Properties

Label 405.2.k.b.46.2
Level $405$
Weight $2$
Character 405.46
Analytic conductor $3.234$
Analytic rank $0$
Dimension $42$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [405,2,Mod(46,405)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(405, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([4, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("405.46");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 405 = 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 405.k (of order \(9\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.23394128186\)
Analytic rank: \(0\)
Dimension: \(42\)
Relative dimension: \(7\) over \(\Q(\zeta_{9})\)
Twist minimal: no (minimal twist has level 135)
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 46.2
Character \(\chi\) \(=\) 405.46
Dual form 405.2.k.b.361.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.42971 - 1.19967i) q^{2} +(0.257569 + 1.46075i) q^{4} +(0.939693 + 0.342020i) q^{5} +(0.603654 - 3.42349i) q^{7} +(-0.482190 + 0.835177i) q^{8} +(-0.933178 - 1.61631i) q^{10} +(3.21914 - 1.17167i) q^{11} +(-2.29137 + 1.92269i) q^{13} +(-4.97011 + 4.17042i) q^{14} +(4.47899 - 1.63022i) q^{16} +(0.915007 + 1.58484i) q^{17} +(2.83150 - 4.90430i) q^{19} +(-0.257569 + 1.46075i) q^{20} +(-6.00805 - 2.18675i) q^{22} +(-1.47679 - 8.37528i) q^{23} +(0.766044 + 0.642788i) q^{25} +5.58258 q^{26} +5.15634 q^{28} +(-2.71852 - 2.28111i) q^{29} +(0.629929 + 3.57251i) q^{31} +(-6.54694 - 2.38289i) q^{32} +(0.593087 - 3.36357i) q^{34} +(1.73815 - 3.01057i) q^{35} +(-4.12531 - 7.14525i) q^{37} +(-9.93177 + 3.61487i) q^{38} +(-0.738757 + 0.619891i) q^{40} +(-3.49560 + 2.93316i) q^{41} +(-6.40168 + 2.33002i) q^{43} +(2.54066 + 4.40056i) q^{44} +(-7.93619 + 13.7459i) q^{46} +(0.749097 - 4.24834i) q^{47} +(-4.77806 - 1.73907i) q^{49} +(-0.324089 - 1.83800i) q^{50} +(-3.39874 - 2.85188i) q^{52} +6.55503 q^{53} +3.42573 q^{55} +(2.56815 + 2.15493i) q^{56} +(1.15012 + 6.52266i) q^{58} +(3.06342 + 1.11500i) q^{59} +(0.589476 - 3.34309i) q^{61} +(3.38521 - 5.86336i) q^{62} +(1.73511 + 3.00530i) q^{64} +(-2.81078 + 1.02304i) q^{65} +(-3.19129 + 2.67781i) q^{67} +(-2.07937 + 1.74480i) q^{68} +(-6.09675 + 2.21903i) q^{70} +(-4.35406 - 7.54146i) q^{71} +(3.97200 - 6.87971i) q^{73} +(-2.67394 + 15.1646i) q^{74} +(7.89326 + 2.87291i) q^{76} +(-2.06796 - 11.7280i) q^{77} +(11.2271 + 9.42064i) q^{79} +4.76644 q^{80} +8.51652 q^{82} +(11.0597 + 9.28016i) q^{83} +(0.317778 + 1.80221i) q^{85} +(11.9478 + 4.34865i) q^{86} +(-0.573682 + 3.25351i) q^{88} +(-1.78804 + 3.09697i) q^{89} +(5.19911 + 9.00512i) q^{91} +(11.8538 - 4.31443i) q^{92} +(-6.16760 + 5.17523i) q^{94} +(4.33811 - 3.64011i) q^{95} +(3.43991 - 1.25203i) q^{97} +(4.74493 + 8.21846i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 42 q + 9 q^{8} - 3 q^{10} + 6 q^{11} - 3 q^{13} + 27 q^{14} - 12 q^{16} + 12 q^{17} - 24 q^{19} + 33 q^{22} - 18 q^{23} + 18 q^{26} + 60 q^{28} - 12 q^{31} - 36 q^{32} + 51 q^{34} + 12 q^{35} - 24 q^{37}+ \cdots + 15 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/405\mathbb{Z}\right)^\times\).

