Properties

Label 4001.2.a.b.1.19
Level $4001$
Weight $2$
Character 4001.1
Self dual yes
Analytic conductor $31.948$
Analytic rank $0$
Dimension $184$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4001,2,Mod(1,4001)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4001, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4001.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4001 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4001.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(31.9481458487\)
Analytic rank: \(0\)
Dimension: \(184\)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.19
Character \(\chi\) \(=\) 4001.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.38954 q^{2} +1.02374 q^{3} +3.70989 q^{4} -0.691971 q^{5} -2.44626 q^{6} +1.59189 q^{7} -4.08584 q^{8} -1.95196 q^{9} +1.65349 q^{10} -3.76337 q^{11} +3.79795 q^{12} -6.60109 q^{13} -3.80387 q^{14} -0.708397 q^{15} +2.34348 q^{16} -3.52471 q^{17} +4.66428 q^{18} +8.47101 q^{19} -2.56713 q^{20} +1.62968 q^{21} +8.99271 q^{22} -5.10188 q^{23} -4.18283 q^{24} -4.52118 q^{25} +15.7736 q^{26} -5.06951 q^{27} +5.90572 q^{28} -2.57168 q^{29} +1.69274 q^{30} +3.37313 q^{31} +2.57184 q^{32} -3.85271 q^{33} +8.42243 q^{34} -1.10154 q^{35} -7.24155 q^{36} -1.47696 q^{37} -20.2418 q^{38} -6.75779 q^{39} +2.82728 q^{40} -0.0916968 q^{41} -3.89417 q^{42} -0.702722 q^{43} -13.9617 q^{44} +1.35070 q^{45} +12.1911 q^{46} -10.1367 q^{47} +2.39911 q^{48} -4.46590 q^{49} +10.8035 q^{50} -3.60838 q^{51} -24.4893 q^{52} +3.48172 q^{53} +12.1138 q^{54} +2.60414 q^{55} -6.50419 q^{56} +8.67210 q^{57} +6.14512 q^{58} +11.3479 q^{59} -2.62807 q^{60} +10.2702 q^{61} -8.06021 q^{62} -3.10730 q^{63} -10.8325 q^{64} +4.56776 q^{65} +9.20618 q^{66} +3.97791 q^{67} -13.0763 q^{68} -5.22299 q^{69} +2.63217 q^{70} +1.20708 q^{71} +7.97539 q^{72} +10.3051 q^{73} +3.52925 q^{74} -4.62850 q^{75} +31.4265 q^{76} -5.99086 q^{77} +16.1480 q^{78} +10.0280 q^{79} -1.62162 q^{80} +0.666026 q^{81} +0.219113 q^{82} +11.1174 q^{83} +6.04591 q^{84} +2.43900 q^{85} +1.67918 q^{86} -2.63273 q^{87} +15.3765 q^{88} +9.14236 q^{89} -3.22755 q^{90} -10.5082 q^{91} -18.9274 q^{92} +3.45320 q^{93} +24.2220 q^{94} -5.86169 q^{95} +2.63289 q^{96} +4.87256 q^{97} +10.6714 q^{98} +7.34595 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 184 q + 3 q^{2} + 28 q^{3} + 217 q^{4} + 15 q^{5} + 31 q^{6} + 49 q^{7} + 6 q^{8} + 210 q^{9} + 46 q^{10} + 25 q^{11} + 61 q^{12} + 52 q^{13} + 28 q^{14} + 59 q^{15} + 279 q^{16} + 16 q^{17} - 2 q^{18}+ \cdots + 53 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.38954 −1.68966 −0.844829 0.535037i \(-0.820298\pi\)
−0.844829 + 0.535037i \(0.820298\pi\)
\(3\) 1.02374 0.591056 0.295528 0.955334i \(-0.404505\pi\)
0.295528 + 0.955334i \(0.404505\pi\)
\(4\) 3.70989 1.85494
\(5\) −0.691971 −0.309459 −0.154729 0.987957i \(-0.549451\pi\)
−0.154729 + 0.987957i \(0.549451\pi\)
\(6\) −2.44626 −0.998682
\(7\) 1.59189 0.601677 0.300838 0.953675i \(-0.402734\pi\)
0.300838 + 0.953675i \(0.402734\pi\)
\(8\) −4.08584 −1.44456
\(9\) −1.95196 −0.650653
\(10\) 1.65349 0.522879
\(11\) −3.76337 −1.13470 −0.567349 0.823477i \(-0.692031\pi\)
−0.567349 + 0.823477i \(0.692031\pi\)
\(12\) 3.79795 1.09637
\(13\) −6.60109 −1.83081 −0.915407 0.402530i \(-0.868131\pi\)
−0.915407 + 0.402530i \(0.868131\pi\)
\(14\) −3.80387 −1.01663
\(15\) −0.708397 −0.182907
\(16\) 2.34348 0.585870
\(17\) −3.52471 −0.854868 −0.427434 0.904046i \(-0.640582\pi\)
−0.427434 + 0.904046i \(0.640582\pi\)
\(18\) 4.66428 1.09938
\(19\) 8.47101 1.94338 0.971692 0.236252i \(-0.0759189\pi\)
0.971692 + 0.236252i \(0.0759189\pi\)
\(20\) −2.56713 −0.574028
\(21\) 1.62968 0.355624
\(22\) 8.99271 1.91725
\(23\) −5.10188 −1.06382 −0.531908 0.846802i \(-0.678525\pi\)
−0.531908 + 0.846802i \(0.678525\pi\)
\(24\) −4.18283 −0.853816
\(25\) −4.52118 −0.904235
\(26\) 15.7736 3.09345
\(27\) −5.06951 −0.975628
\(28\) 5.90572 1.11608
\(29\) −2.57168 −0.477549 −0.238775 0.971075i \(-0.576746\pi\)
−0.238775 + 0.971075i \(0.576746\pi\)
\(30\) 1.69274 0.309051
\(31\) 3.37313 0.605832 0.302916 0.953017i \(-0.402040\pi\)
0.302916 + 0.953017i \(0.402040\pi\)
\(32\) 2.57184 0.454641
\(33\) −3.85271 −0.670670
\(34\) 8.42243 1.44443
\(35\) −1.10154 −0.186194
\(36\) −7.24155 −1.20692
\(37\) −1.47696 −0.242811 −0.121405 0.992603i \(-0.538740\pi\)
−0.121405 + 0.992603i \(0.538740\pi\)
\(38\) −20.2418 −3.28365
\(39\) −6.75779 −1.08211
\(40\) 2.82728 0.447032
\(41\) −0.0916968 −0.0143206 −0.00716032 0.999974i \(-0.502279\pi\)
−0.00716032 + 0.999974i \(0.502279\pi\)
\(42\) −3.89417 −0.600884
\(43\) −0.702722 −0.107164 −0.0535820 0.998563i \(-0.517064\pi\)
−0.0535820 + 0.998563i \(0.517064\pi\)
\(44\) −13.9617 −2.10480
\(45\) 1.35070 0.201350
\(46\) 12.1911 1.79748
\(47\) −10.1367 −1.47859 −0.739295 0.673382i \(-0.764841\pi\)
−0.739295 + 0.673382i \(0.764841\pi\)
\(48\) 2.39911 0.346282
\(49\) −4.46590 −0.637985
\(50\) 10.8035 1.52785
\(51\) −3.60838 −0.505275
\(52\) −24.4893 −3.39606
\(53\) 3.48172 0.478250 0.239125 0.970989i \(-0.423139\pi\)
0.239125 + 0.970989i \(0.423139\pi\)
\(54\) 12.1138 1.64848
\(55\) 2.60414 0.351143
\(56\) −6.50419 −0.869159
