Properties

Label 4001.2.a.b.1.100
Level $4001$
Weight $2$
Character 4001.1
Self dual yes
Analytic conductor $31.948$
Analytic rank $0$
Dimension $184$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4001,2,Mod(1,4001)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4001, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4001.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4001 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4001.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(31.9481458487\)
Analytic rank: \(0\)
Dimension: \(184\)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.100
Character \(\chi\) \(=\) 4001.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.358013 q^{2} -1.99143 q^{3} -1.87183 q^{4} +1.76676 q^{5} -0.712958 q^{6} +1.12698 q^{7} -1.38616 q^{8} +0.965797 q^{9} +0.632522 q^{10} +3.02530 q^{11} +3.72761 q^{12} +3.52268 q^{13} +0.403472 q^{14} -3.51838 q^{15} +3.24739 q^{16} +5.82428 q^{17} +0.345768 q^{18} +2.52638 q^{19} -3.30707 q^{20} -2.24429 q^{21} +1.08309 q^{22} +0.727773 q^{23} +2.76045 q^{24} -1.87856 q^{25} +1.26116 q^{26} +4.05097 q^{27} -2.10950 q^{28} +1.38626 q^{29} -1.25962 q^{30} -5.20922 q^{31} +3.93493 q^{32} -6.02467 q^{33} +2.08517 q^{34} +1.99109 q^{35} -1.80781 q^{36} -0.462962 q^{37} +0.904476 q^{38} -7.01517 q^{39} -2.44902 q^{40} -11.6514 q^{41} -0.803486 q^{42} +3.28335 q^{43} -5.66283 q^{44} +1.70633 q^{45} +0.260552 q^{46} +8.10233 q^{47} -6.46695 q^{48} -5.72993 q^{49} -0.672550 q^{50} -11.5987 q^{51} -6.59385 q^{52} +9.89504 q^{53} +1.45030 q^{54} +5.34497 q^{55} -1.56217 q^{56} -5.03111 q^{57} +0.496297 q^{58} -12.4701 q^{59} +6.58579 q^{60} +5.80931 q^{61} -1.86497 q^{62} +1.08843 q^{63} -5.08602 q^{64} +6.22373 q^{65} -2.15691 q^{66} +12.3929 q^{67} -10.9021 q^{68} -1.44931 q^{69} +0.712837 q^{70} -4.08597 q^{71} -1.33875 q^{72} -3.63984 q^{73} -0.165746 q^{74} +3.74103 q^{75} -4.72894 q^{76} +3.40943 q^{77} -2.51152 q^{78} -17.4188 q^{79} +5.73735 q^{80} -10.9646 q^{81} -4.17134 q^{82} +13.6953 q^{83} +4.20093 q^{84} +10.2901 q^{85} +1.17548 q^{86} -2.76063 q^{87} -4.19355 q^{88} +13.8897 q^{89} +0.610888 q^{90} +3.96997 q^{91} -1.36226 q^{92} +10.3738 q^{93} +2.90074 q^{94} +4.46350 q^{95} -7.83615 q^{96} -2.29162 q^{97} -2.05139 q^{98} +2.92182 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 184 q + 3 q^{2} + 28 q^{3} + 217 q^{4} + 15 q^{5} + 31 q^{6} + 49 q^{7} + 6 q^{8} + 210 q^{9} + 46 q^{10} + 25 q^{11} + 61 q^{12} + 52 q^{13} + 28 q^{14} + 59 q^{15} + 279 q^{16} + 16 q^{17} - 2 q^{18}+ \cdots + 53 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.358013 0.253153 0.126577 0.991957i \(-0.459601\pi\)
0.126577 + 0.991957i \(0.459601\pi\)
\(3\) −1.99143 −1.14975 −0.574877 0.818240i \(-0.694950\pi\)
−0.574877 + 0.818240i \(0.694950\pi\)
\(4\) −1.87183 −0.935913
\(5\) 1.76676 0.790118 0.395059 0.918656i \(-0.370724\pi\)
0.395059 + 0.918656i \(0.370724\pi\)
\(6\) −0.712958 −0.291064
\(7\) 1.12698 0.425957 0.212978 0.977057i \(-0.431684\pi\)
0.212978 + 0.977057i \(0.431684\pi\)
\(8\) −1.38616 −0.490083
\(9\) 0.965797 0.321932
\(10\) 0.632522 0.200021
\(11\) 3.02530 0.912161 0.456080 0.889939i \(-0.349253\pi\)
0.456080 + 0.889939i \(0.349253\pi\)
\(12\) 3.72761 1.07607
\(13\) 3.52268 0.977016 0.488508 0.872559i \(-0.337541\pi\)
0.488508 + 0.872559i \(0.337541\pi\)
\(14\) 0.403472 0.107832
\(15\) −3.51838 −0.908441
\(16\) 3.24739 0.811847
\(17\) 5.82428 1.41260 0.706298 0.707914i \(-0.250364\pi\)
0.706298 + 0.707914i \(0.250364\pi\)
\(18\) 0.345768 0.0814982
\(19\) 2.52638 0.579591 0.289796 0.957089i \(-0.406413\pi\)
0.289796 + 0.957089i \(0.406413\pi\)
\(20\) −3.30707 −0.739482
\(21\) −2.24429 −0.489745
\(22\) 1.08309 0.230917
\(23\) 0.727773 0.151751 0.0758755 0.997117i \(-0.475825\pi\)
0.0758755 + 0.997117i \(0.475825\pi\)
\(24\) 2.76045 0.563474
\(25\) −1.87856 −0.375713
\(26\) 1.26116 0.247335
\(27\) 4.05097 0.779610
\(28\) −2.10950 −0.398659
\(29\) 1.38626 0.257421 0.128711 0.991682i \(-0.458916\pi\)
0.128711 + 0.991682i \(0.458916\pi\)
\(30\) −1.25962 −0.229975
\(31\) −5.20922 −0.935604 −0.467802 0.883833i \(-0.654954\pi\)
−0.467802 + 0.883833i \(0.654954\pi\)
\(32\) 3.93493 0.695605
\(33\) −6.02467 −1.04876
\(34\) 2.08517 0.357603
\(35\) 1.99109 0.336556
\(36\) −1.80781 −0.301301
\(37\) −0.462962 −0.0761105 −0.0380553 0.999276i \(-0.512116\pi\)
−0.0380553 + 0.999276i \(0.512116\pi\)
\(38\) 0.904476 0.146725
\(39\) −7.01517 −1.12333
\(40\) −2.44902 −0.387223
\(41\) −11.6514 −1.81964 −0.909818 0.415007i \(-0.863779\pi\)
−0.909818 + 0.415007i \(0.863779\pi\)
\(42\) −0.803486 −0.123981
\(43\) 3.28335 0.500707 0.250353 0.968155i \(-0.419453\pi\)
0.250353 + 0.968155i \(0.419453\pi\)
\(44\) −5.66283 −0.853704
\(45\) 1.70633 0.254365
\(46\) 0.260552 0.0384163
\(47\) 8.10233 1.18185 0.590923 0.806728i \(-0.298764\pi\)
0.590923 + 0.806728i \(0.298764\pi\)
\(48\) −6.46695 −0.933424
\(49\) −5.72993 −0.818561
\(50\) −0.672550 −0.0951130
\(51\) −11.5987 −1.62414
\(52\) −6.59385 −0.914402
\(53\) 9.89504 1.35919 0.679594 0.733588i \(-0.262156\pi\)
0.679594 + 0.733588i \(0.262156\pi\)
\(54\) 1.45030 0.197361
\(55\) 5.34497 0.720715
\(56\) −1.56217 −0.208754