\(n\) \(82\) \(326\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.42971 1.19967i −1.01096 0.848295i −0.0224938 0.999747i \(-0.507161\pi\)
−0.988465 + 0.151452i \(0.951605\pi\)
\(3\) 0 0
\(4\) 0.257569 + 1.46075i 0.128785 + 0.730374i
\(5\) 0.939693 + 0.342020i 0.420243 + 0.152956i
\(6\) 0 0
\(7\) 0.603654 3.42349i 0.228160 1.29396i −0.628392 0.777897i \(-0.716286\pi\)
0.856552 0.516062i \(-0.172602\pi\)
\(8\) −0.482190 + 0.835177i −0.170480 + 0.295280i
\(9\) 0 0
\(10\) −0.933178 1.61631i −0.295097 0.511122i
\(11\) 3.21914 1.17167i 0.970606 0.353272i 0.192425 0.981312i \(-0.438365\pi\)
0.778181 + 0.628040i \(0.216143\pi\)
\(12\) 0 0
\(13\) −2.29137 + 1.92269i −0.635511 + 0.533257i −0.902636 0.430405i \(-0.858371\pi\)
0.267125 + 0.963662i \(0.413926\pi\)
\(14\) −4.97011 + 4.17042i −1.32832 + 1.11459i
\(15\) 0 0
\(16\) 4.47899 1.63022i 1.11975 0.407554i
\(17\) 0.915007 + 1.58484i 0.221922 + 0.384380i 0.955391 0.295342i \(-0.0954337\pi\)
−0.733470 + 0.679722i \(0.762100\pi\)
\(18\) 0 0
\(19\) 2.83150 4.90430i 0.649591 1.12512i −0.333630 0.942704i \(-0.608274\pi\)
0.983221 0.182420i \(-0.0583931\pi\)
\(20\) −0.257569 + 1.46075i −0.0575942 + 0.326633i
\(21\) 0 0
\(22\) −6.00805 2.18675i −1.28092 0.466217i
\(23\) −1.47679 8.37528i −0.307931 1.74637i −0.609375 0.792882i \(-0.708580\pi\)
0.301444 0.953484i \(-0.402532\pi\)
\(24\) 0 0
\(25\) 0.766044 + 0.642788i 0.153209 + 0.128558i
\(26\) 5.58258 1.09483
\(27\) 0 0
\(28\) 5.15634 0.974457
\(29\) −2.71852 2.28111i −0.504817 0.423592i 0.354484 0.935062i \(-0.384657\pi\)
−0.859301 + 0.511470i \(0.829101\pi\)
\(30\) 0 0
\(31\) 0.629929 + 3.57251i 0.113139 + 0.641641i 0.987655 + 0.156645i \(0.0500679\pi\)
−0.874516 + 0.484996i \(0.838821\pi\)
\(32\) −6.54694 2.38289i −1.15735 0.421240i
\(33\) 0 0
\(34\) 0.593087 3.36357i 0.101714 0.576847i
\(35\) 1.73815 3.01057i 0.293801 0.508879i
\(36\) 0 0
\(37\) −4.12531 7.14525i −0.678197 1.17467i −0.975523 0.219895i \(-0.929428\pi\)
0.297327 0.954776i \(-0.403905\pi\)
\(38\) −9.93177 + 3.61487i −1.61115 + 0.586409i
\(39\) 0 0
\(40\) −0.738757 + 0.619891i −0.116808 + 0.0980134i
\(41\) −3.49560 + 2.93316i −0.545921 + 0.458082i −0.873557 0.486722i \(-0.838192\pi\)
0.327636 + 0.944804i \(0.393748\pi\)
\(42\) 0 0
\(43\) −6.40168 + 2.33002i −0.976247 + 0.355325i −0.780380 0.625306i \(-0.784974\pi\)
−0.195867 + 0.980630i \(0.562752\pi\)
\(44\) 2.54066 + 4.40056i 0.383019 + 0.663409i
\(45\) 0 0
\(46\) −7.93619 + 13.7459i −1.17013 + 2.02672i
\(47\) 0.749097 4.24834i 0.109267 0.619684i −0.880163 0.474672i \(-0.842567\pi\)
0.989430 0.145012i \(-0.0463222\pi\)
\(48\) 0 0
\(49\) −4.77806 1.73907i −0.682579 0.248439i
\(50\) −0.324089 1.83800i −0.0458331 0.259933i
\(51\) 0 0
\(52\) −3.39874 2.85188i −0.471321 0.395485i
\(53\) 6.55503 0.900403 0.450201 0.892927i \(-0.351352\pi\)
0.450201 + 0.892927i \(0.351352\pi\)
\(54\) 0 0
\(55\) 3.42573 0.461926
\(56\) 2.56815 + 2.15493i 0.343183 + 0.287965i
\(57\) 0 0
\(58\) 1.15012 + 6.52266i 0.151018 + 0.856467i
\(59\) 3.06342 + 1.11500i 0.398824 + 0.145160i 0.533642 0.845710i \(-0.320823\pi\)
−0.134818 + 0.990870i \(0.543045\pi\)
\(60\) 0 0
\(61\) 0.589476 3.34309i 0.0754747 0.428038i −0.923534 0.383517i \(-0.874713\pi\)
0.999008 0.0445212i \(-0.0141762\pi\)
\(62\) 3.38521 5.86336i 0.429922 0.744648i
\(63\) 0 0
\(64\) 1.73511 + 3.00530i 0.216889 + 0.375663i
\(65\) −2.81078 + 1.02304i −0.348634 + 0.126892i
