Properties

Label 405.2.k.a.91.4
Level $405$
Weight $2$
Character 405.91
Analytic conductor $3.234$
Analytic rank $0$
Dimension $30$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [405,2,Mod(46,405)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(405, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([4, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("405.46");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 405 = 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 405.k (of order \(9\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.23394128186\)
Analytic rank: \(0\)
Dimension: \(30\)
Relative dimension: \(5\) over \(\Q(\zeta_{9})\)
Twist minimal: no (minimal twist has level 135)
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 91.4
Character \(\chi\) \(=\) 405.91
Dual form 405.2.k.a.316.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.130038 + 0.737480i) q^{2} +(1.35242 - 0.492240i) q^{4} +(0.766044 + 0.642788i) q^{5} +(0.498180 + 0.181323i) q^{7} +(1.28774 + 2.23043i) q^{8} +(-0.374428 + 0.648529i) q^{10} +(0.148674 - 0.124752i) q^{11} +(0.315087 - 1.78695i) q^{13} +(-0.0689397 + 0.390976i) q^{14} +(0.727561 - 0.610496i) q^{16} +(-0.226222 + 0.391829i) q^{17} +(1.93374 + 3.34934i) q^{19} +(1.35242 + 0.492240i) q^{20} +(0.111336 + 0.0934217i) q^{22} +(-3.74433 + 1.36283i) q^{23} +(0.173648 + 0.984808i) q^{25} +1.35881 q^{26} +0.763002 q^{28} +(-1.67673 - 9.50919i) q^{29} +(8.56046 - 3.11575i) q^{31} +(4.49070 + 3.76814i) q^{32} +(-0.318383 - 0.115882i) q^{34} +(0.265076 + 0.459125i) q^{35} +(-5.33354 + 9.23795i) q^{37} +(-2.21861 + 1.86164i) q^{38} +(-0.447227 + 2.53635i) q^{40} +(-1.24032 + 7.03423i) q^{41} +(-0.876764 + 0.735692i) q^{43} +(0.139662 - 0.241901i) q^{44} +(-1.49196 - 2.58415i) q^{46} +(-3.81750 - 1.38946i) q^{47} +(-5.14701 - 4.31885i) q^{49} +(-0.703695 + 0.256124i) q^{50} +(-0.453478 - 2.57180i) q^{52} +3.04103 q^{53} +0.194080 q^{55} +(0.237098 + 1.34465i) q^{56} +(6.79480 - 2.47311i) q^{58} +(-2.03716 - 1.70938i) q^{59} +(-11.2031 - 4.07760i) q^{61} +(3.41099 + 5.90800i) q^{62} +(-1.24521 + 2.15676i) q^{64} +(1.39000 - 1.16635i) q^{65} +(-1.01879 + 5.77785i) q^{67} +(-0.113074 + 0.641272i) q^{68} +(-0.304126 + 0.255192i) q^{70} +(4.55517 - 7.88979i) q^{71} +(-2.99330 - 5.18454i) q^{73} +(-7.50637 - 2.73209i) q^{74} +(4.26391 + 3.57785i) q^{76} +(0.0966869 - 0.0351912i) q^{77} +(-2.17315 - 12.3246i) q^{79} +0.949763 q^{80} -5.34889 q^{82} +(-2.37738 - 13.4828i) q^{83} +(-0.425159 + 0.154745i) q^{85} +(-0.656570 - 0.550928i) q^{86} +(0.469705 + 0.170959i) q^{88} +(-1.94800 - 3.37404i) q^{89} +(0.480985 - 0.833090i) q^{91} +(-4.39307 + 3.68622i) q^{92} +(0.528278 - 2.99601i) q^{94} +(-0.671582 + 3.80873i) q^{95} +(-6.47950 + 5.43694i) q^{97} +(2.51576 - 4.35743i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 30 q + 9 q^{8} + 3 q^{10} + 6 q^{11} + 3 q^{13} + 9 q^{14} + 12 q^{16} + 12 q^{17} + 24 q^{19} - 51 q^{22} - 18 q^{23} + 18 q^{26} - 60 q^{28} - 18 q^{29} + 12 q^{31} - 36 q^{32} - 69 q^{34} + 12 q^{35}+ \cdots + 15 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/405\mathbb{Z}\right)^\times\).

\(n\) \(82\) \(326\)
\(\chi(n)\) \(1\) \(e\left(\frac{4}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.130038 + 0.737480i 0.0919505 + 0.521477i 0.995639 + 0.0932871i \(0.0297375\pi\)
−0.903689 + 0.428190i \(0.859151\pi\)
\(3\) 0 0
\(4\) 1.35242 0.492240i 0.676209 0.246120i
\(5\) 0.766044 + 0.642788i 0.342585 + 0.287463i
\(6\) 0 0
\(7\) 0.498180 + 0.181323i 0.188294 + 0.0685335i 0.434446 0.900698i \(-0.356944\pi\)
−0.246152 + 0.969231i \(0.579166\pi\)
\(8\) 1.28774 + 2.23043i 0.455285 + 0.788576i
\(9\) 0 0
\(10\) −0.374428 + 0.648529i −0.118405 + 0.205083i
\(11\) 0.148674 0.124752i 0.0448270 0.0376143i −0.620099 0.784524i \(-0.712908\pi\)
0.664926 + 0.746909i \(0.268463\pi\)
\(12\) 0 0
\(13\) 0.315087 1.78695i 0.0873895 0.495611i −0.909426 0.415866i \(-0.863478\pi\)
0.996815 0.0797445i \(-0.0254104\pi\)
\(14\) −0.0689397 + 0.390976i −0.0184249 + 0.104493i
\(15\) 0 0
\(16\) 0.727561 0.610496i 0.181890 0.152624i
\(17\) −0.226222 + 0.391829i −0.0548670 + 0.0950324i −0.892154 0.451731i \(-0.850807\pi\)
0.837287 + 0.546763i \(0.184140\pi\)
\(18\) 0 0
\(19\) 1.93374 + 3.34934i 0.443631 + 0.768392i 0.997956 0.0639089i \(-0.0203567\pi\)
−0.554325 + 0.832301i \(0.687023\pi\)
\(20\) 1.35242 + 0.492240i 0.302410 + 0.110068i
\(21\) 0 0
\(22\) 0.111336 + 0.0934217i 0.0237368 + 0.0199176i
\(23\) −3.74433 + 1.36283i −0.780747 + 0.284169i −0.701484 0.712685i \(-0.747479\pi\)
−0.0792630 + 0.996854i \(0.525257\pi\)
\(24\) 0 0
\(25\) 0.173648 + 0.984808i 0.0347296 + 0.196962i
\(26\) 1.35881 0.266485
\(27\) 0 0
\(28\) 0.763002 0.144194
\(29\) −1.67673 9.50919i −0.311360 1.76581i −0.591940 0.805982i \(-0.701638\pi\)
0.280579 0.959831i \(-0.409473\pi\)
\(30\) 0 0
\(31\) 8.56046 3.11575i 1.53750 0.559606i 0.572059 0.820213i \(-0.306145\pi\)
0.965445 + 0.260607i \(0.0839226\pi\)
\(32\) 4.49070 + 3.76814i 0.793851 + 0.666120i
\(33\) 0 0
\(34\) −0.318383 0.115882i −0.0546023 0.0198736i
\(35\) 0.265076 + 0.459125i 0.0448060 + 0.0776063i
\(36\) 0 0
\(37\) −5.33354 + 9.23795i −0.876828 + 1.51871i −0.0220251 + 0.999757i \(0.507011\pi\)
−0.854803 + 0.518953i \(0.826322\pi\)
\(38\) −2.21861 + 1.86164i −0.359907 + 0.301997i
\(39\) 0 0
\(40\) −0.447227 + 2.53635i −0.0707128 + 0.401032i
\(41\) −1.24032 + 7.03423i −0.193706 + 1.09856i 0.720543 + 0.693410i \(0.243893\pi\)
−0.914249 + 0.405152i \(0.867219\pi\)
\(42\) 0 0
\(43\) −0.876764 + 0.735692i −0.133705 + 0.112192i −0.707188 0.707026i \(-0.750036\pi\)
0.573483 + 0.819218i \(0.305592\pi\)
\(44\) 0.139662 0.241901i 0.0210548 0.0364679i
\(45\) 0 0
\(46\) −1.49196 2.58415i −0.219978 0.381012i
\(47\) −3.81750 1.38946i −0.556840 0.202673i 0.0482429 0.998836i \(-0.484638\pi\)
−0.605083 + 0.796162i \(0.706860\pi\)
\(48\) 0 0
\(49\) −5.14701 4.31885i −0.735287 0.616979i
\(50\) −0.703695 + 0.256124i −0.0995175 + 0.0362214i
\(51\) 0 0
\(52\) −0.453478 2.57180i −0.0628861 0.356645i
\(53\) 3.04103 0.417717 0.208859 0.977946i \(-0.433025\pi\)
0.208859 + 0.977946i \(0.433025\pi\)
\(54\) 0 0
\(55\) 0.194080 0.0261698
\(56\) 0.237098 + 1.34465i 0.0316836 + 0.179687i
\(57\) 0 0
\(58\) 6.79480 2.47311i 0.892201 0.324735i
\(59\) −2.03716 1.70938i −0.265215 0.222542i 0.500476 0.865751i \(-0.333158\pi\)
−0.765691 + 0.643208i \(0.777603\pi\)
\(60\) 0 0
