Properties

Label 405.2.f.a.242.8
Level $405$
Weight $2$
Character 405.242
Analytic conductor $3.234$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [405,2,Mod(242,405)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(405, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("405.242");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 405 = 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 405.f (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.23394128186\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 6 x^{15} + 18 x^{14} - 36 x^{13} + 34 x^{12} + 18 x^{11} - 72 x^{10} + 132 x^{9} - 93 x^{8} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{8} \)
Twist minimal: no (minimal twist has level 45)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 242.8
Root \(0.601150 + 2.24352i\) of defining polynomial
Character \(\chi\) \(=\) 405.242
Dual form 405.2.f.a.323.8

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.64237 - 1.64237i) q^{2} -3.39477i q^{4} +(-0.394116 - 2.20106i) q^{5} +(-0.550102 - 0.550102i) q^{7} +(-2.29074 - 2.29074i) q^{8} +(-4.26225 - 2.96768i) q^{10} -0.254252i q^{11} +(-2.71215 + 2.71215i) q^{13} -1.80695 q^{14} -0.734947 q^{16} +(3.93311 - 3.93311i) q^{17} +0.440377i q^{19} +(-7.47211 + 1.33793i) q^{20} +(-0.417576 - 0.417576i) q^{22} +(2.50550 + 2.50550i) q^{23} +(-4.68935 + 1.73495i) q^{25} +8.90871i q^{26} +(-1.86747 + 1.86747i) q^{28} +5.52530 q^{29} +0.194366 q^{31} +(3.37442 - 3.37442i) q^{32} -12.9193i q^{34} +(-0.994005 + 1.42761i) q^{35} +(-0.123005 - 0.123005i) q^{37} +(0.723262 + 0.723262i) q^{38} +(-4.13924 + 5.94488i) q^{40} +4.48282i q^{41} +(-0.977199 + 0.977199i) q^{43} -0.863127 q^{44} +8.22993 q^{46} +(-3.05520 + 3.05520i) q^{47} -6.39477i q^{49} +(-4.85222 + 10.5511i) q^{50} +(9.20713 + 9.20713i) q^{52} +(0.938022 + 0.938022i) q^{53} +(-0.559623 + 0.100205i) q^{55} +2.52028i q^{56} +(9.07460 - 9.07460i) q^{58} +8.04558 q^{59} +2.88371 q^{61} +(0.319221 - 0.319221i) q^{62} -12.5540i q^{64} +(7.03850 + 4.90070i) q^{65} +(9.49217 + 9.49217i) q^{67} +(-13.3520 - 13.3520i) q^{68} +(0.712146 + 3.97720i) q^{70} -2.15986i q^{71} +(-9.18432 + 9.18432i) q^{73} -0.404041 q^{74} +1.49498 q^{76} +(-0.139864 + 0.139864i) q^{77} +13.8251i q^{79} +(0.289654 + 1.61766i) q^{80} +(7.36245 + 7.36245i) q^{82} +(-3.80803 - 3.80803i) q^{83} +(-10.2071 - 7.10692i) q^{85} +3.20985i q^{86} +(-0.582424 + 0.582424i) q^{88} +0.285526 q^{89} +2.98392 q^{91} +(8.50561 - 8.50561i) q^{92} +10.0356i q^{94} +(0.969296 - 0.173559i) q^{95} +(-6.39477 - 6.39477i) q^{97} +(-10.5026 - 10.5026i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 4 q^{7} - 8 q^{10} + 4 q^{13} + 16 q^{16} + 20 q^{22} - 8 q^{25} - 16 q^{28} + 8 q^{31} + 4 q^{37} - 12 q^{40} + 4 q^{43} + 32 q^{46} + 28 q^{52} - 16 q^{55} + 12 q^{58} - 16 q^{61} - 8 q^{67} - 36 q^{70}+ \cdots - 56 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/405\mathbb{Z}\right)^\times\).

\(n\) \(82\) \(326\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.64237 1.64237i 1.16133 1.16133i 0.177149 0.984184i \(-0.443313\pi\)
0.984184 0.177149i \(-0.0566873\pi\)
\(3\) 0 0
\(4\) 3.39477i 1.69739i
\(5\) −0.394116 2.20106i −0.176254 0.984345i
\(6\) 0 0
\(7\) −0.550102 0.550102i −0.207919 0.207919i 0.595463 0.803382i \(-0.296968\pi\)
−0.803382 + 0.595463i \(0.796968\pi\)
\(8\) −2.29074 2.29074i −0.809899 0.809899i
\(9\) 0 0
\(10\) −4.26225 2.96768i −1.34784 0.938462i
\(11\) 0.254252i 0.0766597i −0.999265 0.0383299i \(-0.987796\pi\)
0.999265 0.0383299i \(-0.0122038\pi\)
\(12\) 0 0
\(13\) −2.71215 + 2.71215i −0.752214 + 0.752214i −0.974892 0.222678i \(-0.928520\pi\)
0.222678 + 0.974892i \(0.428520\pi\)
\(14\) −1.80695 −0.482927
\(15\) 0 0
\(16\) −0.734947 −0.183737
\(17\) 3.93311 3.93311i 0.953920 0.953920i −0.0450642 0.998984i \(-0.514349\pi\)
0.998984 + 0.0450642i \(0.0143492\pi\)
\(18\) 0 0
\(19\) 0.440377i 0.101029i 0.998723 + 0.0505147i \(0.0160862\pi\)
−0.998723 + 0.0505147i \(0.983914\pi\)
\(20\) −7.47211 + 1.33793i −1.67081 + 0.299171i
\(21\) 0 0
\(22\) −0.417576 0.417576i −0.0890275 0.0890275i
\(23\) 2.50550 + 2.50550i 0.522433 + 0.522433i 0.918305 0.395873i \(-0.129558\pi\)
−0.395873 + 0.918305i \(0.629558\pi\)
\(24\) 0 0
\(25\) −4.68935 + 1.73495i −0.937869 + 0.346989i
\(26\) 8.90871i 1.74714i
\(27\) 0 0
\(28\) −1.86747 + 1.86747i −0.352919 + 0.352919i
\(29\) 5.52530 1.02602 0.513011 0.858382i \(-0.328530\pi\)
0.513011 + 0.858382i \(0.328530\pi\)
\(30\) 0 0
\(31\) 0.194366 0.0349091 0.0174546 0.999848i \(-0.494444\pi\)
0.0174546 + 0.999848i \(0.494444\pi\)
\(32\) 3.37442 3.37442i 0.596519 0.596519i
\(33\) 0 0
\(34\) 12.9193i 2.21564i
\(35\) −0.994005 + 1.42761i −0.168018 + 0.241311i
\(36\) 0 0
\(37\) −0.123005 0.123005i −0.0202220 0.0202220i 0.696924 0.717145i \(-0.254552\pi\)
−0.717145 + 0.696924i \(0.754552\pi\)
\(38\) 0.723262 + 0.723262i 0.117329 + 0.117329i
\(39\) 0 0
\(40\) −4.13924 + 5.94488i −0.654472 + 0.939968i
\(41\) 4.48282i 0.700098i 0.936731 + 0.350049i \(0.113835\pi\)
−0.936731 + 0.350049i \(0.886165\pi\)
\(42\) 0 0
\(43\) −0.977199 + 0.977199i −0.149021 + 0.149021i −0.777681 0.628659i \(-0.783604\pi\)
0.628659 + 0.777681i \(0.283604\pi\)
\(44\) −0.863127 −0.130121
\(45\) 0 0
\(46\) 8.22993 1.21344
\(47\) −3.05520 + 3.05520i −0.445647 + 0.445647i −0.893905 0.448257i \(-0.852045\pi\)
0.448257 + 0.893905i \(0.352045\pi\)
\(48\) 0 0
\(49\) 6.39477i 0.913539i
\(50\) −4.85222 + 10.5511i −0.686208 + 1.49215i
\(51\) 0 0
\(52\) 9.20713 + 9.20713i 1.27680 + 1.27680i
\(53\) 0.938022 + 0.938022i 0.128847 + 0.128847i 0.768589 0.639742i \(-0.220959\pi\)
−0.639742 + 0.768589i \(0.720959\pi\)
\(54\) 0 0
\(55\) −0.559623 + 0.100205i −0.0754596 + 0.0135116i
\(56\) 2.52028i 0.336787i
\(57\) 0 0
\(58\) 9.07460 9.07460i 1.19155 1.19155i
\(59\) 8.04558 1.04745 0.523723 0.851889i \(-0.324543\pi\)
0.523723 + 0.851889i \(0.324543\pi\)
\(60\) 0 0