\(66\) 0 0
\(67\) −3.19129 + 2.67781i −0.389878 + 0.327146i −0.816566 0.577253i \(-0.804125\pi\)
0.426688 + 0.904399i \(0.359680\pi\)
\(68\) −2.07937 + 1.74480i −0.252161 + 0.211588i
\(69\) 0 0
\(70\) −6.09675 + 2.21903i −0.728701 + 0.265225i
\(71\) −4.35406 7.54146i −0.516732 0.895007i −0.999811 0.0194298i \(-0.993815\pi\)
0.483079 0.875577i \(-0.339518\pi\)
\(72\) 0 0
\(73\) 3.97200 6.87971i 0.464888 0.805210i −0.534309 0.845290i \(-0.679428\pi\)
0.999196 + 0.0400800i \(0.0127613\pi\)
\(74\) −2.67394 + 15.1646i −0.310839 + 1.76285i
\(75\) 0 0
\(76\) 7.89326 + 2.87291i 0.905419 + 0.329545i
\(77\) −2.06796 11.7280i −0.235666 1.33653i
\(78\) 0 0
\(79\) 11.2271 + 9.42064i 1.26315 + 1.05990i 0.995340 + 0.0964321i \(0.0307431\pi\)
0.267806 + 0.963473i \(0.413701\pi\)
\(80\) 4.76644 0.532904
\(81\) 0 0
\(82\) 8.51652 0.940492
\(83\) 11.0597 + 9.28016i 1.21396 + 1.01863i 0.999118 + 0.0419799i \(0.0133665\pi\)
0.214837 + 0.976650i \(0.431078\pi\)
\(84\) 0 0
\(85\) 0.317778 + 1.80221i 0.0344679 + 0.195477i
\(86\) 11.9478 + 4.34865i 1.28837 + 0.468927i
\(87\) 0 0
\(88\) −0.573682 + 3.25351i −0.0611547 + 0.346826i
\(89\) −1.78804 + 3.09697i −0.189531 + 0.328278i −0.945094 0.326798i \(-0.894030\pi\)
0.755563 + 0.655076i \(0.227364\pi\)
\(90\) 0 0
\(91\) 5.19911 + 9.00512i 0.545014 + 0.943993i
\(92\) 11.8538 4.31443i 1.23584 0.449810i
\(93\) 0 0
\(94\) −6.16760 + 5.17523i −0.636139 + 0.533784i
\(95\) 4.33811 3.64011i 0.445081 0.373467i
\(96\) 0 0
\(97\) 3.43991 1.25203i 0.349270 0.127124i −0.161427 0.986885i \(-0.551610\pi\)
0.510697 + 0.859761i \(0.329387\pi\)
\(98\) 4.74493 + 8.21846i 0.479310 + 0.830190i
\(99\) 0 0
\(100\) −0.741641 + 1.28456i −0.0741641 + 0.128456i
\(101\) −0.0680401 + 0.385875i −0.00677025 + 0.0383960i −0.988006 0.154417i \(-0.950650\pi\)
0.981235 + 0.192813i \(0.0617611\pi\)
\(102\) 0 0
\(103\) 15.4578 + 5.62618i 1.52310 + 0.554364i 0.961920 0.273330i \(-0.0881249\pi\)
0.561181 + 0.827693i \(0.310347\pi\)
\(104\) −0.500909 2.84080i −0.0491182 0.278563i
\(105\) 0 0
\(106\) −9.37180 7.86388i −0.910270 0.763807i
\(107\) −12.6842 −1.22623 −0.613113 0.789995i \(-0.710083\pi\)
−0.613113 + 0.789995i \(0.710083\pi\)
\(108\) 0 0
\(109\) 14.0464 1.34540 0.672701 0.739914i \(-0.265134\pi\)
0.672701 + 0.739914i \(0.265134\pi\)
\(110\) −4.89781 4.10975i −0.466988 0.391849i
\(111\) 0 0
\(112\) −2.87728 16.3179i −0.271877 1.54189i
\(113\) 7.00413 + 2.54930i 0.658893 + 0.239818i 0.649758 0.760141i \(-0.274870\pi\)
0.00913486 + 0.999958i \(0.497092\pi\)
\(114\) 0 0
\(115\) 1.47679 8.37528i 0.137711 0.780999i
\(116\) 2.63192 4.55862i 0.244368 0.423257i
\(117\) 0 0
\(118\) −3.04218 5.26922i −0.280056 0.485071i
\(119\) 5.97803 2.17582i 0.548005 0.199457i
\(120\) 0 0
\(121\) 0.563534 0.472862i 0.0512304 0.0429874i
\(122\) −4.85338 + 4.07247i −0.439405 + 0.368704i
\(123\) 0 0
\(124\) −5.05628 + 1.84034i −0.454067 + 0.165267i
\(125\) 0.500000 + 0.866025i 0.0447214 + 0.0774597i
\(126\) 0 0
\(127\) −6.42637 + 11.1308i −0.570248 + 0.987699i 0.426292 + 0.904586i \(0.359820\pi\)
−0.996540 + 0.0831130i \(0.973514\pi\)
\(128\) −1.29499 + 7.34425i −0.114462 + 0.649146i
\(129\) 0 0
\(130\) 5.24591 + 1.90936i 0.460097 + 0.167462i
\(131\) 3.04490 + 17.2685i 0.266034 + 1.50876i 0.766074 + 0.642753i \(0.222208\pi\)
−0.500040 + 0.866003i \(0.666681\pi\)
\(132\) 0 0
\(133\) −15.0806 12.6541i −1.30765 1.09725i
\(134\) 7.77510 0.671667
\(135\) 0 0