\(61\) −11.2031 4.07760i −1.43441 0.522084i −0.496220 0.868197i \(-0.665279\pi\)
−0.938193 + 0.346113i \(0.887501\pi\)
\(62\) 3.41099 + 5.90800i 0.433196 + 0.750317i
\(63\) 0 0
\(64\) −1.24521 + 2.15676i −0.155651 + 0.269595i
\(65\) 1.39000 1.16635i 0.172408 0.144668i
\(66\) 0 0
\(67\) −1.01879 + 5.77785i −0.124465 + 0.705877i 0.857159 + 0.515052i \(0.172227\pi\)
−0.981624 + 0.190825i \(0.938884\pi\)
\(68\) −0.113074 + 0.641272i −0.0137122 + 0.0777656i
\(69\) 0 0
\(70\) −0.304126 + 0.255192i −0.0363500 + 0.0305012i
\(71\) 4.55517 7.88979i 0.540599 0.936346i −0.458270 0.888813i \(-0.651531\pi\)
0.998870 0.0475327i \(-0.0151358\pi\)
\(72\) 0 0
\(73\) −2.99330 5.18454i −0.350339 0.606804i 0.635970 0.771714i \(-0.280600\pi\)
−0.986309 + 0.164909i \(0.947267\pi\)
\(74\) −7.50637 2.73209i −0.872597 0.317599i
\(75\) 0 0
\(76\) 4.26391 + 3.57785i 0.489104 + 0.410407i
\(77\) 0.0966869 0.0351912i 0.0110185 0.00401041i
\(78\) 0 0
\(79\) −2.17315 12.3246i −0.244499 1.38662i −0.821653 0.569987i \(-0.806948\pi\)
0.577154 0.816635i \(-0.304163\pi\)
\(80\) 0.949763 0.106187
\(81\) 0 0
\(82\) −5.34889 −0.590686
\(83\) −2.37738 13.4828i −0.260951 1.47993i −0.780322 0.625378i \(-0.784945\pi\)
0.519371 0.854549i \(-0.326166\pi\)
\(84\) 0 0
\(85\) −0.425159 + 0.154745i −0.0461150 + 0.0167845i
\(86\) −0.656570 0.550928i −0.0707998 0.0594081i
\(87\) 0 0
\(88\) 0.469705 + 0.170959i 0.0500707 + 0.0182243i
\(89\) −1.94800 3.37404i −0.206488 0.357648i 0.744118 0.668048i \(-0.232870\pi\)
−0.950606 + 0.310401i \(0.899537\pi\)
\(90\) 0 0
\(91\) 0.480985 0.833090i 0.0504209 0.0873316i
\(92\) −4.39307 + 3.68622i −0.458009 + 0.384315i
\(93\) 0 0
\(94\) 0.528278 2.99601i 0.0544877 0.309015i
\(95\) −0.671582 + 3.80873i −0.0689029 + 0.390768i
\(96\) 0 0
\(97\) −6.47950 + 5.43694i −0.657893 + 0.552038i −0.909455 0.415803i \(-0.863500\pi\)
0.251561 + 0.967841i \(0.419056\pi\)
\(98\) 2.51576 4.35743i 0.254130 0.440167i
\(99\) 0 0
\(100\) 0.719607 + 1.24640i 0.0719607 + 0.124640i
\(101\) 4.71752 + 1.71704i 0.469411 + 0.170852i 0.565885 0.824484i \(-0.308534\pi\)
−0.0964746 + 0.995335i \(0.530757\pi\)
\(102\) 0 0
\(103\) −8.67406 7.27840i −0.854680 0.717162i 0.106135 0.994352i \(-0.466152\pi\)
−0.960815 + 0.277190i \(0.910597\pi\)
\(104\) 4.39142 1.59834i 0.430614 0.156731i
\(105\) 0 0
\(106\) 0.395448 + 2.24270i 0.0384093 + 0.217830i
\(107\) 10.1961 0.985690 0.492845 0.870117i \(-0.335957\pi\)
0.492845 + 0.870117i \(0.335957\pi\)
\(108\) 0 0
\(109\) 1.18543 0.113544 0.0567718 0.998387i \(-0.481919\pi\)
0.0567718 + 0.998387i \(0.481919\pi\)
\(110\) 0.0252377 + 0.143130i 0.00240632 + 0.0136469i
\(111\) 0 0
\(112\) 0.473153 0.172214i 0.0447087 0.0162727i
\(113\) −14.4355 12.1128i −1.35797 1.13948i −0.976602 0.215054i \(-0.931007\pi\)
−0.381372 0.924422i \(-0.624548\pi\)
\(114\) 0 0
\(115\) −3.74433 1.36283i −0.349161 0.127084i
\(116\) −6.94844 12.0351i −0.645147 1.11743i
\(117\) 0 0
\(118\) 0.995725 1.72465i 0.0916639 0.158767i
\(119\) −0.183747 + 0.154182i −0.0168440 + 0.0141338i
\(120\) 0 0
\(121\) −1.90359 + 10.7958i −0.173054 + 0.981435i
\(122\) 1.55032 8.79232i 0.140360 0.796019i
\(123\) 0 0
\(124\) 10.0436 8.42760i 0.901944 0.756821i
\(125\) −0.500000 + 0.866025i −0.0447214 + 0.0774597i
\(126\) 0 0
\(127\) 9.57059 + 16.5768i 0.849253 + 1.47095i 0.881876 + 0.471481i \(0.156281\pi\)
−0.0326233 + 0.999468i \(0.510386\pi\)
\(128\) 9.26483 + 3.37212i 0.818903 + 0.298056i
\(129\) 0 0
\(130\) 1.04091 + 0.873428i 0.0912939 + 0.0766047i
\(131\) −9.43779 + 3.43507i −0.824583 + 0.300124i −0.719634 0.694354i \(-0.755690\pi\)
−0.104949 + 0.994478i \(0.533468\pi\)
\(132\) 0 0
\(133\) 0.356040 + 2.01921i 0.0308726 + 0.175087i
\(134\) −4.39353 −0.379543
\(135\) 0 0
\(136\) −1.16526 −0.0999203
\(137\) 0.145522 + 0.825297i 0.0124328 + 0.0705099i 0.990393 0.138282i \(-0.0441580\pi\)
−0.977960 + 0.208792i \(0.933047\pi\)
\(138\) 0 0
\(139\) 7.81972 2.84614i 0.663260 0.241407i 0.0116166 0.999933i \(-0.496302\pi\)
0.651643 + 0.758526i \(0.274080\pi\)
\(140\) 0.584493 + 0.490448i 0.0493987 + 0.0414504i
\(141\) 0 0
\(142\) 6.41090 + 2.33338i 0.537991 + 0.195813i
\(143\) −0.176081 0.304981i −0.0147246 0.0255038i
\(144\) 0 0
\(145\) 4.82794 8.36225i 0.400939 0.694447i
\(146\) 3.43425 2.88168i 0.284221 0.238490i
\(147\) 0 0
\(148\) −2.66588 + 15.1190i −0.219134 + 1.24277i
\(149\) −0.504757 + 2.86262i −0.0413513 + 0.234515i −0.998478 0.0551555i \(-0.982435\pi\)
0.957126 + 0.289670i \(0.0935457\pi\)
\(150\) 0 0
\(151\) −8.94423 + 7.50510i −0.727871 + 0.610757i −0.929550 0.368695i \(-0.879805\pi\)
0.201679 + 0.979452i \(0.435360\pi\)
\(152\) −4.98031 + 8.62616i −0.403957 + 0.699674i
\(153\) 0 0
\(154\) 0.0385257 + 0.0667285i 0.00310449 + 0.00537714i
\(155\) 8.56046 + 3.11575i 0.687593 + 0.250263i
\(156\) 0 0
\(157\) −17.2442 14.4696i −1.37624 1.15480i −0.970580 0.240777i \(-0.922598\pi\)
−0.405659 0.914025i \(-0.632958\pi\)
\(158\) 8.80653 3.20532i 0.700610 0.255001i
\(159\) 0 0
\(160\) 1.01796 + 5.77313i 0.0804767 + 0.456406i
\(161\) −2.11246 −0.166485
\(162\) 0 0
\(163\) 9.62546 0.753924 0.376962 0.926229i \(-0.376969\pi\)
0.376962 + 0.926229i \(0.376969\pi\)
\(164\) 1.78509 + 10.1238i 0.139392 + 0.790533i
\(165\) 0 0
\(166\) 9.63412 3.50653i 0.747753 0.272160i
\(167\) 12.2334 + 10.2651i 0.946651 + 0.794334i 0.978730 0.205151i \(-0.0657685\pi\)
−0.0320795 + 0.999485i \(0.510213\pi\)
\(168\) 0 0
\(169\) 9.12209 + 3.32017i 0.701700 + 0.255398i
\(170\) −0.169408 0.293423i −0.0129930 0.0225046i
\(171\) 0 0
\(172\) −0.823614 + 1.42654i −0.0628000 + 0.108773i
\(173\) −4.38627 + 3.68052i −0.333482 + 0.279825i −0.794117 0.607765i \(-0.792066\pi\)
0.460635 + 0.887590i \(0.347622\pi\)
\(174\) 0 0
\(175\) −0.0920599 + 0.522098i −0.00695908 + 0.0394669i
\(176\) 0.0320086 0.181530i 0.00241274 0.0136833i
\(177\) 0 0
\(178\) 2.23497 1.87537i 0.167518 0.140565i
\(179\) −6.34218 + 10.9850i −0.474037 + 0.821056i −0.999558 0.0297242i \(-0.990537\pi\)
0.525521 + 0.850781i \(0.323870\pi\)
\(180\) 0 0
\(181\) −4.56381 7.90474i −0.339225 0.587555i 0.645062 0.764130i \(-0.276831\pi\)
−0.984287 + 0.176575i \(0.943498\pi\)
\(182\) 0.676933 + 0.246384i 0.0501776 + 0.0182632i
\(183\) 0 0
\(184\) −7.86141 6.59651i −0.579551 0.486301i
\(185\) −10.0238 + 3.64835i −0.736962 + 0.268232i
\(186\) 0 0
\(187\) 0.0152482 + 0.0864766i 0.00111506 + 0.00632380i
\(188\) −5.84681 −0.426422
\(189\) 0 0
\(190\) −2.89619 −0.210112