\(57\) 8.67210 1.14865
\(58\) 6.14512 0.806894
\(59\) 11.3479 1.47737 0.738684 0.674052i \(-0.235448\pi\)
0.738684 + 0.674052i \(0.235448\pi\)
\(60\) −2.62807 −0.339283
\(61\) 10.2702 1.31497 0.657483 0.753470i \(-0.271621\pi\)
0.657483 + 0.753470i \(0.271621\pi\)
\(62\) −8.06021 −1.02365
\(63\) −3.10730 −0.391483
\(64\) −10.8325 −1.35406
\(65\) 4.56776 0.566561
\(66\) 9.20618 1.13320
\(67\) 3.97791 0.485979 0.242989 0.970029i \(-0.421872\pi\)
0.242989 + 0.970029i \(0.421872\pi\)
\(68\) −13.0763 −1.58573
\(69\) −5.22299 −0.628774
\(70\) 2.63217 0.314604
\(71\) 1.20708 0.143254 0.0716268 0.997431i \(-0.477181\pi\)
0.0716268 + 0.997431i \(0.477181\pi\)
\(72\) 7.97539 0.939908
\(73\) 10.3051 1.20612 0.603058 0.797697i \(-0.293949\pi\)
0.603058 + 0.797697i \(0.293949\pi\)
\(74\) 3.52925 0.410267
\(75\) −4.62850 −0.534453
\(76\) 31.4265 3.60487
\(77\) −5.99086 −0.682722
\(78\) 16.1480 1.82840
\(79\) 10.0280 1.12824 0.564118 0.825694i \(-0.309216\pi\)
0.564118 + 0.825694i \(0.309216\pi\)
\(80\) −1.62162 −0.181303
\(81\) 0.666026 0.0740029
\(82\) 0.219113 0.0241970
\(83\) 11.1174 1.22030 0.610149 0.792287i \(-0.291110\pi\)
0.610149 + 0.792287i \(0.291110\pi\)
\(84\) 6.04591 0.659663
\(85\) 2.43900 0.264546
\(86\) 1.67918 0.181071
\(87\) −2.63273 −0.282258
\(88\) 15.3765 1.63914
\(89\) 9.14236 0.969089 0.484544 0.874767i \(-0.338985\pi\)
0.484544 + 0.874767i \(0.338985\pi\)
\(90\) −3.22755 −0.340213
\(91\) −10.5082 −1.10156
\(92\) −18.9274 −1.97332
\(93\) 3.45320 0.358080
\(94\) 24.2220 2.49831
\(95\) −5.86169 −0.601397
\(96\) 2.63289 0.268718
\(97\) 4.87256 0.494734 0.247367 0.968922i \(-0.420435\pi\)
0.247367 + 0.968922i \(0.420435\pi\)
\(98\) 10.6714 1.07798
\(99\) 7.34595 0.738296
\(100\) −16.7730 −1.67730
\(101\) 17.7420 1.76539 0.882697 0.469943i \(-0.155726\pi\)
0.882697 + 0.469943i \(0.155726\pi\)
\(102\) 8.62236 0.853741
\(103\) 0.798122 0.0786413 0.0393206 0.999227i \(-0.487481\pi\)
0.0393206 + 0.999227i \(0.487481\pi\)
\(104\) 26.9710 2.64472
\(105\) −1.12769 −0.110051
\(106\) −8.31969 −0.808079
\(107\) −16.3708 −1.58263 −0.791314 0.611411i \(-0.790602\pi\)
−0.791314 + 0.611411i \(0.790602\pi\)
\(108\) −18.8073 −1.80973
\(109\) 3.36915 0.322706 0.161353 0.986897i \(-0.448414\pi\)
0.161353 + 0.986897i \(0.448414\pi\)
\(110\) −6.22269 −0.593311
\(111\) −1.51202 −0.143515
\(112\) 3.73056 0.352505
\(113\) −18.1954 −1.71168 −0.855840 0.517240i \(-0.826959\pi\)
−0.855840 + 0.517240i \(0.826959\pi\)
\(114\) −20.7223 −1.94082
\(115\) 3.53035 0.329207
\(116\) −9.54064 −0.885826
\(117\) 12.8851 1.19122
\(118\) −27.1162 −2.49625
\(119\) −5.61094 −0.514354
\(120\) 2.89439 0.264221
\(121\) 3.16296 0.287542
\(122\) −24.5410 −2.22184
\(123\) −0.0938736 −0.00846430
\(124\) 12.5139 1.12378
\(125\) 6.58838 0.589282
\(126\) 7.42501 0.661472
\(127\) 17.0117 1.50955 0.754773 0.655986i \(-0.227747\pi\)
0.754773 + 0.655986i \(0.227747\pi\)
\(128\) 20.7409 1.83325
\(129\) −0.719403 −0.0633399
\(130\) −10.9148 −0.957295
\(131\) −11.4909 −1.00397 −0.501984 0.864877i \(-0.667396\pi\)
−0.501984 + 0.864877i \(0.667396\pi\)
\(132\) −14.2931 −1.24405
\(133\) 13.4849 1.16929
\(134\) −9.50536 −0.821138
\(135\) 3.50795 0.301917
\(136\) 14.4014 1.23491
\(137\) 16.2002 1.38408 0.692039 0.721861i \(-0.256713\pi\)
0.692039 + 0.721861i \(0.256713\pi\)
\(138\) 12.4805 1.06241
\(139\) 9.43988 0.800680 0.400340 0.916367i \(-0.368892\pi\)
0.400340 + 0.916367i \(0.368892\pi\)
\(140\) −4.08659 −0.345380
\(141\) −10.3773 −0.873929
\(142\) −2.88435 −0.242050
\(143\) 24.8424 2.07742
\(144\) −4.57438 −0.381198
\(145\) 1.77953 0.147782
\(146\) −24.6243 −2.03792
\(147\) −4.57191 −0.377085
\(148\) −5.47935 −0.450400
\(149\) −1.26291 −0.103462 −0.0517310 0.998661i \(-0.516474\pi\)
−0.0517310 + 0.998661i \(0.516474\pi\)
\(150\) 11.0600 0.903043
\(151\) −1.91704 −0.156006 −0.0780032 0.996953i \(-0.524854\pi\)
−0.0780032 + 0.996953i \(0.524854\pi\)
\(152\) −34.6112 −2.80734
\(153\) 6.88010 0.556223
\(154\) 14.3154 1.15357
\(155\) −2.33411 −0.187480
\(156\) −25.0706 −2.00726
\(157\) −18.3959 −1.46815 −0.734077 0.679066i \(-0.762385\pi\)
−0.734077 + 0.679066i \(0.762385\pi\)
\(158\) −23.9622 −1.90633
\(159\) 3.56437 0.282673
\(160\) −1.77964 −0.140693
\(161\) −8.12162 −0.640073
\(162\) −1.59149 −0.125040
\(163\) 0.977568 0.0765690 0.0382845 0.999267i \(-0.487811\pi\)
0.0382845 + 0.999267i \(0.487811\pi\)
\(164\) −0.340185 −0.0265640
\(165\) 2.66596 0.207545
\(166\) −26.5655 −2.06189
\(167\) −0.0268537 −0.00207800 −0.00103900 0.999999i \(-0.500331\pi\)
−0.00103900 + 0.999999i \(0.500331\pi\)
\(168\) −6.65859 −0.513721
\(169\) 30.5744 2.35188
\(170\) −5.82808 −0.446993
\(171\) −16.5351 −1.26447
\(172\) −2.60702 −0.198783
\(173\) −0.0535446 −0.00407092 −0.00203546 0.999998i \(-0.500648\pi\)
−0.00203546 + 0.999998i \(0.500648\pi\)
\(174\) 6.29100 0.476919
\(175\) −7.19720 −0.544057
\(176\) −8.81939 −0.664786
\(177\) 11.6173 0.873206
\(178\) −21.8460 −1.63743
\(179\) 2.77153 0.207154 0.103577 0.994621i \(-0.466971\pi\)
0.103577 + 0.994621i \(0.466971\pi\)
\(180\) 5.01094 0.373493
\(181\) −0.157125 −0.0116790 −0.00583952 0.999983i \(-0.501859\pi\)
−0.00583952 + 0.999983i \(0.501859\pi\)