\(136\) −1.76483 −0.151333
\(137\) 7.61384 + 6.38877i 0.650495 + 0.545830i 0.907221 0.420654i \(-0.138199\pi\)
−0.256726 + 0.966484i \(0.582644\pi\)
\(138\) 0 0
\(139\) 0.556612 + 3.15670i 0.0472112 + 0.267748i 0.999272 0.0381621i \(-0.0121503\pi\)
−0.952060 + 0.305910i \(0.901039\pi\)
\(140\) 4.84538 + 1.76357i 0.409509 + 0.149049i
\(141\) 0 0
\(142\) −2.82221 + 16.0055i −0.236835 + 1.34316i
\(143\) −5.12347 + 8.87411i −0.428446 + 0.742090i
\(144\) 0 0
\(145\) −1.77439 3.07333i −0.147355 0.255226i
\(146\) −13.9322 + 5.07091i −1.15304 + 0.419671i
\(147\) 0 0
\(148\) 9.37485 7.86643i 0.770608 0.646617i
\(149\) −0.773640 + 0.649161i −0.0633790 + 0.0531813i −0.673927 0.738798i \(-0.735394\pi\)
0.610548 + 0.791979i \(0.290949\pi\)
\(150\) 0 0
\(151\) 11.1642 4.06345i 0.908533 0.330679i 0.154866 0.987936i \(-0.450505\pi\)
0.753667 + 0.657257i \(0.228283\pi\)
\(152\) 2.73064 + 4.72961i 0.221484 + 0.383622i
\(153\) 0 0
\(154\) −11.1131 + 19.2485i −0.895520 + 1.55109i
\(155\) −0.629929 + 3.57251i −0.0505971 + 0.286951i
\(156\) 0 0
\(157\) −18.3957 6.69550i −1.46814 0.534359i −0.520545 0.853834i \(-0.674271\pi\)
−0.947595 + 0.319475i \(0.896493\pi\)
\(158\) −4.74982 26.9376i −0.377876 2.14304i
\(159\) 0 0
\(160\) −5.33712 4.47837i −0.421936 0.354046i
\(161\) −29.5642 −2.32998
\(162\) 0 0
\(163\) 9.26458 0.725658 0.362829 0.931856i \(-0.381811\pi\)
0.362829 + 0.931856i \(0.381811\pi\)
\(164\) −5.18496 4.35070i −0.404877 0.339732i
\(165\) 0 0
\(166\) −4.67899 26.5359i −0.363160 2.05958i
\(167\) 9.58151 + 3.48738i 0.741439 + 0.269862i 0.684999 0.728544i \(-0.259803\pi\)
0.0564405 + 0.998406i \(0.482025\pi\)
\(168\) 0 0
\(169\) −0.703782 + 3.99135i −0.0541371 + 0.307027i
\(170\) 1.70773 2.95787i 0.130977 0.226858i
\(171\) 0 0
\(172\) −5.05245 8.75110i −0.385246 0.667265i
\(173\) −10.6251 + 3.86724i −0.807815 + 0.294021i −0.712721 0.701448i \(-0.752537\pi\)
−0.0950941 + 0.995468i \(0.530315\pi\)
\(174\) 0 0
\(175\) 2.66300 2.23453i 0.201304 0.168914i
\(176\) 12.5084 10.4958i 0.942855 0.791150i
\(177\) 0 0
\(178\) 6.27171 2.28272i 0.470085 0.171097i
\(179\) −12.0316 20.8394i −0.899285 1.55761i −0.828410 0.560122i \(-0.810754\pi\)
−0.0708754 0.997485i \(-0.522579\pi\)
\(180\) 0 0
\(181\) −4.60686 + 7.97931i −0.342425 + 0.593098i −0.984882 0.173224i \(-0.944582\pi\)
0.642457 + 0.766321i \(0.277915\pi\)
\(182\) 3.36995 19.1119i 0.249797 1.41667i
\(183\) 0 0
\(184\) 7.70693 + 2.80509i 0.568162 + 0.206794i
\(185\) −1.43270 8.12527i −0.105335 0.597382i
\(186\) 0 0
\(187\) 4.80244 + 4.02972i 0.351189 + 0.294682i
\(188\) 6.39870 0.466673
\(189\) 0 0
\(190\) −10.5692 −0.766768
\(191\) 1.50137 + 1.25980i 0.108635 + 0.0911559i 0.695487 0.718538i \(-0.255189\pi\)
−0.586852 + 0.809694i \(0.699633\pi\)
\(192\) 0 0
\(193\) 1.83340 + 10.3977i 0.131971 + 0.748446i 0.976921 + 0.213601i \(0.0685191\pi\)
−0.844950 + 0.534846i \(0.820370\pi\)
\(194\) −6.42010 2.33673i −0.460937 0.167767i
\(195\) 0 0
\(196\) 1.30966 7.42747i 0.0935473 0.530533i
\(197\) −0.984623 + 1.70542i −0.0701515 + 0.121506i −0.898968 0.438015i \(-0.855682\pi\)
0.828816 + 0.559521i \(0.189015\pi\)
\(198\) 0 0
\(199\) −7.27018 12.5923i −0.515369 0.892646i −0.999841 0.0178388i \(-0.994321\pi\)
0.484472 0.874807i \(-0.339012\pi\)
\(200\) −0.906220 + 0.329837i −0.0640794 + 0.0233230i
\(201\) 0 0
\(202\) 0.560200 0.470064i 0.0394155 0.0330736i
\(203\) −9.45041 + 7.92984i −0.663289 + 0.556565i