\(191\) 4.29300 + 24.3468i 0.310631 + 1.76167i 0.595738 + 0.803179i \(0.296860\pi\)
−0.285108 + 0.958496i \(0.592029\pi\)
\(192\) 0 0
\(193\) −4.52691 + 1.64766i −0.325854 + 0.118601i −0.499767 0.866160i \(-0.666581\pi\)
0.173913 + 0.984761i \(0.444359\pi\)
\(194\) −4.85222 4.07149i −0.348369 0.292316i
\(195\) 0 0
\(196\) −9.08682 3.30733i −0.649058 0.236238i
\(197\) 8.57097 + 14.8454i 0.610656 + 1.05769i 0.991130 + 0.132896i \(0.0424276\pi\)
−0.380474 + 0.924792i \(0.624239\pi\)
\(198\) 0 0
\(199\) 9.54372 16.5302i 0.676537 1.17180i −0.299481 0.954102i \(-0.596813\pi\)
0.976017 0.217693i \(-0.0698533\pi\)
\(200\) −1.97293 + 1.65549i −0.139507 + 0.117060i
\(201\) 0 0
\(202\) −0.652825 + 3.70236i −0.0459326 + 0.260497i
\(203\) 0.888920 5.04132i 0.0623900 0.353831i
\(204\) 0 0
\(205\) −5.47166 + 4.59127i −0.382157 + 0.320668i
\(206\) 4.23972 7.34341i 0.295395 0.511639i
\(207\) 0 0
\(208\) −0.861681 1.49247i −0.0597468 0.103484i
\(209\) 0.705336 + 0.256721i 0.0487891 + 0.0177578i
\(210\) 0 0
\(211\) 6.00165 + 5.03598i 0.413171 + 0.346691i 0.825558 0.564317i \(-0.190861\pi\)
−0.412387 + 0.911009i \(0.635305\pi\)
\(212\) 4.11274 1.49692i 0.282464 0.102809i
\(213\) 0 0
\(214\) 1.32587 + 7.51939i 0.0906346 + 0.514015i
\(215\) −1.14453 −0.0780565
\(216\) 0 0
\(217\) 4.82960 0.327855
\(218\) 0.154151 + 0.874231i 0.0104404 + 0.0592104i
\(219\) 0 0
\(220\) 0.262478 0.0955341i 0.0176963 0.00644091i
\(221\) 0.628898 + 0.527708i 0.0423043 + 0.0354975i
\(222\) 0 0
\(223\) 13.6246 + 4.95897i 0.912374 + 0.332077i 0.755200 0.655494i \(-0.227540\pi\)
0.157174 + 0.987571i \(0.449762\pi\)
\(224\) 1.55393 + 2.69148i 0.103826 + 0.179832i
\(225\) 0 0
\(226\) 7.05579 12.2210i 0.469344 0.812928i
\(227\) −0.344364 + 0.288955i −0.0228562 + 0.0191786i −0.654144 0.756370i \(-0.726971\pi\)
0.631288 + 0.775549i \(0.282527\pi\)
\(228\) 0 0
\(229\) −2.41140 + 13.6757i −0.159350 + 0.903716i 0.795351 + 0.606149i \(0.207286\pi\)
−0.954701 + 0.297567i \(0.903825\pi\)
\(230\) 0.518152 2.93859i 0.0341660 0.193765i
\(231\) 0 0
\(232\) 19.0504 15.9852i 1.25072 1.04948i
\(233\) −9.85639 + 17.0718i −0.645713 + 1.11841i 0.338423 + 0.940994i \(0.390107\pi\)
−0.984136 + 0.177414i \(0.943227\pi\)
\(234\) 0 0
\(235\) −2.03125 3.51823i −0.132504 0.229504i
\(236\) −3.59652 1.30902i −0.234113 0.0852102i
\(237\) 0 0
\(238\) −0.137600 0.115460i −0.00891928 0.00748417i
\(239\) 18.7092 6.80960i 1.21020 0.440477i 0.343427 0.939180i \(-0.388412\pi\)
0.866773 + 0.498703i \(0.166190\pi\)
\(240\) 0 0
\(241\) 1.30157 + 7.38156i 0.0838414 + 0.475488i 0.997601 + 0.0692320i \(0.0220549\pi\)
−0.913759 + 0.406256i \(0.866834\pi\)
\(242\) −8.20922 −0.527708
\(243\) 0 0
\(244\) −17.1585 −1.09846
\(245\) −1.16673 6.61686i −0.0745397 0.422736i
\(246\) 0 0
\(247\) 6.59440 2.40017i 0.419592 0.152719i
\(248\) 17.9731 + 15.0812i 1.14129 + 0.957659i
\(249\) 0 0
\(250\) −0.703695 0.256124i −0.0445056 0.0161987i
\(251\) −7.99942 13.8554i −0.504919 0.874545i −0.999984 0.00568921i \(-0.998189\pi\)
0.495065 0.868856i \(-0.335144\pi\)
\(252\) 0 0
\(253\) −0.386670 + 0.669732i −0.0243097 + 0.0421057i
\(254\) −10.9805 + 9.21372i −0.688977 + 0.578120i
\(255\) 0 0
\(256\) −2.14701 + 12.1763i −0.134188 + 0.761018i
\(257\) 2.82207 16.0048i 0.176036 0.998350i −0.760905 0.648863i \(-0.775245\pi\)
0.936941 0.349487i \(-0.113644\pi\)
\(258\) 0 0
\(259\) −4.33211 + 3.63507i −0.269184 + 0.225872i
\(260\) 1.30574 2.26161i 0.0809785 0.140259i
\(261\) 0 0
\(262\) −3.76056 6.51349i −0.232328 0.402405i
\(263\) 8.91004 + 3.24299i 0.549417 + 0.199971i 0.601787 0.798656i \(-0.294456\pi\)
−0.0523707 + 0.998628i \(0.516678\pi\)
\(264\) 0 0
\(265\) 2.32956 + 1.95473i 0.143104 + 0.120078i
\(266\) −1.44283 + 0.525145i −0.0884653 + 0.0321987i
\(267\) 0 0
\(268\) 1.46626 + 8.31556i 0.0895660 + 0.507954i
\(269\) 7.66734 0.467486 0.233743 0.972298i \(-0.424903\pi\)
0.233743 + 0.972298i \(0.424903\pi\)
\(270\) 0 0
\(271\) 4.50868 0.273883 0.136941 0.990579i \(-0.456273\pi\)
0.136941 + 0.990579i \(0.456273\pi\)
\(272\) 0.0746193 + 0.423187i 0.00452446 + 0.0256595i
\(273\) 0 0
\(274\) −0.589716 + 0.214639i −0.0356261 + 0.0129668i
\(275\) 0.148674 + 0.124752i 0.00896539 + 0.00752286i
\(276\) 0 0
\(277\) 21.0211 + 7.65104i 1.26303 + 0.459707i 0.884786 0.465998i \(-0.154305\pi\)
0.378248 + 0.925704i \(0.376527\pi\)
\(278\) 3.11583 + 5.39678i 0.186875 + 0.323677i
\(279\) 0 0
\(280\) −0.682697 + 1.18247i −0.0407990 + 0.0706659i
\(281\) 21.4261 17.9786i 1.27817 1.07252i 0.284681 0.958622i \(-0.408112\pi\)
0.993493 0.113893i \(-0.0363320\pi\)
\(282\) 0 0
\(283\) 1.06339 6.03078i 0.0632119 0.358493i −0.936752 0.349994i \(-0.886184\pi\)
0.999964 0.00849869i \(-0.00270525\pi\)
\(284\) 2.27683 12.9125i 0.135105 0.766218i
\(285\) 0 0
\(286\) 0.202020 0.169515i 0.0119457 0.0100236i
\(287\) −1.89337 + 3.27941i −0.111762 + 0.193578i
\(288\) 0 0
\(289\) 8.39765 + 14.5452i 0.493979 + 0.855597i
\(290\) 6.79480 + 2.47311i 0.399004 + 0.145226i
\(291\) 0 0
\(292\) −6.60023 5.53825i −0.386249 0.324101i
\(293\) −4.43261 + 1.61334i −0.258956 + 0.0942523i −0.468236 0.883604i \(-0.655110\pi\)
0.209280 + 0.977856i \(0.432888\pi\)
\(294\) 0 0
\(295\) −0.461786 2.61892i −0.0268862 0.152479i
\(296\) −27.4728 −1.59682
\(297\) 0 0
\(298\) −2.17676 −0.126096
\(299\) 1.25551 + 7.12034i 0.0726079 + 0.411780i
\(300\) 0 0
\(301\) −0.570184 + 0.207530i −0.0328648 + 0.0119618i
\(302\) −6.69795 5.62025i −0.385424 0.323409i
\(303\) 0 0
\(304\) 3.45168 + 1.25631i 0.197967 + 0.0720542i
\(305\) −5.96106 10.3249i −0.341329 0.591200i
\(306\) 0 0
\(307\) −3.57293 + 6.18850i −0.203918 + 0.353196i −0.949787 0.312896i \(-0.898701\pi\)
0.745870 + 0.666092i \(0.232034\pi\)
\(308\) 0.113439 0.0951864i 0.00646377 0.00542375i
\(309\) 0 0
\(310\) −1.18462 + 6.71833i −0.0672821 + 0.381576i
\(311\) −2.13051 + 12.0827i −0.120810 + 0.685147i 0.862899 + 0.505377i \(0.168647\pi\)
−0.983709 + 0.179770i \(0.942465\pi\)
\(312\) 0 0
\(313\) 3.81932 3.20479i 0.215881 0.181146i −0.528434 0.848974i \(-0.677221\pi\)
0.744315 + 0.667829i \(0.232776\pi\)
\(314\) 8.42866 14.5989i 0.475657 0.823862i
\(315\) 0 0
\(316\) −9.00566 15.5983i −0.506608 0.877471i
\(317\) −28.8548 10.5023i −1.62065 0.589868i −0.637144 0.770745i \(-0.719884\pi\)
−0.983506 + 0.180877i \(0.942106\pi\)
\(318\) 0 0
\(319\) −1.43558 1.20460i −0.0803771 0.0674444i
\(320\) −2.34023 + 0.851772i −0.130823 + 0.0476155i
\(321\) 0 0
\(322\) −0.274699 1.55790i −0.0153084 0.0868183i