\(61\) 2.88371 0.369221 0.184611 0.982812i \(-0.440898\pi\)
0.184611 + 0.982812i \(0.440898\pi\)
\(62\) 0.319221 0.319221i 0.0405411 0.0405411i
\(63\) 0 0
\(64\) 12.5540i 1.56925i
\(65\) 7.03850 + 4.90070i 0.873019 + 0.607857i
\(66\) 0 0
\(67\) 9.49217 + 9.49217i 1.15965 + 1.15965i 0.984550 + 0.175104i \(0.0560261\pi\)
0.175104 + 0.984550i \(0.443974\pi\)
\(68\) −13.3520 13.3520i −1.61917 1.61917i
\(69\) 0 0
\(70\) 0.712146 + 3.97720i 0.0851177 + 0.475366i
\(71\) 2.15986i 0.256328i −0.991753 0.128164i \(-0.959092\pi\)
0.991753 0.128164i \(-0.0409085\pi\)
\(72\) 0 0
\(73\) −9.18432 + 9.18432i −1.07494 + 1.07494i −0.0779897 + 0.996954i \(0.524850\pi\)
−0.996954 + 0.0779897i \(0.975150\pi\)
\(74\) −0.404041 −0.0469689
\(75\) 0 0
\(76\) 1.49498 0.171486
\(77\) −0.139864 + 0.139864i −0.0159390 + 0.0159390i
\(78\) 0 0
\(79\) 13.8251i 1.55545i 0.628607 + 0.777723i \(0.283625\pi\)
−0.628607 + 0.777723i \(0.716375\pi\)
\(80\) 0.289654 + 1.61766i 0.0323843 + 0.180860i
\(81\) 0 0
\(82\) 7.36245 + 7.36245i 0.813047 + 0.813047i
\(83\) −3.80803 3.80803i −0.417986 0.417986i 0.466523 0.884509i \(-0.345506\pi\)
−0.884509 + 0.466523i \(0.845506\pi\)
\(84\) 0 0
\(85\) −10.2071 7.10692i −1.10712 0.770854i
\(86\) 3.20985i 0.346127i
\(87\) 0 0
\(88\) −0.582424 + 0.582424i −0.0620866 + 0.0620866i
\(89\) 0.285526 0.0302657 0.0151328 0.999885i \(-0.495183\pi\)
0.0151328 + 0.999885i \(0.495183\pi\)
\(90\) 0 0
\(91\) 2.98392 0.312799
\(92\) 8.50561 8.50561i 0.886771 0.886771i
\(93\) 0 0
\(94\) 10.0356i 1.03509i
\(95\) 0.969296 0.173559i 0.0994477 0.0178068i
\(96\) 0 0
\(97\) −6.39477 6.39477i −0.649291 0.649291i 0.303531 0.952822i \(-0.401835\pi\)
−0.952822 + 0.303531i \(0.901835\pi\)
\(98\) −10.5026 10.5026i −1.06092 1.06092i
\(99\) 0 0
\(100\) 5.88975 + 15.9193i 0.588975 + 1.59193i
\(101\) 13.1570i 1.30917i −0.755990 0.654583i \(-0.772844\pi\)
0.755990 0.654583i \(-0.227156\pi\)
\(102\) 0 0
\(103\) −11.5724 + 11.5724i −1.14026 + 1.14026i −0.151859 + 0.988402i \(0.548526\pi\)
−0.988402 + 0.151859i \(0.951474\pi\)
\(104\) 12.4256 1.21843
\(105\) 0 0
\(106\) 3.08116 0.299269
\(107\) −5.81401 + 5.81401i −0.562062 + 0.562062i −0.929893 0.367831i \(-0.880101\pi\)
0.367831 + 0.929893i \(0.380101\pi\)
\(108\) 0 0
\(109\) 8.81907i 0.844713i 0.906430 + 0.422357i \(0.138797\pi\)
−0.906430 + 0.422357i \(0.861203\pi\)
\(110\) −0.754537 + 1.08368i −0.0719423 + 0.103325i
\(111\) 0 0
\(112\) 0.404296 + 0.404296i 0.0382024 + 0.0382024i
\(113\) −9.52338 9.52338i −0.895884 0.895884i 0.0991847 0.995069i \(-0.468377\pi\)
−0.995069 + 0.0991847i \(0.968377\pi\)
\(114\) 0 0
\(115\) 4.52730 6.50222i 0.422173 0.606335i
\(116\) 18.7571i 1.74156i
\(117\) 0 0
\(118\) 13.2138 13.2138i 1.21643 1.21643i
\(119\) −4.32723 −0.396676
\(120\) 0 0
\(121\) 10.9354 0.994123
\(122\) 4.73613 4.73613i 0.428789 0.428789i
\(123\) 0 0
\(124\) 0.659828i 0.0592543i
\(125\) 5.66687 + 9.63777i 0.506860 + 0.862028i
\(126\) 0 0
\(127\) −6.72167 6.72167i −0.596452 0.596452i 0.342915 0.939366i \(-0.388586\pi\)
−0.939366 + 0.342915i \(0.888586\pi\)
\(128\) −13.8695 13.8695i −1.22590 1.22590i
\(129\) 0 0
\(130\) 19.6086 3.51106i 1.71979 0.307941i
\(131\) 13.4502i 1.17515i −0.809171 0.587573i \(-0.800084\pi\)
0.809171 0.587573i \(-0.199916\pi\)
\(132\) 0 0
\(133\) 0.242252 0.242252i 0.0210059 0.0210059i
\(134\) 31.1794 2.69349
\(135\) 0 0
\(136\) −18.0195 −1.54516
\(137\) −6.92241 + 6.92241i −0.591421 + 0.591421i −0.938015 0.346594i \(-0.887338\pi\)
0.346594 + 0.938015i \(0.387338\pi\)
\(138\) 0 0
\(139\) 7.90880i 0.670815i 0.942073 + 0.335408i \(0.108874\pi\)
−0.942073 + 0.335408i \(0.891126\pi\)
\(140\) 4.84643 + 3.37442i 0.409598 + 0.285191i
\(141\) 0 0
\(142\) −3.54730 3.54730i −0.297683 0.297683i
\(143\) 0.689567 + 0.689567i 0.0576645 + 0.0576645i
\(144\) 0 0
\(145\) −2.17761 12.1615i −0.180841 1.00996i
\(146\) 30.1682i 2.49674i
\(147\) 0 0
\(148\) −0.417576 + 0.417576i −0.0343245 + 0.0343245i
\(149\) −9.13510 −0.748377 −0.374188 0.927353i \(-0.622079\pi\)
−0.374188 + 0.927353i \(0.622079\pi\)
\(150\) 0 0
\(151\) 14.6998 1.19625 0.598127 0.801401i \(-0.295912\pi\)
0.598127 + 0.801401i \(0.295912\pi\)
\(152\) 1.00879 1.00879i 0.0818235 0.0818235i
\(153\) 0 0
\(154\) 0.459419i 0.0370210i
\(155\) −0.0766026 0.427811i −0.00615287 0.0343626i
\(156\) 0 0
\(157\) −11.9739 11.9739i −0.955619 0.955619i 0.0434369 0.999056i \(-0.486169\pi\)
−0.999056 + 0.0434369i \(0.986169\pi\)
\(158\) 22.7060 + 22.7060i 1.80639 + 1.80639i
\(159\) 0 0
\(160\) −8.75723 6.09740i −0.692320 0.482042i
\(161\) 2.75656i 0.217248i
\(162\) 0 0
\(163\) 9.74771 9.74771i 0.763499 0.763499i −0.213454 0.976953i \(-0.568471\pi\)
0.976953 + 0.213454i \(0.0684713\pi\)
\(164\) 15.2181 1.18834
\(165\) 0 0
\(166\) −12.5084 −0.970841
\(167\) −13.9502 + 13.9502i −1.07950 + 1.07950i −0.0829458 + 0.996554i \(0.526433\pi\)
−0.996554 + 0.0829458i \(0.973567\pi\)
\(168\) 0 0
\(169\) 1.71147i 0.131652i
\(170\) −28.4361 + 5.09169i −2.18095 + 0.390515i
\(171\) 0 0
\(172\) 3.31737 + 3.31737i 0.252947 + 0.252947i
\(173\) −7.33975 7.33975i −0.558031 0.558031i 0.370716 0.928746i \(-0.379112\pi\)
−0.928746 + 0.370716i \(0.879112\pi\)
\(174\) 0 0
\(175\) 3.53402 + 1.62522i 0.267147 + 0.122855i
\(176\) 0.186861i 0.0140852i
\(177\) 0 0
\(178\) 0.468940 0.468940i 0.0351485 0.0351485i
\(179\) −15.1015 −1.12874 −0.564370 0.825522i \(-0.690881\pi\)
−0.564370 + 0.825522i \(0.690881\pi\)
\(180\) 0 0
\(181\) −7.82954 −0.581965 −0.290983 0.956728i \(-0.593982\pi\)
−0.290983 + 0.956728i \(0.593982\pi\)
\(182\) 4.90070 4.90070i 0.363264 0.363264i
\(183\) 0 0
\(184\) 11.4789i 0.846235i
\(185\) −0.222264 + 0.319221i −0.0163412 + 0.0234696i
\(186\) 0 0
\(187\) −1.00000 1.00000i −0.0731272 0.0731272i
\(188\) 10.3717 + 10.3717i 0.756436 + 0.756436i
\(189\) 0 0
\(190\) 1.30690 1.87699i 0.0948122 0.136171i
\(191\) 11.4726i 0.830129i 0.909792 + 0.415065i \(0.136241\pi\)
−0.909792 + 0.415065i \(0.863759\pi\)
