i \(-0.397333\pi\)
0.316976 + 0.948434i \(0.397333\pi\)
\(62\) −1.69943 −0.215828
\(63\) −1.67955 −0.211604
\(64\) 0.363058 0.0453822
\(65\) −2.85562 −0.354196
\(66\) 9.81448 1.20808
\(67\) 10.0456 1.22726 0.613631 0.789593i \(-0.289708\pi\)
0.613631 + 0.789593i \(0.289708\pi\)
\(68\) −7.05069 −0.855021
\(69\) −16.6160 −2.00033
\(70\) −2.01129 −0.240396
\(71\) 4.45183 0.528334 0.264167 0.964477i \(-0.414903\pi\)
0.264167 + 0.964477i \(0.414903\pi\)
\(72\) 4.48016 0.527992
\(73\) 0.0554320 0.00648783 0.00324391 0.999995i \(-0.498967\pi\)
0.00324391 + 0.999995i \(0.498967\pi\)
\(74\) −6.85779 −0.797202
\(75\) 3.51906 0.406346
\(76\) −2.49781 −0.286519
\(77\) −1.42657 −0.162572
\(78\) 6.38391 0.722835
\(79\) 4.37186 0.491873 0.245936 0.969286i \(-0.420905\pi\)
0.245936 + 0.969286i \(0.420905\pi\)
\(80\) 9.38814 1.04963
\(81\) −9.68731 −1.07637
\(82\) 8.12345 0.897085
\(83\) −13.1767 −1.44633 −0.723167 0.690673i \(-0.757315\pi\)
−0.723167 + 0.690673i \(0.757315\pi\)
\(84\) 1.56739 0.171016
\(85\) 12.3817 1.34298
\(86\) 12.3861 1.33563
\(87\) 9.36293 1.00381
\(88\) 3.80532 0.405649
\(89\) 11.6764 1.23769 0.618847 0.785512i \(-0.287600\pi\)
0.618847 + 0.785512i \(0.287600\pi\)
\(90\) 9.05672 0.954662
\(91\) −0.927922 −0.0972726
\(92\) 7.41615 0.773187
\(93\) −2.32570 −0.241164
\(94\) −7.07214 −0.729435
\(95\) 4.38641 0.450036
\(96\) −13.1748 −1.34464
\(97\) 13.8586 1.40712 0.703562 0.710634i \(-0.251592\pi\)
0.703562 + 0.710634i \(0.251592\pi\)
\(98\) 11.6120 1.17298
\(99\) 6.42374 0.645610
\(100\) −1.57065 −0.157065
\(101\) 6.27475 0.624361 0.312180 0.950023i \(-0.398941\pi\)
0.312180 + 0.950023i \(0.398941\pi\)
\(102\) −27.6800 −2.74073
\(103\) 6.20460 0.611357 0.305679 0.952135i \(-0.401117\pi\)
0.305679 + 0.952135i \(0.401117\pi\)
\(104\) 2.47520 0.242713
\(105\) −2.75248 −0.268615
\(106\) 18.1608 1.76393
\(107\) 6.91973 0.668956 0.334478 0.942404i \(-0.391440\pi\)
0.334478 + 0.942404i \(0.391440\pi\)
\(108\) 0.641407 0.0617195
\(109\) 10.4036 0.996486 0.498243 0.867037i \(-0.333979\pi\)
0.498243 + 0.867037i \(0.333979\pi\)
\(110\) 7.69253 0.733454
\(111\) −9.38498 −0.890783
\(112\) 3.05064 0.288258
\(113\) 10.7723 1.01337 0.506686 0.862130i \(-0.330870\pi\)
0.506686 + 0.862130i \(0.330870\pi\)
\(114\) −9.80607 −0.918422
\(115\) −13.0235 −1.21445
\(116\) −4.17893 −0.388004
\(117\) 4.17837 0.386290
\(118\) −11.8895 −1.09452
\(119\) 4.02338 0.368822
\(120\) 7.34216 0.670245
\(121\) −5.54385 −0.503987
\(122\) −8.67578 −0.785468
\(123\) 11.1171 1.00239
\(124\) 1.03802 0.0932171
\(125\) 12.1556 1.08723
\(126\) 2.94294 0.262178
\(127\) 3.69183 0.327597 0.163798 0.986494i \(-0.447625\pi\)
0.163798 + 0.986494i \(0.447625\pi\)
\(128\) −11.6246 −1.02748
\(129\) 16.9505 1.49241
\(130\) 5.00367 0.438851
\(131\) 2.85891 0.249785 0.124892 0.992170i \(-0.460141\pi\)
0.124892 + 0.992170i \(0.460141\pi\)
\(132\) −5.99473 −0.521774
\(133\) 1.42534 0.123593
\(134\) −17.6020 −1.52058
\(135\) −1.12637 −0.0969429
\(136\) −10.7322 −0.920281
\(137\) 10.7938 0.922176 0.461088 0.887354i \(-0.347459\pi\)
0.461088 + 0.887354i \(0.347459\pi\)
\(138\) 29.1148 2.47841
\(139\) −14.2798 −1.21120 −0.605598 0.795771i \(-0.707066\pi\)
−0.605598 + 0.795771i \(0.707066\pi\)
\(140\) 1.22851 0.103828
\(141\) −9.67832 −0.815061
\(142\) −7.80056 −0.654608
\(143\) 3.54899 0.296782
\(144\) −13.7368 −1.14473
\(145\) 7.33861 0.609438
\(146\) −0.0971289 −0.00803844
\(147\) 15.8911 1.31068
\(148\) 4.18877 0.344315
\(149\) −3.81194 −0.312286 −0.156143 0.987734i \(-0.549906\pi\)
−0.156143 + 0.987734i \(0.549906\pi\)
\(150\) −6.16615 −0.503464
\(151\) 3.70713 0.301682 0.150841 0.988558i \(-0.451802\pi\)
0.150841 + 0.988558i \(0.451802\pi\)
\(152\) −3.80206 −0.308388
\(153\) −18.1170 −1.46467
\(154\) 2.49965 0.201428
\(155\) −1.82287 −0.146416
\(156\) −3.89932 −0.312195
\(157\) −15.2284 −1.21536 −0.607679 0.794182i \(-0.707899\pi\)
−0.607679 + 0.794182i \(0.707899\pi\)
\(158\) −7.66044 −0.609432
\(159\) 24.8533 1.97100
\(160\) −10.3263 −0.816366
\(161\) −4.23193 −0.333523
\(162\) 16.9743 1.33362
\(163\) −3.24862 −0.254452 −0.127226 0.991874i \(-0.540607\pi\)
−0.127226 + 0.991874i \(0.540607\pi\)
\(164\) −4.96184 −0.387455
\(165\) 10.5273 0.819552
\(166\) 23.0885 1.79201
\(167\) 8.70119 0.673318 0.336659 0.941627i \(-0.390703\pi\)
0.336659 + 0.941627i \(0.390703\pi\)
\(168\) 2.38580 0.184069
\(169\) −10.6915 −0.822426
\(170\) −21.6954 −1.66396
\(171\) −6.41823 −0.490814
\(172\) −7.56547 −0.576862