\(57\) −5.03111 −0.666387
\(58\) 0.496297 0.0651670
\(59\) −12.4701 −1.62346 −0.811732 0.584030i \(-0.801475\pi\)
−0.811732 + 0.584030i \(0.801475\pi\)
\(60\) 6.58579 0.850222
\(61\) 5.80931 0.743807 0.371903 0.928271i \(-0.378705\pi\)
0.371903 + 0.928271i \(0.378705\pi\)
\(62\) −1.86497 −0.236851
\(63\) 1.08843 0.137129
\(64\) −5.08602 −0.635753
\(65\) 6.22373 0.771958
\(66\) −2.15691 −0.265497
\(67\) 12.3929 1.51403 0.757016 0.653396i \(-0.226656\pi\)
0.757016 + 0.653396i \(0.226656\pi\)
\(68\) −10.9021 −1.32207
\(69\) −1.44931 −0.174476
\(70\) 0.712837 0.0852003
\(71\) −4.08597 −0.484915 −0.242458 0.970162i \(-0.577954\pi\)
−0.242458 + 0.970162i \(0.577954\pi\)
\(72\) −1.33875 −0.157774
\(73\) −3.63984 −0.426011 −0.213005 0.977051i \(-0.568325\pi\)
−0.213005 + 0.977051i \(0.568325\pi\)
\(74\) −0.165746 −0.0192676
\(75\) 3.74103 0.431977
\(76\) −4.72894 −0.542447
\(77\) 3.40943 0.388541
\(78\) −2.51152 −0.284374
\(79\) −17.4188 −1.95977 −0.979884 0.199569i \(-0.936046\pi\)
−0.979884 + 0.199569i \(0.936046\pi\)
\(80\) 5.73735 0.641456
\(81\) −10.9646 −1.21829
\(82\) −4.17134 −0.460647
\(83\) 13.6953 1.50325 0.751627 0.659588i \(-0.229269\pi\)
0.751627 + 0.659588i \(0.229269\pi\)
\(84\) 4.20093 0.458359
\(85\) 10.2901 1.11612
\(86\) 1.17548 0.126756
\(87\) −2.76063 −0.295971
\(88\) −4.19355 −0.447034
\(89\) 13.8897 1.47230 0.736151 0.676817i \(-0.236641\pi\)
0.736151 + 0.676817i \(0.236641\pi\)
\(90\) 0.610888 0.0643933
\(91\) 3.96997 0.416166
\(92\) −1.36226 −0.142026
\(93\) 10.3738 1.07571
\(94\) 2.90074 0.299188
\(95\) 4.46350 0.457946
\(96\) −7.83615 −0.799774
\(97\) −2.29162 −0.232679 −0.116340 0.993209i \(-0.537116\pi\)
−0.116340 + 0.993209i \(0.537116\pi\)
\(98\) −2.05139 −0.207221
\(99\) 2.92182 0.293654
\(100\) 3.51635 0.351635
\(101\) −6.04635 −0.601635 −0.300817 0.953682i \(-0.597259\pi\)
−0.300817 + 0.953682i \(0.597259\pi\)
\(102\) −4.15247 −0.411156
\(103\) 7.22273 0.711677 0.355838 0.934547i \(-0.384195\pi\)
0.355838 + 0.934547i \(0.384195\pi\)
\(104\) −4.88301 −0.478819
\(105\) −3.96513 −0.386957
\(106\) 3.54255 0.344083
\(107\) 5.76804 0.557618 0.278809 0.960347i \(-0.410060\pi\)
0.278809 + 0.960347i \(0.410060\pi\)
\(108\) −7.58272 −0.729648
\(109\) −1.97747 −0.189407 −0.0947036 0.995506i \(-0.530190\pi\)
−0.0947036 + 0.995506i \(0.530190\pi\)
\(110\) 1.91357 0.182451
\(111\) 0.921958 0.0875083
\(112\) 3.65973 0.345812
\(113\) 5.72139 0.538224 0.269112 0.963109i \(-0.413270\pi\)
0.269112 + 0.963109i \(0.413270\pi\)
\(114\) −1.80120 −0.168698
\(115\) 1.28580 0.119901
\(116\) −2.59483 −0.240924
\(117\) 3.40219 0.314533
\(118\) −4.46444 −0.410985
\(119\) 6.56383 0.601705
\(120\) 4.87705 0.445211
\(121\) −1.84759 −0.167962
\(122\) 2.07981 0.188297
\(123\) 23.2029 2.09213
\(124\) 9.75076 0.875644
\(125\) −12.1528 −1.08698
\(126\) 0.389672 0.0347147
\(127\) 12.9848 1.15221 0.576106 0.817375i \(-0.304572\pi\)
0.576106 + 0.817375i \(0.304572\pi\)
\(128\) −9.69073 −0.856548
\(129\) −6.53857 −0.575689
\(130\) 2.22817 0.195424
\(131\) −1.36869 −0.119583 −0.0597913 0.998211i \(-0.519044\pi\)
−0.0597913 + 0.998211i \(0.519044\pi\)
\(132\) 11.2771 0.981549
\(133\) 2.84717 0.246881
\(134\) 4.43681 0.383282
\(135\) 7.15709 0.615985
\(136\) −8.07341 −0.692289
\(137\) −18.1904 −1.55411 −0.777055 0.629433i \(-0.783287\pi\)
−0.777055 + 0.629433i \(0.783287\pi\)
\(138\) −0.518871 −0.0441692
\(139\) 14.0768 1.19398 0.596988 0.802250i \(-0.296364\pi\)
0.596988 + 0.802250i \(0.296364\pi\)
\(140\) −3.72698 −0.314988
\(141\) −16.1352 −1.35883
\(142\) −1.46283 −0.122758
\(143\) 10.6571 0.891196
\(144\) 3.13632 0.261360
\(145\) 2.44918 0.203393
\(146\) −1.30311 −0.107846
\(147\) 11.4108 0.941143
\(148\) 0.866585 0.0712329
\(149\) 11.5103 0.942964 0.471482 0.881876i \(-0.343719\pi\)
0.471482 + 0.881876i \(0.343719\pi\)
\(150\) 1.33934 0.109356
\(151\) −7.53524 −0.613209 −0.306604 0.951837i \(-0.599193\pi\)
−0.306604 + 0.951837i \(0.599193\pi\)
\(152\) −3.50198 −0.284048
\(153\) 5.62508 0.454761
\(154\) 1.22062 0.0983605
\(155\) −9.20343 −0.739238
\(156\) 13.1312 1.05134
\(157\) −0.916273 −0.0731266 −0.0365633 0.999331i \(-0.511641\pi\)
−0.0365633 + 0.999331i \(0.511641\pi\)
\(158\) −6.23615 −0.496122
\(159\) −19.7053 −1.56273
\(160\) 6.95208 0.549610
\(161\) 0.820182 0.0646394
\(162\) −3.92548 −0.308415
\(163\) −6.39363 −0.500788 −0.250394 0.968144i \(-0.580560\pi\)
−0.250394 + 0.968144i \(0.580560\pi\)
\(164\) 21.8093 1.70302
\(165\) −10.6441 −0.828645
\(166\) 4.90309 0.380554
\(167\) 11.3608 0.879122 0.439561 0.898213i \(-0.355134\pi\)
0.439561 + 0.898213i \(0.355134\pi\)
\(168\) 3.11096 0.240016
\(169\) −0.590724 −0.0454403
\(170\) 3.68399 0.282549
\(171\) 2.43997 0.186589
\(172\) −6.14587 −0.468618
\(173\) 16.0592 1.22096 0.610478 0.792033i \(-0.290977\pi\)
0.610478 + 0.792033i \(0.290977\pi\)
\(174\) −0.988342 −0.0749260
\(175\) −2.11710 −0.160037
\(176\) 9.82431 0.740535
\(177\) 24.8333 1.86658
\(178\) 4.97268 0.372718
\(179\) 20.5231 1.53397 0.766983 0.641667i \(-0.221757\pi\)
0.766983 + 0.641667i \(0.221757\pi\)
\(180\) −3.19395 −0.238063
\(181\) −1.18497 −0.0880782 −0.0440391 0.999030i \(-0.514023\pi\)
−0.0440391 + 0.999030i \(0.514023\pi\)