\(192\) 0 0
\(193\) 3.90208 3.90208i 0.280878 0.280878i −0.552581 0.833459i \(-0.686357\pi\)
0.833459 + 0.552581i \(0.186357\pi\)
\(194\) −21.0052 −1.50809
\(195\) 0 0
\(196\) −21.7088 −1.55063
\(197\) −2.32295 + 2.32295i −0.165504 + 0.165504i −0.785000 0.619496i \(-0.787337\pi\)
0.619496 + 0.785000i \(0.287337\pi\)
\(198\) 0 0
\(199\) 17.1978i 1.21912i 0.792741 + 0.609558i \(0.208653\pi\)
−0.792741 + 0.609558i \(0.791347\pi\)
\(200\) 14.7164 + 6.76776i 1.04061 + 0.478553i
\(201\) 0 0
\(202\) −21.6086 21.6086i −1.52038 1.52038i
\(203\) −3.03948 3.03948i −0.213330 0.213330i
\(204\) 0 0
\(205\) 9.86695 1.76675i 0.689138 0.123395i
\(206\) 38.0123i 2.64844i
\(207\) 0 0
\(208\) 1.99328 1.99328i 0.138209 0.138209i
\(209\) 0.111966 0.00774488
\(210\) 0 0
\(211\) 4.54958 0.313206 0.156603 0.987662i \(-0.449946\pi\)
0.156603 + 0.987662i \(0.449946\pi\)
\(212\) 3.18437 3.18437i 0.218704 0.218704i
\(213\) 0 0
\(214\) 19.0976i 1.30548i
\(215\) 2.53601 + 1.76575i 0.172954 + 0.120423i
\(216\) 0 0
\(217\) −0.106921 0.106921i −0.00725827 0.00725827i
\(218\) 14.4842 + 14.4842i 0.980993 + 0.980993i
\(219\) 0 0
\(220\) 0.340172 + 1.89980i 0.0229344 + 0.128084i
\(221\) 21.3344i 1.43510i
\(222\) 0 0
\(223\) −12.9516 + 12.9516i −0.867303 + 0.867303i −0.992173 0.124870i \(-0.960149\pi\)
0.124870 + 0.992173i \(0.460149\pi\)
\(224\) −3.71256 −0.248056
\(225\) 0 0
\(226\) −31.2819 −2.08084
\(227\) 7.97652 7.97652i 0.529420 0.529420i −0.390979 0.920400i \(-0.627864\pi\)
0.920400 + 0.390979i \(0.127864\pi\)
\(228\) 0 0
\(229\) 4.87767i 0.322325i 0.986928 + 0.161163i \(0.0515244\pi\)
−0.986928 + 0.161163i \(0.948476\pi\)
\(230\) −3.24355 18.1146i −0.213873 1.19444i
\(231\) 0 0
\(232\) −12.6570 12.6570i −0.830974 0.830974i
\(233\) −7.90742 7.90742i −0.518033 0.518033i 0.398943 0.916976i \(-0.369377\pi\)
−0.916976 + 0.398943i \(0.869377\pi\)
\(234\) 0 0
\(235\) 7.92879 + 5.52058i 0.517217 + 0.360123i
\(236\) 27.3129i 1.77792i
\(237\) 0 0
\(238\) −7.10692 + 7.10692i −0.460673 + 0.460673i
\(239\) 22.2724 1.44068 0.720340 0.693621i \(-0.243986\pi\)
0.720340 + 0.693621i \(0.243986\pi\)
\(240\) 0 0
\(241\) −28.9492 −1.86478 −0.932392 0.361449i \(-0.882282\pi\)
−0.932392 + 0.361449i \(0.882282\pi\)
\(242\) 17.9599 17.9599i 1.15451 1.15451i
\(243\) 0 0
\(244\) 9.78955i 0.626712i
\(245\) −14.0753 + 2.52028i −0.899238 + 0.161015i
\(246\) 0 0
\(247\) −1.19437 1.19437i −0.0759957 0.0759957i
\(248\) −0.445241 0.445241i −0.0282729 0.0282729i
\(249\) 0 0
\(250\) 25.1359 + 6.52169i 1.58974 + 0.412468i
\(251\) 20.4218i 1.28901i −0.764599 0.644507i \(-0.777063\pi\)
0.764599 0.644507i \(-0.222937\pi\)
\(252\) 0 0
\(253\) 0.637027 0.637027i 0.0400496 0.0400496i
\(254\) −22.0790 −1.38536
\(255\) 0 0
\(256\) −20.4498 −1.27811
\(257\) 5.19206 5.19206i 0.323872 0.323872i −0.526378 0.850250i \(-0.676450\pi\)
0.850250 + 0.526378i \(0.176450\pi\)
\(258\) 0 0
\(259\) 0.135331i 0.00840907i
\(260\) 16.6368 23.8941i 1.03177 1.48185i
\(261\) 0 0
\(262\) −22.0902 22.0902i −1.36473 1.36473i
\(263\) 10.3290 + 10.3290i 0.636916 + 0.636916i 0.949794 0.312877i \(-0.101293\pi\)
−0.312877 + 0.949794i \(0.601293\pi\)
\(264\) 0 0
\(265\) 1.69495 2.43433i 0.104120 0.149540i
\(266\) 0.795737i 0.0487897i
\(267\) 0 0
\(268\) 32.2238 32.2238i 1.96838 1.96838i
\(269\) −3.76010 −0.229257 −0.114629 0.993408i \(-0.536568\pi\)
−0.114629 + 0.993408i \(0.536568\pi\)
\(270\) 0 0
\(271\) 14.0785 0.855209 0.427604 0.903966i \(-0.359358\pi\)
0.427604 + 0.903966i \(0.359358\pi\)
\(272\) −2.89063 + 2.89063i −0.175270 + 0.175270i
\(273\) 0 0
\(274\) 22.7383i 1.37367i
\(275\) 0.441113 + 1.19227i 0.0266001 + 0.0718968i
\(276\) 0 0
\(277\) 1.47926 + 1.47926i 0.0888802 + 0.0888802i 0.750149 0.661269i \(-0.229982\pi\)
−0.661269 + 0.750149i \(0.729982\pi\)
\(278\) 12.9892 + 12.9892i 0.779040 + 0.779040i
\(279\) 0 0
\(280\) 5.54730 0.993284i 0.331514 0.0593600i
\(281\) 9.26846i 0.552910i 0.961027 + 0.276455i \(0.0891596\pi\)
−0.961027 + 0.276455i \(0.910840\pi\)
\(282\) 0 0
\(283\) 22.7744 22.7744i 1.35380 1.35380i 0.472431 0.881368i \(-0.343377\pi\)
0.881368 0.472431i \(-0.156623\pi\)
\(284\) −7.33224 −0.435089
\(285\) 0 0
\(286\) 2.26505 0.133935
\(287\) 2.46601 2.46601i 0.145564 0.145564i
\(288\) 0 0
\(289\) 13.9387i 0.819926i
\(290\) −23.5502 16.3973i −1.38292 0.962883i
\(291\) 0 0
\(292\) 31.1787 + 31.1787i 1.82460 + 1.82460i
\(293\) −4.67039 4.67039i −0.272847 0.272847i 0.557398 0.830245i \(-0.311800\pi\)
−0.830245 + 0.557398i \(0.811800\pi\)
\(294\) 0 0
\(295\) −3.17089 17.7088i −0.184616 1.03105i
\(296\) 0.563547i 0.0327555i
\(297\) 0 0
\(298\) −15.0032 + 15.0032i −0.869114 + 0.869114i
\(299\) −13.5906 −0.785962
\(300\) 0 0
\(301\) 1.07512 0.0619688
\(302\) 24.1426 24.1426i 1.38925 1.38925i
\(303\) 0 0
\(304\) 0.323653i 0.0185628i
\(305\) −1.13652 6.34723i −0.0650767 0.363441i
\(306\) 0 0
\(307\) 5.82120 + 5.82120i 0.332233 + 0.332233i 0.853434 0.521201i \(-0.174516\pi\)
−0.521201 + 0.853434i \(0.674516\pi\)
\(308\) 0.474808 + 0.474808i 0.0270547 + 0.0270547i
\(309\) 0 0
\(310\) −0.828435 0.576815i −0.0470520 0.0327609i
\(311\) 11.5317i 0.653905i −0.945041 0.326953i \(-0.893978\pi\)
0.945041 0.326953i \(-0.106022\pi\)
\(312\) 0 0
\(313\) 4.70919 4.70919i 0.266179 0.266179i −0.561379 0.827559i \(-0.689729\pi\)
0.827559 + 0.561379i \(0.189729\pi\)
\(314\) −39.3311 −2.21958
\(315\) 0 0
\(316\) 46.9331 2.64020
\(317\) −1.41863 + 1.41863i −0.0796780 + 0.0796780i −0.745823 0.666145i \(-0.767943\pi\)
0.666145 + 0.745823i \(0.267943\pi\)
\(318\) 0 0
\(319\) 1.40482i 0.0786546i
\(320\) −27.6322 + 4.94774i −1.54468 + 0.276587i
\(321\) 0 0
\(322\) −4.52730 4.52730i −0.252297 0.252297i
\(323\) 1.73205 + 1.73205i 0.0963739 + 0.0963739i
\(324\) 0 0
\(325\) 8.01276 17.4236i 0.444468 0.966488i
\(326\) 32.0187i 1.77335i
\(327\) 0 0
\(328\) 10.2690 10.2690i 0.567009 0.567009i
\(329\) 3.36135 0.185317
\(330\) 0 0
\(331\) 23.5400 1.29387 0.646937 0.762543i \(-0.276050\pi\)