\(173\) 24.0238 1.82649 0.913246 0.407408i \(-0.133567\pi\)
0.913246 + 0.407408i \(0.133567\pi\)
\(174\) −16.4059 −1.24373
\(175\) 0.896270 0.0677517
\(176\) −11.6677 −0.879483
\(177\) −16.2709 −1.22300
\(178\) −20.4595 −1.53351
\(179\) 21.1231 1.57881 0.789406 0.613871i \(-0.210389\pi\)
0.789406 + 0.613871i \(0.210389\pi\)
\(180\) −5.53189 −0.412322
\(181\) −2.44328 −0.181608 −0.0908038 0.995869i \(-0.528944\pi\)
−0.0908038 + 0.995869i \(0.528944\pi\)
\(182\) 1.62592 0.120521
\(183\) −11.8729 −0.877671
\(184\) 11.2885 0.832202
\(185\) −7.35589 −0.540816
\(186\) 4.07513 0.298803
\(187\) −15.3881 −1.12529
\(188\) 4.31969 0.315046
\(189\) −0.366010 −0.0266233
\(190\) −7.68593 −0.557596
\(191\) −10.8126 −0.782369 −0.391185 0.920312i \(-0.627935\pi\)
−0.391185 + 0.920312i \(0.627935\pi\)
\(192\) −0.870588 −0.0628293
\(193\) −15.4966 −1.11547 −0.557736 0.830019i \(-0.688330\pi\)
−0.557736 + 0.830019i \(0.688330\pi\)
\(194\) −24.2832 −1.74343
\(195\) 6.84758 0.490366
\(196\) −7.09263 −0.506617
\(197\) 1.15213 0.0820856 0.0410428 0.999157i \(-0.486932\pi\)
0.0410428 + 0.999157i \(0.486932\pi\)
\(198\) −11.2558 −0.799913
\(199\) −13.0606 −0.925840 −0.462920 0.886400i \(-0.653198\pi\)
−0.462920 + 0.886400i \(0.653198\pi\)
\(200\) −2.39077 −0.169053
\(201\) −24.0886 −1.69908
\(202\) −10.9947 −0.773586
\(203\) 2.38465 0.167370
\(204\) 16.9071 1.18373
\(205\) 8.71348 0.608576
\(206\) −10.8718 −0.757474
\(207\) 19.0561 1.32449
\(208\) −7.58932 −0.526225
\(209\) −5.45147 −0.377086
\(210\) 4.82295 0.332815
\(211\) −2.56314 −0.176454 −0.0882270 0.996100i \(-0.528120\pi\)
−0.0882270 + 0.996100i \(0.528120\pi\)
\(212\) −11.0927 −0.761850
\(213\) −10.6752 −0.731451
\(214\) −12.1249 −0.828838
\(215\) 13.2857 0.906078
\(216\) 0.976321 0.0664302
\(217\) −0.592333 −0.0402102
\(218\) −18.2294 −1.23465
\(219\) −0.132922 −0.00898205
\(220\) −4.69863 −0.316782
\(221\) −10.0093 −0.673298
\(222\) 16.4445 1.10368
\(223\) −13.6415 −0.913502 −0.456751 0.889595i \(-0.650987\pi\)
−0.456751 + 0.889595i \(0.650987\pi\)
\(224\) −3.35549 −0.224198
\(225\) −4.03584 −0.269056
\(226\) −18.8754 −1.25557
\(227\) −19.8683 −1.31871 −0.659353 0.751833i \(-0.729170\pi\)
−0.659353 + 0.751833i \(0.729170\pi\)
\(228\) 5.98959 0.396670
\(229\) −10.0766 −0.665878 −0.332939 0.942948i \(-0.608040\pi\)
−0.332939 + 0.942948i \(0.608040\pi\)
\(230\) 22.8200 1.50470
\(231\) 3.42081 0.225073
\(232\) −6.36097 −0.417618
\(233\) 10.1106 0.662366 0.331183 0.943566i \(-0.392552\pi\)
0.331183 + 0.943566i \(0.392552\pi\)
\(234\) −7.32140 −0.478615
\(235\) −7.58580 −0.494843
\(236\) 7.26215 0.472726
\(237\) −10.4834 −0.680971
\(238\) −7.04983 −0.456972
\(239\) −9.67476 −0.625808 −0.312904 0.949785i \(-0.601302\pi\)
−0.312904 + 0.949785i \(0.601302\pi\)
\(240\) −22.5121 −1.45315
\(241\) −16.5743 −1.06764 −0.533821 0.845597i \(-0.679245\pi\)
−0.533821 + 0.845597i \(0.679245\pi\)
\(242\) 9.71403 0.624442
\(243\) 21.4316 1.37484
\(244\) 5.29920 0.339247
\(245\) 12.4554 0.795744
\(246\) −19.4795 −1.24197
\(247\) −3.54595 −0.225623
\(248\) 1.58003 0.100332
\(249\) 31.5969 2.00237
\(250\) −21.2993 −1.34709
\(251\) 2.70795 0.170924 0.0854622 0.996341i \(-0.472763\pi\)
0.0854622 + 0.996341i \(0.472763\pi\)
\(252\) −1.79756 −0.113236
\(253\) 16.1857 1.01759
\(254\) −6.46888 −0.405894
\(255\) −29.6905 −1.85929
\(256\) 19.6427 1.22767
\(257\) 30.2476 1.88680 0.943398 0.331662i \(-0.107609\pi\)
0.943398 + 0.331662i \(0.107609\pi\)
\(258\) −29.7010 −1.84910
\(259\) −2.39026 −0.148524
\(260\) −3.05626 −0.189541
\(261\) −10.7379 −0.664660
\(262\) −5.00944 −0.309484
\(263\) −0.453414 −0.0279587 −0.0139794 0.999902i \(-0.504450\pi\)
−0.0139794 + 0.999902i \(0.504450\pi\)
\(264\) −9.12490 −0.561599
\(265\) 19.4799 1.19664
\(266\) −2.49751 −0.153132
\(267\) −27.9991 −1.71352
\(268\) 10.7514 0.656746
\(269\) 5.91568 0.360685 0.180343 0.983604i \(-0.442279\pi\)
0.180343 + 0.983604i \(0.442279\pi\)
\(270\) 1.97365 0.120113
\(271\) −19.5712 −1.18886 −0.594432 0.804146i \(-0.702623\pi\)
−0.594432 + 0.804146i \(0.702623\pi\)
\(272\) 32.9066 1.99525
\(273\) 2.22509 0.134669
\(274\) −18.9131 −1.14258
\(275\) −3.42794 −0.206712
\(276\) −17.7834 −1.07044
\(277\) 32.4876 1.95199 0.975995 0.217795i \(-0.0698863\pi\)
0.975995 + 0.217795i \(0.0698863\pi\)
\(278\) 25.0213 1.50068
\(279\) 2.66724 0.159683
\(280\) 1.86998 0.111753
\(281\) −12.4608 −0.743349 −0.371675 0.928363i \(-0.621216\pi\)
−0.371675 + 0.928363i \(0.621216\pi\)
\(282\) 16.9585 1.00986
\(283\) 27.5926 1.64021 0.820106 0.572211i \(-0.193914\pi\)