\(182\) 1.42130 0.105354
\(183\) −11.5688 −0.855194
\(184\) −1.00881 −0.0743706
\(185\) −0.817943 −0.0601363
\(186\) 3.71395 0.272320
\(187\) 17.6202 1.28852
\(188\) −15.1662 −1.10611
\(189\) 4.56535 0.332080
\(190\) 1.59799 0.115930
\(191\) −8.59050 −0.621587 −0.310793 0.950478i \(-0.600595\pi\)
−0.310793 + 0.950478i \(0.600595\pi\)
\(192\) 10.1285 0.730959
\(193\) 12.8714 0.926506 0.463253 0.886226i \(-0.346682\pi\)
0.463253 + 0.886226i \(0.346682\pi\)
\(194\) −0.820431 −0.0589035
\(195\) −12.3941 −0.887561
\(196\) 10.7254 0.766102
\(197\) −10.4418 −0.743951 −0.371975 0.928243i \(-0.621319\pi\)
−0.371975 + 0.928243i \(0.621319\pi\)
\(198\) 1.04605 0.0743395
\(199\) 12.2029 0.865040 0.432520 0.901624i \(-0.357625\pi\)
0.432520 + 0.901624i \(0.357625\pi\)
\(200\) 2.60400 0.184130
\(201\) −24.6796 −1.74076
\(202\) −2.16467 −0.152306
\(203\) 1.56228 0.109650
\(204\) 21.7107 1.52005
\(205\) −20.5851 −1.43773
\(206\) 2.58583 0.180163
\(207\) 0.702881 0.0488536
\(208\) 11.4395 0.793188
\(209\) 7.64304 0.528680
\(210\) −1.41957 −0.0979593
\(211\) 18.7651 1.29184 0.645922 0.763404i \(-0.276473\pi\)
0.645922 + 0.763404i \(0.276473\pi\)
\(212\) −18.5218 −1.27208
\(213\) 8.13692 0.557533
\(214\) 2.06503 0.141163
\(215\) 5.80089 0.395618
\(216\) −5.61531 −0.382074
\(217\) −5.87066 −0.398527
\(218\) −0.707959 −0.0479490
\(219\) 7.24848 0.489807
\(220\) −10.0049 −0.674527
\(221\) 20.5171 1.38013
\(222\) 0.330073 0.0221530
\(223\) −23.9493 −1.60377 −0.801883 0.597481i \(-0.796168\pi\)
−0.801883 + 0.597481i \(0.796168\pi\)
\(224\) 4.43457 0.296297
\(225\) −1.81431 −0.120954
\(226\) 2.04833 0.136253
\(227\) 7.85177 0.521141 0.260570 0.965455i \(-0.416089\pi\)
0.260570 + 0.965455i \(0.416089\pi\)
\(228\) 9.41737 0.623680
\(229\) 28.5302 1.88533 0.942664 0.333745i \(-0.108312\pi\)
0.942664 + 0.333745i \(0.108312\pi\)
\(230\) 0.460332 0.0303534
\(231\) −6.78965 −0.446726
\(232\) −1.92158 −0.126158
\(233\) 4.45331 0.291746 0.145873 0.989303i \(-0.453401\pi\)
0.145873 + 0.989303i \(0.453401\pi\)
\(234\) 1.21803 0.0796251
\(235\) 14.3149 0.933799
\(236\) 23.3418 1.51942
\(237\) 34.6883 2.25325
\(238\) 2.34993 0.152324
\(239\) 27.2979 1.76576 0.882878 0.469603i \(-0.155603\pi\)
0.882878 + 0.469603i \(0.155603\pi\)
\(240\) −11.4255 −0.737516
\(241\) −13.5077 −0.870111 −0.435055 0.900404i \(-0.643271\pi\)
−0.435055 + 0.900404i \(0.643271\pi\)
\(242\) −0.661460 −0.0425202
\(243\) 9.68237 0.621125
\(244\) −10.8740 −0.696139
\(245\) −10.1234 −0.646760
\(246\) 8.30693 0.529630
\(247\) 8.89963 0.566270
\(248\) 7.22083 0.458523
\(249\) −27.2732 −1.72837
\(250\) −4.35084 −0.275172
\(251\) −25.5782 −1.61448 −0.807239 0.590224i \(-0.799039\pi\)
−0.807239 + 0.590224i \(0.799039\pi\)
\(252\) −2.03735 −0.128341
\(253\) 2.20173 0.138421
\(254\) 4.64871 0.291686
\(255\) −20.4920 −1.28326
\(256\) 6.70264 0.418915
\(257\) 13.0881 0.816412 0.408206 0.912890i \(-0.366154\pi\)
0.408206 + 0.912890i \(0.366154\pi\)
\(258\) −2.34089 −0.145738
\(259\) −0.521747 −0.0324198
\(260\) −11.6497 −0.722486
\(261\) 1.33884 0.0828723
\(262\) −0.490007 −0.0302727
\(263\) −15.4676 −0.953772 −0.476886 0.878965i \(-0.658235\pi\)
−0.476886 + 0.878965i \(0.658235\pi\)
\(264\) 8.35117 0.513979
\(265\) 17.4821 1.07392
\(266\) 1.01932 0.0624987
\(267\) −27.6603 −1.69279
\(268\) −23.1974 −1.41700
\(269\) 8.27464 0.504513 0.252257 0.967660i \(-0.418827\pi\)
0.252257 + 0.967660i \(0.418827\pi\)
\(270\) 2.56233 0.155939
\(271\) −23.4695 −1.42567 −0.712834 0.701333i \(-0.752589\pi\)
−0.712834 + 0.701333i \(0.752589\pi\)
\(272\) 18.9137 1.14681
\(273\) −7.90593 −0.478489
\(274\) −6.51239 −0.393428
\(275\) −5.68321 −0.342711
\(276\) 2.71285 0.163295
\(277\) 7.83294 0.470636 0.235318 0.971918i \(-0.424387\pi\)
0.235318 + 0.971918i \(0.424387\pi\)
\(278\) 5.03966 0.302259
\(279\) −5.03105 −0.301201
\(280\) −2.75998 −0.164940
\(281\) 0.891949 0.0532092 0.0266046 0.999646i \(-0.491530\pi\)
0.0266046 + 0.999646i \(0.491530\pi\)
\(282\) −5.77662 −0.343993
\(283\) −14.9558 −0.889030 −0.444515 0.895771i \(-0.646624\pi\)
−0.444515 + 0.895771i \(0.646624\pi\)
\(284\) 7.64823 0.453839
\(285\) −8.88876 −0.526524
\(286\) 3.81540 0.225609
\(287\) −13.1308 −0.775086
\(288\) 3.80035 0.223938
\(289\) 16.9223 0.995429
\(290\) 0.876838 0.0514897
\(291\) 4.56361 0.267524
\(292\) 6.81314 0.398709
\(293\) −10.8125 −0.631675 −0.315837 0.948813i \(-0.602285\pi\)
−0.315837 + 0.948813i \(0.602285\pi\)
\(294\) 4.08520 0.238253
\(295\) −22.0316 −1.28273
\(296\) 0.641742 0.0373005
\(297\) 12.2554 0.711130
\(298\) 4.12085 0.238715
\(299\) 2.56371 0.148263
\(300\) −7.00256 −0.404293
\(301\) 3.70026 0.213279
\(302\) −2.69771 −0.155236
\(303\) 12.0409 0.691731
\(304\) 8.20414 0.470540
\(305\) 10.2637 0.587695
\(306\) 2.01385 0.115124
\(307\) 14.3563 0.819358 0.409679 0.912230i \(-0.365641\pi\)
0.409679 + 0.912230i \(0.365641\pi\)
\(308\) −6.38187 −0.363641
\(309\) −14.3836 −0.818253
\(310\) −3.29495 −0.187140
\(311\) 6.79593 0.385362 0.192681 0.981261i \(-0.438282\pi\)
0.192681 + 0.981261i \(0.438282\pi\)
\(312\) 9.72418 0.550523
\(313\) −5.37854 −0.304013 −0.152007 0.988379i \(-0.548573\pi\)
−0.152007 + 0.988379i \(0.548573\pi\)
\(314\) −0.328038 −0.0185122