0.646937 + 0.762543i \(0.276050\pi\)
\(332\) −12.9274 + 12.9274i −0.709484 + 0.709484i
\(333\) 0 0
\(334\) 45.8229i 2.50732i
\(335\) 17.1518 24.6339i 0.937105 1.34589i
\(336\) 0 0
\(337\) −8.05608 8.05608i −0.438842 0.438842i 0.452780 0.891622i \(-0.350432\pi\)
−0.891622 + 0.452780i \(0.850432\pi\)
\(338\) −2.81088 2.81088i −0.152892 0.152892i
\(339\) 0 0
\(340\) −24.1264 + 34.6509i −1.30844 + 1.87921i
\(341\) 0.0494178i 0.00267612i
\(342\) 0 0
\(343\) −7.36850 + 7.36850i −0.397861 + 0.397861i
\(344\) 4.47702 0.241385
\(345\) 0 0
\(346\) −24.1092 −1.29612
\(347\) −10.1044 + 10.1044i −0.542430 + 0.542430i −0.924241 0.381810i \(-0.875301\pi\)
0.381810 + 0.924241i \(0.375301\pi\)
\(348\) 0 0
\(349\) 17.5645i 0.940206i −0.882612 0.470103i \(-0.844217\pi\)
0.882612 0.470103i \(-0.155783\pi\)
\(350\) 8.47339 3.13496i 0.452922 0.167570i
\(351\) 0 0
\(352\) −0.857952 0.857952i −0.0457290 0.0457290i
\(353\) 12.3253 + 12.3253i 0.656008 + 0.656008i 0.954433 0.298425i \(-0.0964613\pi\)
−0.298425 + 0.954433i \(0.596461\pi\)
\(354\) 0 0
\(355\) −4.75399 + 0.851236i −0.252316 + 0.0451789i
\(356\) 0.969296i 0.0513726i
\(357\) 0 0
\(358\) −24.8023 + 24.8023i −1.31084 + 1.31084i
\(359\) 34.0577 1.79750 0.898748 0.438465i \(-0.144478\pi\)
0.898748 + 0.438465i \(0.144478\pi\)
\(360\) 0 0
\(361\) 18.8061 0.989793
\(362\) −12.8590 + 12.8590i −0.675855 + 0.675855i
\(363\) 0 0
\(364\) 10.1297i 0.530942i
\(365\) 23.8350 + 16.5956i 1.24758 + 0.868652i
\(366\) 0 0
\(367\) 9.98059 + 9.98059i 0.520983 + 0.520983i 0.917868 0.396886i \(-0.129909\pi\)
−0.396886 + 0.917868i \(0.629909\pi\)
\(368\) −1.84141 1.84141i −0.0959901 0.0959901i
\(369\) 0 0
\(370\) 0.159239 + 0.889320i 0.00827845 + 0.0462336i
\(371\) 1.03202i 0.0535796i
\(372\) 0 0
\(373\) −15.2239 + 15.2239i −0.788263 + 0.788263i −0.981209 0.192946i \(-0.938196\pi\)
0.192946 + 0.981209i \(0.438196\pi\)
\(374\) −3.28475 −0.169850
\(375\) 0 0
\(376\) 13.9973 0.721858
\(377\) −14.9854 + 14.9854i −0.771788 + 0.771788i
\(378\) 0 0
\(379\) 9.52893i 0.489468i −0.969590 0.244734i \(-0.921299\pi\)
0.969590 0.244734i \(-0.0787007\pi\)
\(380\) −0.589195 3.29054i −0.0302251 0.168801i
\(381\) 0 0
\(382\) 18.8423 + 18.8423i 0.964056 + 0.964056i
\(383\) 7.04088 + 7.04088i 0.359772 + 0.359772i 0.863729 0.503957i \(-0.168123\pi\)
−0.503957 + 0.863729i \(0.668123\pi\)
\(384\) 0 0
\(385\) 0.362973 + 0.252727i 0.0184988 + 0.0128802i
\(386\) 12.8173i 0.652385i
\(387\) 0 0
\(388\) −21.7088 + 21.7088i −1.10210 + 1.10210i
\(389\) 29.1344 1.47717 0.738587 0.674158i \(-0.235493\pi\)
0.738587 + 0.674158i \(0.235493\pi\)
\(390\) 0 0
\(391\) 19.7088 0.996718
\(392\) −14.6488 + 14.6488i −0.739874 + 0.739874i
\(393\) 0 0
\(394\) 7.63031i 0.384409i
\(395\) 30.4299 5.44870i 1.53110 0.274154i
\(396\) 0 0
\(397\) −18.9354 18.9354i −0.950338 0.950338i 0.0484856 0.998824i \(-0.484561\pi\)
−0.998824 + 0.0484856i \(0.984561\pi\)
\(398\) 28.2451 + 28.2451i 1.41580 + 1.41580i
\(399\) 0 0
\(400\) 3.44642 1.27509i 0.172321 0.0637547i
\(401\) 24.4907i 1.22301i −0.791242 0.611503i \(-0.790565\pi\)
0.791242 0.611503i \(-0.209435\pi\)
\(402\) 0 0
\(403\) −0.527148 + 0.527148i −0.0262591 + 0.0262591i
\(404\) −44.6649 −2.22216
\(405\) 0 0
\(406\) −9.98392 −0.495493
\(407\) −0.0312743 + 0.0312743i −0.00155021 + 0.00155021i
\(408\) 0 0
\(409\) 14.1623i 0.700282i 0.936697 + 0.350141i \(0.113866\pi\)
−0.936697 + 0.350141i \(0.886134\pi\)
\(410\) 13.3036 19.1069i 0.657016 0.943621i
\(411\) 0 0
\(412\) 39.2856 + 39.2856i 1.93546 + 1.93546i
\(413\) −4.42589 4.42589i −0.217784 0.217784i
\(414\) 0 0
\(415\) −6.88091 + 9.88252i −0.337770 + 0.485114i
\(416\) 18.3039i 0.897420i
\(417\) 0 0
\(418\) 0.183891 0.183891i 0.00899438 0.00899438i
\(419\) −27.7616 −1.35624 −0.678120 0.734951i \(-0.737205\pi\)
−0.678120 + 0.734951i \(0.737205\pi\)
\(420\) 0 0
\(421\) 0.859803 0.0419042 0.0209521 0.999780i \(-0.493330\pi\)
0.0209521 + 0.999780i \(0.493330\pi\)
\(422\) 7.47211 7.47211i 0.363737 0.363737i
\(423\) 0 0
\(424\) 4.29753i 0.208706i
\(425\) −11.6200 + 25.2675i −0.563652 + 1.22565i
\(426\) 0 0
\(427\) −1.58634 1.58634i −0.0767682 0.0767682i
\(428\) 19.7373 + 19.7373i 0.954037 + 0.954037i
\(429\) 0 0
\(430\) 7.06508 1.26505i 0.340708 0.0610063i
\(431\) 25.5770i 1.23200i 0.787746 + 0.616000i \(0.211248\pi\)
−0.787746 + 0.616000i \(0.788752\pi\)
\(432\) 0 0
\(433\) 6.30733 6.30733i 0.303111 0.303111i −0.539119 0.842230i \(-0.681243\pi\)
0.842230 + 0.539119i \(0.181243\pi\)
\(434\) −0.351208 −0.0168585
\(435\) 0 0
\(436\) 29.9387 1.43381
\(437\) −1.10336 + 1.10336i −0.0527810 + 0.0527810i
\(438\) 0 0
\(439\) 14.3952i 0.687046i 0.939144 + 0.343523i \(0.111620\pi\)
−0.939144 + 0.343523i \(0.888380\pi\)
\(440\) 1.51149 + 1.05241i 0.0720577 + 0.0501716i
\(441\) 0 0
\(442\) 35.0390 + 35.0390i 1.66663 + 1.66663i
\(443\) −15.5005 15.5005i −0.736452 0.736452i 0.235437 0.971890i \(-0.424348\pi\)
−0.971890 + 0.235437i \(0.924348\pi\)
\(444\) 0 0
\(445\) −0.112530 0.628460i −0.00533445 0.0297919i
\(446\) 42.5427i 2.01445i
\(447\) 0 0
\(448\) −6.90599 + 6.90599i −0.326277 + 0.326277i
\(449\) 23.6447 1.11586 0.557931 0.829888i \(-0.311596\pi\)
0.557931 + 0.829888i \(0.311596\pi\)
\(450\) 0 0
\(451\) 1.13976 0.0536693
\(452\) −32.3297 + 32.3297i −1.52066 + 1.52066i
\(453\) 0 0
\(454\) 26.2008i 1.22967i
\(455\) −1.17601 6.56778i −0.0551321 0.307902i
\(456\) 0 0
\(457\) −4.03328 4.03328i −0.188669 0.188669i 0.606452 0.795120i \(-0.292592\pi\)
−0.795120 + 0.606452i \(0.792592\pi\)
\(458\) 8.01095 + 8.01095i 0.374327 + 0.374327i
\(459\) 0 0
\(460\) −22.0736 15.3692i −1.02919 0.716591i
\(461\) 32.2095i 1.50015i −0.661355 0.750073i \(-0.730018\pi\)
0.661355 0.750073i \(-0.269982\pi\)
\(462\) 0 0
\(463\) −4.52074 + 4.52074i −0.210097 + 0.210097i −0.804308 0.594212i \(-0.797464\pi\)
0.594212 + 0.804308i \(0.297464\pi\)
\(464\) −4.06080 −0.188518
\(465\) 0 0
\(466\) −25.9739 −1.20322