0.820106 + 0.572211i \(0.193914\pi\)
\(284\) 4.76462 0.282728
\(285\) −10.5183 −0.623051
\(286\) −6.21860 −0.367713
\(287\) 2.83141 0.167133
\(288\) 15.1095 0.890338
\(289\) 26.3993 1.55290
\(290\) −12.8588 −0.755096
\(291\) −33.2319 −1.94809
\(292\) 0.0593268 0.00347184
\(293\) 7.04808 0.411753 0.205877 0.978578i \(-0.433995\pi\)
0.205877 + 0.978578i \(0.433995\pi\)
\(294\) −27.8447 −1.62393
\(295\) −12.7531 −0.742511
\(296\) 6.37595 0.370595
\(297\) 1.39987 0.0812286
\(298\) 6.67933 0.386923
\(299\) 10.5281 0.608857
\(300\) 3.76631 0.217448
\(301\) 4.31713 0.248836
\(302\) −6.49570 −0.373786
\(303\) −15.0464 −0.864394
\(304\) 11.6577 0.668613
\(305\) −9.30592 −0.532855
\(306\) 31.7449 1.81474
\(307\) −25.5358 −1.45741 −0.728704 0.684829i \(-0.759877\pi\)
−0.728704 + 0.684829i \(0.759877\pi\)
\(308\) −1.52680 −0.0869975
\(309\) −14.8782 −0.846391
\(310\) 3.19406 0.181410
\(311\) −19.5720 −1.10983 −0.554913 0.831908i \(-0.687249\pi\)
−0.554913 + 0.831908i \(0.687249\pi\)
\(312\) −5.93536 −0.336024
\(313\) −19.6768 −1.11220 −0.556099 0.831116i \(-0.687702\pi\)
−0.556099 + 0.831116i \(0.687702\pi\)
\(314\) 26.6835 1.50583
\(315\) 3.15670 0.177860
\(316\) 4.67903 0.263216
\(317\) 21.9727 1.23411 0.617054 0.786920i \(-0.288326\pi\)
0.617054 + 0.786920i \(0.288326\pi\)
\(318\) −43.5484 −2.44207
\(319\) −9.12049 −0.510649
\(320\) −0.682362 −0.0381452
\(321\) −16.5930 −0.926133
\(322\) 7.41525 0.413236
\(323\) 15.3749 0.855481
\(324\) −10.3680 −0.575997
\(325\) −2.22973 −0.123683
\(326\) 5.69229 0.315267
\(327\) −24.9472 −1.37958
\(328\) −7.55269 −0.417027
\(329\) −2.46497 −0.135898
\(330\) −18.4462 −1.01543
\(331\) −30.5674 −1.68014 −0.840069 0.542480i \(-0.817485\pi\)
−0.840069 + 0.542480i \(0.817485\pi\)
\(332\) −14.1026 −0.773978
\(333\) 10.7632 0.589820
\(334\) −15.2464 −0.834244
\(335\) −18.8805 −1.03155
\(336\) −7.31522 −0.399078
\(337\) 15.5416 0.846606 0.423303 0.905988i \(-0.360871\pi\)
0.423303 + 0.905988i \(0.360871\pi\)
\(338\) 18.7339 1.01899
\(339\) −25.8312 −1.40296
\(340\) 13.2517 0.718672
\(341\) 2.26548 0.122682
\(342\) 11.2461 0.608121
\(343\) 8.32242 0.449369
\(344\) −11.5158 −0.620891
\(345\) 31.2295 1.68134
\(346\) −42.0948 −2.26303
\(347\) 18.6287 1.00004 0.500021 0.866013i \(-0.333326\pi\)
0.500021 + 0.866013i \(0.333326\pi\)
\(348\) 10.0208 0.537170
\(349\) −22.2554 −1.19130 −0.595651 0.803243i \(-0.703106\pi\)
−0.595651 + 0.803243i \(0.703106\pi\)
\(350\) −1.57046 −0.0839446
\(351\) 0.910555 0.0486018
\(352\) 12.8336 0.684035
\(353\) −11.7167 −0.623619 −0.311810 0.950145i \(-0.600935\pi\)
−0.311810 + 0.950145i \(0.600935\pi\)
\(354\) 28.5102 1.51530
\(355\) −8.36714 −0.444081
\(356\) 12.4968 0.662328
\(357\) −9.64779 −0.510615
\(358\) −37.0122 −1.95615
\(359\) 10.4582 0.551960 0.275980 0.961163i \(-0.410998\pi\)
0.275980 + 0.961163i \(0.410998\pi\)
\(360\) −8.42039 −0.443793
\(361\) −13.5532 −0.713327
\(362\) 4.28116 0.225013
\(363\) 13.2938 0.697743
\(364\) −0.993119 −0.0520536
\(365\) −0.104184 −0.00545322
\(366\) 20.8039 1.08744
\(367\) −8.61868 −0.449891 −0.224946 0.974371i \(-0.572220\pi\)
−0.224946 + 0.974371i \(0.572220\pi\)
\(368\) −34.6123 −1.80429
\(369\) −12.7496 −0.663719
\(370\) 12.8891 0.670073
\(371\) 6.32990 0.328632
\(372\) −2.48911 −0.129054
\(373\) 18.5096 0.958390 0.479195 0.877708i \(-0.340929\pi\)
0.479195 + 0.877708i \(0.340929\pi\)
\(374\) 26.9632 1.39424
\(375\) −29.1484 −1.50522
\(376\) 6.57524 0.339092
\(377\) −5.93249 −0.305539
\(378\) 0.641329 0.0329864
\(379\) −11.2857 −0.579708 −0.289854 0.957071i \(-0.593607\pi\)
−0.289854 + 0.957071i \(0.593607\pi\)
\(380\) 4.69460 0.240828
\(381\) −8.85275 −0.453540
\(382\) 18.9459 0.969359
\(383\) −22.5718 −1.15337 −0.576683 0.816968i \(-0.695653\pi\)
−0.576683 + 0.816968i \(0.695653\pi\)
\(384\) 27.8750 1.42249
\(385\) 2.68121 0.136647
\(386\) 27.1534 1.38207
\(387\) −19.4398 −0.988179
\(388\) 14.8323 0.752995
\(389\) 0.448333 0.0227314 0.0113657 0.999935i \(-0.496382\pi\)
0.0113657 + 0.999935i \(0.496382\pi\)
\(390\) −11.9984 −0.607565
\(391\) −45.6489 −2.30856
\(392\) −10.7961 −0.545284
\(393\) −6.85548 −0.345813
\(394\) −2.01877 −0.101704
\(395\) −8.21684 −0.413434
\(396\) 6.87508 0.345486
\(397\) 24.6629 1.23780 0.618899 0.785471i \(-0.287579\pi\)
0.618899 + 0.785471i \(0.287579\pi\)
\(398\) 22.8850 1.14712
\(399\) −3.41788 −0.171108
\(400\) 7.33045 0.366523
\(401\) −15.2360 −0.760848 −0.380424 0.924812i \(-0.624222\pi\)
−0.380424 + 0.924812i \(0.624222\pi\)