\(182\) 25.1097 1.86126
\(183\) 10.5140 0.777218
\(184\) 20.8454 1.53675
\(185\) 1.02201 0.0751399
\(186\) −8.25155 −0.605033
\(187\) 13.2648 0.970018
\(188\) −37.6060 −2.74270
\(189\) −8.07009 −0.587013
\(190\) 14.0067 1.01616
\(191\) 0.875373 0.0633398 0.0316699 0.999498i \(-0.489917\pi\)
0.0316699 + 0.999498i \(0.489917\pi\)
\(192\) −11.0896 −0.800323
\(193\) 13.6082 0.979542 0.489771 0.871851i \(-0.337080\pi\)
0.489771 + 0.871851i \(0.337080\pi\)
\(194\) −11.6432 −0.835930
\(195\) 4.67619 0.334869
\(196\) −16.5680 −1.18343
\(197\) 18.8162 1.34060 0.670299 0.742092i \(-0.266166\pi\)
0.670299 + 0.742092i \(0.266166\pi\)
\(198\) −17.5534 −1.24747
\(199\) −14.2695 −1.01154 −0.505770 0.862668i \(-0.668792\pi\)
−0.505770 + 0.862668i \(0.668792\pi\)
\(200\) 18.4728 1.30622
\(201\) 4.07234 0.287241
\(202\) −42.3951 −2.98291
\(203\) −4.09383 −0.287330
\(204\) −13.3867 −0.937256
\(205\) 0.0634515 0.00443165
\(206\) −1.90714 −0.132877
\(207\) 9.95866 0.692175
\(208\) −15.4695 −1.07262
\(209\) −31.8796 −2.20516
\(210\) 2.69465 0.185949
\(211\) −17.2295 −1.18612 −0.593062 0.805157i \(-0.702081\pi\)
−0.593062 + 0.805157i \(0.702081\pi\)
\(212\) 12.9168 0.887127
\(213\) 1.23573 0.0846709
\(214\) 39.1187 2.67410
\(215\) 0.486263 0.0331629
\(216\) 20.7132 1.40935
\(217\) 5.36964 0.364515
\(218\) −8.05072 −0.545263
\(219\) 10.5497 0.712882
\(220\) 9.66107 0.651349
\(221\) 23.2670 1.56510
\(222\) 3.61303 0.242491
\(223\) −0.986263 −0.0660451 −0.0330225 0.999455i \(-0.510513\pi\)
−0.0330225 + 0.999455i \(0.510513\pi\)
\(224\) 4.09407 0.273547
\(225\) 8.82515 0.588344
\(226\) 43.4786 2.89215
\(227\) −14.6920 −0.975140 −0.487570 0.873084i \(-0.662117\pi\)
−0.487570 + 0.873084i \(0.662117\pi\)
\(228\) 32.1725 2.13068
\(229\) 26.9013 1.77769 0.888844 0.458210i \(-0.151509\pi\)
0.888844 + 0.458210i \(0.151509\pi\)
\(230\) −8.43591 −0.556247
\(231\) −6.13307 −0.403527
\(232\) 10.5075 0.689849
\(233\) 0.300260 0.0196707 0.00983534 0.999952i \(-0.496869\pi\)
0.00983534 + 0.999952i \(0.496869\pi\)
\(234\) −30.7893 −2.01276
\(235\) 7.01430 0.457562
\(236\) 42.0993 2.74043
\(237\) 10.2660 0.666850
\(238\) 13.4076 0.869083
\(239\) −22.7322 −1.47042 −0.735211 0.677838i \(-0.762917\pi\)
−0.735211 + 0.677838i \(0.762917\pi\)
\(240\) −1.66012 −0.107160
\(241\) −27.3276 −1.76032 −0.880162 0.474673i \(-0.842566\pi\)
−0.880162 + 0.474673i \(0.842566\pi\)
\(242\) −7.55800 −0.485847
\(243\) 15.8904 1.01937
\(244\) 38.1013 2.43919
\(245\) 3.09027 0.197430
\(246\) 0.224314 0.0143018
\(247\) −55.9180 −3.55797
\(248\) −13.7820 −0.875161
\(249\) 11.3813 0.721264
\(250\) −15.7432 −0.995685
\(251\) −16.9066 −1.06714 −0.533569 0.845757i \(-0.679149\pi\)
−0.533569 + 0.845757i \(0.679149\pi\)
\(252\) −11.5277 −0.726179
\(253\) 19.2003 1.20711
\(254\) −40.6501 −2.55062
\(255\) 2.49690 0.156362
\(256\) −27.8962 −1.74351
\(257\) −9.92468 −0.619084 −0.309542 0.950886i \(-0.600176\pi\)
−0.309542 + 0.950886i \(0.600176\pi\)
\(258\) 1.71904 0.107023
\(259\) −2.35115 −0.146094
\(260\) 16.9459 1.05094
\(261\) 5.01982 0.310719
\(262\) 27.4580 1.69636
\(263\) 21.6544 1.33527 0.667633 0.744491i \(-0.267308\pi\)
0.667633 + 0.744491i \(0.267308\pi\)
\(264\) 15.7415 0.968824
\(265\) −2.40925 −0.147999
\(266\) −32.2227 −1.97570
\(267\) 9.35939 0.572785
\(268\) 14.7576 0.901463
\(269\) −14.0081 −0.854087 −0.427044 0.904231i \(-0.640445\pi\)
−0.427044 + 0.904231i \(0.640445\pi\)
\(270\) −8.38238 −0.510136
\(271\) −15.2549 −0.926669 −0.463335 0.886183i \(-0.653347\pi\)
−0.463335 + 0.886183i \(0.653347\pi\)
\(272\) −8.26010 −0.500842
\(273\) −10.7576 −0.651082
\(274\) −38.7110 −2.33862
\(275\) 17.0149 1.02603
\(276\) −19.3767 −1.16634
\(277\) 15.0193 0.902422 0.451211 0.892417i \(-0.350992\pi\)
0.451211 + 0.892417i \(0.350992\pi\)
\(278\) −22.5569 −1.35288
\(279\) −6.58421 −0.394186
\(280\) 4.50071 0.268969
\(281\) 21.2300 1.26648 0.633239 0.773957i \(-0.281725\pi\)
0.633239 + 0.773957i \(0.281725\pi\)
\(282\) 24.7970 1.47664
\(283\) −10.6216 −0.631389 −0.315694 0.948861i \(-0.602237\pi\)
−0.315694 + 0.948861i \(0.602237\pi\)
\(284\) 4.47812 0.265727
\(285\) −6.00084 −0.355459
\(286\) −59.3617 −3.51013
\(287\) −0.145971 −0.00861640
\(288\) −5.02012 −0.295813
\(289\) −4.57640 −0.269200
\(290\) −4.25225 −0.249701
\(291\) 4.98823 0.292415
\(292\) 38.2306 2.23728
\(293\) −28.7086 −1.67718 −0.838589 0.544765i \(-0.816619\pi\)
−0.838589 + 0.544765i \(0.816619\pi\)
\(294\) 10.9247 0.637144
\(295\) −7.85240 −0.457184
\(296\) 6.03461 0.350755
\(297\) 19.0784 1.10704
\(298\) 3.01778 0.174815
\(299\) 33.6780 1.94765
\(300\) −17.1712 −0.991380
\(301\) −1.11865 −0.0644781
\(302\) 4.58083 0.263597
\(303\) 18.1631 1.04345
\(304\) 19.8517 1.13857
\(305\) −7.10669 −0.406928
\(306\) −16.4402 −0.939826
\(307\) 12.9693 0.740197 0.370098 0.928993i \(-0.379324\pi\)
0.370098 + 0.928993i \(0.379324\pi\)
\(308\) −22.2254 −1.26641
\(309\) 0.817068 0.0464814
\(310\) 5.57743 0.316777
\(311\) 12.5848 0.713619 0.356810 0.934177i \(-0.383864\pi\)
0.356810 + 0.934177i \(0.383864\pi\)
\(312\) 27.6112 1.56318
\(313\) 8.14618 0.460450 0.230225 0.973137i \(-0.426054\pi\)
0.230225 + 0.973137i \(0.426054\pi\)