\(323\) −1.74982 −0.0973628
\(324\) 0 0
\(325\) 1.81452 0.100651
\(326\) 1.25167 + 7.09858i 0.0693237 + 0.393154i
\(327\) 0 0
\(328\) −17.2866 + 6.29180i −0.954491 + 0.347406i
\(329\) −1.64986 1.38440i −0.0909599 0.0763244i
\(330\) 0 0
\(331\) 8.70541 + 3.16851i 0.478493 + 0.174157i 0.569996 0.821648i \(-0.306945\pi\)
−0.0915030 + 0.995805i \(0.529167\pi\)
\(332\) −9.85197 17.0641i −0.540697 0.936515i
\(333\) 0 0
\(334\) −5.97947 + 10.3567i −0.327182 + 0.566696i
\(335\) −4.49437 + 3.77123i −0.245554 + 0.206044i
\(336\) 0 0
\(337\) 2.94490 16.7013i 0.160419 0.909780i −0.793244 0.608904i \(-0.791610\pi\)
0.953663 0.300877i \(-0.0972792\pi\)
\(338\) −1.26234 + 7.15911i −0.0686625 + 0.389404i
\(339\) 0 0
\(340\) −0.498821 + 0.418561i −0.0270524 + 0.0226996i
\(341\) 0.884022 1.53117i 0.0478725 0.0829175i
\(342\) 0 0
\(343\) −3.63656 6.29871i −0.196356 0.340098i
\(344\) −2.76995 1.00818i −0.149346 0.0543574i
\(345\) 0 0
\(346\) −3.28469 2.75618i −0.176586 0.148173i
\(347\) 20.8779 7.59893i 1.12078 0.407932i 0.285845 0.958276i \(-0.407726\pi\)
0.834938 + 0.550344i \(0.185503\pi\)
\(348\) 0 0
\(349\) 3.49006 + 19.7931i 0.186819 + 1.05950i 0.923596 + 0.383367i \(0.125235\pi\)
−0.736777 + 0.676135i \(0.763653\pi\)
\(350\) −0.397008 −0.0212210
\(351\) 0 0
\(352\) 1.13774 0.0606416
\(353\) −2.28369 12.9515i −0.121549 0.689337i −0.983298 0.182003i \(-0.941742\pi\)
0.861749 0.507334i \(-0.169369\pi\)
\(354\) 0 0
\(355\) 8.56092 3.11592i 0.454367 0.165376i
\(356\) −4.29536 3.60423i −0.227653 0.191024i
\(357\) 0 0
\(358\) −8.92593 3.24877i −0.471750 0.171703i
\(359\) 10.1145 + 17.5188i 0.533822 + 0.924608i 0.999219 + 0.0395056i \(0.0125783\pi\)
−0.465397 + 0.885102i \(0.654088\pi\)
\(360\) 0 0
\(361\) 2.02127 3.50095i 0.106383 0.184260i
\(362\) 5.23612 4.39363i 0.275204 0.230924i
\(363\) 0 0
\(364\) 0.240412 1.36345i 0.0126010 0.0714640i
\(365\) 1.03956 5.89564i 0.0544131 0.308592i
\(366\) 0 0
\(367\) 15.3312 12.8644i 0.800285 0.671519i −0.147983 0.988990i \(-0.547278\pi\)
0.948268 + 0.317471i \(0.102834\pi\)
\(368\) −1.89223 + 3.27744i −0.0986393 + 0.170848i
\(369\) 0 0
\(370\) −3.99405 6.91790i −0.207641 0.359645i
\(371\) 1.51498 + 0.551407i 0.0786538 + 0.0286276i
\(372\) 0 0
\(373\) −17.7658 14.9073i −0.919877 0.771869i 0.0540952 0.998536i \(-0.482773\pi\)
−0.973972 + 0.226667i \(0.927217\pi\)
\(374\) −0.0617919 + 0.0224904i −0.00319518 + 0.00116295i
\(375\) 0 0
\(376\) −1.81686 10.3039i −0.0936974 0.531385i
\(377\) −17.5208 −0.902366
\(378\) 0 0
\(379\) −16.0635 −0.825125 −0.412562 0.910929i \(-0.635366\pi\)
−0.412562 + 0.910929i \(0.635366\pi\)
\(380\) 0.966550 + 5.48158i 0.0495830 + 0.281199i
\(381\) 0 0
\(382\) −17.3970 + 6.33200i −0.890110 + 0.323974i
\(383\) −3.84624 3.22738i −0.196534 0.164911i 0.539210 0.842171i \(-0.318723\pi\)
−0.735744 + 0.677260i \(0.763167\pi\)
\(384\) 0 0
\(385\) 0.0966869 + 0.0351912i 0.00492762 + 0.00179351i
\(386\) −1.80378 3.12425i −0.0918102 0.159020i
\(387\) 0 0
\(388\) −6.08671 + 10.5425i −0.309006 + 0.535214i
\(389\) 23.2082 19.4740i 1.17670 0.987371i 0.176707 0.984263i \(-0.443455\pi\)
0.999995 0.00310704i \(-0.000989004\pi\)
\(390\) 0 0
\(391\) 0.313058 1.77544i 0.0158320 0.0897878i
\(392\) 3.00489 17.0416i 0.151770 0.860730i
\(393\) 0 0
\(394\) −9.83360 + 8.25137i −0.495410 + 0.415698i
\(395\) 6.25735 10.8380i 0.314841 0.545321i
\(396\) 0 0
\(397\) −7.31880 12.6765i −0.367320 0.636217i 0.621826 0.783156i \(-0.286391\pi\)
−0.989146 + 0.146939i \(0.953058\pi\)
\(398\) 13.4317 + 4.88875i 0.673272 + 0.245051i
\(399\) 0 0
\(400\) 0.727561 + 0.610496i 0.0363780 + 0.0305248i
\(401\) −10.4806 + 3.81464i −0.523378 + 0.190494i −0.590179 0.807272i \(-0.700943\pi\)
0.0668011 + 0.997766i \(0.478721\pi\)
\(402\) 0 0
\(403\) −2.87040 16.2788i −0.142985 0.810907i
\(404\) 7.22526 0.359470
\(405\) 0 0
\(406\) 3.83346 0.190252
\(407\) 0.359498 + 2.03882i 0.0178197 + 0.101060i
\(408\) 0 0
\(409\) −16.7073 + 6.08096i −0.826123 + 0.300684i −0.720267 0.693697i \(-0.755981\pi\)
−0.105856 + 0.994381i \(0.533758\pi\)
\(410\) −4.09749 3.43820i −0.202361 0.169801i
\(411\) 0 0
\(412\) −15.3137 5.57372i −0.754451 0.274598i
\(413\) −0.704922 1.22096i −0.0346870 0.0600796i
\(414\) 0 0
\(415\) 6.84538 11.8565i 0.336027 0.582015i
\(416\) 8.14845 6.83736i 0.399511 0.335229i
\(417\) 0 0
\(418\) −0.0976066 + 0.553555i −0.00477410 + 0.0270753i
\(419\) −1.90918 + 10.8275i −0.0932697 + 0.528959i 0.901994 + 0.431748i \(0.142103\pi\)
−0.995264 + 0.0972104i \(0.969008\pi\)
\(420\) 0 0
\(421\) −28.0171 + 23.5092i −1.36547 + 1.14577i −0.391221 + 0.920297i \(0.627947\pi\)
−0.974250 + 0.225469i \(0.927608\pi\)
\(422\) −2.93350 + 5.08096i −0.142800 + 0.247337i
\(423\) 0 0
\(424\) 3.91605 + 6.78280i 0.190180 + 0.329402i
\(425\) −0.425159 0.154745i −0.0206232 0.00750624i
\(426\) 0 0
\(427\) −4.84181 4.06276i −0.234312 0.196611i
\(428\) 13.7893 5.01891i 0.666533 0.242598i
\(429\) 0 0
\(430\) −0.148832 0.844070i −0.00717734 0.0407047i
\(431\) 25.0324 1.20577 0.602883 0.797829i \(-0.294018\pi\)
0.602883 + 0.797829i \(0.294018\pi\)
\(432\) 0 0
\(433\) 8.75430 0.420705 0.210352 0.977626i \(-0.432539\pi\)
0.210352 + 0.977626i \(0.432539\pi\)
\(434\) 0.628030 + 3.56174i 0.0301464 + 0.170969i
\(435\) 0 0
\(436\) 1.60320 0.583516i 0.0767793 0.0279454i
\(437\) −11.8051 9.90569i −0.564717 0.473854i
\(438\) 0 0
\(439\) −9.76542 3.55432i −0.466078 0.169638i 0.0982969 0.995157i \(-0.468661\pi\)
−0.564375 + 0.825519i \(0.690883\pi\)
\(440\) 0.249925 + 0.432883i 0.0119147 + 0.0206369i
\(441\) 0 0
\(442\) −0.307394 + 0.532422i −0.0146212 + 0.0253247i
\(443\) −30.3175 + 25.4394i −1.44043 + 1.20866i −0.501217 + 0.865322i \(0.667114\pi\)
−0.939211 + 0.343340i \(0.888442\pi\)
\(444\) 0 0
\(445\) 0.676535 3.83682i 0.0320708 0.181883i
\(446\) −1.88542 + 10.6928i −0.0892773 + 0.506317i
\(447\) 0 0
\(448\) −1.01141 + 0.848672i −0.0477845 + 0.0400960i
\(449\) −9.88388 + 17.1194i −0.466449 + 0.807914i −0.999266 0.0383171i \(-0.987800\pi\)
0.532816 + 0.846231i \(0.321134\pi\)
\(450\) 0 0
\(451\) 0.693133 + 1.20054i 0.0326384 + 0.0565313i
\(452\) −25.4852 9.27585i −1.19872 0.436299i
\(453\) 0 0
\(454\) −0.257879 0.216386i −0.0121029 0.0101555i
\(455\) 0.903956 0.329013i 0.0423781 0.0154244i
\(456\) 0 0
\(457\) −1.84752 10.4778i −0.0864232 0.490131i −0.997040 0.0768795i \(-0.975504\pi\)
0.910617 0.413251i \(-0.135607\pi\)
\(458\) −10.3991 −0.485919
\(459\) 0 0
\(460\) −5.73474 −0.267384