\(402\) 42.2084 2.10517
\(403\) 1.47360 0.0734051
\(404\) 6.71562 0.334115
\(405\) 18.2071 0.904720
\(406\) −4.17842 −0.207371
\(407\) 9.14197 0.453150
\(408\) 25.7352 1.27408
\(409\) 20.6393 1.02055 0.510274 0.860012i \(-0.329544\pi\)
0.510274 + 0.860012i \(0.329544\pi\)
\(410\) −15.2679 −0.754028
\(411\) −25.8828 −1.27670
\(412\) 6.64054 0.327156
\(413\) −4.14405 −0.203915
\(414\) −33.3904 −1.64105
\(415\) 24.7655 1.21569
\(416\) 8.34773 0.409281
\(417\) 34.2419 1.67684
\(418\) 9.55215 0.467211
\(419\) 1.58967 0.0776607 0.0388303 0.999246i \(-0.487637\pi\)
0.0388303 + 0.999246i \(0.487637\pi\)
\(420\) −2.94588 −0.143744
\(421\) −16.8457 −0.821009 −0.410504 0.911859i \(-0.634647\pi\)
−0.410504 + 0.911859i \(0.634647\pi\)
\(422\) 4.49118 0.218627
\(423\) 11.0996 0.539682
\(424\) −16.8848 −0.819999
\(425\) 9.66788 0.468961
\(426\) 18.7052 0.906270
\(427\) −3.02392 −0.146338
\(428\) 7.40592 0.357979
\(429\) −8.51024 −0.410878
\(430\) −23.2794 −1.12263
\(431\) −1.48206 −0.0713884 −0.0356942 0.999363i \(-0.511364\pi\)
−0.0356942 + 0.999363i \(0.511364\pi\)
\(432\) −2.99354 −0.144027
\(433\) −25.0583 −1.20422 −0.602112 0.798412i \(-0.705674\pi\)
−0.602112 + 0.798412i \(0.705674\pi\)
\(434\) 1.03790 0.0498206
\(435\) −17.5975 −0.843735
\(436\) 11.1346 0.533250
\(437\) −16.1718 −0.773604
\(438\) 0.232908 0.0111288
\(439\) 33.0379 1.57681 0.788406 0.615156i \(-0.210907\pi\)
0.788406 + 0.615156i \(0.210907\pi\)
\(440\) −7.15204 −0.340960
\(441\) −18.2248 −0.867847
\(442\) 17.5384 0.834219
\(443\) −1.10436 −0.0524697 −0.0262349 0.999656i \(-0.508352\pi\)
−0.0262349 + 0.999656i \(0.508352\pi\)
\(444\) −10.0444 −0.476685
\(445\) −21.9456 −1.04032
\(446\) 23.9028 1.13183
\(447\) 9.14076 0.432343
\(448\) −0.221730 −0.0104758
\(449\) −10.9829 −0.518316 −0.259158 0.965835i \(-0.583445\pi\)
−0.259158 + 0.965835i \(0.583445\pi\)
\(450\) 7.07167 0.333362
\(451\) −10.8292 −0.509926
\(452\) 11.5292 0.542287
\(453\) −8.88946 −0.417663
\(454\) 34.8136 1.63388
\(455\) 1.74401 0.0817606
\(456\) 9.11708 0.426946
\(457\) −17.7699 −0.831241 −0.415620 0.909538i \(-0.636436\pi\)
−0.415620 + 0.909538i \(0.636436\pi\)
\(458\) 17.6563 0.825026
\(459\) −3.94808 −0.184280
\(460\) −13.9385 −0.649888
\(461\) −37.8233 −1.76161 −0.880803 0.473483i \(-0.842997\pi\)
−0.880803 + 0.473483i \(0.842997\pi\)
\(462\) −5.99400 −0.278866
\(463\) −5.29997 −0.246311 −0.123155 0.992387i \(-0.539301\pi\)
−0.123155 + 0.992387i \(0.539301\pi\)
\(464\) 19.5037 0.905435
\(465\) 4.37111 0.202706
\(466\) −17.7159 −0.820675
\(467\) −25.2728 −1.16948 −0.584742 0.811219i \(-0.698804\pi\)
−0.584742 + 0.811219i \(0.698804\pi\)
\(468\) 4.47195 0.206716
\(469\) −6.13514 −0.283294
\(470\) 13.2920 0.613113
\(471\) 36.5167 1.68260
\(472\) 11.0541 0.508807
\(473\) −16.5116 −0.759204
\(474\) 18.3692 0.843726
\(475\) 3.42500 0.157150
\(476\) 4.30607 0.197368
\(477\) −28.5031 −1.30507
\(478\) 16.9523 0.775379
\(479\) 29.8372 1.36329 0.681647 0.731681i \(-0.261264\pi\)
0.681647 + 0.731681i \(0.261264\pi\)
\(480\) 24.7618 1.13022
\(481\) 5.94646 0.271135
\(482\) 29.0417 1.32281
\(483\) 10.1479 0.461744
\(484\) −5.93337 −0.269699
\(485\) −26.0469 −1.18273
\(486\) −37.5528 −1.70343
\(487\) 0.556325 0.0252095 0.0126047 0.999921i \(-0.495988\pi\)
0.0126047 + 0.999921i \(0.495988\pi\)
\(488\) 8.06620 0.365140
\(489\) 7.78997 0.352275
\(490\) −21.8245 −0.985929
\(491\) −15.6072 −0.704344 −0.352172 0.935935i \(-0.614557\pi\)
−0.352172 + 0.935935i \(0.614557\pi\)
\(492\) 11.8982 0.536410
\(493\) 25.7227 1.15849
\(494\) 6.21327 0.279548
\(495\) −12.0733 −0.542655
\(496\) −4.84460 −0.217529
\(497\) −2.71886 −0.121958
\(498\) −55.3646 −2.48095
\(499\) 2.08565 0.0933665 0.0466832 0.998910i \(-0.485135\pi\)
0.0466832 + 0.998910i \(0.485135\pi\)
\(500\) 13.0097 0.581812
\(501\) −20.8649 −0.932173
\(502\) −4.74492 −0.211776
\(503\) 11.3329 0.505311 0.252655 0.967556i \(-0.418696\pi\)
0.252655 + 0.967556i \(0.418696\pi\)
\(504\) −2.73617 −0.121879
\(505\) −11.7933 −0.524795
\(506\) −28.3609 −1.26079
\(507\) 25.6376 1.13860
\(508\) 3.95122 0.175307
\(509\) −32.6803 −1.44853 −0.724265 0.689522i \(-0.757821\pi\)
−0.724265 + 0.689522i \(0.757821\pi\)
\(510\) 52.0241 2.30367
\(511\) −0.0338540 −0.00149761
\(512\) −11.1691 −0.493607
\(513\) −1.39867 −0.0617527
\(514\) −53.0004 −2.33775
\(515\) −11.6614 −0.513865
\(516\) 18.1415 0.798634
\(517\) 9.42770 0.414630
\(518\) 4.18826 0.184022
\(519\) −57.6073 −2.52868
\(520\) −4.65210 −0.204008