\(315\) 1.92299 0.108348
\(316\) 32.6050 1.83417
\(317\) −10.8135 −0.607347 −0.303673 0.952776i \(-0.598213\pi\)
−0.303673 + 0.952776i \(0.598213\pi\)
\(318\) −7.05475 −0.395611
\(319\) 4.19383 0.234810
\(320\) −8.98577 −0.502320
\(321\) −11.4867 −0.641123
\(322\) 0.293636 0.0163637
\(323\) 14.7144 0.818728
\(324\) 20.5239 1.14022
\(325\) −6.61758 −0.367077
\(326\) −2.28900 −0.126776
\(327\) 3.93799 0.217772
\(328\) 16.1507 0.891773
\(329\) 9.13113 0.503416
\(330\) −3.81074 −0.209774
\(331\) 31.4050 1.72617 0.863086 0.505057i \(-0.168528\pi\)
0.863086 + 0.505057i \(0.168528\pi\)
\(332\) −25.6352 −1.40692
\(333\) −0.447128 −0.0245025
\(334\) 4.06730 0.222553
\(335\) 21.8952 1.19627
\(336\) −7.28810 −0.397598
\(337\) −8.47256 −0.461530 −0.230765 0.973010i \(-0.574123\pi\)
−0.230765 + 0.973010i \(0.574123\pi\)
\(338\) −0.211487 −0.0115034
\(339\) −11.3938 −0.618824
\(340\) −19.2613 −1.04459
\(341\) −15.7594 −0.853421
\(342\) 0.873541 0.0472357
\(343\) −14.3463 −0.774628
\(344\) −4.55127 −0.245388
\(345\) −2.56058 −0.137857
\(346\) 5.74939 0.309089
\(347\) 28.7607 1.54395 0.771976 0.635651i \(-0.219268\pi\)
0.771976 + 0.635651i \(0.219268\pi\)
\(348\) 5.16743 0.277003
\(349\) 2.73272 0.146279 0.0731397 0.997322i \(-0.476698\pi\)
0.0731397 + 0.997322i \(0.476698\pi\)
\(350\) −0.757948 −0.0405140
\(351\) 14.2703 0.761692
\(352\) 11.9043 0.634503
\(353\) −8.74263 −0.465323 −0.232662 0.972558i \(-0.574743\pi\)
−0.232662 + 0.972558i \(0.574743\pi\)
\(354\) 8.89063 0.472532
\(355\) −7.21892 −0.383140
\(356\) −25.9991 −1.37795
\(357\) −13.0714 −0.691812
\(358\) 7.34752 0.388329
\(359\) 22.8664 1.20684 0.603422 0.797422i \(-0.293804\pi\)
0.603422 + 0.797422i \(0.293804\pi\)
\(360\) −2.36525 −0.124660
\(361\) −12.6174 −0.664074
\(362\) −0.424235 −0.0222973
\(363\) 3.67934 0.193115
\(364\) −7.43110 −0.389496
\(365\) −6.43071 −0.336599
\(366\) −4.14180 −0.216495
\(367\) 13.7344 0.716932 0.358466 0.933543i \(-0.383300\pi\)
0.358466 + 0.933543i \(0.383300\pi\)
\(368\) 2.36336 0.123199
\(369\) −11.2529 −0.585800
\(370\) −0.292834 −0.0152237
\(371\) 11.1515 0.578955
\(372\) −19.4180 −1.00677
\(373\) −15.7804 −0.817077 −0.408539 0.912741i \(-0.633961\pi\)
−0.408539 + 0.912741i \(0.633961\pi\)
\(374\) 6.30825 0.326192
\(375\) 24.2014 1.24975
\(376\) −11.2312 −0.579203
\(377\) 4.88334 0.251505
\(378\) 1.63445 0.0840672
\(379\) 19.1735 0.984876 0.492438 0.870347i \(-0.336106\pi\)
0.492438 + 0.870347i \(0.336106\pi\)
\(380\) −8.35490 −0.428597
\(381\) −25.8583 −1.32476
\(382\) −3.07551 −0.157357
\(383\) 34.8128 1.77885 0.889426 0.457079i \(-0.151104\pi\)
0.889426 + 0.457079i \(0.151104\pi\)
\(384\) 19.2984 0.984818
\(385\) 6.02365 0.306993
\(386\) 4.60814 0.234548
\(387\) 3.17105 0.161194
\(388\) 4.28952 0.217768
\(389\) −35.4524 −1.79751 −0.898753 0.438455i \(-0.855526\pi\)
−0.898753 + 0.438455i \(0.855526\pi\)
\(390\) −4.43725 −0.224689
\(391\) 4.23875 0.214363
\(392\) 7.94262 0.401163
\(393\) 2.72564 0.137490
\(394\) −3.73831 −0.188334
\(395\) −30.7748 −1.54845
\(396\) −5.46914 −0.274835
\(397\) 12.1621 0.610400 0.305200 0.952288i \(-0.401277\pi\)
0.305200 + 0.952288i \(0.401277\pi\)
\(398\) 4.36879 0.218988
\(399\) −5.66994 −0.283852
\(400\) −6.10043 −0.305022
\(401\) −8.49982 −0.424461 −0.212230 0.977220i \(-0.568073\pi\)
−0.212230 + 0.977220i \(0.568073\pi\)
\(402\) −8.83561 −0.440680
\(403\) −18.3504 −0.914099
\(404\) 11.3177 0.563078
\(405\) −19.3718 −0.962595
\(406\) 0.559315 0.0277583
\(407\) −1.40060 −0.0694251
\(408\) 16.0776 0.795962
\(409\) 8.21986 0.406446 0.203223 0.979132i \(-0.434858\pi\)
0.203223 + 0.979132i \(0.434858\pi\)
\(410\) −7.36974 −0.363966
\(411\) 36.2249 1.78684
\(412\) −13.5197 −0.666068
\(413\) −14.0535 −0.691526
\(414\) 0.251640 0.0123674
\(415\) 24.1963 1.18775
\(416\) 13.8615 0.679617
\(417\) −28.0329 −1.37278
\(418\) 2.73631 0.133837
\(419\) −7.62567 −0.372538 −0.186269 0.982499i \(-0.559640\pi\)
−0.186269 + 0.982499i \(0.559640\pi\)
\(420\) 7.42203 0.362158
\(421\) 7.63033 0.371879 0.185940 0.982561i \(-0.440467\pi\)
0.185940 + 0.982561i \(0.440467\pi\)
\(422\) 6.71815 0.327034
\(423\) 7.82521 0.380475
\(424\) −13.7161 −0.666115
\(425\) −10.9413 −0.530731
\(426\) 2.91312 0.141141
\(427\) 6.54696 0.316829
\(428\) −10.7968 −0.521882
\(429\) −21.2230 −1.02465
\(430\) 2.07679 0.100152
\(431\) 26.1540 1.25980 0.629898 0.776678i \(-0.283097\pi\)
0.629898 + 0.776678i \(0.283097\pi\)
\(432\) 13.1551 0.632925
\(433\) −19.6843 −0.945965 −0.472982 0.881072i \(-0.656823\pi\)
−0.472982 + 0.881072i \(0.656823\pi\)
\(434\) −2.10177 −0.100888
\(435\) −4.87737 −0.233852
\(436\) 3.70148 0.177269
\(437\) 1.83863 0.0879536
\(438\) 2.59505 0.123996
\(439\) −3.98974 −0.190420 −0.0952100 0.995457i \(-0.530352\pi\)
−0.0952100 + 0.995457i \(0.530352\pi\)
\(440\) −7.40900 −0.353210
\(441\) −5.53395 −0.263521
\(442\) 7.34538 0.349384
\(443\) 16.9705 0.806295 0.403148 0.915135i \(-0.367916\pi\)
0.403148 + 0.915135i \(0.367916\pi\)
\(444\) −1.72575 −0.0819002
\(445\) 24.5397 1.16329
\(446\) −8.57417 −0.405999
\(447\) −22.9221 −1.08418
\(448\) −5.73182 −0.270803
\(449\) 18.1608 0.857063 0.428531 0.903527i \(-0.359031\pi\)
0.428531 + 0.903527i \(0.359031\pi\)