\(314\) 43.9577 2.48068
\(315\) 2.15016 0.121148
\(316\) 37.2026 2.09281
\(317\) −0.127186 −0.00714347 −0.00357174 0.999994i \(-0.501137\pi\)
−0.00357174 + 0.999994i \(0.501137\pi\)
\(318\) −8.51718 −0.477620
\(319\) 9.67819 0.541874
\(320\) 7.49574 0.419025
\(321\) −16.7594 −0.935421
\(322\) 19.4069 1.08150
\(323\) −29.8579 −1.66134
\(324\) 2.47088 0.137271
\(325\) 29.8447 1.65549
\(326\) −2.33593 −0.129375
\(327\) 3.44913 0.190737
\(328\) 0.374658 0.0206870
\(329\) −16.1365 −0.889633
\(330\) −6.37041 −0.350680
\(331\) −22.3024 −1.22585 −0.612925 0.790141i \(-0.710007\pi\)
−0.612925 + 0.790141i \(0.710007\pi\)
\(332\) 41.2444 2.26358
\(333\) 2.88297 0.157986
\(334\) 0.0641678 0.00351111
\(335\) −2.75260 −0.150390
\(336\) 3.81912 0.208350
\(337\) −29.0862 −1.58442 −0.792212 0.610246i \(-0.791071\pi\)
−0.792212 + 0.610246i \(0.791071\pi\)
\(338\) −73.0587 −3.97387
\(339\) −18.6273 −1.01170
\(340\) 9.04840 0.490719
\(341\) −12.6943 −0.687437
\(342\) 39.5112 2.13652
\(343\) −18.2524 −0.985538
\(344\) 2.87121 0.154805
\(345\) 3.61416 0.194580
\(346\) 0.127947 0.00687846
\(347\) −21.7671 −1.16852 −0.584260 0.811566i \(-0.698615\pi\)
−0.584260 + 0.811566i \(0.698615\pi\)
\(348\) −9.76712 −0.523573
\(349\) 7.87393 0.421482 0.210741 0.977542i \(-0.432412\pi\)
0.210741 + 0.977542i \(0.432412\pi\)
\(350\) 17.1980 0.919271
\(351\) 33.4643 1.78619
\(352\) −9.67877 −0.515880
\(353\) −6.28135 −0.334323 −0.167161 0.985930i \(-0.553460\pi\)
−0.167161 + 0.985930i \(0.553460\pi\)
\(354\) −27.7599 −1.47542
\(355\) −0.835262 −0.0443311
\(356\) 33.9171 1.79760
\(357\) −5.74414 −0.304012
\(358\) −6.62266 −0.350019
\(359\) −13.4265 −0.708625 −0.354312 0.935127i \(-0.615285\pi\)
−0.354312 + 0.935127i \(0.615285\pi\)
\(360\) −5.51873 −0.290863
\(361\) 52.7581 2.77674
\(362\) 0.375457 0.0197336
\(363\) 3.23804 0.169953
\(364\) −38.9842 −2.04333
\(365\) −7.13080 −0.373243
\(366\) −25.1236 −1.31323
\(367\) 16.3491 0.853417 0.426708 0.904389i \(-0.359673\pi\)
0.426708 + 0.904389i \(0.359673\pi\)
\(368\) −11.9562 −0.623258
\(369\) 0.178989 0.00931777
\(370\) −2.44214 −0.126961
\(371\) 5.54250 0.287752
\(372\) 12.8110 0.664218
\(373\) 11.2437 0.582177 0.291089 0.956696i \(-0.405983\pi\)
0.291089 + 0.956696i \(0.405983\pi\)
\(374\) −31.6967 −1.63900
\(375\) 6.74477 0.348299
\(376\) 41.4169 2.13591
\(377\) 16.9759 0.874303
\(378\) 19.2838 0.991850
\(379\) 32.1363 1.65073 0.825366 0.564598i \(-0.190969\pi\)
0.825366 + 0.564598i \(0.190969\pi\)
\(380\) −21.7462 −1.11556
\(381\) 17.4155 0.892226
\(382\) −2.09174 −0.107023
\(383\) 1.61818 0.0826852 0.0413426 0.999145i \(-0.486836\pi\)
0.0413426 + 0.999145i \(0.486836\pi\)
\(384\) 21.2332 1.08355
\(385\) 4.14550 0.211274
\(386\) −32.5174 −1.65509
\(387\) 1.37168 0.0697266
\(388\) 18.0766 0.917702
\(389\) 26.4362 1.34037 0.670183 0.742196i \(-0.266216\pi\)
0.670183 + 0.742196i \(0.266216\pi\)
\(390\) −11.1739 −0.565814
\(391\) 17.9827 0.909422
\(392\) 18.2469 0.921608
\(393\) −11.7637 −0.593400
\(394\) −44.9619 −2.26515
\(395\) −6.93906 −0.349142
\(396\) 27.2526 1.36950
\(397\) 16.5300 0.829618 0.414809 0.909908i \(-0.363848\pi\)
0.414809 + 0.909908i \(0.363848\pi\)
\(398\) 34.0976 1.70916
\(399\) 13.8050 0.691115
\(400\) −10.5953 −0.529765
\(401\) 17.7641 0.887098 0.443549 0.896250i \(-0.353719\pi\)
0.443549 + 0.896250i \(0.353719\pi\)
\(402\) −9.73100 −0.485338
\(403\) −22.2663 −1.10917
\(404\) 65.8207 3.27470
\(405\) −0.460871 −0.0229009
\(406\) 9.78235 0.485490
\(407\) 5.55835 0.275517
\(408\) 14.7433 0.729900
\(409\) −18.1025 −0.895112 −0.447556 0.894256i \(-0.647705\pi\)
−0.447556 + 0.894256i \(0.647705\pi\)
\(410\) −0.151620 −0.00748797
\(411\) 16.5848 0.818067
\(412\) 2.96094 0.145875
\(413\) 18.0645 0.888898
\(414\) −23.7966 −1.16954
\(415\) −7.69294 −0.377632
\(416\) −16.9769 −0.832362
\(417\) 9.66397 0.473247
\(418\) 76.1774 3.72596
\(419\) 9.75815 0.476717 0.238358 0.971177i \(-0.423391\pi\)
0.238358 + 0.971177i \(0.423391\pi\)
\(420\) −4.18359 −0.204139
\(421\) 13.7003 0.667709 0.333855 0.942625i \(-0.391651\pi\)
0.333855 + 0.942625i \(0.391651\pi\)
\(422\) 41.1704 2.00414
\(423\) 19.7864 0.962049
\(424\) −14.2257 −0.690862
\(425\) 15.9358 0.773002
\(426\) −2.95282 −0.143065
\(427\) 16.3490 0.791184
\(428\) −60.7339 −2.93568
\(429\) 25.4321 1.22787
\(430\) −1.16194 −0.0560339
\(431\) 5.57834 0.268699 0.134350 0.990934i \(-0.457105\pi\)
0.134350 + 0.990934i \(0.457105\pi\)
\(432\) −11.8803 −0.571591
\(433\) −9.29506 −0.446692 −0.223346 0.974739i \(-0.571698\pi\)
−0.223346 + 0.974739i \(0.571698\pi\)
\(434\) −12.8310 −0.615905
\(435\) 1.82177 0.0873472
\(436\) 12.4992 0.598602
\(437\) −43.2181 −2.06740
\(438\) −25.2089 −1.20453
\(439\) 2.26624 0.108162 0.0540809 0.998537i \(-0.482777\pi\)
0.0540809 + 0.998537i \(0.482777\pi\)
\(440\) −10.6401 −0.507247
\(441\) 8.71725 0.415107
\(442\) −55.5972 −2.64449
\(443\) 41.7013 1.98129 0.990644 0.136473i \(-0.0435767\pi\)
0.990644 + 0.136473i \(0.0435767\pi\)
\(444\) −5.60942 −0.266211
\(445\) −6.32625 −0.299893
\(446\) 2.35671 0.111594
\(447\) −1.29289 −0.0611518
\(448\) −17.2441 −0.814705
\(449\) −24.6243 −1.16209 −0.581046 0.813871i \(-0.697356\pi\)