\(204\) 0 0
\(205\) −4.28799 + 1.56070i −0.299486 + 0.109004i
\(206\) −15.3506 26.5881i −1.06953 1.85248i
\(207\) 0 0
\(208\) −7.12861 + 12.3471i −0.494280 + 0.856118i
\(209\) 3.36876 19.1052i 0.233022 1.32153i
\(210\) 0 0
\(211\) −11.3530 4.13217i −0.781575 0.284470i −0.0797459 0.996815i \(-0.525411\pi\)
−0.701829 + 0.712345i \(0.747633\pi\)
\(212\) 1.68837 + 9.57525i 0.115958 + 0.657631i
\(213\) 0 0
\(214\) 18.1347 + 15.2168i 1.23966 + 1.04020i
\(215\) −6.81253 −0.464610
\(216\) 0 0
\(217\) 12.6107 0.856071
\(218\) −20.0823 16.8511i −1.36015 1.14130i
\(219\) 0 0
\(220\) 0.882363 + 5.00413i 0.0594889 + 0.337378i
\(221\) −5.14376 1.87218i −0.346007 0.125936i
\(222\) 0 0
\(223\) −3.61394 + 20.4957i −0.242007 + 1.37249i 0.585334 + 0.810792i \(0.300963\pi\)
−0.827342 + 0.561699i \(0.810148\pi\)
\(224\) −12.1099 + 20.9750i −0.809127 + 1.40145i
\(225\) 0 0
\(226\) −6.95557 12.0474i −0.462678 0.801381i
\(227\) 8.01519 2.91729i 0.531987 0.193627i −0.0620383 0.998074i \(-0.519760\pi\)
0.594025 + 0.804446i \(0.297538\pi\)
\(228\) 0 0
\(229\) 12.0900 10.1447i 0.798931 0.670383i −0.149008 0.988836i \(-0.547608\pi\)
0.947938 + 0.318453i \(0.103163\pi\)
\(230\) −12.1589 + 10.2026i −0.801737 + 0.672738i
\(231\) 0 0
\(232\) 3.21597 1.17052i 0.211139 0.0768483i
\(233\) 9.08918 + 15.7429i 0.595452 + 1.03135i 0.993483 + 0.113981i \(0.0363603\pi\)
−0.398031 + 0.917372i \(0.630306\pi\)
\(234\) 0 0
\(235\) 2.15694 3.73593i 0.140703 0.243705i
\(236\) −0.839683 + 4.76208i −0.0546587 + 0.309985i
\(237\) 0 0
\(238\) −11.1571 4.06086i −0.723209 0.263227i
\(239\) 2.15258 + 12.2079i 0.139239 + 0.789663i 0.971814 + 0.235750i \(0.0757547\pi\)
−0.832575 + 0.553913i \(0.813134\pi\)
\(240\) 0 0
\(241\) −6.87075 5.76524i −0.442584 0.371372i 0.394091 0.919071i \(-0.371059\pi\)
−0.836675 + 0.547699i \(0.815504\pi\)
\(242\) −1.37297 −0.0882578
\(243\) 0 0
\(244\) 5.03524 0.322348
\(245\) −3.89511 3.26838i −0.248849 0.208809i
\(246\) 0 0
\(247\) 2.94142 + 16.6816i 0.187158 + 1.06143i
\(248\) −3.28742 1.19652i −0.208751 0.0759793i
\(249\) 0 0
\(250\) 0.324089 1.83800i 0.0204972 0.116245i
\(251\) 5.89181 10.2049i 0.371888 0.644129i −0.617968 0.786203i \(-0.712044\pi\)
0.989856 + 0.142074i \(0.0453772\pi\)
\(252\) 0 0
\(253\) −14.5670 25.2308i −0.915822 1.58625i
\(254\) 22.5411 8.20430i 1.41436 0.514784i
\(255\) 0 0
\(256\) 15.9788 13.4078i 0.998677 0.837989i
\(257\) 7.83057 6.57063i 0.488458 0.409865i −0.365015 0.931001i \(-0.618936\pi\)
0.853473 + 0.521137i \(0.174492\pi\)
\(258\) 0 0
\(259\) −26.9520 + 9.80971i −1.67471 + 0.609546i
\(260\) −2.21837 3.84233i −0.137578 0.238291i
\(261\) 0 0
\(262\) 16.3632 28.3418i 1.01092 1.75096i
\(263\) 3.97496 22.5431i 0.245107 1.39007i −0.575138 0.818056i \(-0.695052\pi\)
0.820245 0.572013i \(-0.193837\pi\)
\(264\) 0 0
\(265\) 6.15972 + 2.24195i 0.378388 + 0.137722i
\(266\) 6.38013 + 36.1835i 0.391191 + 2.21855i
\(267\) 0 0
\(268\) −4.73358 3.97194i −0.289149 0.242625i
\(269\) −0.457689 −0.0279058 −0.0139529 0.999903i \(-0.504441\pi\)
−0.0139529 + 0.999903i \(0.504441\pi\)
\(270\) 0 0
\(271\) −24.7898 −1.50588 −0.752938 0.658092i \(-0.771364\pi\)
−0.752938 + 0.658092i \(0.771364\pi\)
\(272\) 6.68193 + 5.60681i 0.405152 + 0.339963i
\(273\) 0 0
\(274\) −3.22118 18.2682i −0.194598 1.10362i
\(275\) 3.21914 + 1.17167i 0.194121 + 0.0706543i
\(276\) 0 0
\(277\) −1.06913 + 6.06336i −0.0642381 + 0.364312i 0.935696 + 0.352808i \(0.114773\pi\)