\(450\) −0.649547 −0.0306199
\(451\) −35.2488 −1.65980
\(452\) −10.7095 −0.503731
\(453\) 15.0059 0.705039
\(454\) 2.81104 0.131928
\(455\) 7.01399 0.328821
\(456\) 6.97394 0.326585
\(457\) 5.97328 0.279418 0.139709 0.990193i \(-0.455383\pi\)
0.139709 + 0.990193i \(0.455383\pi\)
\(458\) 10.2142 0.477277
\(459\) 23.5940 1.10127
\(460\) −2.40679 −0.112217
\(461\) −13.3523 −0.621880 −0.310940 0.950429i \(-0.600644\pi\)
−0.310940 + 0.950429i \(0.600644\pi\)
\(462\) −2.43078 −0.113090
\(463\) 6.40874 0.297839 0.148920 0.988849i \(-0.452420\pi\)
0.148920 + 0.988849i \(0.452420\pi\)
\(464\) 4.50171 0.208987
\(465\) 18.3280 0.849941
\(466\) 1.59434 0.0738565
\(467\) −0.0245954 −0.00113814 −0.000569070 1.00000i \(-0.500181\pi\)
−0.000569070 1.00000i \(0.500181\pi\)
\(468\) −6.36832 −0.294376
\(469\) 13.9665 0.644912
\(470\) 5.12491 0.236394
\(471\) 1.82470 0.0840775
\(472\) 17.2856 0.795632
\(473\) 9.93312 0.456725
\(474\) 12.4189 0.570417
\(475\) −4.74597 −0.217760
\(476\) −12.2863 −0.563144
\(477\) 9.55660 0.437567
\(478\) 9.77301 0.447007
\(479\) −15.8404 −0.723769 −0.361884 0.932223i \(-0.617866\pi\)
−0.361884 + 0.932223i \(0.617866\pi\)
\(480\) −13.8446 −0.631916
\(481\) −1.63087 −0.0743612
\(482\) −4.83595 −0.220271
\(483\) −1.63334 −0.0743193
\(484\) 3.45836 0.157198
\(485\) −4.04875 −0.183844
\(486\) 3.46641 0.157240
\(487\) −15.3626 −0.696146 −0.348073 0.937467i \(-0.613164\pi\)
−0.348073 + 0.937467i \(0.613164\pi\)
\(488\) −8.05266 −0.364527
\(489\) 12.7325 0.575782
\(490\) −3.62431 −0.163729
\(491\) 34.0697 1.53754 0.768772 0.639523i \(-0.220868\pi\)
0.768772 + 0.639523i \(0.220868\pi\)
\(492\) −43.4318 −1.95806
\(493\) 8.07395 0.363632
\(494\) 3.18618 0.143353
\(495\) 5.16215 0.232022
\(496\) −16.9164 −0.759567
\(497\) −4.60479 −0.206553
\(498\) −9.76417 −0.437543
\(499\) 28.3689 1.26997 0.634983 0.772526i \(-0.281007\pi\)
0.634983 + 0.772526i \(0.281007\pi\)
\(500\) 22.7479 1.01732
\(501\) −22.6242 −1.01077
\(502\) −9.15731 −0.408711
\(503\) 0.468474 0.0208882 0.0104441 0.999945i \(-0.496675\pi\)
0.0104441 + 0.999945i \(0.496675\pi\)
\(504\) −1.50874 −0.0672047
\(505\) −10.6824 −0.475363
\(506\) 0.788246 0.0350418
\(507\) 1.17639 0.0522451
\(508\) −24.3052 −1.07837
\(509\) −3.38877 −0.150204 −0.0751022 0.997176i \(-0.523928\pi\)
−0.0751022 + 0.997176i \(0.523928\pi\)
\(510\) −7.33641 −0.324862
\(511\) −4.10201 −0.181462
\(512\) 21.7811 0.962597
\(513\) 10.2343 0.451855
\(514\) 4.68570 0.206677
\(515\) 12.7608 0.562309
\(516\) 12.2391 0.538795
\(517\) 24.5120 1.07803
\(518\) −0.186792 −0.00820718
\(519\) −31.9807 −1.40380
\(520\) −8.62710 −0.378323
\(521\) 4.70012 0.205916 0.102958 0.994686i \(-0.467169\pi\)
0.102958 + 0.994686i \(0.467169\pi\)
\(522\) 0.479323 0.0209794
\(523\) −42.1383 −1.84258 −0.921290 0.388877i \(-0.872863\pi\)
−0.921290 + 0.388877i \(0.872863\pi\)
\(524\) 2.56194 0.111919
\(525\) 4.21605 0.184004
\(526\) −5.53759 −0.241450
\(527\) −30.3400 −1.32163
\(528\) −19.5644 −0.851433
\(529\) −22.4703 −0.976972
\(530\) 6.25883 0.271866
\(531\) −12.0436 −0.522646
\(532\) −5.32940 −0.231059
\(533\) −41.0440 −1.77781
\(534\) −9.90275 −0.428534
\(535\) 10.1907 0.440584
\(536\) −17.1786 −0.742002
\(537\) −40.8703 −1.76368
\(538\) 2.96243 0.127719
\(539\) −17.3347 −0.746659
\(540\) −13.3968 −0.576508
\(541\) 16.4874 0.708850 0.354425 0.935084i \(-0.384677\pi\)
0.354425 + 0.935084i \(0.384677\pi\)
\(542\) −8.40237 −0.360913
\(543\) 2.35979 0.101268
\(544\) 22.9182 0.982609
\(545\) −3.49371 −0.149654
\(546\) −2.83042 −0.121131
\(547\) 35.8736 1.53385 0.766923 0.641740i \(-0.221787\pi\)
0.766923 + 0.641740i \(0.221787\pi\)
\(548\) 34.0493 1.45451
\(549\) 5.61062 0.239455
\(550\) −2.03466 −0.0867583
\(551\) 3.50221 0.149199
\(552\) 2.00898 0.0855078
\(553\) −19.6306 −0.834776
\(554\) 2.80429 0.119143
\(555\) 1.62888 0.0691420
\(556\) −26.3493 −1.11746
\(557\) 18.8257 0.797669 0.398835 0.917023i \(-0.369415\pi\)
0.398835 + 0.917023i \(0.369415\pi\)
\(558\) −1.80118 −0.0762501
\(559\) 11.5662 0.489199
\(560\) 6.46586 0.273232
\(561\) −35.0894 −1.48147
\(562\) 0.319329 0.0134701
\(563\) −9.15186 −0.385705 −0.192852 0.981228i \(-0.561774\pi\)
−0.192852 + 0.981228i \(0.561774\pi\)
\(564\) 30.2024 1.27175
\(565\) 10.1083 0.425260
\(566\) −5.35437 −0.225061
\(567\) −12.3569 −0.518940
\(568\) 5.66382 0.237649
\(569\) −0.366116 −0.0153484 −0.00767420 0.999971i \(-0.502443\pi\)
−0.00767420 + 0.999971i \(0.502443\pi\)
\(570\) −3.18229 −0.133291
\(571\) −37.0895 −1.55215 −0.776074 0.630642i \(-0.782791\pi\)
−0.776074 + 0.630642i \(0.782791\pi\)
\(572\) −19.9483 −0.834082
\(573\) 17.1074 0.714671
\(574\) −4.70099 −0.196216
\(575\) −1.36717 −0.0570148
\(576\) −4.91207 −0.204669
\(577\) −19.7970 −0.824160 −0.412080 0.911148i \(-0.635197\pi\)
−0.412080 + 0.911148i \(0.635197\pi\)
\(578\) 6.05840 0.251996
\(579\) −25.6326 −1.06525
\(580\) −4.58444 −0.190359
\(581\) 15.4343 0.640321
\(582\) 1.63383 0.0677245
\(583\) 29.9354 1.23980
\(584\) 5.04541 0.208780
\(585\) 6.01086 0.248518
\(586\) −3.87103 −0.159911
\(587\) −11.5735 −0.477689 −0.238844 0.971058i \(-0.576769\pi\)
−0.238844 + 0.971058i \(0.576769\pi\)
\(588\) −21.3590 −0.880828
\(589\) −13.1605 −0.542268