\(461\) 4.81686 + 27.3178i 0.224343 + 1.27231i 0.863936 + 0.503601i \(0.167992\pi\)
−0.639593 + 0.768714i \(0.720897\pi\)
\(462\) 0 0
\(463\) 23.3502 8.49879i 1.08518 0.394972i 0.263345 0.964702i \(-0.415174\pi\)
0.821832 + 0.569730i \(0.192952\pi\)
\(464\) −7.02525 5.89488i −0.326139 0.273663i
\(465\) 0 0
\(466\) −13.8718 5.04892i −0.642598 0.233886i
\(467\) 4.20002 + 7.27465i 0.194354 + 0.336630i 0.946688 0.322151i \(-0.104406\pi\)
−0.752335 + 0.658781i \(0.771072\pi\)
\(468\) 0 0
\(469\) −1.55520 + 2.69368i −0.0718123 + 0.124383i
\(470\) 2.33048 1.95551i 0.107497 0.0902009i
\(471\) 0 0
\(472\) 1.18932 6.74497i 0.0547429 0.310463i
\(473\) −0.0385727 + 0.218757i −0.00177358 + 0.0100585i
\(474\) 0 0
\(475\) −2.96267 + 2.48597i −0.135936 + 0.114064i
\(476\) −0.172608 + 0.298966i −0.00791148 + 0.0137031i
\(477\) 0 0
\(478\) 7.45485 + 12.9122i 0.340977 + 0.590589i
\(479\) −1.81040 0.658932i −0.0827193 0.0301074i 0.300329 0.953836i \(-0.402904\pi\)
−0.383048 + 0.923728i \(0.625126\pi\)
\(480\) 0 0
\(481\) 14.8272 + 12.4415i 0.676064 + 0.567285i
\(482\) −5.27450 + 1.91976i −0.240247 + 0.0874427i
\(483\) 0 0
\(484\) 2.73967 + 15.5374i 0.124531 + 0.706248i
\(485\) −8.45838 −0.384075
\(486\) 0 0
\(487\) 6.91110 0.313172 0.156586 0.987664i \(-0.449951\pi\)
0.156586 + 0.987664i \(0.449951\pi\)
\(488\) −5.33189 30.2387i −0.241364 1.36884i
\(489\) 0 0
\(490\) 4.72808 1.72088i 0.213593 0.0777415i
\(491\) 9.83941 + 8.25624i 0.444046 + 0.372599i 0.837221 0.546865i \(-0.184179\pi\)
−0.393175 + 0.919464i \(0.628623\pi\)
\(492\) 0 0
\(493\) 4.10529 + 1.49420i 0.184893 + 0.0672955i
\(494\) 2.62760 + 4.55113i 0.118221 + 0.204765i
\(495\) 0 0
\(496\) 4.32610 7.49303i 0.194248 0.336447i
\(497\) 3.69989 3.10458i 0.165963 0.139259i
\(498\) 0 0
\(499\) 0.867688 4.92090i 0.0388431 0.220290i −0.959207 0.282704i \(-0.908769\pi\)
0.998050 + 0.0624137i \(0.0198798\pi\)
\(500\) −0.249917 + 1.41735i −0.0111766 + 0.0633858i
\(501\) 0 0
\(502\) 9.17785 7.70113i 0.409628 0.343718i
\(503\) 11.2981 19.5689i 0.503757 0.872532i −0.496234 0.868189i \(-0.665284\pi\)
0.999991 0.00434323i \(-0.00138250\pi\)
\(504\) 0 0
\(505\) 2.51014 + 4.34769i 0.111700 + 0.193470i
\(506\) −0.544195 0.198071i −0.0241924 0.00880532i
\(507\) 0 0
\(508\) 21.1032 + 17.7077i 0.936303 + 0.785651i
\(509\) −9.21782 + 3.35501i −0.408573 + 0.148708i −0.538127 0.842864i \(-0.680868\pi\)
0.129554 + 0.991572i \(0.458646\pi\)
\(510\) 0 0
\(511\) −0.551125 3.12559i −0.0243803 0.138268i
\(512\) 10.4599 0.462266
\(513\) 0 0
\(514\) 12.1702 0.536803
\(515\) −1.96625 11.1512i −0.0866433 0.491378i
\(516\) 0 0
\(517\) −0.740902 + 0.269666i −0.0325849 + 0.0118599i
\(518\) −3.24413 2.72215i −0.142539 0.119604i
\(519\) 0 0
\(520\) 4.39142 + 1.59834i 0.192576 + 0.0700921i
\(521\) 8.46385 + 14.6598i 0.370808 + 0.642258i 0.989690 0.143226i \(-0.0457474\pi\)
−0.618882 + 0.785484i \(0.712414\pi\)
\(522\) 0 0
\(523\) −18.8074 + 32.5754i −0.822390 + 1.42442i 0.0815076 + 0.996673i \(0.474027\pi\)
−0.903898 + 0.427749i \(0.859307\pi\)
\(524\) −11.0730 + 9.29131i −0.483724 + 0.405893i
\(525\) 0 0
\(526\) −1.23300 + 6.99268i −0.0537613 + 0.304896i
\(527\) −0.715726 + 4.05909i −0.0311775 + 0.176817i
\(528\) 0 0
\(529\) −5.45629 + 4.57837i −0.237230 + 0.199060i
\(530\) −1.13865 + 1.97219i −0.0494597 + 0.0856666i
\(531\) 0 0
\(532\) 1.47545 + 2.55555i 0.0639689 + 0.110797i
\(533\) 12.1790 + 4.43280i 0.527531 + 0.192006i
\(534\) 0 0
\(535\) 7.81063 + 6.55390i 0.337683 + 0.283350i
\(536\) −14.1990 + 5.16802i −0.613305 + 0.223225i
\(537\) 0 0
\(538\) 0.997042 + 5.65451i 0.0429855 + 0.243783i
\(539\) −1.30401 −0.0561679
\(540\) 0 0
\(541\) 17.1610 0.737810 0.368905 0.929467i \(-0.379733\pi\)
0.368905 + 0.929467i \(0.379733\pi\)
\(542\) 0.586298 + 3.32506i 0.0251837 + 0.142824i
\(543\) 0 0
\(544\) −2.49236 + 0.907146i −0.106859 + 0.0388936i
\(545\) 0.908093 + 0.761980i 0.0388984 + 0.0326396i
\(546\) 0 0
\(547\) −12.1470 4.42115i −0.519368 0.189035i 0.0690169 0.997615i \(-0.478014\pi\)
−0.588385 + 0.808581i \(0.700236\pi\)
\(548\) 0.603051 + 1.04451i 0.0257611 + 0.0446195i
\(549\) 0 0
\(550\) −0.0726692 + 0.125867i −0.00309862 + 0.00536698i
\(551\) 28.6072 24.0043i 1.21871 1.02262i
\(552\) 0 0
\(553\) 1.15210 6.53389i 0.0489924 0.277849i
\(554\) −2.90896 + 16.4975i −0.123590 + 0.700913i
\(555\) 0 0
\(556\) 9.17454 7.69836i 0.389087 0.326483i
\(557\) 6.44842 11.1690i 0.273229 0.473246i −0.696458 0.717597i \(-0.745242\pi\)
0.969687 + 0.244352i \(0.0785751\pi\)
\(558\) 0 0
\(559\) 1.03839 + 1.79854i 0.0439191 + 0.0760701i
\(560\) 0.473153 + 0.172214i 0.0199944 + 0.00727735i
\(561\) 0 0
\(562\) 16.0451 + 13.4634i 0.676821 + 0.567920i
\(563\) 2.66099 0.968522i 0.112147 0.0408183i −0.285337 0.958427i \(-0.592106\pi\)
0.397484 + 0.917609i \(0.369883\pi\)
\(564\) 0 0
\(565\) −3.27225 18.5579i −0.137665 0.780736i
\(566\) 4.58586 0.192758
\(567\) 0 0
\(568\) 23.4635 0.984506
\(569\) 0.717987 + 4.07191i 0.0300996 + 0.170703i 0.996152 0.0876432i \(-0.0279335\pi\)
−0.966052 + 0.258346i \(0.916822\pi\)
\(570\) 0 0
\(571\) −5.29347 + 1.92667i −0.221525 + 0.0806285i −0.450398 0.892828i \(-0.648718\pi\)
0.228873 + 0.973456i \(0.426496\pi\)
\(572\) −0.388259 0.325788i −0.0162339 0.0136219i
\(573\) 0 0
\(574\) −2.66471 0.969875i −0.111223 0.0404818i
\(575\) −1.99232 3.45080i −0.0830854 0.143908i
\(576\) 0 0
\(577\) 3.00546 5.20561i 0.125119 0.216712i −0.796661 0.604427i \(-0.793402\pi\)
0.921779 + 0.387715i \(0.126735\pi\)
\(578\) −9.63475 + 8.08451i −0.400753 + 0.336271i
\(579\) 0 0
\(580\) 2.41317 13.6858i 0.100201 0.568270i
\(581\) 1.26037 7.14792i 0.0522890 0.296546i
\(582\) 0 0
\(583\) 0.452122 0.379376i 0.0187250 0.0157121i
\(584\) 7.70917 13.3527i 0.319008 0.552537i
\(585\) 0 0
\(586\) −1.76621 3.05917i −0.0729615 0.126373i
\(587\) −12.7934 4.65641i −0.528039 0.192190i 0.0642236 0.997936i \(-0.479543\pi\)
−0.592262 + 0.805745i \(0.701765\pi\)
\(588\) 0 0
\(589\) 26.9895 + 22.6468i 1.11208 + 0.933147i
\(590\) 1.87135 0.681116i 0.0770423 0.0280411i
\(591\) 0 0
\(592\) 1.75926 + 9.97728i 0.0723053 + 0.410064i
\(593\) 38.9303 1.59868 0.799338 0.600882i \(-0.205184\pi\)
0.799338 + 0.600882i \(0.205184\pi\)
\(594\) 0 0
\(595\) −0.239864 −0.00983348
\(596\) 0.726453 + 4.11992i 0.0297567 + 0.168758i
\(597\) 0 0
\(598\) −5.08785 + 1.85182i −0.208058 + 0.0757267i
\(599\) 27.2995 + 22.9070i 1.11543 + 0.935954i 0.998364 0.0571711i \(-0.0182081\pi\)
0.117062 + 0.993125i \(0.462653\pi\)