−0.581046 + 0.813871i \(0.697356\pi\)
\(450\) −21.0880 −0.994099
\(451\) 0.345089 0.0162496
\(452\) −67.5029 −3.17507
\(453\) −1.96255 −0.0922084
\(454\) 35.1070 1.64765
\(455\) 7.27136 0.340887
\(456\) −35.4328 −1.65929
\(457\) 2.68355 0.125531 0.0627655 0.998028i \(-0.480008\pi\)
0.0627655 + 0.998028i \(0.480008\pi\)
\(458\) −64.2817 −3.00368
\(459\) 17.8686 0.834033
\(460\) 13.0972 0.610660
\(461\) −23.1757 −1.07940 −0.539699 0.841858i \(-0.681462\pi\)
−0.539699 + 0.841858i \(0.681462\pi\)
\(462\) 14.6552 0.681822
\(463\) −20.8861 −0.970658 −0.485329 0.874332i \(-0.661300\pi\)
−0.485329 + 0.874332i \(0.661300\pi\)
\(464\) −6.02668 −0.279782
\(465\) −2.38951 −0.110811
\(466\) −0.717482 −0.0332367
\(467\) 40.3437 1.86688 0.933441 0.358731i \(-0.116790\pi\)
0.933441 + 0.358731i \(0.116790\pi\)
\(468\) 47.8021 2.20965
\(469\) 6.33238 0.292402
\(470\) −16.7609 −0.773124
\(471\) −18.8326 −0.867761
\(472\) −46.3655 −2.13415
\(473\) 2.64460 0.121599
\(474\) −24.5310 −1.12675
\(475\) −38.2989 −1.75728
\(476\) −20.8160 −0.954098
\(477\) −6.79617 −0.311175
\(478\) 54.3194 2.48451
\(479\) 29.6590 1.35515 0.677577 0.735452i \(-0.263030\pi\)
0.677577 + 0.735452i \(0.263030\pi\)
\(480\) −1.82188 −0.0831571
\(481\) 9.74955 0.444541
\(482\) 65.3003 2.97435
\(483\) −8.31441 −0.378319
\(484\) 11.7342 0.533373
\(485\) −3.37167 −0.153100
\(486\) −37.9706 −1.72238
\(487\) 3.27381 0.148350 0.0741752 0.997245i \(-0.476368\pi\)
0.0741752 + 0.997245i \(0.476368\pi\)
\(488\) −41.9624 −1.89955
\(489\) 1.00077 0.0452566
\(490\) −7.38431 −0.333589
\(491\) 0.893860 0.0403393 0.0201697 0.999797i \(-0.493579\pi\)
0.0201697 + 0.999797i \(0.493579\pi\)
\(492\) −0.348260 −0.0157008
\(493\) 9.06443 0.408242
\(494\) 133.618 6.01176
\(495\) −5.08318 −0.228472
\(496\) 7.90486 0.354939
\(497\) 1.92153 0.0861924
\(498\) −27.1962 −1.21869
\(499\) −3.18500 −0.142580 −0.0712902 0.997456i \(-0.522712\pi\)
−0.0712902 + 0.997456i \(0.522712\pi\)
\(500\) 24.4421 1.09309
\(501\) −0.0274911 −0.00122821
\(502\) 40.3990 1.80310
\(503\) −26.9720 −1.20262 −0.601310 0.799016i \(-0.705354\pi\)
−0.601310 + 0.799016i \(0.705354\pi\)
\(504\) 12.6959 0.565521
\(505\) −12.2769 −0.546316
\(506\) −45.8797 −2.03960
\(507\) 31.3002 1.39009
\(508\) 63.1115 2.80012
\(509\) 9.87918 0.437887 0.218944 0.975738i \(-0.429739\pi\)
0.218944 + 0.975738i \(0.429739\pi\)
\(510\) −5.96642 −0.264198
\(511\) 16.4045 0.725692
\(512\) 25.1772 1.11269
\(513\) −42.9439 −1.89602
\(514\) 23.7154 1.04604
\(515\) −0.552277 −0.0243362
\(516\) −2.66890 −0.117492
\(517\) 38.1481 1.67775
\(518\) 5.61817 0.246848
\(519\) −0.0548157 −0.00240614
\(520\) −18.6631 −0.818432
\(521\) −37.6895 −1.65121 −0.825604 0.564250i \(-0.809165\pi\)
−0.825604 + 0.564250i \(0.809165\pi\)
\(522\) −11.9950 −0.525008
\(523\) 2.65860 0.116252 0.0581262 0.998309i \(-0.481487\pi\)
0.0581262 + 0.998309i \(0.481487\pi\)
\(524\) −42.6300 −1.86230
\(525\) −7.36805 −0.321568
\(526\) −51.7439 −2.25614
\(527\) −11.8893 −0.517906
\(528\) −9.02875 −0.392926
\(529\) 3.02917 0.131703
\(530\) 5.75698 0.250067
\(531\) −22.1506 −0.961254
\(532\) 50.0274 2.16896
\(533\) 0.605299 0.0262184
\(534\) −22.3646 −0.967811
\(535\) 11.3281 0.489758
\(536\) −16.2531 −0.702026
\(537\) 2.83732 0.122439
\(538\) 33.4728 1.44311
\(539\) 16.8068 0.723921
\(540\) 13.0141 0.560038
\(541\) 35.0639 1.50752 0.753758 0.657152i \(-0.228239\pi\)
0.753758 + 0.657152i \(0.228239\pi\)
\(542\) 36.4521 1.56575
\(543\) −0.160855 −0.00690296
\(544\) −9.06498 −0.388658
\(545\) −2.33136 −0.0998643
\(546\) 25.7058 1.10011
\(547\) −16.0956 −0.688198 −0.344099 0.938933i \(-0.611816\pi\)
−0.344099 + 0.938933i \(0.611816\pi\)
\(548\) 60.1009 2.56738
\(549\) −20.0470 −0.855587
\(550\) −40.6576 −1.73365
\(551\) −21.7847 −0.928061
\(552\) 21.3403 0.908302
\(553\) 15.9634 0.678833
\(554\) −35.8892 −1.52478
\(555\) 1.04627 0.0444118
\(556\) 35.0209 1.48522
\(557\) −22.9718 −0.973345 −0.486673 0.873584i \(-0.661790\pi\)
−0.486673 + 0.873584i \(0.661790\pi\)
\(558\) 15.7332 0.666040
\(559\) 4.63873 0.196197
\(560\) −2.58144 −0.109086
\(561\) 13.5797 0.573335
\(562\) −50.7299 −2.13991
\(563\) −2.64631 −0.111529 −0.0557644 0.998444i \(-0.517760\pi\)
−0.0557644 + 0.998444i \(0.517760\pi\)
\(564\) −38.4987 −1.62109
\(565\) 12.5907 0.529695
\(566\) 25.3807 1.06683
\(567\) 1.06024 0.0445258
\(568\) −4.93192 −0.206939
\(569\) 31.7026 1.32904 0.664522 0.747269i \(-0.268635\pi\)
0.664522 + 0.747269i \(0.268635\pi\)
\(570\) 14.3392 0.600604
\(571\) 33.8474 1.41647 0.708235 0.705977i \(-0.249492\pi\)
0.708235 + 0.705977i \(0.249492\pi\)
\(572\) 92.1623 3.85350
\(573\) 0.896153 0.0374373
\(574\) 0.348803 0.0145588
\(575\) 23.0665 0.961939
\(576\) 21.1445 0.881022
\(577\) 33.5613 1.39717 0.698587 0.715525i \(-0.253813\pi\)
0.698587 + 0.715525i \(0.253813\pi\)
\(578\) 10.9355 0.454856
\(579\) 13.9313 0.578964
\(580\) 6.60184 0.274127
\(581\) 17.6977 0.734225
\(582\) −11.9196 −0.494081
\(583\) −13.1030 −0.542670
\(584\) −42.1048 −1.74231
\(585\) −8.91609 −0.368635
\(586\) 68.6004 2.83386
\(587\) −29.2482 −1.20720 −0.603602 0.797286i \(-0.706268\pi\)
−0.603602 + 0.797286i \(0.706268\pi\)
\(588\) −16.9613 −0.699470