\(590\) −7.88759 −0.324727
\(591\) 20.7942 0.855360
\(592\) −1.50342 −0.0617901
\(593\) −20.4025 −0.837829 −0.418914 0.908026i \(-0.637589\pi\)
−0.418914 + 0.908026i \(0.637589\pi\)
\(594\) 4.38759 0.180025
\(595\) 11.5967 0.475418
\(596\) −21.5454 −0.882533
\(597\) −24.3012 −0.994582
\(598\) 0.917841 0.0375333
\(599\) 22.6118 0.923892 0.461946 0.886908i \(-0.347151\pi\)
0.461946 + 0.886908i \(0.347151\pi\)
\(600\) −5.18568 −0.211705
\(601\) −29.9646 −1.22228 −0.611141 0.791522i \(-0.709289\pi\)
−0.611141 + 0.791522i \(0.709289\pi\)
\(602\) 1.32474 0.0539924
\(603\) 11.9690 0.487416
\(604\) 14.1047 0.573910
\(605\) −3.26424 −0.132710
\(606\) 4.31079 0.175114
\(607\) −42.1372 −1.71030 −0.855148 0.518384i \(-0.826534\pi\)
−0.855148 + 0.518384i \(0.826534\pi\)
\(608\) 9.94114 0.403166
\(609\) −3.11117 −0.126071
\(610\) 3.67452 0.148777
\(611\) 28.5419 1.15468
\(612\) −10.5292 −0.425617
\(613\) −2.75222 −0.111161 −0.0555806 0.998454i \(-0.517701\pi\)
−0.0555806 + 0.998454i \(0.517701\pi\)
\(614\) 5.13974 0.207423
\(615\) 40.9939 1.65303
\(616\) −4.72603 −0.190417
\(617\) 34.8603 1.40342 0.701712 0.712461i \(-0.252419\pi\)
0.701712 + 0.712461i \(0.252419\pi\)
\(618\) −5.14950 −0.207143
\(619\) 9.77466 0.392877 0.196438 0.980516i \(-0.437062\pi\)
0.196438 + 0.980516i \(0.437062\pi\)
\(620\) 17.2272 0.691862
\(621\) 2.94819 0.118307
\(622\) 2.43303 0.0975556
\(623\) 15.6533 0.627137
\(624\) −22.7810 −0.911970
\(625\) −12.0782 −0.483127
\(626\) −1.92559 −0.0769619
\(627\) −15.2206 −0.607852
\(628\) 1.71511 0.0684401
\(629\) −2.69642 −0.107513
\(630\) 0.688456 0.0274287
\(631\) −20.9316 −0.833274 −0.416637 0.909073i \(-0.636791\pi\)
−0.416637 + 0.909073i \(0.636791\pi\)
\(632\) 24.1453 0.960448
\(633\) −37.3694 −1.48530
\(634\) −3.87137 −0.153752
\(635\) 22.9409 0.910383
\(636\) 36.8849 1.46258
\(637\) −20.1847 −0.799747
\(638\) 1.50145 0.0594428
\(639\) −3.94622 −0.156110
\(640\) −17.1212 −0.676774
\(641\) −7.51586 −0.296859 −0.148429 0.988923i \(-0.547422\pi\)
−0.148429 + 0.988923i \(0.547422\pi\)
\(642\) −4.11237 −0.162302
\(643\) −15.4436 −0.609036 −0.304518 0.952507i \(-0.598495\pi\)
−0.304518 + 0.952507i \(0.598495\pi\)
\(644\) −1.53524 −0.0604969
\(645\) −11.5521 −0.454863
\(646\) 5.26793 0.207264
\(647\) −2.86189 −0.112513 −0.0562563 0.998416i \(-0.517916\pi\)
−0.0562563 + 0.998416i \(0.517916\pi\)
\(648\) 15.1988 0.597064
\(649\) −37.7256 −1.48086
\(650\) −2.36918 −0.0929269
\(651\) 11.6910 0.458207
\(652\) 11.9678 0.468694
\(653\) 25.1833 0.985501 0.492750 0.870171i \(-0.335992\pi\)
0.492750 + 0.870171i \(0.335992\pi\)
\(654\) 1.40985 0.0551296
\(655\) −2.41814 −0.0944844
\(656\) −37.8365 −1.47727
\(657\) −3.51534 −0.137147
\(658\) 3.26906 0.127441
\(659\) −41.0517 −1.59915 −0.799574 0.600567i \(-0.794941\pi\)
−0.799574 + 0.600567i \(0.794941\pi\)
\(660\) 19.9240 0.775540
\(661\) 0.294257 0.0114453 0.00572264 0.999984i \(-0.498178\pi\)
0.00572264 + 0.999984i \(0.498178\pi\)
\(662\) 11.2434 0.436986
\(663\) −40.8584 −1.58681
\(664\) −18.9839 −0.736719
\(665\) 5.03026 0.195065
\(666\) −0.160077 −0.00620288
\(667\) 1.00888 0.0390640
\(668\) −21.2654 −0.822782
\(669\) 47.6935 1.84394
\(670\) 7.83878 0.302838
\(671\) 17.5749 0.678471
\(672\) −8.83115 −0.340669
\(673\) −10.3527 −0.399068 −0.199534 0.979891i \(-0.563943\pi\)
−0.199534 + 0.979891i \(0.563943\pi\)
\(674\) −3.03328 −0.116838
\(675\) −7.61002 −0.292910
\(676\) 1.10573 0.0425282
\(677\) 26.0643 1.00173 0.500867 0.865525i \(-0.333015\pi\)
0.500867 + 0.865525i \(0.333015\pi\)
\(678\) −4.07911 −0.156657
\(679\) −2.58260 −0.0991112
\(680\) −14.2638 −0.546991
\(681\) −15.6363 −0.599183
\(682\) −5.64208 −0.216046
\(683\) 33.9982 1.30090 0.650452 0.759547i \(-0.274579\pi\)
0.650452 + 0.759547i \(0.274579\pi\)
\(684\) −4.56720 −0.174631
\(685\) −32.1380 −1.22793
\(686\) −5.13616 −0.196100
\(687\) −56.8159 −2.16766
\(688\) 10.6623 0.406498
\(689\) 34.8571 1.32795
\(690\) −0.916720 −0.0348989
\(691\) 39.4493 1.50072 0.750360 0.661029i \(-0.229880\pi\)
0.750360 + 0.661029i \(0.229880\pi\)
\(692\) −30.0600 −1.14271
\(693\) 3.29282 0.125084
\(694\) 10.2967 0.390857
\(695\) 24.8702 0.943382
\(696\) 3.82669 0.145050
\(697\) −67.8608 −2.57041
\(698\) 0.978350 0.0370311
\(699\) −8.86847 −0.335436
\(700\) 3.96284 0.149781
\(701\) −47.0338 −1.77644 −0.888221 0.459416i \(-0.848059\pi\)
−0.888221 + 0.459416i \(0.848059\pi\)
\(702\) 5.10895 0.192825
\(703\) −1.16962 −0.0441130
\(704\) −15.3867 −0.579909
\(705\) −28.5071 −1.07364
\(706\) −3.12997 −0.117798
\(707\) −6.81409 −0.256270
\(708\) −46.4836 −1.74696
\(709\) 15.3890 0.577947 0.288974 0.957337i \(-0.406686\pi\)
0.288974 + 0.957337i \(0.406686\pi\)
\(710\) −2.58447 −0.0969933
\(711\) −16.8230 −0.630913
\(712\) −19.2534 −0.721550
\(713\) −3.79113 −0.141979
\(714\) −4.67973 −0.175135
\(715\) 18.8286 0.704150
\(716\) −38.4156 −1.43566
\(717\) −54.3619 −2.03018
\(718\) 8.18647 0.305516
\(719\) −51.0635 −1.90435 −0.952174 0.305558i \(-0.901157\pi\)
−0.952174 + 0.305558i \(0.901157\pi\)
\(720\) 5.54112 0.206505
\(721\) 8.13984 0.303144
\(722\) −4.51719 −0.168113
\(723\) 26.8997 1.00041
\(724\) 2.21806 0.0824336
\(725\) −2.60417 −0.0967165
\(726\) 1.31725 0.0488878