\(467\) −12.7982 + 12.7982i −0.592230 + 0.592230i −0.938233 0.346003i \(-0.887539\pi\)
0.346003 + 0.938233i \(0.387539\pi\)
\(468\) 0 0
\(469\) 10.4433i 0.482228i
\(470\) 22.0889 3.95517i 1.01888 0.182439i
\(471\) 0 0
\(472\) −18.4303 18.4303i −0.848325 0.848325i
\(473\) 0.248454 + 0.248454i 0.0114239 + 0.0114239i
\(474\) 0 0
\(475\) −0.764030 2.06508i −0.0350561 0.0947523i
\(476\) 14.6900i 0.673314i
\(477\) 0 0
\(478\) 36.5795 36.5795i 1.67311 1.67311i
\(479\) 3.52331 0.160984 0.0804921 0.996755i \(-0.474351\pi\)
0.0804921 + 0.996755i \(0.474351\pi\)
\(480\) 0 0
\(481\) 0.667217 0.0304225
\(482\) −47.5454 + 47.5454i −2.16563 + 2.16563i
\(483\) 0 0
\(484\) 37.1231i 1.68741i
\(485\) −11.5550 + 16.5956i −0.524686 + 0.753566i
\(486\) 0 0
\(487\) 29.3442 + 29.3442i 1.32971 + 1.32971i 0.905616 + 0.424098i \(0.139409\pi\)
0.424098 + 0.905616i \(0.360591\pi\)
\(488\) −6.60583 6.60583i −0.299032 0.299032i
\(489\) 0 0
\(490\) −18.9776 + 27.2561i −0.857322 + 1.23131i
\(491\) 20.6692i 0.932789i −0.884577 0.466395i \(-0.845553\pi\)
0.884577 0.466395i \(-0.154447\pi\)
\(492\) 0 0
\(493\) 21.7316 21.7316i 0.978743 0.978743i
\(494\) −3.92319 −0.176513
\(495\) 0 0
\(496\) −0.142849 −0.00641409
\(497\) −1.18814 + 1.18814i −0.0532956 + 0.0532956i
\(498\) 0 0
\(499\) 26.1761i 1.17180i −0.810383 0.585901i \(-0.800741\pi\)
0.810383 0.585901i \(-0.199259\pi\)
\(500\) 32.7181 19.2378i 1.46320 0.860338i
\(501\) 0 0
\(502\) −33.5402 33.5402i −1.49697 1.49697i
\(503\) −6.72022 6.72022i −0.299640 0.299640i 0.541233 0.840873i \(-0.317958\pi\)
−0.840873 + 0.541233i \(0.817958\pi\)
\(504\) 0 0
\(505\) −28.9593 + 5.18536i −1.28867 + 0.230746i
\(506\) 2.09247i 0.0930217i
\(507\) 0 0
\(508\) −22.8185 + 22.8185i −1.01241 + 1.01241i
\(509\) 23.9352 1.06091 0.530454 0.847714i \(-0.322022\pi\)
0.530454 + 0.847714i \(0.322022\pi\)
\(510\) 0 0
\(511\) 10.1046 0.447003
\(512\) −5.84717 + 5.84717i −0.258411 + 0.258411i
\(513\) 0 0
\(514\) 17.0546i 0.752246i
\(515\) 30.0324 + 20.9107i 1.32339 + 0.921434i
\(516\) 0 0
\(517\) 0.776790 + 0.776790i 0.0341632 + 0.0341632i
\(518\) 0.222264 + 0.222264i 0.00976573 + 0.00976573i
\(519\) 0 0
\(520\) −4.89714 27.3496i −0.214754 1.19936i
\(521\) 3.23141i 0.141571i −0.997492 0.0707853i \(-0.977449\pi\)
0.997492 0.0707853i \(-0.0225505\pi\)
\(522\) 0 0
\(523\) −8.67002 + 8.67002i −0.379114 + 0.379114i −0.870782 0.491669i \(-0.836387\pi\)
0.491669 + 0.870782i \(0.336387\pi\)
\(524\) −45.6602 −1.99468
\(525\) 0 0
\(526\) 33.9283 1.47934
\(527\) 0.764462 0.764462i 0.0333005 0.0333005i
\(528\) 0 0
\(529\) 10.4449i 0.454128i
\(530\) −1.21434 6.78183i −0.0527474 0.294584i
\(531\) 0 0
\(532\) −0.822392 0.822392i −0.0356552 0.0356552i
\(533\) −12.1581 12.1581i −0.526624 0.526624i
\(534\) 0 0
\(535\) 15.0884 + 10.5056i 0.652328 + 0.454197i
\(536\) 43.4882i 1.87840i
\(537\) 0 0
\(538\) −6.17548 + 6.17548i −0.266244 + 0.266244i
\(539\) −1.62588 −0.0700317
\(540\) 0 0
\(541\) −11.1502 −0.479386 −0.239693 0.970849i \(-0.577047\pi\)
−0.239693 + 0.970849i \(0.577047\pi\)
\(542\) 23.1222 23.1222i 0.993182 0.993182i
\(543\) 0 0
\(544\) 26.5440i 1.13806i
\(545\) 19.4113 3.47573i 0.831489 0.148884i
\(546\) 0 0
\(547\) 9.68543 + 9.68543i 0.414119 + 0.414119i 0.883171 0.469052i \(-0.155404\pi\)
−0.469052 + 0.883171i \(0.655404\pi\)
\(548\) 23.5000 + 23.5000i 1.00387 + 1.00387i
\(549\) 0 0
\(550\) 2.68263 + 1.23369i 0.114388 + 0.0526045i
\(551\) 2.43321i 0.103658i
\(552\) 0 0
\(553\) 7.60523 7.60523i 0.323407 0.323407i
\(554\) 4.85900 0.206439
\(555\) 0 0
\(556\) 26.8486 1.13863
\(557\) 11.8934 11.8934i 0.503938 0.503938i −0.408721 0.912659i \(-0.634025\pi\)
0.912659 + 0.408721i \(0.134025\pi\)
\(558\) 0 0
\(559\) 5.30061i 0.224192i
\(560\) 0.730541 1.04922i 0.0308710 0.0443376i
\(561\) 0 0
\(562\) 15.2223 + 15.2223i 0.642112 + 0.642112i
\(563\) 17.4218 + 17.4218i 0.734242 + 0.734242i 0.971457 0.237215i \(-0.0762346\pi\)
−0.237215 + 0.971457i \(0.576235\pi\)
\(564\) 0 0
\(565\) −17.2082 + 24.7149i −0.723956 + 1.03976i
\(566\) 74.8082i 3.14442i
\(567\) 0 0
\(568\) −4.94768 + 4.94768i −0.207600 + 0.207600i
\(569\) −12.4971 −0.523907 −0.261953 0.965081i \(-0.584367\pi\)
−0.261953 + 0.965081i \(0.584367\pi\)
\(570\) 0 0
\(571\) −27.4131 −1.14720 −0.573601 0.819135i \(-0.694454\pi\)
−0.573601 + 0.819135i \(0.694454\pi\)
\(572\) 2.34093 2.34093i 0.0978790 0.0978790i
\(573\) 0 0
\(574\) 8.10020i 0.338096i
\(575\) −16.0961 7.40224i −0.671252 0.308695i
\(576\) 0 0
\(577\) −11.1638 11.1638i −0.464755 0.464755i 0.435455 0.900210i \(-0.356587\pi\)
−0.900210 + 0.435455i \(0.856587\pi\)
\(578\) −22.8926 22.8926i −0.952207 0.952207i
\(579\) 0 0
\(580\) −41.2856 + 7.39249i −1.71429 + 0.306956i
\(581\) 4.18961i 0.173814i
\(582\) 0 0
\(583\) 0.238494 0.238494i 0.00987739 0.00987739i
\(584\) 42.0778 1.74119
\(585\) 0 0
\(586\) −15.3410 −0.633733
\(587\) −13.0202 + 13.0202i −0.537403 + 0.537403i −0.922765 0.385363i \(-0.874076\pi\)
0.385363 + 0.922765i \(0.374076\pi\)
\(588\) 0 0
\(589\) 0.0855941i 0.00352684i
\(590\) −34.2923 23.8767i −1.41179 0.982988i
\(591\) 0 0
\(592\) 0.0904025 + 0.0904025i 0.00371552 + 0.00371552i
\(593\) −14.5424 14.5424i −0.597186 0.597186i 0.342377 0.939563i \(-0.388768\pi\)
−0.939563 + 0.342377i \(0.888768\pi\)
\(594\) 0 0
\(595\) 1.70543 + 9.52450i 0.0699158 + 0.390466i
\(596\) 31.0116i 1.27029i
\(597\) 0 0
\(598\) −22.3208 + 22.3208i −0.912764 + 0.912764i
\(599\) −35.3945 −1.44618 −0.723089 0.690755i \(-0.757279\pi\)
−0.723089 + 0.690755i \(0.757279\pi\)
\(600\) 0 0
\(601\) −14.6347 −0.596964 −0.298482 0.954415i \(-0.596480\pi\)
−0.298482 + 0.954415i \(0.596480\pi\)
\(602\) 1.76575 1.76575i 0.0719664 0.0719664i
\(603\) 0 0
\(604\) 49.9026i 2.03051i
\(605\) −4.30980 24.0694i −0.175218 0.978560i
\(606\) 0 0
\(607\) 5.52612 + 5.52612i 0.224298 + 0.224298i 0.810306 0.586007i \(-0.199301\pi\)
−0.586007 + 0.810306i \(0.699301\pi\)
\(608\) 1.48602 + 1.48602i 0.0602660 + 0.0602660i