\(589\) 28.5738 1.17736
\(590\) 18.7636 0.772485
\(591\) 19.2628 0.792367
\(592\) −3.46123 −0.142256
\(593\) −4.86929 −0.199958 −0.0999789 0.994990i \(-0.531878\pi\)
−0.0999789 + 0.994990i \(0.531878\pi\)
\(594\) −45.5887 −1.87053
\(595\) 3.88261 0.159171
\(596\) −4.68527 −0.191916
\(597\) −14.6083 −0.597877
\(598\) −80.4748 −3.29086
\(599\) −19.0420 −0.778036 −0.389018 0.921230i \(-0.627186\pi\)
−0.389018 + 0.921230i \(0.627186\pi\)
\(600\) 18.9113 0.772050
\(601\) 19.4782 0.794532 0.397266 0.917704i \(-0.369959\pi\)
0.397266 + 0.917704i \(0.369959\pi\)
\(602\) 2.67306 0.108946
\(603\) −7.76472 −0.316204
\(604\) −7.11199 −0.289383
\(605\) −2.18867 −0.0889823
\(606\) −43.4015 −1.76307
\(607\) 10.1934 0.413739 0.206869 0.978369i \(-0.433672\pi\)
0.206869 + 0.978369i \(0.433672\pi\)
\(608\) 21.7861 0.883541
\(609\) −4.19101 −0.169828
\(610\) 16.9817 0.687568
\(611\) 66.9133 2.70702
\(612\) 25.5244 1.03176
\(613\) −38.1356 −1.54028 −0.770141 0.637874i \(-0.779814\pi\)
−0.770141 + 0.637874i \(0.779814\pi\)
\(614\) −30.9906 −1.25068
\(615\) 0.0649578 0.00261935
\(616\) 24.4777 0.986233
\(617\) 19.5485 0.786993 0.393497 0.919326i \(-0.371265\pi\)
0.393497 + 0.919326i \(0.371265\pi\)
\(618\) −1.95241 −0.0785376
\(619\) 35.8732 1.44186 0.720932 0.693006i \(-0.243714\pi\)
0.720932 + 0.693006i \(0.243714\pi\)
\(620\) −8.65927 −0.347765
\(621\) 25.8640 1.03789
\(622\) −30.0719 −1.20577
\(623\) 14.5536 0.583078
\(624\) −15.8368 −0.633978
\(625\) 18.0469 0.721877
\(626\) −19.4656 −0.778002
\(627\) −32.6363 −1.30337
\(628\) −68.2467 −2.72334
\(629\) 5.20586 0.207571
\(630\) −5.13789 −0.204698
\(631\) 20.6698 0.822852 0.411426 0.911443i \(-0.365031\pi\)
0.411426 + 0.911443i \(0.365031\pi\)
\(632\) −40.9726 −1.62980
\(633\) −17.6385 −0.701066
\(634\) 0.303915 0.0120700
\(635\) −11.7716 −0.467142
\(636\) 13.2234 0.524341
\(637\) 29.4798 1.16803
\(638\) −23.1264 −0.915582
\(639\) −2.35617 −0.0932085
\(640\) −14.3521 −0.567316
\(641\) 21.3885 0.844796 0.422398 0.906410i \(-0.361188\pi\)
0.422398 + 0.906410i \(0.361188\pi\)
\(642\) 40.0473 1.58054
\(643\) −34.6540 −1.36662 −0.683310 0.730128i \(-0.739460\pi\)
−0.683310 + 0.730128i \(0.739460\pi\)
\(644\) −30.1303 −1.18730
\(645\) 0.497806 0.0196011
\(646\) 71.3465 2.80709
\(647\) −21.1529 −0.831606 −0.415803 0.909455i \(-0.636499\pi\)
−0.415803 + 0.909455i \(0.636499\pi\)
\(648\) −2.72127 −0.106902
\(649\) −42.7063 −1.67637
\(650\) −71.3150 −2.79721
\(651\) 5.49711 0.215449
\(652\) 3.62667 0.142031
\(653\) 39.0203 1.52698 0.763492 0.645817i \(-0.223483\pi\)
0.763492 + 0.645817i \(0.223483\pi\)
\(654\) −8.24183 −0.322281
\(655\) 7.95139 0.310686
\(656\) −0.214890 −0.00839004
\(657\) −20.1151 −0.784764
\(658\) 38.5587 1.50318
\(659\) −24.0817 −0.938090 −0.469045 0.883174i \(-0.655402\pi\)
−0.469045 + 0.883174i \(0.655402\pi\)
\(660\) 9.89041 0.384984
\(661\) −4.27710 −0.166360 −0.0831801 0.996535i \(-0.526508\pi\)
−0.0831801 + 0.996535i \(0.526508\pi\)
\(662\) 53.2924 2.07127
\(663\) 23.8193 0.925064
\(664\) −45.4240 −1.76279
\(665\) −9.33116 −0.361847
\(666\) −6.88895 −0.266941
\(667\) 13.1204 0.508024
\(668\) −0.0996241 −0.00385457
\(669\) −1.00968 −0.0390363
\(670\) 6.57743 0.254108
\(671\) −38.6506 −1.49209
\(672\) 4.19126 0.161681
\(673\) 37.4545 1.44376 0.721882 0.692016i \(-0.243277\pi\)
0.721882 + 0.692016i \(0.243277\pi\)
\(674\) 69.5024 2.67713
\(675\) 22.9202 0.882197
\(676\) 113.428 4.36260
\(677\) −0.845317 −0.0324882 −0.0162441 0.999868i \(-0.505171\pi\)
−0.0162441 + 0.999868i \(0.505171\pi\)
\(678\) 44.5107 1.70942
\(679\) 7.75657 0.297670
\(680\) −9.96534 −0.382153
\(681\) −15.0407 −0.576362
\(682\) 30.3336 1.16153
\(683\) 23.0532 0.882105 0.441053 0.897481i \(-0.354605\pi\)
0.441053 + 0.897481i \(0.354605\pi\)
\(684\) −61.3433 −2.34552
\(685\) −11.2101 −0.428315
\(686\) 43.6148 1.66522
\(687\) 27.5399 1.05071
\(688\) −1.64682 −0.0627842
\(689\) −22.9831 −0.875587
\(690\) −8.63616 −0.328773
\(691\) −24.7034 −0.939760 −0.469880 0.882730i \(-0.655703\pi\)
−0.469880 + 0.882730i \(0.655703\pi\)
\(692\) −0.198644 −0.00755132
\(693\) 11.6939 0.444215
\(694\) 52.0133 1.97440
\(695\) −6.53212 −0.247778
\(696\) 10.7569 0.407739
\(697\) 0.323205 0.0122423
\(698\) −18.8150 −0.712160
\(699\) 0.307388 0.0116265
\(700\) −26.7008 −1.00920
\(701\) 32.6233 1.23217 0.616083 0.787681i \(-0.288719\pi\)
0.616083 + 0.787681i \(0.288719\pi\)
\(702\) −79.9642 −3.01805
\(703\) −12.5113 −0.471874
\(704\) 40.7666 1.53645
\(705\) 7.18081 0.270445
\(706\) 15.0095 0.564891
\(707\) 28.2432 1.06220
\(708\) 43.0987 1.61975
\(709\) −7.32179 −0.274975 −0.137488 0.990503i \(-0.543903\pi\)
−0.137488 + 0.990503i \(0.543903\pi\)
\(710\) 1.99589 0.0749044
\(711\) −19.5742 −0.734090
\(712\) −37.3542 −1.39991
\(713\) −17.2093 −0.644493
\(714\) 13.7258 0.513676
\(715\) −17.1902 −0.642877
\(716\) 10.2820 0.384258
\(717\) −23.2718 −0.869101
\(718\) 32.0832 1.19733
\(719\) 40.6923 1.51757 0.758784 0.651342i \(-0.225794\pi\)
0.758784 + 0.651342i \(0.225794\pi\)
\(720\) 3.16534 0.117965
\(721\) 1.27052 0.0473166
\(722\) −126.067 −4.69174
\(723\) −27.9763 −1.04045
\(724\) −0.582917 −0.0216640
\(725\) 11.6270 0.431817