−0.999934 + 0.0115042i \(0.996338\pi\)
\(278\) 2.99121 5.18093i 0.179401 0.310731i
\(279\) 0 0
\(280\) 1.67624 + 2.90333i 0.100174 + 0.173507i
\(281\) −17.0698 + 6.21288i −1.01830 + 0.370629i −0.796613 0.604489i \(-0.793377\pi\)
−0.221683 + 0.975119i \(0.571155\pi\)
\(282\) 0 0
\(283\) −5.38619 + 4.51955i −0.320176 + 0.268659i −0.788683 0.614800i \(-0.789237\pi\)
0.468507 + 0.883460i \(0.344792\pi\)
\(284\) 9.89470 8.30264i 0.587142 0.492671i
\(285\) 0 0
\(286\) 17.9711 6.54094i 1.06265 0.386774i
\(287\) 7.93150 + 13.7378i 0.468182 + 0.810915i
\(288\) 0 0
\(289\) 6.82553 11.8222i 0.401502 0.695421i
\(290\) −1.15012 + 6.52266i −0.0675374 + 0.383024i
\(291\) 0 0
\(292\) 11.0726 + 4.03009i 0.647974 + 0.235843i
\(293\) 4.12441 + 23.3907i 0.240951 + 1.36650i 0.829712 + 0.558192i \(0.188505\pi\)
−0.588761 + 0.808307i \(0.700384\pi\)
\(294\) 0 0
\(295\) 2.49733 + 2.09551i 0.145400 + 0.122005i
\(296\) 7.95672 0.462475
\(297\) 0 0
\(298\) 1.88486 0.109187
\(299\) 19.4869 + 16.3514i 1.12696 + 0.945628i
\(300\) 0 0
\(301\) 4.11241 + 23.3226i 0.237035 + 1.34429i
\(302\) −20.8364 7.58384i −1.19900 0.436401i
\(303\) 0 0
\(304\) 4.68717 26.5823i 0.268828 1.52460i
\(305\) 1.69733 2.93986i 0.0971888 0.168336i
\(306\) 0 0
\(307\) 9.31264 + 16.1300i 0.531500 + 0.920585i 0.999324 + 0.0367637i \(0.0117049\pi\)
−0.467824 + 0.883822i \(0.654962\pi\)
\(308\) 16.5990 6.04153i 0.945814 0.344248i
\(309\) 0 0
\(310\) 5.18645 4.35195i 0.294570 0.247174i
\(311\) −1.48464 + 1.24576i −0.0841860 + 0.0706404i −0.683909 0.729567i \(-0.739722\pi\)
0.599724 + 0.800207i \(0.295277\pi\)
\(312\) 0 0
\(313\) 28.4277 10.3468i 1.60683 0.584838i 0.626021 0.779806i \(-0.284683\pi\)
0.980810 + 0.194968i \(0.0624603\pi\)
\(314\) 18.2682 + 31.6414i 1.03093 + 1.78563i
\(315\) 0 0
\(316\) −10.8694 + 18.8264i −0.611453 + 1.05907i
\(317\) −0.508892 + 2.88607i −0.0285822 + 0.162098i −0.995758 0.0920102i \(-0.970671\pi\)
0.967176 + 0.254108i \(0.0817819\pi\)
\(318\) 0 0
\(319\) −11.4240 4.15799i −0.639621 0.232803i
\(320\) 0.602598 + 3.41750i 0.0336863 + 0.191044i
\(321\) 0 0
\(322\) 42.2682 + 35.4673i 2.35552 + 1.97651i
\(323\) 10.3634 0.576633
\(324\) 0 0
\(325\) −2.99117 −0.165920
\(326\) −13.2457 11.1144i −0.733610 0.615572i
\(327\) 0 0
\(328\) −0.764162 4.33378i −0.0421938 0.239293i
\(329\) −14.0920 5.12906i −0.776915 0.282774i
\(330\) 0 0
\(331\) −1.87857 + 10.6539i −0.103255 + 0.585590i 0.888648 + 0.458591i \(0.151646\pi\)
−0.991903 + 0.126999i \(0.959465\pi\)
\(332\) −10.7073 + 18.5457i −0.587642 + 1.01783i
\(333\) 0 0
\(334\) −9.51508 16.4806i −0.520642 0.901778i
\(335\) −3.91469 + 1.42483i −0.213883 + 0.0778469i
\(336\) 0 0
\(337\) −10.4808 + 8.79442i −0.570925 + 0.479063i −0.881953 0.471338i \(-0.843771\pi\)
0.311028 + 0.950401i \(0.399327\pi\)
\(338\) 5.79450 4.86216i 0.315179 0.264467i
\(339\) 0 0
\(340\) −2.55073 + 0.928388i −0.138333 + 0.0503489i
\(341\) 6.21363 + 10.7623i 0.336487 + 0.582812i
\(342\) 0 0
\(343\) 3.32908 5.76614i 0.179754 0.311342i
\(344\) 1.14084 6.47005i 0.0615102 0.348842i
\(345\) 0 0
\(346\) 19.8303 + 7.21764i 1.06608 + 0.388023i
\(347\) 3.12373 + 17.7155i 0.167691 + 0.951020i 0.946247 + 0.323445i \(0.104841\pi\)
−0.778556 + 0.627575i \(0.784048\pi\)
\(348\) 0 0
\(349\) 2.87063 + 2.40875i 0.153661 + 0.128937i 0.716377 0.697713i \(-0.245799\pi\)
−0.562716 + 0.826650i \(0.690243\pi\)
\(350\) −6.48802 −0.346799