\(609\) 0 0
\(610\) −12.2911 8.55793i −0.497652 0.346500i
\(611\) 16.5723i 0.670444i
\(612\) 0 0
\(613\) 3.49830 3.49830i 0.141295 0.141295i −0.632921 0.774216i \(-0.718144\pi\)
0.774216 + 0.632921i \(0.218144\pi\)
\(614\) 19.1212 0.771667
\(615\) 0 0
\(616\) 0.640786 0.0258180
\(617\) 17.5004 17.5004i 0.704541 0.704541i −0.260841 0.965382i \(-0.584000\pi\)
0.965382 + 0.260841i \(0.0839997\pi\)
\(618\) 0 0
\(619\) 17.8236i 0.716392i −0.933646 0.358196i \(-0.883392\pi\)
0.933646 0.358196i \(-0.116608\pi\)
\(620\) −1.45232 + 0.260049i −0.0583267 + 0.0104438i
\(621\) 0 0
\(622\) −18.9394 18.9394i −0.759402 0.759402i
\(623\) −0.157068 0.157068i −0.00629281 0.00629281i
\(624\) 0 0
\(625\) 18.9799 16.2715i 0.759197 0.650861i
\(626\) 15.4685i 0.618245i
\(627\) 0 0
\(628\) −40.6486 + 40.6486i −1.62206 + 1.62206i
\(629\) −0.967588 −0.0385803
\(630\) 0 0
\(631\) −29.9153 −1.19091 −0.595454 0.803389i \(-0.703028\pi\)
−0.595454 + 0.803389i \(0.703028\pi\)
\(632\) 31.6697 31.6697i 1.25975 1.25975i
\(633\) 0 0
\(634\) 4.65983i 0.185065i
\(635\) −12.1457 + 17.4439i −0.481987 + 0.692241i
\(636\) 0 0
\(637\) 17.3436 + 17.3436i 0.687177 + 0.687177i
\(638\) −2.30723 2.30723i −0.0913441 0.0913441i
\(639\) 0 0
\(640\) −25.0615 + 35.9939i −0.990642 + 1.42278i
\(641\) 15.8660i 0.626668i −0.949643 0.313334i \(-0.898554\pi\)
0.949643 0.313334i \(-0.101446\pi\)
\(642\) 0 0
\(643\) 16.4395 16.4395i 0.648310 0.648310i −0.304274 0.952584i \(-0.598414\pi\)
0.952584 + 0.304274i \(0.0984139\pi\)
\(644\) −9.35791 −0.368753
\(645\) 0 0
\(646\) 5.68935 0.223844
\(647\) −8.90965 + 8.90965i −0.350274 + 0.350274i −0.860212 0.509937i \(-0.829669\pi\)
0.509937 + 0.860212i \(0.329669\pi\)
\(648\) 0 0
\(649\) 2.04560i 0.0802969i
\(650\) −15.4561 41.7760i −0.606240 1.63859i
\(651\) 0 0
\(652\) −33.0913 33.0913i −1.29595 1.29595i
\(653\) −10.2796 10.2796i −0.402273 0.402273i 0.476760 0.879033i \(-0.341811\pi\)
−0.879033 + 0.476760i \(0.841811\pi\)
\(654\) 0 0
\(655\) −29.6046 + 5.30092i −1.15675 + 0.207124i
\(656\) 3.29463i 0.128634i
\(657\) 0 0
\(658\) 5.52058 5.52058i 0.215215 0.215215i
\(659\) 9.01471 0.351163 0.175582 0.984465i \(-0.443819\pi\)
0.175582 + 0.984465i \(0.443819\pi\)
\(660\) 0 0
\(661\) −30.0068 −1.16713 −0.583564 0.812067i \(-0.698342\pi\)
−0.583564 + 0.812067i \(0.698342\pi\)
\(662\) 38.6614 38.6614i 1.50262 1.50262i
\(663\) 0 0
\(664\) 17.4464i 0.677052i
\(665\) −0.628687 0.437737i −0.0243795 0.0169747i
\(666\) 0 0
\(667\) 13.8436 + 13.8436i 0.536028 + 0.536028i
\(668\) 47.3578 + 47.3578i 1.83233 + 1.83233i
\(669\) 0 0
\(670\) −12.2883 68.6277i −0.474738 2.65132i
\(671\) 0.733188i 0.0283044i
\(672\) 0 0
\(673\) −19.2396 + 19.2396i −0.741632 + 0.741632i −0.972892 0.231260i \(-0.925715\pi\)
0.231260 + 0.972892i \(0.425715\pi\)
\(674\) −26.4622 −1.01928
\(675\) 0 0
\(676\) −5.81007 −0.223464
\(677\) −12.2708 + 12.2708i −0.471604 + 0.471604i −0.902433 0.430829i \(-0.858221\pi\)
0.430829 + 0.902433i \(0.358221\pi\)
\(678\) 0 0
\(679\) 7.03556i 0.270000i
\(680\) 7.10176 + 39.6620i 0.272340 + 1.52097i
\(681\) 0 0
\(682\) −0.0811624 0.0811624i −0.00310787 0.00310787i
\(683\) 27.4945 + 27.4945i 1.05205 + 1.05205i 0.998569 + 0.0534806i \(0.0170315\pi\)
0.0534806 + 0.998569i \(0.482968\pi\)
\(684\) 0 0
\(685\) 17.9649 + 12.5084i 0.686403 + 0.477922i
\(686\) 24.2036i 0.924099i
\(687\) 0 0
\(688\) 0.718190 0.718190i 0.0273807 0.0273807i
\(689\) −5.08810 −0.193841
\(690\) 0 0
\(691\) 18.1502 0.690468 0.345234 0.938517i \(-0.387800\pi\)
0.345234 + 0.938517i \(0.387800\pi\)
\(692\) −24.9168 + 24.9168i −0.947195 + 0.947195i
\(693\) 0 0
\(694\) 33.1902i 1.25988i
\(695\) 17.4077 3.11698i 0.660314 0.118234i
\(696\) 0 0
\(697\) 17.6314 + 17.6314i 0.667838 + 0.667838i
\(698\) −28.8474 28.8474i −1.09189 1.09189i
\(699\) 0 0
\(700\) 5.51726 11.9972i 0.208533 0.453451i
\(701\) 5.23510i 0.197727i 0.995101 + 0.0988635i \(0.0315207\pi\)
−0.995101 + 0.0988635i \(0.968479\pi\)
\(702\) 0 0
\(703\) 0.0541687 0.0541687i 0.00204301 0.00204301i
\(704\) −3.19188 −0.120298
\(705\) 0 0
\(706\) 40.4854 1.52369
\(707\) −7.23767 + 7.23767i −0.272201 + 0.272201i
\(708\) 0 0
\(709\) 16.9944i 0.638238i −0.947715 0.319119i \(-0.896613\pi\)
0.947715 0.319119i \(-0.103387\pi\)
\(710\) −6.40977 + 9.20587i −0.240555 + 0.345490i
\(711\) 0 0
\(712\) −0.654066 0.654066i −0.0245121 0.0245121i
\(713\) 0.486983 + 0.486983i 0.0182377 + 0.0182377i
\(714\) 0 0
\(715\) 1.24601 1.78955i 0.0465982 0.0669254i
\(716\) 51.2662i 1.91591i
\(717\) 0 0
\(718\) 55.9354 55.9354i 2.08749 2.08749i
\(719\) −49.3502 −1.84045 −0.920225 0.391389i \(-0.871995\pi\)
−0.920225 + 0.391389i \(0.871995\pi\)
\(720\) 0 0
\(721\) 12.7320 0.474164
\(722\) 30.8866 30.8866i 1.14948 1.14948i
\(723\) 0 0
\(724\) 26.5795i 0.987821i
\(725\) −25.9100 + 9.58610i −0.962275 + 0.356019i
\(726\) 0 0
\(727\) −27.7441 27.7441i −1.02897 1.02897i −0.999568 0.0294042i \(-0.990639\pi\)
−0.0294042 0.999568i \(-0.509361\pi\)
\(728\) −6.83537 6.83537i −0.253336 0.253336i
\(729\) 0 0
\(730\) 66.4020 11.8898i 2.45765 0.440060i
\(731\) 7.68687i 0.284309i
\(732\) 0 0
\(733\) −5.36126 + 5.36126i −0.198023 + 0.198023i −0.799152 0.601129i \(-0.794718\pi\)
0.601129 + 0.799152i \(0.294718\pi\)
\(734\) 32.7837 1.21007
\(735\) 0 0
\(736\) 16.9092 0.623283
\(737\) 2.41340 2.41340i 0.0888987 0.0888987i
\(738\) 0 0
\(739\) 43.8329i 1.61242i −0.591629 0.806210i \(-0.701515\pi\)
0.591629 0.806210i \(-0.298485\pi\)
\(740\) 1.08368 + 0.754537i 0.0398370 + 0.0277373i
\(741\) 0 0
\(742\) −1.69495 1.69495i −0.0622237 0.0622237i
\(743\) 6.60225 + 6.60225i 0.242213 + 0.242213i 0.817765 0.575552i \(-0.195213\pi\)
−0.575552 + 0.817765i \(0.695213\pi\)
\(744\) 0 0
\(745\) 3.60029 + 20.1069i 0.131904 + 0.736661i
\(746\) 50.0066i 1.83087i
\(747\) 0 0
\(748\) −3.39477 + 3.39477i −0.124125 + 0.124125i
\(749\) 6.39660 0.233727
\(750\) 0 0
\(751\) −47.3926 −1.72938 −0.864689 0.502307i \(-0.832485\pi\)