\(600\) 0 0
\(601\) 35.5884 + 12.9531i 1.45168 + 0.528369i 0.943060 0.332622i \(-0.107933\pi\)
0.508621 + 0.860991i \(0.330156\pi\)
\(602\) −0.227194 0.393512i −0.00925975 0.0160384i
\(603\) 0 0
\(604\) −8.40203 + 14.5528i −0.341874 + 0.592143i
\(605\) −8.39763 + 7.04645i −0.341412 + 0.286479i
\(606\) 0 0
\(607\) 3.11194 17.6487i 0.126310 0.716338i −0.854212 0.519925i \(-0.825960\pi\)
0.980521 0.196412i \(-0.0629291\pi\)
\(608\) −3.93694 + 22.3275i −0.159664 + 0.905500i
\(609\) 0 0
\(610\) 6.83921 5.73878i 0.276912 0.232356i
\(611\) −3.68574 + 6.38389i −0.149109 + 0.258264i
\(612\) 0 0
\(613\) −6.89087 11.9353i −0.278320 0.482064i 0.692648 0.721276i \(-0.256444\pi\)
−0.970967 + 0.239212i \(0.923111\pi\)
\(614\) −5.02851 1.83023i −0.202934 0.0738620i
\(615\) 0 0
\(616\) 0.202999 + 0.170336i 0.00817906 + 0.00686305i
\(617\) −36.2761 + 13.2034i −1.46042 + 0.531550i −0.945481 0.325677i \(-0.894408\pi\)
−0.514940 + 0.857226i \(0.672186\pi\)
\(618\) 0 0
\(619\) −6.89620 39.1103i −0.277182 1.57198i −0.731945 0.681364i \(-0.761387\pi\)
0.454763 0.890612i \(-0.349724\pi\)
\(620\) 13.1110 0.526551
\(621\) 0 0
\(622\) −9.18780 −0.368397
\(623\) −0.358666 2.03410i −0.0143697 0.0814944i
\(624\) 0 0
\(625\) −0.939693 + 0.342020i −0.0375877 + 0.0136808i
\(626\) 2.86012 + 2.39993i 0.114314 + 0.0959205i
\(627\) 0 0
\(628\) −30.4439 11.0807i −1.21485 0.442168i
\(629\) −2.41313 4.17966i −0.0962178 0.166654i
\(630\) 0 0
\(631\) −9.71146 + 16.8207i −0.386607 + 0.669623i −0.991991 0.126311i \(-0.959686\pi\)
0.605384 + 0.795934i \(0.293020\pi\)
\(632\) 24.6906 20.7179i 0.982141 0.824114i
\(633\) 0 0
\(634\) 3.99302 22.6456i 0.158583 0.899370i
\(635\) −3.32383 + 18.8504i −0.131902 + 0.748055i
\(636\) 0 0
\(637\) −9.33933 + 7.83663i −0.370038 + 0.310498i
\(638\) 0.701686 1.21536i 0.0277800 0.0481164i
\(639\) 0 0
\(640\) 4.92971 + 8.53851i 0.194864 + 0.337514i
\(641\) −32.2397 11.7343i −1.27339 0.463476i −0.385149 0.922854i \(-0.625850\pi\)
−0.888241 + 0.459378i \(0.848072\pi\)
\(642\) 0 0
\(643\) 24.8918 + 20.8867i 0.981637 + 0.823691i 0.984336 0.176305i \(-0.0564146\pi\)
−0.00269885 + 0.999996i \(0.500859\pi\)
\(644\) −2.85693 + 1.03984i −0.112579 + 0.0409754i
\(645\) 0 0
\(646\) −0.227543 1.29046i −0.00895256 0.0507725i
\(647\) 19.6313 0.771787 0.385894 0.922543i \(-0.373893\pi\)
0.385894 + 0.922543i \(0.373893\pi\)
\(648\) 0 0
\(649\) −0.516122 −0.0202596
\(650\) 0.235955 + 1.33817i 0.00925493 + 0.0524873i
\(651\) 0 0
\(652\) 13.0176 4.73804i 0.509810 0.185556i
\(653\) 9.18189 + 7.70452i 0.359315 + 0.301501i 0.804518 0.593929i \(-0.202424\pi\)
−0.445202 + 0.895430i \(0.646868\pi\)
\(654\) 0 0
\(655\) −9.43779 3.43507i −0.368765 0.134219i
\(656\) 3.39196 + 5.87505i 0.132434 + 0.229382i
\(657\) 0 0
\(658\) 0.806422 1.39676i 0.0314376 0.0544516i
\(659\) −14.3096 + 12.0072i −0.557423 + 0.467733i −0.877445 0.479677i \(-0.840754\pi\)
0.320022 + 0.947410i \(0.396310\pi\)
\(660\) 0 0
\(661\) 3.73208 21.1657i 0.145161 0.823250i −0.822077 0.569377i \(-0.807184\pi\)
0.967238 0.253873i \(-0.0817044\pi\)
\(662\) −1.20468 + 6.83209i −0.0468213 + 0.265537i
\(663\) 0 0
\(664\) 27.0109 22.6649i 1.04823 0.879567i
\(665\) −1.02518 + 1.77566i −0.0397547 + 0.0688571i
\(666\) 0 0
\(667\) 19.2376 + 33.3205i 0.744883 + 1.29017i
\(668\) 21.5976 + 7.86088i 0.835636 + 0.304147i
\(669\) 0 0
\(670\) −3.36564 2.82411i −0.130026 0.109105i
\(671\) −2.17431 + 0.791383i −0.0839382 + 0.0305510i
\(672\) 0 0
\(673\) −1.40383 7.96152i −0.0541137 0.306894i 0.945723 0.324974i \(-0.105356\pi\)
−0.999837 + 0.0180803i \(0.994245\pi\)
\(674\) 12.6999 0.489180
\(675\) 0 0
\(676\) 13.9712 0.537354
\(677\) −1.86299 10.5656i −0.0716006 0.406067i −0.999452 0.0331158i \(-0.989457\pi\)
0.927851 0.372951i \(-0.121654\pi\)
\(678\) 0 0
\(679\) −4.21380 + 1.53370i −0.161711 + 0.0588579i
\(680\) −0.892642 0.749016i −0.0342313 0.0287234i
\(681\) 0 0
\(682\) 1.24416 + 0.452838i 0.0476415 + 0.0173401i
\(683\) −7.36365 12.7542i −0.281762 0.488027i 0.690057 0.723755i \(-0.257586\pi\)
−0.971819 + 0.235729i \(0.924252\pi\)
\(684\) 0 0
\(685\) −0.419014 + 0.725754i −0.0160097 + 0.0277296i
\(686\) 4.17228 3.50096i 0.159298 0.133667i
\(687\) 0 0
\(688\) −0.188762 + 1.07052i −0.00719648 + 0.0408132i
\(689\) 0.958190 5.43416i 0.0365041 0.207025i
\(690\) 0 0
\(691\) −5.28360 + 4.43347i −0.200998 + 0.168657i −0.737731 0.675095i \(-0.764103\pi\)
0.536733 + 0.843752i \(0.319658\pi\)
\(692\) −4.12038 + 7.13671i −0.156633 + 0.271297i
\(693\) 0 0
\(694\) 8.31897 + 14.4089i 0.315784 + 0.546953i
\(695\) 7.81972 + 2.84614i 0.296619 + 0.107960i
\(696\) 0 0
\(697\) −2.47562 2.07730i −0.0937710 0.0786832i
\(698\) −14.1432 + 5.14770i −0.535328 + 0.194843i
\(699\) 0 0
\(700\) 0.132494 + 0.751410i 0.00500780 + 0.0284006i
\(701\) 21.5524 0.814024 0.407012 0.913423i \(-0.366571\pi\)
0.407012 + 0.913423i \(0.366571\pi\)
\(702\) 0 0
\(703\) −41.2548 −1.55595
\(704\) 0.0839313 + 0.475998i 0.00316328 + 0.0179398i
\(705\) 0 0
\(706\) 9.25448 3.36835i 0.348297 0.126770i
\(707\) 2.03884 + 1.71079i 0.0766783 + 0.0643407i
\(708\) 0 0
\(709\) −8.74711 3.18369i −0.328505 0.119566i 0.172502 0.985009i \(-0.444815\pi\)
−0.501007 + 0.865443i \(0.667037\pi\)
\(710\) 3.41117 + 5.90832i 0.128019 + 0.221735i
\(711\) 0 0
\(712\) 5.01704 8.68977i 0.188022 0.325663i
\(713\) −27.8070 + 23.3328i −1.04138 + 0.873821i
\(714\) 0 0
\(715\) 0.0611523 0.346812i 0.00228697 0.0129700i
\(716\) −3.17004 + 17.9782i −0.118470 + 0.671876i
\(717\) 0 0
\(718\) −11.6045 + 9.73734i −0.433076 + 0.363394i
\(719\) −8.27715 + 14.3364i −0.308686 + 0.534659i −0.978075 0.208252i \(-0.933222\pi\)
0.669389 + 0.742912i \(0.266556\pi\)
\(720\) 0 0
\(721\) −3.00150 5.19875i −0.111782 0.193612i
\(722\) 2.84472 + 1.03539i 0.105870 + 0.0385334i
\(723\) 0 0
\(724\) −10.0632 8.44403i −0.373996 0.313820i
\(725\) 9.07357 3.30251i 0.336984 0.122652i
\(726\) 0 0
\(727\) 0.00349359 + 0.0198131i 0.000129570 + 0.000734829i 0.984872 0.173281i \(-0.0554368\pi\)
−0.984743 + 0.174016i \(0.944326\pi\)
\(728\) 2.47753 0.0918234
\(729\) 0 0
\(730\) 4.48310 0.165927
\(731\) −0.0899217 0.509971i −0.00332587 0.0188620i
\(732\) 0 0
\(733\) −6.82912 + 2.48559i −0.252239 + 0.0918075i −0.465045 0.885287i \(-0.653962\pi\)
0.212806 + 0.977094i \(0.431740\pi\)
\(734\) 11.4809 + 9.63363i 0.423768 + 0.355584i
\(735\) 0 0
\(736\) −21.9500 7.98915i −0.809088 0.294484i
\(737\) 0.569333 + 0.986114i 0.0209717 + 0.0363240i