\(727\) 22.7544 0.843915 0.421958 0.906616i \(-0.361343\pi\)
0.421958 + 0.906616i \(0.361343\pi\)
\(728\) −5.50303 −0.203956
\(729\) 13.6121 0.504152
\(730\) −2.30228 −0.0852111
\(731\) 19.1232 0.707297
\(732\) 21.6549 0.800387
\(733\) 3.90628 0.144282 0.0721409 0.997394i \(-0.477017\pi\)
0.0721409 + 0.997394i \(0.477017\pi\)
\(734\) 4.91710 0.181494
\(735\) 20.1600 0.743614
\(736\) 2.86374 0.105559
\(737\) 37.4922 1.38104
\(738\) −4.02866 −0.148297
\(739\) −13.9414 −0.512844 −0.256422 0.966565i \(-0.582544\pi\)
−0.256422 + 0.966565i \(0.582544\pi\)
\(740\) 1.53105 0.0562824
\(741\) −17.7230 −0.651070
\(742\) 3.99237 0.146564
\(743\) 7.53431 0.276407 0.138204 0.990404i \(-0.455867\pi\)
0.138204 + 0.990404i \(0.455867\pi\)
\(744\) −14.3798 −0.527189
\(745\) 20.3360 0.745054
\(746\) −5.64958 −0.206846
\(747\) 13.2269 0.483946
\(748\) −32.9819 −1.20594
\(749\) 6.50044 0.237521
\(750\) 8.66441 0.316379
\(751\) −1.19242 −0.0435121 −0.0217561 0.999763i \(-0.506926\pi\)
−0.0217561 + 0.999763i \(0.506926\pi\)
\(752\) 26.3114 0.959479
\(753\) 50.9371 1.85625
\(754\) 1.74830 0.0636692
\(755\) −13.3129 −0.484508
\(756\) −8.54554 −0.310798
\(757\) −37.5998 −1.36659 −0.683294 0.730144i \(-0.739453\pi\)
−0.683294 + 0.730144i \(0.739453\pi\)
\(758\) 6.86436 0.249325
\(759\) −4.38459 −0.159150
\(760\) −6.18714 −0.224431
\(761\) 22.0555 0.799512 0.399756 0.916622i \(-0.369095\pi\)
0.399756 + 0.916622i \(0.369095\pi\)
\(762\) −9.25759 −0.335367
\(763\) −2.22856 −0.0806793
\(764\) 16.0799 0.581751
\(765\) 9.93815 0.359315
\(766\) 12.4634 0.450322
\(767\) −43.9281 −1.58615
\(768\) −13.3478 −0.481649
\(769\) −14.7197 −0.530807 −0.265404 0.964137i \(-0.585505\pi\)
−0.265404 + 0.964137i \(0.585505\pi\)
\(770\) 2.15654 0.0777164
\(771\) −26.0640 −0.938673
\(772\) −24.0931 −0.867129
\(773\) −19.2059 −0.690790 −0.345395 0.938457i \(-0.612255\pi\)
−0.345395 + 0.938457i \(0.612255\pi\)
\(774\) 1.13528 0.0408067
\(775\) 9.78586 0.351518
\(776\) 3.17657 0.114032
\(777\) 1.03902 0.0372748
\(778\) −12.6924 −0.455045
\(779\) −29.4358 −1.05465
\(780\) 23.1996 0.830681
\(781\) −12.3613 −0.442321
\(782\) 1.51753 0.0542667
\(783\) 5.61569 0.200688
\(784\) −18.6073 −0.664546
\(785\) −1.61883 −0.0577787
\(786\) 0.975815 0.0348062
\(787\) −10.3277 −0.368143 −0.184071 0.982913i \(-0.558928\pi\)
−0.184071 + 0.982913i \(0.558928\pi\)
\(788\) 19.5453 0.696273
\(789\) 30.8026 1.09660
\(790\) −11.0178 −0.391995
\(791\) 6.44787 0.229260
\(792\) −4.05012 −0.143915
\(793\) 20.4644 0.726711
\(794\) 4.35420 0.154525
\(795\) −34.8145 −1.23474
\(796\) −22.8417 −0.809602
\(797\) −45.2196 −1.60176 −0.800880 0.598825i \(-0.795634\pi\)
−0.800880 + 0.598825i \(0.795634\pi\)
\(798\) −2.02991 −0.0718580
\(799\) 47.1903 1.66947
\(800\) −7.39203 −0.261348
\(801\) 13.4146 0.473982
\(802\) −3.04304 −0.107454
\(803\) −11.0116 −0.388590
\(804\) 46.1959 1.62920
\(805\) 1.44906 0.0510728
\(806\) −6.56969 −0.231407
\(807\) −16.4784 −0.580066
\(808\) 8.38123 0.294851
\(809\) −10.3964 −0.365520 −0.182760 0.983158i \(-0.558503\pi\)
−0.182760 + 0.983158i \(0.558503\pi\)
\(810\) −6.93537 −0.243684
\(811\) −49.0759 −1.72329 −0.861645 0.507512i \(-0.830565\pi\)
−0.861645 + 0.507512i \(0.830565\pi\)
\(812\) −2.92431 −0.102623
\(813\) 46.7378 1.63917
\(814\) −0.501432 −0.0175752
\(815\) −11.2960 −0.395682
\(816\) −37.6654 −1.31855
\(817\) 8.29500 0.290205
\(818\) 2.94282 0.102893
\(819\) 3.83419 0.133977
\(820\) 38.5318 1.34559
\(821\) 4.31627 0.150639 0.0753195 0.997159i \(-0.476002\pi\)
0.0753195 + 0.997159i \(0.476002\pi\)
\(822\) 12.9690 0.452345
\(823\) 23.5750 0.821772 0.410886 0.911687i \(-0.365219\pi\)
0.410886 + 0.911687i \(0.365219\pi\)
\(824\) −10.0119 −0.348781
\(825\) 11.3177 0.394033
\(826\) −5.03132 −0.175062
\(827\) −34.9784 −1.21632 −0.608159 0.793815i \(-0.708092\pi\)
−0.608159 + 0.793815i \(0.708092\pi\)
\(828\) −1.31567 −0.0457227
\(829\) 38.9032 1.35116 0.675582 0.737285i \(-0.263892\pi\)
0.675582 + 0.737285i \(0.263892\pi\)
\(830\) 8.66258 0.300683
\(831\) −15.5988 −0.541115
\(832\) −17.9164 −0.621140
\(833\) −33.3727 −1.15630
\(834\) −10.0361 −0.347523
\(835\) 20.0717 0.694610
\(836\) −14.3065 −0.494799
\(837\) −21.1024 −0.729406
\(838\) −2.73009 −0.0943093
\(839\) −25.1617 −0.868677 −0.434339 0.900750i \(-0.643018\pi\)
−0.434339 + 0.900750i \(0.643018\pi\)
\(840\) 5.49631 0.189641
\(841\) −27.0783 −0.933734
\(842\) 2.73176 0.0941425
\(843\) −1.77626 −0.0611775
\(844\) −35.1250 −1.20905
\(845\) −1.04367 −0.0359032
\(846\) 2.80153 0.0963184
\(847\) −2.08218 −0.0715447
\(848\) 32.1331 1.10345
\(849\) 29.7834 1.02217
\(850\) −3.91712 −0.134356
\(851\) −0.336931 −0.0115499
\(852\) −15.2309 −0.521802
\(853\) −30.5156 −1.04484 −0.522418 0.852690i \(-0.674970\pi\)
−0.522418 + 0.852690i \(0.674970\pi\)
\(854\) 2.34389 0.0802064
\(855\) 4.31084 0.147428
\(856\) −7.99545 −0.273279
\(857\) 49.0939 1.67702 0.838508 0.544889i \(-0.183428\pi\)
0.838508 + 0.544889i \(0.183428\pi\)
\(858\) −7.59810 −0.259395
\(859\) −1.85871 −0.0634184 −0.0317092 0.999497i \(-0.510095\pi\)
−0.0317092 + 0.999497i \(0.510095\pi\)
\(860\) −10.8583 −0.370264
\(861\) 26.1491 0.891158
\(862\) 9.36348 0.318921