\(726\) −7.73742 −0.287163
\(727\) 3.63658 0.134873 0.0674367 0.997724i \(-0.478518\pi\)
0.0674367 + 0.997724i \(0.478518\pi\)
\(728\) 42.9348 1.59127
\(729\) 14.2695 0.528500
\(730\) 17.0393 0.630653
\(731\) 2.47689 0.0916112
\(732\) 39.0058 1.44169
\(733\) 46.5311 1.71866 0.859332 0.511418i \(-0.170880\pi\)
0.859332 + 0.511418i \(0.170880\pi\)
\(734\) −39.0668 −1.44198
\(735\) 3.16363 0.116692
\(736\) −13.1212 −0.483654
\(737\) −14.9703 −0.551440
\(738\) −0.427700 −0.0157438
\(739\) 21.8017 0.801988 0.400994 0.916081i \(-0.368665\pi\)
0.400994 + 0.916081i \(0.368665\pi\)
\(740\) 3.79155 0.139380
\(741\) −57.2454 −2.10296
\(742\) −13.2440 −0.486203
\(743\) 17.1929 0.630748 0.315374 0.948967i \(-0.397870\pi\)
0.315374 + 0.948967i \(0.397870\pi\)
\(744\) −14.1092 −0.517269
\(745\) 0.873900 0.0320172
\(746\) −26.8673 −0.983680
\(747\) −21.7008 −0.793991
\(748\) 49.2109 1.79933
\(749\) −26.0605 −0.952230
\(750\) −16.1169 −0.588505
\(751\) 18.6753 0.681470 0.340735 0.940159i \(-0.389324\pi\)
0.340735 + 0.940159i \(0.389324\pi\)
\(752\) −23.7552 −0.866262
\(753\) −17.3080 −0.630738
\(754\) −40.5645 −1.47727
\(755\) 1.32653 0.0482775
\(756\) −29.9391 −1.08888
\(757\) 17.5354 0.637335 0.318668 0.947867i \(-0.396765\pi\)
0.318668 + 0.947867i \(0.396765\pi\)
\(758\) −76.7910 −2.78917
\(759\) 19.6560 0.713469
\(760\) 23.9499 0.868755
\(761\) −36.1741 −1.31131 −0.655655 0.755061i \(-0.727607\pi\)
−0.655655 + 0.755061i \(0.727607\pi\)
\(762\) −41.6151 −1.50756
\(763\) 5.36331 0.194165
\(764\) 3.24754 0.117492
\(765\) −4.76083 −0.172128
\(766\) −3.86670 −0.139710
\(767\) −74.9084 −2.70478
\(768\) −28.5584 −1.03051
\(769\) 42.0671 1.51698 0.758488 0.651687i \(-0.225938\pi\)
0.758488 + 0.651687i \(0.225938\pi\)
\(770\) −9.90583 −0.356981
\(771\) −10.1603 −0.365913
\(772\) 50.4850 1.81699
\(773\) −29.1123 −1.04710 −0.523548 0.851996i \(-0.675392\pi\)
−0.523548 + 0.851996i \(0.675392\pi\)
\(774\) −3.27769 −0.117814
\(775\) −15.2505 −0.547814
\(776\) −19.9085 −0.714673
\(777\) −2.40697 −0.0863494
\(778\) −63.1702 −2.26476
\(779\) −0.776765 −0.0278305
\(780\) 17.3481 0.621163
\(781\) −4.54268 −0.162550
\(782\) −42.9702 −1.53661
\(783\) 13.0372 0.465910
\(784\) −10.4657 −0.373776
\(785\) 12.7294 0.454333
\(786\) 28.1098 1.00264
\(787\) −16.2086 −0.577775 −0.288887 0.957363i \(-0.593285\pi\)
−0.288887 + 0.957363i \(0.593285\pi\)
\(788\) 69.8059 2.48673
\(789\) 22.1684 0.789216
\(790\) 16.5811 0.589931
\(791\) −28.9650 −1.02988
\(792\) −30.0143 −1.06651
\(793\) −67.7946 −2.40746
\(794\) −39.4991 −1.40177
\(795\) −2.46644 −0.0874755
\(796\) −52.9383 −1.87635
\(797\) −13.2231 −0.468384 −0.234192 0.972190i \(-0.575245\pi\)
−0.234192 + 0.972190i \(0.575245\pi\)
\(798\) −32.9876 −1.16775
\(799\) 35.7289 1.26400
\(800\) −11.6277 −0.411102
\(801\) −17.8455 −0.630541
\(802\) −42.4480 −1.49889
\(803\) −38.7818 −1.36858
\(804\) 15.1079 0.532815
\(805\) 5.61992 0.198076
\(806\) 53.2062 1.87411
\(807\) −14.3406 −0.504813
\(808\) −72.4908 −2.55022
\(809\) −31.9751 −1.12418 −0.562092 0.827075i \(-0.690003\pi\)
−0.562092 + 0.827075i \(0.690003\pi\)
\(810\) 1.10127 0.0386946
\(811\) −6.19389 −0.217497 −0.108748 0.994069i \(-0.534684\pi\)
−0.108748 + 0.994069i \(0.534684\pi\)
\(812\) −15.1876 −0.532981
\(813\) −15.6170 −0.547713
\(814\) −13.2819 −0.465529
\(815\) −0.676448 −0.0236950
\(816\) −8.45618 −0.296025
\(817\) −5.95277 −0.208261
\(818\) 43.2566 1.51243
\(819\) 20.5116 0.716732
\(820\) 0.235398 0.00822045
\(821\) −13.5354 −0.472390 −0.236195 0.971706i \(-0.575900\pi\)
−0.236195 + 0.971706i \(0.575900\pi\)
\(822\) −39.6299 −1.38225
\(823\) 13.8750 0.483651 0.241825 0.970320i \(-0.422254\pi\)
0.241825 + 0.970320i \(0.422254\pi\)
\(824\) −3.26099 −0.113602
\(825\) 17.4188 0.606444
\(826\) −43.1659 −1.50193
\(827\) 11.9531 0.415650 0.207825 0.978166i \(-0.433362\pi\)
0.207825 + 0.978166i \(0.433362\pi\)
\(828\) 36.9455 1.28395
\(829\) −54.1876 −1.88201 −0.941007 0.338387i \(-0.890119\pi\)
−0.941007 + 0.338387i \(0.890119\pi\)
\(830\) 18.3826 0.638068
\(831\) 15.3758 0.533382
\(832\) 71.5061 2.47903
\(833\) 15.7410 0.545393
\(834\) −23.0924 −0.799625
\(835\) 0.0185820 0.000643055 0
\(836\) −118.270 −4.09044
\(837\) −17.1001 −0.591066
\(838\) −23.3174 −0.805488
\(839\) 39.5974 1.36706 0.683528 0.729925i \(-0.260445\pi\)
0.683528 + 0.729925i \(0.260445\pi\)
\(840\) 4.60755 0.158976
\(841\) −22.3865 −0.771947
\(842\) −32.7373 −1.12820
\(843\) 21.7340 0.748558
\(844\) −63.9193 −2.20019
\(845\) −21.1566 −0.727810
\(846\) −47.2804 −1.62553
\(847\) 5.03507 0.173007
\(848\) 8.15933 0.280193
\(849\) −10.8737 −0.373186
\(850\) −38.0793 −1.30611
\(851\) 7.53527 0.258306
\(852\) 4.58442 0.157060
\(853\) −55.8668 −1.91284 −0.956421 0.291992i \(-0.905682\pi\)
−0.956421 + 0.291992i \(0.905682\pi\)
\(854\) −39.0666 −1.33683
\(855\) 11.4418 0.391301
\(856\) 66.8885 2.28620
\(857\) −1.28388 −0.0438566 −0.0219283 0.999760i \(-0.506981\pi\)
−0.0219283 + 0.999760i \(0.506981\pi\)
\(858\) −60.7709 −2.07468
\(859\) −3.50058 −0.119438 −0.0597191 0.998215i \(-0.519020\pi\)
−0.0597191 + 0.998215i \(0.519020\pi\)
\(860\) 1.80398 0.0615152
\(861\) −0.149436 −0.00509277
\(862\) −13.3297 −0.454010