\(351\) 0 0
\(352\) −23.8675 −1.27214
\(353\) 0.250470 + 0.210170i 0.0133312 + 0.0111862i 0.649429 0.760422i \(-0.275008\pi\)
−0.636098 + 0.771609i \(0.719452\pi\)
\(354\) 0 0
\(355\) −1.51215 8.57583i −0.0802566 0.455158i
\(356\) −4.98443 1.81418i −0.264174 0.0961516i
\(357\) 0 0
\(358\) −7.79863 + 44.2282i −0.412171 + 2.33754i
\(359\) −3.20577 + 5.55255i −0.169194 + 0.293053i −0.938137 0.346265i \(-0.887450\pi\)
0.768943 + 0.639318i \(0.220783\pi\)
\(360\) 0 0
\(361\) −6.53480 11.3186i −0.343937 0.595716i
\(362\) 16.1590 5.88140i 0.849299 0.309120i
\(363\) 0 0
\(364\) −11.8151 + 9.91402i −0.619278 + 0.519636i
\(365\) 6.08546 5.10631i 0.318528 0.267277i
\(366\) 0 0
\(367\) 7.66491 2.78980i 0.400105 0.145626i −0.134127 0.990964i \(-0.542823\pi\)
0.534232 + 0.845338i \(0.320601\pi\)
\(368\) −20.2680 35.1053i −1.05654 1.82999i
\(369\) 0 0
\(370\) −7.69929 + 13.3356i −0.400267 + 0.693283i
\(371\) 3.95697 22.4411i 0.205436 1.16508i
\(372\) 0 0
\(373\) −0.786850 0.286390i −0.0407415 0.0148287i 0.321569 0.946886i \(-0.395790\pi\)
−0.362311 + 0.932057i \(0.618012\pi\)
\(374\) −2.03176 11.5227i −0.105060 0.595823i
\(375\) 0 0
\(376\) 3.18691 + 2.67413i 0.164352 + 0.137908i
\(377\) 10.6150 0.546700
\(378\) 0 0
\(379\) −7.38310 −0.379245 −0.189622 0.981857i \(-0.560726\pi\)
−0.189622 + 0.981857i \(0.560726\pi\)
\(380\) 6.43464 + 5.39931i 0.330090 + 0.276979i
\(381\) 0 0
\(382\) −0.635182 3.60230i −0.0324988 0.184310i
\(383\) 16.1122 + 5.86435i 0.823293 + 0.299654i 0.719103 0.694903i \(-0.244553\pi\)
0.104190 + 0.994557i \(0.466775\pi\)
\(384\) 0 0
\(385\) 2.06796 11.7280i 0.105393 0.597713i
\(386\) 9.85263 17.0653i 0.501486 0.868599i
\(387\) 0 0
\(388\) 2.71491 + 4.70236i 0.137829 + 0.238726i
\(389\) −6.10545 + 2.22220i −0.309558 + 0.112670i −0.492128 0.870523i \(-0.663781\pi\)
0.182569 + 0.983193i \(0.441559\pi\)
\(390\) 0 0
\(391\) 11.9222 10.0039i 0.602931 0.505919i
\(392\) 3.75636 3.15196i 0.189725 0.159198i
\(393\) 0 0
\(394\) 3.45366 1.25703i 0.173993 0.0633283i
\(395\) 7.32796 + 12.6924i 0.368710 + 0.638624i
\(396\) 0 0
\(397\) −3.60614 + 6.24602i −0.180987 + 0.313479i −0.942217 0.335003i \(-0.891263\pi\)
0.761230 + 0.648482i \(0.224596\pi\)
\(398\) −4.71237 + 26.7252i −0.236210 + 1.33961i
\(399\) 0 0
\(400\) 4.47899 + 1.63022i 0.223949 + 0.0815109i
\(401\) 1.84693 + 10.4745i 0.0922313 + 0.523070i 0.995561 + 0.0941220i \(0.0300044\pi\)
−0.903329 + 0.428948i \(0.858885\pi\)
\(402\) 0 0
\(403\) −8.31221 6.97477i −0.414060 0.347438i
\(404\) −0.581191 −0.0289153
\(405\) 0 0
\(406\) 23.0245 1.14269
\(407\) −21.6518 18.1680i −1.07324 0.900555i
\(408\) 0 0
\(409\) 1.72049 + 9.75737i 0.0850727 + 0.482471i 0.997341 + 0.0728778i \(0.0232183\pi\)
−0.912268 + 0.409593i \(0.865671\pi\)
\(410\) 8.00291 + 2.91282i 0.395235 + 0.143854i
\(411\) 0 0
\(412\) −4.23697 + 24.0291i −0.208741 + 1.18383i
\(413\) 5.66643 9.81454i 0.278827 0.482942i
\(414\) 0 0
\(415\) 7.21868 + 12.5031i 0.354351 + 0.613754i
\(416\) 19.5830 7.12763i 0.960135 0.349461i
\(417\) 0 0
\(418\) −27.7363 + 23.2735i −1.35663 + 1.13834i
\(419\) 8.15754 6.84499i 0.398522 0.334400i −0.421400 0.906875i \(-0.638461\pi\)
0.819922 + 0.572475i \(0.194017\pi\)
\(420\) 0 0
\(421\) −36.2626 + 13.1985i −1.76733 + 0.643255i −0.767331 + 0.641251i \(0.778416\pi\)
−0.999998 + 0.00200391i \(0.999362\pi\)
\(422\) 11.2743 + 19.5277i 0.548826 + 0.950594i
\(423\) 0 0