\(863\) −42.9308 −1.46138 −0.730690 0.682709i \(-0.760802\pi\)
−0.730690 + 0.682709i \(0.760802\pi\)
\(864\) 15.9403 0.542301
\(865\) 28.3727 0.964700
\(866\) −7.04722 −0.239474
\(867\) −33.6996 −1.14450
\(868\) 10.9889 0.372986
\(869\) −52.6970 −1.78762
\(870\) −1.74616 −0.0592004
\(871\) 43.6562 1.47923
\(872\) 2.74110 0.0928252
\(873\) −2.21324 −0.0749070
\(874\) 0.658253 0.0222657
\(875\) −13.6959 −0.463005
\(876\) −13.5679 −0.458417
\(877\) 26.1404 0.882697 0.441348 0.897336i \(-0.354500\pi\)
0.441348 + 0.897336i \(0.354500\pi\)
\(878\) −1.42838 −0.0482055
\(879\) 21.5324 0.726270
\(880\) 17.3572 0.585111
\(881\) −3.09816 −0.104380 −0.0521899 0.998637i \(-0.516620\pi\)
−0.0521899 + 0.998637i \(0.516620\pi\)
\(882\) −1.98122 −0.0667113
\(883\) 0.209441 0.00704825 0.00352413 0.999994i \(-0.498878\pi\)
0.00352413 + 0.999994i \(0.498878\pi\)
\(884\) −38.4044 −1.29168
\(885\) 43.8744 1.47482
\(886\) 6.07567 0.204116
\(887\) 20.0478 0.673140 0.336570 0.941658i \(-0.390733\pi\)
0.336570 + 0.941658i \(0.390733\pi\)
\(888\) −1.27798 −0.0428863
\(889\) 14.6335 0.490792
\(890\) 8.78553 0.294492
\(891\) −33.1712 −1.11128
\(892\) 44.8290 1.50099
\(893\) 20.4696 0.684988
\(894\) −8.20639 −0.274463
\(895\) 36.2593 1.21202
\(896\) −10.9212 −0.364852
\(897\) −5.10545 −0.170466
\(898\) 6.50181 0.216968
\(899\) −7.22131 −0.240844
\(900\) 3.39608 0.113203
\(901\) 57.6315 1.91998
\(902\) −12.6195 −0.420184
\(903\) −7.36881 −0.245219
\(904\) −7.93079 −0.263774
\(905\) −2.09356 −0.0695922
\(906\) 5.37231 0.178483
\(907\) 56.9694 1.89164 0.945819 0.324695i \(-0.105262\pi\)
0.945819 + 0.324695i \(0.105262\pi\)
\(908\) −14.6972 −0.487742
\(909\) −5.83955 −0.193686
\(910\) 2.51110 0.0832421
\(911\) −37.7032 −1.24916 −0.624581 0.780960i \(-0.714730\pi\)
−0.624581 + 0.780960i \(0.714730\pi\)
\(912\) −16.3380 −0.541004
\(913\) 41.4323 1.37121
\(914\) 2.13851 0.0707357
\(915\) −20.4394 −0.675704
\(916\) −53.4035 −1.76450
\(917\) −1.54248 −0.0509370
\(918\) 8.44696 0.278791
\(919\) 4.96239 0.163694 0.0818471 0.996645i \(-0.473918\pi\)
0.0818471 + 0.996645i \(0.473918\pi\)
\(920\) −1.78233 −0.0587616
\(921\) −28.5896 −0.942059
\(922\) −4.78031 −0.157431
\(923\) −14.3936 −0.473770
\(924\) 12.7091 0.418097
\(925\) 0.869705 0.0285957
\(926\) 2.29441 0.0753990
\(927\) 6.97569 0.229112
\(928\) 5.45483 0.179063
\(929\) −11.6386 −0.381849 −0.190924 0.981605i \(-0.561149\pi\)
−0.190924 + 0.981605i \(0.561149\pi\)
\(930\) 6.56166 0.215165
\(931\) −14.4760 −0.474431
\(932\) −8.33583 −0.273049
\(933\) −13.5336 −0.443071
\(934\) −0.00880547 −0.000288124 0
\(935\) 31.1306 1.01808
\(936\) −4.71600 −0.154147
\(937\) 0.273091 0.00892148 0.00446074 0.999990i \(-0.498580\pi\)
0.00446074 + 0.999990i \(0.498580\pi\)
\(938\) 5.00018 0.163262
\(939\) 10.7110 0.349540
\(940\) −26.7950 −0.873955
\(941\) 15.2516 0.497189 0.248594 0.968608i \(-0.420031\pi\)
0.248594 + 0.968608i \(0.420031\pi\)
\(942\) 0.653264 0.0212845
\(943\) −8.47954 −0.276132
\(944\) −40.4952 −1.31801
\(945\) 8.06587 0.262383
\(946\) 3.55618 0.115622
\(947\) −44.6904 −1.45224 −0.726121 0.687567i \(-0.758679\pi\)
−0.726121 + 0.687567i \(0.758679\pi\)
\(948\) −64.9305 −2.10885
\(949\) −12.8220 −0.416219
\(950\) −1.69912 −0.0551266
\(951\) 21.5343 0.698299
\(952\) −9.09854 −0.294885
\(953\) 22.0878 0.715496 0.357748 0.933818i \(-0.383545\pi\)
0.357748 + 0.933818i \(0.383545\pi\)
\(954\) 3.42139 0.110771
\(955\) −15.1773 −0.491127
\(956\) −51.0970 −1.65259
\(957\) −8.35173 −0.269973
\(958\) −5.67108 −0.183224
\(959\) −20.5001 −0.661983
\(960\) 17.8945 0.577544
\(961\) −3.86402 −0.124646
\(962\) −0.583872 −0.0188248
\(963\) 5.57076 0.179515
\(964\) 25.2842 0.814348
\(965\) 22.7407 0.732049
\(966\) −0.584755 −0.0188142
\(967\) 16.8072 0.540483 0.270241 0.962793i \(-0.412897\pi\)
0.270241 + 0.962793i \(0.412897\pi\)
\(968\) 2.56106 0.0823155
\(969\) −29.3026 −0.941336
\(970\) −1.44950 −0.0465407
\(971\) 30.7985 0.988372 0.494186 0.869356i \(-0.335466\pi\)
0.494186 + 0.869356i \(0.335466\pi\)
\(972\) −18.1237 −0.581319
\(973\) 15.8642 0.508582
\(974\) −5.50001 −0.176232
\(975\) 13.1785 0.422048
\(976\) 18.8651 0.603857
\(977\) −11.6197 −0.371748 −0.185874 0.982574i \(-0.559512\pi\)
−0.185874 + 0.982574i \(0.559512\pi\)
\(978\) 4.55839 0.145761
\(979\) 42.0204 1.34298
\(980\) 18.9492 0.605311
\(981\) −1.90983 −0.0609763
\(982\) 12.1974 0.389234
\(983\) 35.7361 1.13980 0.569902 0.821713i \(-0.306981\pi\)
0.569902 + 0.821713i \(0.306981\pi\)
\(984\) −32.1630 −1.02532
\(985\) −18.4482 −0.587809
\(986\) 2.89058 0.0920547
\(987\) −18.1840 −0.578804
\(988\) −16.6586 −0.529979
\(989\) 2.38954 0.0759828
\(990\) 1.84812 0.0587370
\(991\) 29.1444 0.925802 0.462901 0.886410i \(-0.346809\pi\)
0.462901 + 0.886410i \(0.346809\pi\)
\(992\) −20.4979 −0.650810
\(993\) −62.5408 −1.98467
\(994\) −1.64857 −0.0522895
\(995\) 21.5596 0.683484
\(996\) 51.0508 1.61761
\(997\) −1.03900 −0.0329055 −0.0164527 0.999865i \(-0.505237\pi\)
−0.0164527 + 0.999865i \(0.505237\pi\)
\(998\) 10.1564 0.321496
\(999\) −1.87545 −0.0593366
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4001.2.a.b.1.100 184
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4001.2.a.b.1.100 184 1.1 even 1 trivial