\(521\) −14.5210 −0.636177 −0.318089 0.948061i \(-0.603041\pi\)
−0.318089 + 0.948061i \(0.603041\pi\)
\(522\) 18.8151 0.823516
\(523\) −40.2081 −1.75818 −0.879089 0.476657i \(-0.841848\pi\)
−0.879089 + 0.476657i \(0.841848\pi\)
\(524\) 3.05979 0.133667
\(525\) −2.14920 −0.0937986
\(526\) 0.794480 0.0346410
\(527\) −6.38937 −0.278325
\(528\) 27.9783 1.21760
\(529\) 25.0151 1.08761
\(530\) −34.1330 −1.48264
\(531\) 18.6604 0.809791
\(532\) 1.52549 0.0661384
\(533\) −7.04393 −0.305106
\(534\) 49.0606 2.12306
\(535\) −13.0055 −0.562278
\(536\) 16.3653 0.706872
\(537\) −50.6517 −2.18578
\(538\) −10.3655 −0.446890
\(539\) −15.4796 −0.666755
\(540\) −1.20552 −0.0518771
\(541\) 27.4177 1.17878 0.589389 0.807849i \(-0.299369\pi\)
0.589389 + 0.807849i \(0.299369\pi\)
\(542\) 34.2929 1.47301
\(543\) 5.85882 0.251426
\(544\) −36.1949 −1.55185
\(545\) −19.5534 −0.837578
\(546\) −3.89884 −0.166855
\(547\) 0.966715 0.0413338 0.0206669 0.999786i \(-0.493421\pi\)
0.0206669 + 0.999786i \(0.493421\pi\)
\(548\) 11.5522 0.493485
\(549\) 13.6165 0.581138
\(550\) 6.00648 0.256117
\(551\) 9.11266 0.388213
\(552\) −27.0691 −1.15214
\(553\) −2.67003 −0.113541
\(554\) −56.9253 −2.41852
\(555\) 17.6389 0.748731
\(556\) −15.2831 −0.648148
\(557\) 45.2307 1.91649 0.958243 0.285954i \(-0.0923106\pi\)
0.958243 + 0.285954i \(0.0923106\pi\)
\(558\) −4.67357 −0.197848
\(559\) −10.7401 −0.454258
\(560\) −5.73362 −0.242290
\(561\) 36.8996 1.55790
\(562\) 21.8340 0.921013
\(563\) 9.46655 0.398967 0.199484 0.979901i \(-0.436074\pi\)
0.199484 + 0.979901i \(0.436074\pi\)
\(564\) −10.3583 −0.436164
\(565\) −20.2464 −0.851771
\(566\) −48.3483 −2.03223
\(567\) 5.91633 0.248463
\(568\) 7.25248 0.304307
\(569\) 24.0225 1.00707 0.503537 0.863974i \(-0.332032\pi\)
0.503537 + 0.863974i \(0.332032\pi\)
\(570\) 18.4303 0.771962
\(571\) −15.6877 −0.656510 −0.328255 0.944589i \(-0.606460\pi\)
−0.328255 + 0.944589i \(0.606460\pi\)
\(572\) 3.79835 0.158817
\(573\) 25.9278 1.08315
\(574\) −4.96124 −0.207078
\(575\) −10.1690 −0.424077
\(576\) 0.998437 0.0416016
\(577\) −24.4939 −1.01970 −0.509848 0.860265i \(-0.670298\pi\)
−0.509848 + 0.860265i \(0.670298\pi\)
\(578\) −46.2573 −1.92405
\(579\) 37.1599 1.54431
\(580\) 7.85423 0.326129
\(581\) 8.04743 0.333864
\(582\) 58.2294 2.41369
\(583\) −24.2098 −1.00267
\(584\) 0.0903045 0.00373683
\(585\) −7.85318 −0.324689
\(586\) −12.3498 −0.510164
\(587\) −29.0867 −1.20054 −0.600269 0.799798i \(-0.704940\pi\)
−0.600269 + 0.799798i \(0.704940\pi\)
\(588\) 17.0076 0.701383
\(589\) −2.26353 −0.0932673
\(590\) 22.3461 0.919975
\(591\) −2.76272 −0.113643
\(592\) −19.5496 −0.803483
\(593\) 38.2893 1.57235 0.786176 0.618003i \(-0.212058\pi\)
0.786176 + 0.618003i \(0.212058\pi\)
\(594\) −2.45287 −0.100643
\(595\) −7.56188 −0.310007
\(596\) −4.07977 −0.167114
\(597\) 31.3184 1.28178
\(598\) −18.4475 −0.754376
\(599\) 16.8481 0.688394 0.344197 0.938897i \(-0.388151\pi\)
0.344197 + 0.938897i \(0.388151\pi\)
\(600\) 5.73291 0.234045
\(601\) −16.2755 −0.663891 −0.331945 0.943299i \(-0.607705\pi\)
−0.331945 + 0.943299i \(0.607705\pi\)
\(602\) −7.56455 −0.308308
\(603\) 27.6261 1.12502
\(604\) 3.96760 0.161439
\(605\) 10.4196 0.423616
\(606\) 26.3646 1.07099
\(607\) 18.2569 0.741026 0.370513 0.928827i \(-0.379182\pi\)
0.370513 + 0.928827i \(0.379182\pi\)
\(608\) −12.8226 −0.520026
\(609\) −5.71822 −0.231714
\(610\) 16.3060 0.660210
\(611\) 6.13232 0.248087
\(612\) −19.3899 −0.783791
\(613\) 22.5486 0.910731 0.455366 0.890305i \(-0.349509\pi\)
0.455366 + 0.890305i \(0.349509\pi\)
\(614\) 44.7443 1.80573
\(615\) −20.8943 −0.842540
\(616\) −2.32403 −0.0936376
\(617\) −30.7802 −1.23916 −0.619582 0.784932i \(-0.712698\pi\)
−0.619582 + 0.784932i \(0.712698\pi\)
\(618\) 26.0698 1.04868
\(619\) −9.88972 −0.397501 −0.198751 0.980050i \(-0.563688\pi\)
−0.198751 + 0.980050i \(0.563688\pi\)
\(620\) −1.95095 −0.0783519
\(621\) 4.15272 0.166643
\(622\) 34.2944 1.37508
\(623\) −7.13111 −0.285702
\(624\) 18.1987 0.728530
\(625\) −15.5086 −0.620345
\(626\) 34.4780 1.37802
\(627\) 13.0722 0.522055
\(628\) −16.2984 −0.650376
\(629\) −25.7833 −1.02805
\(630\) −5.53121 −0.220369
\(631\) −22.3039 −0.887905 −0.443952 0.896050i \(-0.646424\pi\)
−0.443952 + 0.896050i \(0.646424\pi\)
\(632\) 7.12221 0.283306
\(633\) 6.14624 0.244291
\(634\) −38.5009 −1.52907
\(635\) −6.93873 −0.275355
\(636\) 26.5996 1.05474
\(637\) −10.0688 −0.398942
\(638\) 15.9811 0.632696
\(639\) 12.2429 0.484320
\(640\) 21.8483 0.863628