−0.864689 + 0.502307i \(0.832485\pi\)
\(752\) 2.24541 2.24541i 0.0818817 0.0818817i
\(753\) 0 0
\(754\) 49.2233i 1.79261i
\(755\) −5.79343 32.3552i −0.210845 1.17753i
\(756\) 0 0
\(757\) 1.37906 + 1.37906i 0.0501227 + 0.0501227i 0.731724 0.681601i \(-0.238716\pi\)
−0.681601 + 0.731724i \(0.738716\pi\)
\(758\) −15.6501 15.6501i −0.568435 0.568435i
\(759\) 0 0
\(760\) −2.61798 1.82283i −0.0949643 0.0661208i
\(761\) 48.3288i 1.75192i 0.482386 + 0.875958i \(0.339770\pi\)
−0.482386 + 0.875958i \(0.660230\pi\)
\(762\) 0 0
\(763\) 4.85139 4.85139i 0.175632 0.175632i
\(764\) 38.9469 1.40905
\(765\) 0 0
\(766\) 23.1275 0.835631
\(767\) −21.8208 + 21.8208i −0.787903 + 0.787903i
\(768\) 0 0
\(769\) 29.7383i 1.07239i 0.844094 + 0.536196i \(0.180139\pi\)
−0.844094 + 0.536196i \(0.819861\pi\)
\(770\) 1.01121 0.181064i 0.0364414 0.00652510i
\(771\) 0 0
\(772\) −13.2467 13.2467i −0.476759 0.476759i
\(773\) 14.1444 + 14.1444i 0.508738 + 0.508738i 0.914139 0.405401i \(-0.132868\pi\)
−0.405401 + 0.914139i \(0.632868\pi\)
\(774\) 0 0
\(775\) −0.911448 + 0.337214i −0.0327402 + 0.0121131i
\(776\) 29.2975i 1.05172i
\(777\) 0 0
\(778\) 47.8496 47.8496i 1.71549 1.71549i
\(779\) −1.97413 −0.0707304
\(780\) 0 0
\(781\) −0.549148 −0.0196501
\(782\) 32.3692 32.3692i 1.15752 1.15752i
\(783\) 0 0
\(784\) 4.69982i 0.167851i
\(785\) −21.6361 + 31.0743i −0.772227 + 1.10909i
\(786\) 0 0
\(787\) 1.27473 + 1.27473i 0.0454391 + 0.0454391i 0.729461 0.684022i \(-0.239771\pi\)
−0.684022 + 0.729461i \(0.739771\pi\)
\(788\) 7.88591 + 7.88591i 0.280924 + 0.280924i
\(789\) 0 0
\(790\) 41.0285 58.9261i 1.45973 2.09649i
\(791\) 10.4777i 0.372543i
\(792\) 0 0
\(793\) −7.82105 + 7.82105i −0.277733 + 0.277733i
\(794\) −62.1978 −2.20732
\(795\) 0 0
\(796\) 58.3825 2.06931
\(797\) 5.01455 5.01455i 0.177624 0.177624i −0.612695 0.790319i \(-0.709915\pi\)
0.790319 + 0.612695i \(0.209915\pi\)
\(798\) 0 0
\(799\) 24.0329i 0.850223i
\(800\) −9.96939 + 21.6783i −0.352471 + 0.766443i
\(801\) 0 0
\(802\) −40.2228 40.2228i −1.42032 1.42032i
\(803\) 2.33513 + 2.33513i 0.0824049 + 0.0824049i
\(804\) 0 0
\(805\) −6.06736 + 1.08640i −0.213846 + 0.0382907i
\(806\) 1.73155i 0.0609912i
\(807\) 0 0
\(808\) −30.1392 + 30.1392i −1.06029 + 1.06029i
\(809\) 24.7868 0.871457 0.435728 0.900078i \(-0.356491\pi\)
0.435728 + 0.900078i \(0.356491\pi\)
\(810\) 0 0
\(811\) −5.24853 −0.184301 −0.0921505 0.995745i \(-0.529374\pi\)
−0.0921505 + 0.995745i \(0.529374\pi\)
\(812\) −10.3183 + 10.3183i −0.362103 + 0.362103i
\(813\) 0 0
\(814\) 0.102728i 0.00360062i
\(815\) −25.2970 17.6136i −0.886116 0.616977i
\(816\) 0 0
\(817\) −0.430336 0.430336i −0.0150555 0.0150555i
\(818\) 23.2598 + 23.2598i 0.813260 + 0.813260i
\(819\) 0 0
\(820\) −5.99772 33.4961i −0.209449 1.16973i
\(821\) 27.2060i 0.949497i 0.880122 + 0.474748i \(0.157461\pi\)
−0.880122 + 0.474748i \(0.842539\pi\)
\(822\) 0 0
\(823\) −23.7962 + 23.7962i −0.829483 + 0.829483i −0.987445 0.157962i \(-0.949508\pi\)
0.157962 + 0.987445i \(0.449508\pi\)
\(824\) 53.0186 1.84699
\(825\) 0 0
\(826\) −14.5379 −0.505839
\(827\) 9.12836 9.12836i 0.317424 0.317424i −0.530353 0.847777i \(-0.677941\pi\)
0.847777 + 0.530353i \(0.177941\pi\)
\(828\) 0 0
\(829\) 44.3456i 1.54019i 0.637931 + 0.770093i \(0.279790\pi\)
−0.637931 + 0.770093i \(0.720210\pi\)
\(830\) 4.92976 + 27.5318i 0.171115 + 0.955642i
\(831\) 0 0
\(832\) 34.0483 + 34.0483i 1.18041 + 1.18041i
\(833\) −25.1514 25.1514i −0.871443 0.871443i
\(834\) 0 0
\(835\) 36.2033 + 25.2073i 1.25287 + 0.872334i
\(836\) 0.380101i 0.0131461i
\(837\) 0 0
\(838\) −45.5948 + 45.5948i −1.57505 + 1.57505i
\(839\) −47.9321 −1.65480 −0.827399 0.561614i \(-0.810181\pi\)
−0.827399 + 0.561614i \(0.810181\pi\)
\(840\) 0 0
\(841\) 1.52893 0.0527217
\(842\) 1.41212 1.41212i 0.0486648 0.0486648i
\(843\) 0 0
\(844\) 15.4448i 0.531632i
\(845\) −3.76706 + 0.674519i −0.129591 + 0.0232042i
\(846\) 0 0
\(847\) −6.01556 6.01556i −0.206697 0.206697i
\(848\) −0.689396 0.689396i −0.0236740 0.0236740i
\(849\) 0 0
\(850\) 22.4143 + 60.5829i 0.768802 + 2.07798i
\(851\) 0.616380i 0.0211292i
\(852\) 0 0
\(853\) 4.10088 4.10088i 0.140411 0.140411i −0.633407 0.773819i \(-0.718344\pi\)
0.773819 + 0.633407i \(0.218344\pi\)
\(854\) −5.21071 −0.178307
\(855\) 0 0
\(856\) 26.6368 0.910427
\(857\) 22.5011 22.5011i 0.768623 0.768623i −0.209241 0.977864i \(-0.567099\pi\)
0.977864 + 0.209241i \(0.0670993\pi\)
\(858\) 0 0
\(859\) 11.9151i 0.406540i 0.979123 + 0.203270i \(0.0651568\pi\)
−0.979123 + 0.203270i \(0.934843\pi\)
\(860\) 5.99431 8.60917i 0.204404 0.293570i
\(861\) 0 0
\(862\) 42.0069 + 42.0069i 1.43076 + 1.43076i
\(863\) −13.3552 13.3552i −0.454617 0.454617i 0.442267 0.896884i \(-0.354174\pi\)
−0.896884 + 0.442267i \(0.854174\pi\)
\(864\) 0 0
\(865\) −13.2625 + 19.0480i −0.450940 + 0.647650i
\(866\) 20.7180i 0.704025i
\(867\) 0 0
\(868\) −0.362973 + 0.362973i −0.0123201 + 0.0123201i
\(869\) 3.51506 0.119240
\(870\) 0 0
\(871\) −51.4883 −1.74462
\(872\) 20.2022 20.2022i 0.684132 0.684132i
\(873\) 0 0
\(874\) 3.62427i 0.122593i
\(875\) 2.18440 8.41912i 0.0738462 0.284618i
\(876\) 0 0
\(877\) 4.73028 + 4.73028i 0.159730 + 0.159730i 0.782447 0.622717i \(-0.213971\pi\)
−0.622717 + 0.782447i \(0.713971\pi\)
\(878\) 23.6423 + 23.6423i 0.797889 + 0.797889i
\(879\) 0 0
\(880\) 0.411294 0.0736451i 0.0138647 0.00248257i
\(881\) 13.4495i 0.453126i 0.973996 + 0.226563i \(0.0727490\pi\)
−0.973996 + 0.226563i \(0.927251\pi\)
\(882\) 0 0
\(883\) 32.5618 32.5618i 1.09579 1.09579i 0.100896 0.994897i \(-0.467829\pi\)
0.994897 0.100896i \(-0.0321708\pi\)
\(884\) 72.4253 2.43593
\(885\) 0 0
\(886\) −50.9153 −1.71053
\(887\) 18.6289 18.6289i 0.625496 0.625496i −0.321435 0.946932i \(-0.604165\pi\)
0.946932 + 0.321435i \(0.104165\pi\)
\(888\) 0 0
\(889\) 7.39521i 0.248027i
\(890\) −1.21698 0.847349i −0.0407933 0.0284032i
\(891\) 0 0
\(892\) 43.9677 + 43.9677i 1.47215 + 1.47215i