\(738\) 0 0
\(739\) 12.5613 21.7568i 0.462074 0.800336i −0.536990 0.843589i \(-0.680439\pi\)
0.999064 + 0.0432525i \(0.0137720\pi\)
\(740\) −11.7605 + 9.86820i −0.432323 + 0.362762i
\(741\) 0 0
\(742\) −0.209647 + 1.18897i −0.00769640 + 0.0436485i
\(743\) 5.15289 29.2235i 0.189041 1.07211i −0.731611 0.681722i \(-0.761231\pi\)
0.920652 0.390383i \(-0.127658\pi\)
\(744\) 0 0
\(745\) −2.22672 + 1.86844i −0.0815808 + 0.0684544i
\(746\) 8.68358 15.0404i 0.317929 0.550668i
\(747\) 0 0
\(748\) 0.0631891 + 0.109447i 0.00231042 + 0.00400177i
\(749\) 5.07947 + 1.84878i 0.185600 + 0.0675528i
\(750\) 0 0
\(751\) 22.2113 + 18.6375i 0.810502 + 0.680092i 0.950728 0.310028i \(-0.100338\pi\)
−0.140226 + 0.990120i \(0.544783\pi\)
\(752\) −3.62572 + 1.31966i −0.132217 + 0.0481229i
\(753\) 0 0
\(754\) −2.27836 12.9212i −0.0829729 0.470563i
\(755\) −11.6759 −0.424928
\(756\) 0 0
\(757\) −0.0752608 −0.00273540 −0.00136770 0.999999i \(-0.500435\pi\)
−0.00136770 + 0.999999i \(0.500435\pi\)
\(758\) −2.08885 11.8465i −0.0758706 0.430284i
\(759\) 0 0
\(760\) −9.35993 + 3.40674i −0.339520 + 0.123575i
\(761\) −35.5809 29.8559i −1.28981 1.08228i −0.991812 0.127709i \(-0.959238\pi\)
−0.297996 0.954567i \(-0.596318\pi\)
\(762\) 0 0
\(763\) 0.590558 + 0.214945i 0.0213796 + 0.00778155i
\(764\) 17.7904 + 30.8139i 0.643635 + 1.11481i
\(765\) 0 0
\(766\) 1.87997 3.25621i 0.0679261 0.117652i
\(767\) −3.69646 + 3.10170i −0.133471 + 0.111996i
\(768\) 0 0
\(769\) −5.06818 + 28.7431i −0.182763 + 1.03650i 0.746032 + 0.665910i \(0.231957\pi\)
−0.928795 + 0.370593i \(0.879155\pi\)
\(770\) −0.0133798 + 0.0758808i −0.000482176 + 0.00273456i
\(771\) 0 0
\(772\) −5.31123 + 4.45665i −0.191155 + 0.160398i
\(773\) 5.94544 10.2978i 0.213843 0.370387i −0.739071 0.673627i \(-0.764735\pi\)
0.952914 + 0.303241i \(0.0980687\pi\)
\(774\) 0 0
\(775\) 4.55493 + 7.88936i 0.163618 + 0.283394i
\(776\) −20.4706 7.45070i −0.734853 0.267464i
\(777\) 0 0
\(778\) 17.3796 + 14.5832i 0.623089 + 0.522834i
\(779\) −25.9585 + 9.44813i −0.930060 + 0.338514i
\(780\) 0 0
\(781\) −0.307034 1.74128i −0.0109865 0.0623078i
\(782\) 1.35006 0.0482780
\(783\) 0 0
\(784\) −6.38140 −0.227907
\(785\) −3.90895 22.1688i −0.139516 0.791237i
\(786\) 0 0
\(787\) −12.7571 + 4.64320i −0.454741 + 0.165512i −0.559228 0.829014i \(-0.688902\pi\)
0.104486 + 0.994526i \(0.466680\pi\)
\(788\) 18.8990 + 15.8582i 0.673249 + 0.564923i
\(789\) 0 0
\(790\) 8.80653 + 3.20532i 0.313322 + 0.114040i
\(791\) −4.99513 8.65183i −0.177607 0.307623i
\(792\) 0 0
\(793\) −10.8164 + 18.7346i −0.384103 + 0.665286i
\(794\) 8.39697 7.04589i 0.297997 0.250049i
\(795\) 0 0
\(796\) 4.77027 27.0536i 0.169078 0.958888i
\(797\) −5.91972 + 33.5724i −0.209687 + 1.18919i 0.680204 + 0.733022i \(0.261891\pi\)
−0.889892 + 0.456172i \(0.849220\pi\)
\(798\) 0 0
\(799\) 1.40803 1.18148i 0.0498126 0.0417978i
\(800\) −2.93110 + 5.07681i −0.103630 + 0.179492i
\(801\) 0 0
\(802\) −4.17610 7.23321i −0.147463 0.255414i
\(803\) −1.09181 0.397386i −0.0385291 0.0140235i
\(804\) 0 0
\(805\) −1.61824 1.35786i −0.0570355 0.0478584i
\(806\) 11.6321 4.23372i 0.409722 0.149127i
\(807\) 0 0
\(808\) 2.24521 + 12.7332i 0.0789860 + 0.447952i
\(809\) −33.2161 −1.16781 −0.583907 0.811821i \(-0.698477\pi\)
−0.583907 + 0.811821i \(0.698477\pi\)
\(810\) 0 0
\(811\) −45.6200 −1.60194 −0.800968 0.598708i \(-0.795681\pi\)
−0.800968 + 0.598708i \(0.795681\pi\)
\(812\) −1.27935 7.25553i −0.0448962 0.254619i
\(813\) 0 0
\(814\) −1.45684 + 0.530246i −0.0510622 + 0.0185851i
\(815\) 7.37353 + 6.18712i 0.258283 + 0.216725i
\(816\) 0 0
\(817\) −4.15952 1.51394i −0.145523 0.0529661i
\(818\) −6.65717 11.5305i −0.232762 0.403156i
\(819\) 0 0
\(820\) −5.13997 + 8.90269i −0.179496 + 0.310895i
\(821\) −1.74217 + 1.46185i −0.0608021 + 0.0510190i −0.672682 0.739931i \(-0.734858\pi\)
0.611880 + 0.790950i \(0.290413\pi\)
\(822\) 0 0
\(823\) 6.20317 35.1799i 0.216229 1.22629i −0.662533 0.749033i \(-0.730518\pi\)
0.878761 0.477261i \(-0.158371\pi\)
\(824\) 5.06403 28.7195i 0.176414 1.00049i
\(825\) 0 0
\(826\) 0.808768 0.678637i 0.0281406 0.0236128i
\(827\) 6.66996 11.5527i 0.231937 0.401727i −0.726441 0.687229i \(-0.758827\pi\)
0.958378 + 0.285502i \(0.0921602\pi\)
\(828\) 0 0
\(829\) −5.82120 10.0826i −0.202179 0.350184i 0.747051 0.664766i \(-0.231469\pi\)
−0.949230 + 0.314582i \(0.898136\pi\)
\(830\) 9.63412 + 3.50653i 0.334405 + 0.121714i
\(831\) 0 0
\(832\) 3.46168 + 2.90469i 0.120012 + 0.100702i
\(833\) 2.85662 1.03972i 0.0989759 0.0360243i
\(834\) 0 0
\(835\) 2.77309 + 15.7270i 0.0959668 + 0.544255i
\(836\) 1.08028 0.0373622
\(837\) 0 0
\(838\) −8.23334 −0.284416
\(839\) −6.96649 39.5089i −0.240510 1.36400i −0.830694 0.556730i \(-0.812056\pi\)
0.590184 0.807269i \(-0.299055\pi\)
\(840\) 0 0
\(841\) −60.3623 + 21.9701i −2.08146 + 0.757589i
\(842\) −20.9808 17.6050i −0.723046 0.606708i
\(843\) 0 0
\(844\) 10.5957 + 3.85650i 0.364718 + 0.132746i
\(845\) 4.85376 + 8.40697i 0.166975 + 0.289208i
\(846\) 0 0
\(847\) −2.90585 + 5.03308i −0.0998462 + 0.172939i
\(848\) 2.21253 1.85654i 0.0759787 0.0637537i
\(849\) 0 0
\(850\) 0.0588348 0.333669i 0.00201802 0.0114447i
\(851\) 7.38081 41.8586i 0.253011 1.43490i
\(852\) 0 0
\(853\) −1.23431 + 1.03571i −0.0422621 + 0.0354621i −0.663674 0.748022i \(-0.731004\pi\)
0.621412 + 0.783484i \(0.286559\pi\)
\(854\) 2.36659 4.09905i 0.0809829 0.140267i
\(855\) 0 0
\(856\) 13.1299 + 22.7416i 0.448769 + 0.777291i
\(857\) 23.2290 + 8.45466i 0.793487 + 0.288806i 0.706785 0.707429i \(-0.250145\pi\)
0.0867023 + 0.996234i \(0.472367\pi\)
\(858\) 0 0
\(859\) −2.74608 2.30424i −0.0936951 0.0786196i 0.594737 0.803920i \(-0.297256\pi\)
−0.688432 + 0.725301i \(0.741701\pi\)
\(860\) −1.54789 + 0.563385i −0.0527826 + 0.0192113i
\(861\) 0 0
\(862\) 3.25515 + 18.4609i 0.110871 + 0.628779i
\(863\) −30.2496 −1.02971 −0.514853 0.857278i \(-0.672154\pi\)
−0.514853 + 0.857278i \(0.672154\pi\)
\(864\) 0 0
\(865\) −5.72588 −0.194686
\(866\) 1.13839 + 6.45612i 0.0386840 + 0.219388i
\(867\) 0 0
\(868\) 6.53165 2.37732i 0.221699 0.0806917i
\(869\) −1.86061 1.56124i −0.0631170 0.0529614i
\(870\) 0 0
\(871\) 10.0037 + 3.64106i 0.338963 + 0.123373i
\(872\) 1.52653 + 2.64402i 0.0516947 + 0.0895378i
\(873\) 0 0
\(874\) 5.77014 9.99417i 0.195178 0.338058i
\(875\) −0.406120 + 0.340775i −0.0137294 + 0.0115203i
\(876\) 0 0
\(877\) 1.47134 8.34440i 0.0496837 0.281771i −0.949836 0.312747i \(-0.898751\pi\)