\(641\) −27.5328 −1.08748 −0.543740 0.839253i \(-0.682992\pi\)
−0.543740 + 0.839253i \(0.682992\pi\)
\(642\) 29.0746 1.14748
\(643\) −37.0807 −1.46232 −0.731160 0.682206i \(-0.761021\pi\)
−0.731160 + 0.682206i \(0.761021\pi\)
\(644\) −4.52927 −0.178478
\(645\) −31.8582 −1.25442
\(646\) −26.9401 −1.05994
\(647\) 14.7128 0.578419 0.289210 0.957266i \(-0.406608\pi\)
0.289210 + 0.957266i \(0.406608\pi\)
\(648\) −15.7816 −0.619961
\(649\) 15.8496 0.622151
\(650\) 3.90696 0.153244
\(651\) 1.42037 0.0556689
\(652\) −3.47687 −0.136165
\(653\) 2.66952 0.104466 0.0522332 0.998635i \(-0.483366\pi\)
0.0522332 + 0.998635i \(0.483366\pi\)
\(654\) 43.7128 1.70931
\(655\) −5.37328 −0.209952
\(656\) 23.1576 0.904153
\(657\) 0.152442 0.00594734
\(658\) 4.31917 0.168379
\(659\) 35.7737 1.39355 0.696773 0.717292i \(-0.254619\pi\)
0.696773 + 0.717292i \(0.254619\pi\)
\(660\) 11.2670 0.438567
\(661\) 12.4033 0.482431 0.241216 0.970472i \(-0.422454\pi\)
0.241216 + 0.970472i \(0.422454\pi\)
\(662\) 53.5607 2.08170
\(663\) 24.0016 0.932145
\(664\) −21.4663 −0.833053
\(665\) −2.67891 −0.103884
\(666\) −18.8595 −0.730789
\(667\) −27.0560 −1.04761
\(668\) 9.31255 0.360313
\(669\) 32.7114 1.26469
\(670\) 33.0827 1.27810
\(671\) 11.5655 0.446480
\(672\) 8.04623 0.310390
\(673\) −8.44199 −0.325415 −0.162707 0.986674i \(-0.552023\pi\)
−0.162707 + 0.986674i \(0.552023\pi\)
\(674\) −27.2323 −1.04895
\(675\) −0.879496 −0.0338518
\(676\) −11.4427 −0.440105
\(677\) −7.52530 −0.289221 −0.144610 0.989489i \(-0.546193\pi\)
−0.144610 + 0.989489i \(0.546193\pi\)
\(678\) 45.2619 1.73827
\(679\) −8.46384 −0.324812
\(680\) 20.1711 0.773525
\(681\) 47.6429 1.82568
\(682\) −3.96961 −0.152004
\(683\) 16.2657 0.622390 0.311195 0.950346i \(-0.399271\pi\)
0.311195 + 0.950346i \(0.399271\pi\)
\(684\) −6.86918 −0.262650
\(685\) −20.2868 −0.775118
\(686\) −14.5827 −0.556770
\(687\) 24.1629 0.921873
\(688\) 35.3091 1.34615
\(689\) −15.7474 −0.599929
\(690\) −54.7207 −2.08318
\(691\) −15.9419 −0.606458 −0.303229 0.952918i \(-0.598065\pi\)
−0.303229 + 0.952918i \(0.598065\pi\)
\(692\) 25.7117 0.977412
\(693\) −3.92317 −0.149029
\(694\) −32.6416 −1.23906
\(695\) 26.8386 1.01805
\(696\) 15.2532 0.578170
\(697\) 30.5418 1.15685
\(698\) 38.9962 1.47603
\(699\) −24.2445 −0.917011
\(700\) 0.959244 0.0362560
\(701\) 17.8163 0.672914 0.336457 0.941699i \(-0.390771\pi\)
0.336457 + 0.941699i \(0.390771\pi\)
\(702\) −1.59549 −0.0602178
\(703\) −9.13413 −0.344500
\(704\) 0.848045 0.0319619
\(705\) 18.1902 0.685084
\(706\) 20.5303 0.772667
\(707\) −3.83218 −0.144124
\(708\) −17.4141 −0.654464
\(709\) 5.95032 0.223469 0.111735 0.993738i \(-0.464359\pi\)
0.111735 + 0.993738i \(0.464359\pi\)
\(710\) 14.6610 0.550219
\(711\) 12.0229 0.450896
\(712\) 19.0220 0.712880
\(713\) 6.72056 0.251687
\(714\) 16.9050 0.632654
\(715\) −6.67027 −0.249454
\(716\) 22.6072 0.844871
\(717\) 23.1994 0.866398
\(718\) −18.3249 −0.683881
\(719\) −26.3963 −0.984417 −0.492208 0.870477i \(-0.663810\pi\)
−0.492208 + 0.870477i \(0.663810\pi\)
\(720\) 25.8181 0.962184
\(721\) −3.78933 −0.141122
\(722\) 23.7482 0.883815
\(723\) 39.7440 1.47809
\(724\) −2.61495 −0.0971838
\(725\) 5.73013 0.212812
\(726\) −23.2936 −0.864506
\(727\) 46.5418 1.72614 0.863070 0.505085i \(-0.168539\pi\)
0.863070 + 0.505085i \(0.168539\pi\)
\(728\) −1.51168 −0.0560266
\(729\) −22.3296 −0.827022
\(730\) 0.182552 0.00675656
\(731\) 46.5680 1.72238
\(732\) −12.7071 −0.469669
\(733\) 38.9711 1.43943 0.719716 0.694269i \(-0.244272\pi\)
0.719716 + 0.694269i \(0.244272\pi\)
\(734\) 15.1018 0.557417
\(735\) −29.8671 −1.10166
\(736\) 38.0711 1.40332
\(737\) 23.4649 0.864339
\(738\) 22.3401 0.822351
\(739\) −17.0207 −0.626118 −0.313059 0.949734i \(-0.601354\pi\)
−0.313059 + 0.949734i \(0.601354\pi\)
\(740\) −7.87273 −0.289407
\(741\) 8.50294 0.312363
\(742\) −11.0914 −0.407177
\(743\) 28.1274 1.03189 0.515947 0.856621i \(-0.327440\pi\)
0.515947 + 0.856621i \(0.327440\pi\)
\(744\) −3.78880 −0.138904
\(745\) 7.16447 0.262486
\(746\) −32.4328 −1.18745
\(747\) −36.2370 −1.32584
\(748\) −16.4693 −0.602176
\(749\) −4.22609 −0.154418
\(750\) 51.0743 1.86497
\(751\) 13.0842 0.477448 0.238724 0.971087i \(-0.423271\pi\)
0.238724 + 0.971087i \(0.423271\pi\)
\(752\) −20.1606 −0.735182
\(753\) −6.49348 −0.236636
\(754\) 10.3950 0.378564
\(755\) −6.96750 −0.253573
\(756\) −0.391727 −0.0142470
\(757\) −12.8587 −0.467357 −0.233679 0.972314i \(-0.575076\pi\)
−0.233679 + 0.972314i \(0.575076\pi\)
\(758\) 19.7750 0.718260
\(759\) −38.8122 −1.40879