\(893\) −1.34544 1.34544i −0.0450234 0.0450234i
\(894\) 0 0
\(895\) 5.95175 + 33.2394i 0.198945 + 1.11107i
\(896\) 15.2593i 0.509778i
\(897\) 0 0
\(898\) 38.8334 38.8334i 1.29589 1.29589i
\(899\) 1.07393 0.0358175
\(900\) 0 0
\(901\) 7.37869 0.245820
\(902\) 1.87192 1.87192i 0.0623280 0.0623280i
\(903\) 0 0
\(904\) 43.6312i 1.45115i
\(905\) 3.08575 + 17.2333i 0.102574 + 0.572854i
\(906\) 0 0
\(907\) −33.2566 33.2566i −1.10427 1.10427i −0.993890 0.110379i \(-0.964794\pi\)
−0.110379 0.993890i \(-0.535206\pi\)
\(908\) −27.0785 27.0785i −0.898632 0.898632i
\(909\) 0 0
\(910\) −12.7182 8.85530i −0.421604 0.293550i
\(911\) 22.0158i 0.729417i −0.931122 0.364709i \(-0.881169\pi\)
0.931122 0.364709i \(-0.118831\pi\)
\(912\) 0 0
\(913\) −0.968198 + 0.968198i −0.0320427 + 0.0320427i
\(914\) −13.2483 −0.438214
\(915\) 0 0
\(916\) 16.5586 0.547111
\(917\) −7.39896 + 7.39896i −0.244335 + 0.244335i
\(918\) 0 0
\(919\) 28.3896i 0.936486i 0.883600 + 0.468243i \(0.155113\pi\)
−0.883600 + 0.468243i \(0.844887\pi\)
\(920\) −25.2658 + 4.52402i −0.832987 + 0.149152i
\(921\) 0 0
\(922\) −52.9000 52.9000i −1.74217 1.74217i
\(923\) 5.85786 + 5.85786i 0.192814 + 0.192814i
\(924\) 0 0
\(925\) 0.790223 + 0.363407i 0.0259824 + 0.0119488i
\(926\) 14.8495i 0.487984i
\(927\) 0 0
\(928\) 18.6447 18.6447i 0.612042 0.612042i
\(929\) 37.8405 1.24151 0.620753 0.784006i \(-0.286827\pi\)
0.620753 + 0.784006i \(0.286827\pi\)
\(930\) 0 0
\(931\) 2.81611 0.0922943
\(932\) −26.8439 + 26.8439i −0.879302 + 0.879302i
\(933\) 0 0
\(934\) 42.0388i 1.37555i
\(935\) −1.80695 + 2.59518i −0.0590934 + 0.0848714i
\(936\) 0 0
\(937\) 36.4371 + 36.4371i 1.19035 + 1.19035i 0.976969 + 0.213379i \(0.0684470\pi\)
0.213379 + 0.976969i \(0.431553\pi\)
\(938\) −17.1518 17.1518i −0.560028 0.560028i
\(939\) 0 0
\(940\) 18.7411 26.9165i 0.611269 0.877918i
\(941\) 31.2566i 1.01893i −0.860490 0.509467i \(-0.829842\pi\)
0.860490 0.509467i \(-0.170158\pi\)
\(942\) 0 0
\(943\) −11.2317 + 11.2317i −0.365754 + 0.365754i
\(944\) −5.91308 −0.192454
\(945\) 0 0
\(946\) 0.816109 0.0265340
\(947\) −10.6342 + 10.6342i −0.345565 + 0.345565i −0.858455 0.512890i \(-0.828575\pi\)
0.512890 + 0.858455i \(0.328575\pi\)
\(948\) 0 0
\(949\) 49.8185i 1.61718i
\(950\) −4.64645 2.13681i −0.150751 0.0693271i
\(951\) 0 0
\(952\) 9.91256 + 9.91256i 0.321268 + 0.321268i
\(953\) −37.2073 37.2073i −1.20526 1.20526i −0.972544 0.232720i \(-0.925237\pi\)
−0.232720 0.972544i \(-0.574763\pi\)
\(954\) 0 0
\(955\) 25.2519 4.52154i 0.817133 0.146314i
\(956\) 75.6097i 2.44539i
\(957\) 0 0
\(958\) 5.78659 5.78659i 0.186956 0.186956i
\(959\) 7.61606 0.245935
\(960\) 0 0
\(961\) −30.9622 −0.998781
\(962\) 1.09582 1.09582i 0.0353306 0.0353306i
\(963\) 0 0
\(964\) 98.2761i 3.16526i
\(965\) −10.1266 7.05085i −0.325987 0.226975i
\(966\) 0 0
\(967\) −13.9248 13.9248i −0.447791 0.447791i 0.446828 0.894620i \(-0.352553\pi\)
−0.894620 + 0.446828i \(0.852553\pi\)
\(968\) −25.0501 25.0501i −0.805139 0.805139i
\(969\) 0 0
\(970\) 8.27849 + 46.2338i 0.265806 + 1.48448i
\(971\) 6.75294i 0.216712i 0.994112 + 0.108356i \(0.0345586\pi\)
−0.994112 + 0.108356i \(0.965441\pi\)
\(972\) 0 0
\(973\) 4.35065 4.35065i 0.139475 0.139475i
\(974\) 96.3883 3.08848
\(975\) 0 0
\(976\) −2.11937 −0.0678395
\(977\) −20.9616 + 20.9616i −0.670622 + 0.670622i −0.957859 0.287238i \(-0.907263\pi\)
0.287238 + 0.957859i \(0.407263\pi\)
\(978\) 0 0
\(979\) 0.0725954i 0.00232016i
\(980\) 8.55579 + 47.7825i 0.273305 + 1.52635i
\(981\) 0 0
\(982\) −33.9466 33.9466i −1.08328 1.08328i
\(983\) −12.5020 12.5020i −0.398752 0.398752i 0.479040 0.877793i \(-0.340985\pi\)
−0.877793 + 0.479040i \(0.840985\pi\)
\(984\) 0 0
\(985\) 6.02848 + 4.19745i 0.192083 + 0.133742i
\(986\) 71.3828i 2.27329i
\(987\) 0 0
\(988\) −4.05460 + 4.05460i −0.128994 + 0.128994i
\(989\) −4.89674 −0.155707
\(990\) 0 0
\(991\) −61.9280 −1.96721 −0.983603 0.180345i \(-0.942279\pi\)
−0.983603 + 0.180345i \(0.942279\pi\)
\(992\) 0.655872 0.655872i 0.0208240 0.0208240i
\(993\) 0 0
\(994\) 3.90275i 0.123788i
\(995\) 37.8533 6.77791i 1.20003 0.214874i
\(996\) 0 0
\(997\) 17.7693 + 17.7693i 0.562760 + 0.562760i 0.930091 0.367330i \(-0.119728\pi\)
−0.367330 + 0.930091i \(0.619728\pi\)
\(998\) −42.9908 42.9908i −1.36085 1.36085i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 405.2.f.a.242.8 16
3.2 odd 2 inner 405.2.f.a.242.1 16
5.3 odd 4 inner 405.2.f.a.323.1 16
9.2 odd 6 135.2.m.a.17.4 16
9.4 even 3 135.2.m.a.62.4 16
9.5 odd 6 45.2.l.a.2.1 16
9.7 even 3 45.2.l.a.32.1 yes 16
15.8 even 4 inner 405.2.f.a.323.8 16
36.7 odd 6 720.2.cu.c.257.2 16
36.23 even 6 720.2.cu.c.497.4 16
45.2 even 12 675.2.q.a.368.1 16
45.4 even 6 675.2.q.a.332.1 16
45.7 odd 12 225.2.p.b.68.4 16
45.13 odd 12 135.2.m.a.8.4 16
45.14 odd 6 225.2.p.b.182.4 16
45.22 odd 12 675.2.q.a.143.1 16
45.23 even 12 45.2.l.a.38.1 yes 16
45.29 odd 6 675.2.q.a.557.1 16
45.32 even 12 225.2.p.b.218.4 16
45.34 even 6 225.2.p.b.32.4 16
45.38 even 12 135.2.m.a.98.4 16
45.43 odd 12 45.2.l.a.23.1 yes 16
180.23 odd 12 720.2.cu.c.353.2 16
180.43 even 12 720.2.cu.c.113.4 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
45.2.l.a.2.1 16 9.5 odd 6
45.2.l.a.23.1 yes 16 45.43 odd 12
45.2.l.a.32.1 yes 16 9.7 even 3
45.2.l.a.38.1 yes 16 45.23 even 12
135.2.m.a.8.4 16 45.13 odd 12
135.2.m.a.17.4 16 9.2 odd 6
135.2.m.a.62.4 16 9.4 even 3
135.2.m.a.98.4 16 45.38 even 12
225.2.p.b.32.4 16 45.34 even 6
225.2.p.b.68.4 16 45.7 odd 12
225.2.p.b.182.4 16 45.14 odd 6
225.2.p.b.218.4 16 45.32 even 12
405.2.f.a.242.1 16 3.2 odd 2 inner
405.2.f.a.242.8 16 1.1 even 1 trivial
405.2.f.a.323.1 16 5.3 odd 4 inner
405.2.f.a.323.8 16 15.8 even 4 inner
675.2.q.a.143.1 16 45.22 odd 12
675.2.q.a.332.1 16 45.4 even 6
675.2.q.a.368.1 16 45.2 even 12
675.2.q.a.557.1 16 45.29 odd 6
720.2.cu.c.113.4 16 180.43 even 12
720.2.cu.c.257.2 16 36.7 odd 6
720.2.cu.c.353.2 16 180.23 odd 12
720.2.cu.c.497.4 16 36.23 even 6