0.999520 + 0.0309768i \(0.00986180\pi\)
\(878\) 1.35137 7.66399i 0.0456065 0.258647i
\(879\) 0 0
\(880\) 0.141205 0.118485i 0.00476003 0.00399414i
\(881\) −13.2335 + 22.9211i −0.445848 + 0.772232i −0.998111 0.0614383i \(-0.980431\pi\)
0.552263 + 0.833670i \(0.313765\pi\)
\(882\) 0 0
\(883\) 4.54571 + 7.87340i 0.152975 + 0.264961i 0.932320 0.361635i \(-0.117781\pi\)
−0.779345 + 0.626595i \(0.784448\pi\)
\(884\) 1.11029 + 0.404114i 0.0373432 + 0.0135918i
\(885\) 0 0
\(886\) −22.7035 19.0505i −0.762738 0.640013i
\(887\) 47.5180 17.2951i 1.59550 0.580714i 0.616998 0.786964i \(-0.288349\pi\)
0.978499 + 0.206251i \(0.0661263\pi\)
\(888\) 0 0
\(889\) 1.76214 + 9.99357i 0.0591001 + 0.335174i
\(890\) 2.91755 0.0977966
\(891\) 0 0
\(892\) 20.8672 0.698686
\(893\) −2.72830 15.4730i −0.0912992 0.517783i
\(894\) 0 0
\(895\) −11.9194 + 4.33831i −0.398422 + 0.145014i
\(896\) 4.00411 + 3.35984i 0.133768 + 0.112245i
\(897\) 0 0
\(898\) −13.9105 5.06300i −0.464199 0.168955i
\(899\) −43.9819 76.1788i −1.46688 2.54071i
\(900\) 0 0
\(901\) −0.687948 + 1.19156i −0.0229189 + 0.0396967i
\(902\) −0.795242 + 0.667288i −0.0264787 + 0.0222182i
\(903\) 0 0
\(904\) 8.42762 47.7954i 0.280298 1.58965i
\(905\) 1.58499 8.98894i 0.0526869 0.298803i
\(906\) 0 0
\(907\) −34.2189 + 28.7131i −1.13622 + 0.953403i −0.999309 0.0371802i \(-0.988162\pi\)
−0.136913 + 0.990583i \(0.543718\pi\)
\(908\) −0.323488 + 0.560298i −0.0107353 + 0.0185942i
\(909\) 0 0
\(910\) 0.360189 + 0.623865i 0.0119401 + 0.0206809i
\(911\) −17.1655 6.24774i −0.568719 0.206997i 0.0416249 0.999133i \(-0.486747\pi\)
−0.610344 + 0.792136i \(0.708969\pi\)
\(912\) 0 0
\(913\) −2.03546 1.70796i −0.0673640 0.0565251i
\(914\) 7.48692 2.72501i 0.247645 0.0901355i
\(915\) 0 0
\(916\) 3.47051 + 19.6823i 0.114669 + 0.650320i
\(917\) −5.32457 −0.175833
\(918\) 0 0
\(919\) −15.3472 −0.506259 −0.253129 0.967432i \(-0.581460\pi\)
−0.253129 + 0.967432i \(0.581460\pi\)
\(920\) −1.78204 10.1064i −0.0587520 0.333199i
\(921\) 0 0
\(922\) −19.5199 + 7.10467i −0.642854 + 0.233980i
\(923\) −12.6634 10.6258i −0.416820 0.349754i
\(924\) 0 0
\(925\) −10.0238 3.64835i −0.329579 0.119957i
\(926\) 9.30409 + 16.1152i 0.305751 + 0.529577i
\(927\) 0 0
\(928\) 28.3023 49.0211i 0.929070 1.60920i
\(929\) 41.2347 34.6000i 1.35287 1.13519i 0.374751 0.927125i \(-0.377728\pi\)
0.978115 0.208064i \(-0.0667163\pi\)
\(930\) 0 0
\(931\) 4.51232 25.5906i 0.147885 0.838699i
\(932\) −4.92655 + 27.9399i −0.161375 + 0.915201i
\(933\) 0 0
\(934\) −4.81874 + 4.04341i −0.157674 + 0.132304i
\(935\) −0.0439053 + 0.0760462i −0.00143586 + 0.00248698i
\(936\) 0 0
\(937\) −29.8115 51.6351i −0.973900 1.68684i −0.683519 0.729932i \(-0.739552\pi\)
−0.290380 0.956911i \(-0.593782\pi\)
\(938\) −2.18877 0.796647i −0.0714658 0.0260114i
\(939\) 0 0
\(940\) −4.47891 3.75826i −0.146086 0.122581i
\(941\) 31.2201 11.3632i 1.01775 0.370430i 0.221344 0.975196i \(-0.428956\pi\)
0.796403 + 0.604766i \(0.206733\pi\)
\(942\) 0 0
\(943\) −4.94224 28.0288i −0.160942 0.912745i
\(944\) −2.52573 −0.0822054
\(945\) 0 0
\(946\) −0.166345 −0.00540833
\(947\) 8.65820 + 49.1031i 0.281354 + 1.59564i 0.718026 + 0.696016i \(0.245046\pi\)
−0.436673 + 0.899620i \(0.643843\pi\)
\(948\) 0 0
\(949\) −10.2077 + 3.71529i −0.331355 + 0.120603i
\(950\) −2.21861 1.86164i −0.0719813 0.0603995i
\(951\) 0 0
\(952\) −0.580510 0.211288i −0.0188144 0.00684789i
\(953\) 4.87188 + 8.43834i 0.157816 + 0.273345i 0.934081 0.357062i \(-0.116222\pi\)
−0.776265 + 0.630407i \(0.782888\pi\)
\(954\) 0 0
\(955\) −12.3612 + 21.4102i −0.399999 + 0.692819i
\(956\) 21.9508 18.4189i 0.709938 0.595709i
\(957\) 0 0
\(958\) 0.250529 1.42082i 0.00809422 0.0459046i
\(959\) −0.0771488 + 0.437533i −0.00249127 + 0.0141287i
\(960\) 0 0
\(961\) 39.8262 33.4181i 1.28472 1.07800i
\(962\) −7.24728 + 12.5527i −0.233662 + 0.404714i
\(963\) 0 0
\(964\) 5.39377 + 9.34228i 0.173722 + 0.300895i
\(965\) −4.52691 1.64766i −0.145726 0.0530401i
\(966\) 0 0
\(967\) 36.8948 + 30.9584i 1.18646 + 0.995554i 0.999914 + 0.0131071i \(0.00417224\pi\)
0.186541 + 0.982447i \(0.440272\pi\)
\(968\) −26.5306 + 9.65634i −0.852725 + 0.310367i
\(969\) 0 0
\(970\) −1.09991 6.23789i −0.0353159 0.200287i
\(971\) −41.0170 −1.31630 −0.658149 0.752888i \(-0.728660\pi\)
−0.658149 + 0.752888i \(0.728660\pi\)
\(972\) 0 0
\(973\) 4.41170 0.141432
\(974\) 0.898702 + 5.09679i 0.0287963 + 0.163312i
\(975\) 0 0
\(976\) −10.6403 + 3.87276i −0.340588 + 0.123964i
\(977\) 5.88186 + 4.93546i 0.188177 + 0.157899i 0.732009 0.681295i \(-0.238583\pi\)
−0.543832 + 0.839194i \(0.683027\pi\)
\(978\) 0 0
\(979\) −0.710538 0.258615i −0.0227089 0.00826536i
\(980\) −4.83499 8.37446i −0.154448 0.267512i
\(981\) 0 0
\(982\) −4.80932 + 8.32999i −0.153472 + 0.265821i
\(983\) −42.6130 + 35.7566i −1.35914 + 1.14046i −0.382899 + 0.923790i \(0.625074\pi\)
−0.976245 + 0.216668i \(0.930481\pi\)
\(984\) 0 0
\(985\) −2.97667 + 16.8815i −0.0948445 + 0.537890i
\(986\) −0.568103 + 3.22187i −0.0180921 + 0.102605i
\(987\) 0 0
\(988\) 7.73694 6.49206i 0.246145 0.206540i
\(989\) 2.28027 3.94955i 0.0725085 0.125588i
\(990\) 0 0
\(991\) 0.876303 + 1.51780i 0.0278367 + 0.0482145i 0.879608 0.475699i \(-0.157805\pi\)
−0.851771 + 0.523914i \(0.824471\pi\)
\(992\) 50.1831 + 18.2651i 1.59331 + 0.579919i
\(993\) 0 0
\(994\) 2.77069 + 2.32488i 0.0878809 + 0.0737408i
\(995\) 17.9363 6.52829i 0.568620 0.206961i
\(996\) 0 0
\(997\) 1.48133 + 8.40103i 0.0469141 + 0.266063i 0.999238 0.0390249i \(-0.0124252\pi\)
−0.952324 + 0.305088i \(0.901314\pi\)
\(998\) 3.74190 0.118448
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 405.2.k.a.91.4 30
3.2 odd 2 135.2.k.a.121.2 yes 30
15.2 even 4 675.2.u.c.499.7 60
15.8 even 4 675.2.u.c.499.4 60
15.14 odd 2 675.2.l.d.526.4 30
27.2 odd 18 135.2.k.a.106.2 30
27.5 odd 18 3645.2.a.h.1.5 15
27.22 even 9 3645.2.a.g.1.11 15
27.25 even 9 inner 405.2.k.a.316.4 30
135.2 even 36 675.2.u.c.349.4 60
135.29 odd 18 675.2.l.d.376.4 30
135.83 even 36 675.2.u.c.349.7 60
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
135.2.k.a.106.2 30 27.2 odd 18
135.2.k.a.121.2 yes 30 3.2 odd 2
405.2.k.a.91.4 30 1.1 even 1 trivial
405.2.k.a.316.4 30 27.25 even 9 inner
675.2.l.d.376.4 30 135.29 odd 18
675.2.l.d.526.4 30 15.14 odd 2
675.2.u.c.349.4 60 135.2 even 36
675.2.u.c.349.7 60 135.83 even 36
675.2.u.c.499.4 60 15.8 even 4
675.2.u.c.499.7 60 15.2 even 4
3645.2.a.g.1.11 15 27.22 even 9
3645.2.a.h.1.5 15 27.5 odd 18