\(863\) 11.6133 0.395320 0.197660 0.980271i \(-0.436666\pi\)
0.197660 + 0.980271i \(0.436666\pi\)
\(864\) −13.0379 −0.443560
\(865\) 0.0370513 0.00125978
\(866\) 22.2109 0.754757
\(867\) −4.68504 −0.159112
\(868\) 19.9208 0.676154
\(869\) −37.7390 −1.28021
\(870\) −4.35319 −0.147587
\(871\) −26.2586 −0.889737
\(872\) −13.7658 −0.466169
\(873\) −9.51104 −0.321900
\(874\) 103.271 3.49320
\(875\) 10.4880 0.354557
\(876\) 39.1381 1.32236
\(877\) −55.5236 −1.87490 −0.937449 0.348124i \(-0.886819\pi\)
−0.937449 + 0.348124i \(0.886819\pi\)
\(878\) −5.41526 −0.182756
\(879\) −29.3901 −0.991305
\(880\) 6.10276 0.205724
\(881\) 47.2257 1.59107 0.795537 0.605905i \(-0.207189\pi\)
0.795537 + 0.605905i \(0.207189\pi\)
\(882\) −20.8302 −0.701389
\(883\) −17.4833 −0.588361 −0.294181 0.955750i \(-0.595047\pi\)
−0.294181 + 0.955750i \(0.595047\pi\)
\(884\) 86.3177 2.90318
\(885\) −8.03880 −0.270221
\(886\) −99.6467 −3.34770
\(887\) 27.3403 0.917997 0.458999 0.888437i \(-0.348208\pi\)
0.458999 + 0.888437i \(0.348208\pi\)
\(888\) 6.17786 0.207316
\(889\) 27.0807 0.908259
\(890\) 15.1168 0.506716
\(891\) −2.50650 −0.0839710
\(892\) −3.65892 −0.122510
\(893\) −85.8681 −2.87347
\(894\) 3.08942 0.103326
\(895\) −1.91781 −0.0641055
\(896\) 33.0172 1.10303
\(897\) 34.4774 1.15117
\(898\) 58.8406 1.96354
\(899\) −8.67461 −0.289314
\(900\) 32.7403 1.09134
\(901\) −12.2720 −0.408841
\(902\) −0.824603 −0.0274563
\(903\) −1.14521 −0.0381102
\(904\) 74.3435 2.47263
\(905\) 0.108726 0.00361418
\(906\) 4.68957 0.155801
\(907\) −21.1427 −0.702033 −0.351016 0.936369i \(-0.614164\pi\)
−0.351016 + 0.936369i \(0.614164\pi\)
\(908\) −54.5055 −1.80883
\(909\) −34.6316 −1.14866
\(910\) −17.3752 −0.575982
\(911\) 4.25567 0.140997 0.0704983 0.997512i \(-0.477541\pi\)
0.0704983 + 0.997512i \(0.477541\pi\)
\(912\) 20.3229 0.672959
\(913\) −41.8390 −1.38467
\(914\) −6.41243 −0.212104
\(915\) −7.27539 −0.240517
\(916\) 99.8008 3.29751
\(917\) −18.2923 −0.604064
\(918\) −42.6976 −1.40923
\(919\) 1.61472 0.0532646 0.0266323 0.999645i \(-0.491522\pi\)
0.0266323 + 0.999645i \(0.491522\pi\)
\(920\) −14.4244 −0.475560
\(921\) 13.2772 0.437497
\(922\) 55.3791 1.82381
\(923\) −7.96803 −0.262271
\(924\) −22.7530 −0.748519
\(925\) 6.67759 0.219558
\(926\) 49.9080 1.64008
\(927\) −1.55790 −0.0511682
\(928\) −6.61394 −0.217113
\(929\) −23.7427 −0.778971 −0.389486 0.921033i \(-0.627347\pi\)
−0.389486 + 0.921033i \(0.627347\pi\)
\(930\) 5.70983 0.187233
\(931\) −37.8307 −1.23985
\(932\) 1.11393 0.0364880
\(933\) 12.8836 0.421789
\(934\) −96.4027 −3.15439
\(935\) −9.17885 −0.300181
\(936\) −52.6463 −1.72080
\(937\) −3.09828 −0.101216 −0.0506082 0.998719i \(-0.516116\pi\)
−0.0506082 + 0.998719i \(0.516116\pi\)
\(938\) −15.1315 −0.494060
\(939\) 8.33956 0.272151
\(940\) 26.0222 0.848752
\(941\) 40.0969 1.30712 0.653561 0.756874i \(-0.273274\pi\)
0.653561 + 0.756874i \(0.273274\pi\)
\(942\) 45.0012 1.46622
\(943\) 0.467826 0.0152345
\(944\) 26.5935 0.865546
\(945\) 5.58427 0.181656
\(946\) −6.31937 −0.205461
\(947\) 9.86792 0.320664 0.160332 0.987063i \(-0.448743\pi\)
0.160332 + 0.987063i \(0.448743\pi\)
\(948\) 38.0858 1.23697
\(949\) −68.0247 −2.20817
\(950\) 91.5167 2.96920
\(951\) −0.130205 −0.00422219
\(952\) 22.9254 0.743016
\(953\) 29.7987 0.965273 0.482637 0.875821i \(-0.339679\pi\)
0.482637 + 0.875821i \(0.339679\pi\)
\(954\) 16.2397 0.525779
\(955\) −0.605733 −0.0196011
\(956\) −84.3338 −2.72755
\(957\) 9.90793 0.320278
\(958\) −70.8713 −2.28975
\(959\) 25.7889 0.832767
\(960\) 7.67368 0.247667
\(961\) −19.6220 −0.632968
\(962\) −23.2969 −0.751122
\(963\) 31.9552 1.02974
\(964\) −101.382 −3.26530
\(965\) −9.41650 −0.303128
\(966\) 19.8676 0.639229
\(967\) 23.0918 0.742581 0.371290 0.928517i \(-0.378915\pi\)
0.371290 + 0.928517i \(0.378915\pi\)
\(968\) −12.9233 −0.415371
\(969\) −30.5667 −0.981943
\(970\) 8.05673 0.258686
\(971\) −2.89017 −0.0927501 −0.0463750 0.998924i \(-0.514767\pi\)
−0.0463750 + 0.998924i \(0.514767\pi\)
\(972\) 58.9515 1.89087
\(973\) 15.0272 0.481751
\(974\) −7.82288 −0.250661
\(975\) 30.5532 0.978485
\(976\) 24.0680 0.770399
\(977\) 34.4450 1.10199 0.550996 0.834508i \(-0.314248\pi\)
0.550996 + 0.834508i \(0.314248\pi\)
\(978\) −2.39139 −0.0764681
\(979\) −34.4061 −1.09962
\(980\) 11.4645 0.366221
\(981\) −6.57645 −0.209970
\(982\) −2.13591 −0.0681597
\(983\) 23.7644 0.757967 0.378984 0.925403i \(-0.376274\pi\)
0.378984 + 0.925403i \(0.376274\pi\)
\(984\) 0.383552 0.0122272
\(985\) −13.0202 −0.414859
\(986\) −21.6598 −0.689788
\(987\) −16.5195 −0.525823
\(988\) −207.449 −6.59984
\(989\) 3.58520 0.114003
\(990\) 12.1464 0.386039
\(991\) −42.1420 −1.33868 −0.669342 0.742955i \(-0.733424\pi\)
−0.669342 + 0.742955i \(0.733424\pi\)
\(992\) 8.67513 0.275436
\(993\) −22.8318 −0.724545
\(994\) −4.59157 −0.145636
\(995\) 9.87410 0.313030
\(996\) 42.2235 1.33790
\(997\) 37.0304 1.17276 0.586382 0.810034i \(-0.300552\pi\)
0.586382 + 0.810034i \(0.300552\pi\)
\(998\) 7.61068 0.240912
\(999\) 7.48746 0.236893
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4001.2.a.b.1.19 184
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4001.2.a.b.1.19 184 1.1 even 1 trivial