\(760\) 7.14591 0.259209
\(761\) −24.1562 −0.875660 −0.437830 0.899058i \(-0.644253\pi\)
−0.437830 + 0.899058i \(0.644253\pi\)
\(762\) 15.5119 0.561938
\(763\) −6.35381 −0.230023
\(764\) −11.5723 −0.418670
\(765\) 34.0506 1.23110
\(766\) 39.5507 1.42902
\(767\) 10.3095 0.372254
\(768\) −47.1019 −1.69964
\(769\) 11.9745 0.431813 0.215906 0.976414i \(-0.430729\pi\)
0.215906 + 0.976414i \(0.430729\pi\)
\(770\) −4.69806 −0.169306
\(771\) −72.5318 −2.61217
\(772\) −16.5854 −0.596923
\(773\) −13.0859 −0.470666 −0.235333 0.971915i \(-0.575618\pi\)
−0.235333 + 0.971915i \(0.575618\pi\)
\(774\) 34.0627 1.22436
\(775\) −1.42333 −0.0511276
\(776\) 22.5770 0.810468
\(777\) 5.73169 0.205623
\(778\) −0.785577 −0.0281643
\(779\) 10.8199 0.387663
\(780\) 7.32871 0.262410
\(781\) 10.3987 0.372096
\(782\) 79.9868 2.86032
\(783\) −2.34002 −0.0836254
\(784\) 33.1023 1.18223
\(785\) 28.6215 1.02155
\(786\) 12.0123 0.428464
\(787\) −37.1430 −1.32401 −0.662003 0.749501i \(-0.730293\pi\)
−0.662003 + 0.749501i \(0.730293\pi\)
\(788\) 1.23308 0.0439265
\(789\) 1.08726 0.0387074
\(790\) 14.3977 0.512247
\(791\) −6.57897 −0.233921
\(792\) 10.4649 0.371855
\(793\) 7.52285 0.267144
\(794\) −43.2148 −1.53364
\(795\) −46.7114 −1.65668
\(796\) −13.9782 −0.495445
\(797\) 36.7149 1.30051 0.650255 0.759716i \(-0.274662\pi\)
0.650255 + 0.759716i \(0.274662\pi\)
\(798\) 5.98886 0.212003
\(799\) −26.5892 −0.940657
\(800\) −8.06299 −0.285070
\(801\) 32.1109 1.13458
\(802\) 26.6967 0.942694
\(803\) 0.129480 0.00456926
\(804\) −25.7811 −0.909229
\(805\) 7.95384 0.280336
\(806\) −2.58206 −0.0909492
\(807\) −14.1854 −0.499349
\(808\) 10.2222 0.359616
\(809\) −37.6797 −1.32475 −0.662373 0.749174i \(-0.730451\pi\)
−0.662373 + 0.749174i \(0.730451\pi\)
\(810\) −31.9029 −1.12095
\(811\) 7.39136 0.259546 0.129773 0.991544i \(-0.458575\pi\)
0.129773 + 0.991544i \(0.458575\pi\)
\(812\) 2.55220 0.0895646
\(813\) 46.9303 1.64592
\(814\) −16.0187 −0.561455
\(815\) 6.10573 0.213874
\(816\) −78.9077 −2.76232
\(817\) 16.4974 0.577172
\(818\) −36.1645 −1.26446
\(819\) −2.55186 −0.0891690
\(820\) 9.32570 0.325668
\(821\) 43.6054 1.52184 0.760920 0.648845i \(-0.224748\pi\)
0.760920 + 0.648845i \(0.224748\pi\)
\(822\) 45.3522 1.58184
\(823\) −24.3386 −0.848390 −0.424195 0.905571i \(-0.639443\pi\)
−0.424195 + 0.905571i \(0.639443\pi\)
\(824\) 10.1079 0.352126
\(825\) 8.21996 0.286182
\(826\) 7.26127 0.252652
\(827\) −35.3925 −1.23072 −0.615358 0.788248i \(-0.710989\pi\)
−0.615358 + 0.788248i \(0.710989\pi\)
\(828\) 20.3950 0.708775
\(829\) −21.0917 −0.732546 −0.366273 0.930507i \(-0.619366\pi\)
−0.366273 + 0.930507i \(0.619366\pi\)
\(830\) −43.3945 −1.50624
\(831\) −77.9030 −2.70242
\(832\) 0.551617 0.0191239
\(833\) 43.6575 1.51264
\(834\) −59.9993 −2.07761
\(835\) −16.3537 −0.565945
\(836\) −5.83449 −0.201790
\(837\) 0.581247 0.0200908
\(838\) −2.78545 −0.0962219
\(839\) −21.8559 −0.754549 −0.377274 0.926102i \(-0.623139\pi\)
−0.377274 + 0.926102i \(0.623139\pi\)
\(840\) −4.48408 −0.154715
\(841\) −13.7542 −0.474283
\(842\) 29.5173 1.01723
\(843\) 29.8802 1.02913
\(844\) −2.74323 −0.0944259
\(845\) 20.0946 0.691274
\(846\) −19.4489 −0.668667
\(847\) 3.38580 0.116337
\(848\) 51.7713 1.77783
\(849\) −66.1653 −2.27079
\(850\) −16.9402 −0.581045
\(851\) 27.1197 0.929653
\(852\) −11.4252 −0.391422
\(853\) −51.5179 −1.76394 −0.881970 0.471306i \(-0.843783\pi\)
−0.881970 + 0.471306i \(0.843783\pi\)
\(854\) 5.29856 0.181313
\(855\) 12.0630 0.412544
\(856\) 11.2730 0.385302
\(857\) −51.0722 −1.74459 −0.872297 0.488977i \(-0.837370\pi\)
−0.872297 + 0.488977i \(0.837370\pi\)
\(858\) 14.9118 0.509080
\(859\) −34.7298 −1.18496 −0.592482 0.805584i \(-0.701852\pi\)
−0.592482 + 0.805584i \(0.701852\pi\)
\(860\) 14.2192 0.484870
\(861\) −6.78952 −0.231386
\(862\) 2.59689 0.0884505
\(863\) 4.60780 0.156851 0.0784257 0.996920i \(-0.475011\pi\)
0.0784257 + 0.996920i \(0.475011\pi\)
\(864\) 3.29269 0.112020
\(865\) −45.1523 −1.53522
\(866\) 43.9075 1.49204
\(867\) −63.3038 −2.14991
\(868\) −0.633951 −0.0215177
\(869\) 10.2120 0.346417
\(870\) 30.8346 1.04539
\(871\) 15.2629 0.517163
\(872\) 16.9486 0.573951
\(873\) 38.1121 1.28990
\(874\) 28.3365 0.958498
\(875\) −7.42381 −0.250971
\(876\) −0.142262 −0.00480657
\(877\) 3.75295 0.126728 0.0633640 0.997990i \(-0.479817\pi\)
0.0633640 + 0.997990i \(0.479817\pi\)
\(878\) −57.8895 −1.95368
\(879\) −16.9008 −0.570051
\(880\) 21.9292 0.739233
\(881\) −43.8499 −1.47734 −0.738670 0.674068i \(-0.764546\pi\)
−0.738670 + 0.674068i \(0.764546\pi\)
\(882\) 31.9338 1.07527
\(883\) −44.9016 −1.51106 −0.755530 0.655114i \(-0.772621\pi\)
−0.755530 + 0.655114i \(0.772621\pi\)
\(884\) −10.7126 −0.360302
\(885\) 30.5809 1.02797
\(886\) 1.93508 0.0650102
\(887\) 26.1956 0.879563 0.439782 0.898105i \(-0.355056\pi\)
0.439782 + 0.898105i \(0.355056\pi\)
\(888\) −15.2891 −0.513069
\(889\) −2.25471 −0.0756206
\(890\) 38.4534 1.28896
\(891\) −22.6280 −0.758066
\(892\) −14.6000 −0.488843
\(893\) −9.41962 −0.315215
\(894\) −16.0166 −0.535675
\(895\) −39.7005 −1.32704
\(896\) 7.09950 0.237178
\(897\) −25.2457 −0.842930
\(898\) 19.2445 0.642196
\(899\) −3.78697 −0.126302
\(900\) −4.31941 −0.143980
\(901\) 68.2793 2.27471
\(902\) 18.9751 0.631801
\(903\) −10.3522 −0.344499
\(904\) 17.5492 0.583677
\(905\) 4.59211 0.152647
\(906\) 15.5762 0.517486
\(907\) 20.0701 0.666418 0.333209 0.942853i \(-0.391869\pi\)
0.333209 + 0.942853i \(0.391869\pi\)
\(908\) −21.2643 −0.705680
\(909\) 17.2560 0.572347
\(910\) −3.05589 −0.101302
\(911\) 16.6924 0.553044 0.276522 0.961008i \(-0.410818\pi\)
0.276522 + 0.961008i \(0.410818\pi\)
\(912\) −27.9543 −0.925658
\(913\) −30.7787 −1.01863
\(914\) 31.1367 1.02991
\(915\) 22.3150 0.737710
\(916\) −10.7846 −0.356332
\(917\) −1.74603 −0.0576588
\(918\) 6.91788 0.228324
\(919\) −7.73132 −0.255033 −0.127516 0.991836i \(-0.540701\pi\)
−0.127516 + 0.991836i \(0.540701\pi\)
\(920\) −21.2166 −0.699491
\(921\) 61.2332 2.01770
\(922\) 66.2746 2.18264
\(923\) 6.76394 0.222638
\(924\) 3.66116 0.120443
\(925\) −5.74363 −0.188849
\(926\) 9.28670 0.305180
\(927\) 17.0631 0.560426
\(928\) −21.4527 −0.704219
\(929\) −27.8769 −0.914611 −0.457306 0.889310i \(-0.651185\pi\)
−0.457306 + 0.889310i \(0.651185\pi\)
\(930\) −7.65914 −0.251153
\(931\) 15.4664 0.506889
\(932\) 10.8210 0.354453
\(933\) 46.9323 1.53650
\(934\) 44.2833 1.44900
\(935\) 28.9217 0.945839
\(936\) 6.80699 0.222493
\(937\) −14.9024 −0.486841 −0.243421 0.969921i \(-0.578270\pi\)
−0.243421 + 0.969921i \(0.578270\pi\)
\(938\) 10.7501 0.351003
\(939\) 47.1836 1.53978
\(940\) −8.11879 −0.264806
\(941\) 5.21996 0.170166 0.0850828 0.996374i \(-0.472885\pi\)
0.0850828 + 0.996374i \(0.472885\pi\)
\(942\) −63.9851 −2.08475
\(943\) −32.1249 −1.04613
\(944\) −33.8935 −1.10314
\(945\) 0.687911 0.0223777
\(946\) 28.9319 0.940657
\(947\) 53.3817 1.73467 0.867336 0.497723i \(-0.165831\pi\)
0.867336 + 0.497723i \(0.165831\pi\)
\(948\) −11.2200 −0.364409
\(949\) 0.0842214 0.00273394
\(950\) −6.00133 −0.194709
\(951\) −52.6890 −1.70856
\(952\) 6.55450 0.212432
\(953\) 42.2370 1.36819 0.684096 0.729392i \(-0.260197\pi\)
0.684096 + 0.729392i \(0.260197\pi\)
\(954\) 49.9436 1.61698
\(955\) 20.3220 0.657606
\(956\) −10.3545 −0.334889
\(957\) 21.8703 0.706967
\(958\) −52.2812 −1.68913
\(959\) −6.59210 −0.212870
\(960\) 1.63626 0.0528100
\(961\) −30.0593 −0.969656
\(962\) −10.4195 −0.335938
\(963\) 19.0298 0.613226
\(964\) −17.7388 −0.571329
\(965\) 29.1257 0.937588
\(966\) −17.7813 −0.572103
\(967\) 10.5859 0.340419 0.170210 0.985408i \(-0.445556\pi\)
0.170210 + 0.985408i \(0.445556\pi\)
\(968\) −9.03151 −0.290284
\(969\) −36.8679 −1.18437
\(970\) 45.6399 1.46541
\(971\) −15.9006 −0.510276 −0.255138 0.966905i \(-0.582121\pi\)
−0.255138 + 0.966905i \(0.582121\pi\)
\(972\) 22.9374 0.735718
\(973\) 8.72109 0.279585
\(974\) −0.974801 −0.0312346
\(975\) 5.34673 0.171232
\(976\) −24.7321 −0.791656
\(977\) 24.0355 0.768963 0.384481 0.923133i \(-0.374380\pi\)
0.384481 + 0.923133i \(0.374380\pi\)
\(978\) −13.6497 −0.436470
\(979\) 27.2741 0.871685
\(980\) 13.3305 0.425827
\(981\) 28.6108 0.913471
\(982\) 27.3472 0.872684
\(983\) −23.6694 −0.754936 −0.377468 0.926023i \(-0.623205\pi\)
−0.377468 + 0.926023i \(0.623205\pi\)
\(984\) 18.1108 0.577352
\(985\) −2.16540 −0.0689954
\(986\) −45.0717 −1.43538
\(987\) 5.91084 0.188144
\(988\) −3.79509 −0.120738
\(989\) −48.9818 −1.55753
\(990\) 21.1551 0.672352
\(991\) −3.88356 −0.123365 −0.0616827 0.998096i \(-0.519647\pi\)
−0.0616827 + 0.998096i \(0.519647\pi\)
\(992\) 5.32872 0.169187
\(993\) 73.2986 2.32606
\(994\) 4.76404 0.151106
\(995\) 24.5471 0.778197
\(996\) 33.8170 1.07153
\(997\) −29.7586 −0.942465 −0.471232 0.882009i \(-0.656191\pi\)
−0.471232 + 0.882009i \(0.656191\pi\)
\(998\) −3.65451 −0.115681
\(999\) 2.34553 0.0742092
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4001.2.a.a.1.31 149
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4001.2.a.a.1.31 149 1.1 even 1 trivial