\(424\) −3.16077 + 5.47461i −0.153500 + 0.265871i
\(425\) −0.317778 + 1.80221i −0.0154145 + 0.0874201i
\(426\) 0 0
\(427\) −11.0892 4.03614i −0.536644 0.195322i
\(428\) −3.26706 18.5284i −0.157919 0.895604i
\(429\) 0 0
\(430\) 9.73994 + 8.17278i 0.469702 + 0.394127i
\(431\) 24.1205 1.16184 0.580922 0.813960i \(-0.302692\pi\)
0.580922 + 0.813960i \(0.302692\pi\)
\(432\) 0 0
\(433\) −9.73516 −0.467842 −0.233921 0.972256i \(-0.575156\pi\)
−0.233921 + 0.972256i \(0.575156\pi\)
\(434\) −18.0297 15.1287i −0.865452 0.726201i
\(435\) 0 0
\(436\) 3.61793 + 20.5183i 0.173267 + 0.982647i
\(437\) −45.2564 16.4720i −2.16491 0.787962i
\(438\) 0 0
\(439\) 4.96370 28.1505i 0.236904 1.34355i −0.601662 0.798751i \(-0.705494\pi\)
0.838566 0.544800i \(-0.183394\pi\)
\(440\) −1.65185 + 2.86109i −0.0787490 + 0.136397i
\(441\) 0 0
\(442\) 5.10810 + 8.84749i 0.242967 + 0.420832i
\(443\) 27.5517 10.0280i 1.30902 0.476444i 0.409096 0.912492i \(-0.365844\pi\)
0.899924 + 0.436048i \(0.143622\pi\)
\(444\) 0 0
\(445\) −2.73943 + 2.29865i −0.129861 + 0.108967i
\(446\) 29.7549 24.9673i 1.40894 1.18224i
\(447\) 0 0
\(448\) 11.3360 4.12598i 0.535578 0.194934i
\(449\) −13.6125 23.5775i −0.642413 1.11269i −0.984893 0.173167i \(-0.944600\pi\)
0.342480 0.939525i \(-0.388733\pi\)
\(450\) 0 0
\(451\) −7.81612 + 13.5379i −0.368047 + 0.637475i
\(452\) −1.91983 + 10.8879i −0.0903012 + 0.512123i
\(453\) 0 0
\(454\) −14.9592 5.44470i −0.702070 0.255533i
\(455\) 1.80563 + 10.2402i 0.0846493 + 0.480070i
\(456\) 0 0
\(457\) −25.1380 21.0933i −1.17591 0.986704i −0.999997 0.00229800i \(-0.999269\pi\)
−0.175911 0.984406i \(-0.556287\pi\)
\(458\) −29.4556 −1.37637
\(459\) 0 0
\(460\) 12.6145 0.588156
\(461\) −4.81252 4.03819i −0.224142 0.188077i 0.523801 0.851841i \(-0.324514\pi\)
−0.747942 + 0.663764i \(0.768958\pi\)
\(462\) 0 0
\(463\) −4.32044 24.5024i −0.200788 1.13872i −0.903932 0.427677i \(-0.859332\pi\)
0.703144 0.711047i \(-0.251779\pi\)
\(464\) −15.8949 5.78528i −0.737904 0.268575i
\(465\) 0 0
\(466\) 5.89141 33.4118i 0.272914 1.54777i
\(467\) −15.1156 + 26.1809i −0.699464 + 1.21151i 0.269188 + 0.963088i \(0.413245\pi\)
−0.968652 + 0.248420i \(0.920089\pi\)
\(468\) 0 0
\(469\) 7.24102 + 12.5418i 0.334359 + 0.579127i
\(470\) −7.56568 + 2.75368i −0.348979 + 0.127018i
\(471\) 0 0
\(472\) −2.40837 + 2.02086i −0.110854 + 0.0930177i
\(473\) −17.8779 + 15.0013i −0.822025 + 0.689761i
\(474\) 0 0
\(475\) 5.32148 1.93686i 0.244166 0.0888693i
\(476\) 4.71809 + 8.17197i 0.216253 + 0.374561i
\(477\) 0 0
\(478\) 11.5679 20.0361i 0.529102 0.916432i
\(479\) 1.45847 8.27140i 0.0666392 0.377930i −0.933189 0.359386i \(-0.882986\pi\)
0.999828 0.0185434i \(-0.00590289\pi\)
\(480\) 0 0
\(481\) 23.1907 + 8.44071i 1.05740 + 0.384863i
\(482\) 2.90680 + 16.4853i 0.132401 + 0.750883i
\(483\) 0 0
\(484\) 0.835881 + 0.701387i 0.0379946 + 0.0318812i
\(485\) 3.66068 0.166223
\(486\) 0 0
\(487\) 25.5873 1.15947 0.579735 0.814805i \(-0.303156\pi\)
0.579735 + 0.814805i \(0.303156\pi\)
\(488\) 2.50783 + 2.10432i 0.113524 + 0.0952580i
\(489\) 0 0
\(490\) 1.64790 + 9.34569i 0.0744444 + 0.422195i
\(491\) −2.22987 0.811607i −0.100633 0.0366273i 0.291213 0.956658i \(-0.405941\pi\)
−0.391846 + 0.920031i \(0.628163\pi\)
\(492\) 0 0
\(493\) 1.12773 6.39565i 0.0507902 0.288045i
\(494\) 15.8071 27.3787i 0.711194 1.23182i
\(495\) 0 0
\(496\) 8.64541 + 14.9743i 0.388190 + 0.672366i
\(497\) −28.4465 + 10.3537i −1.27600 + 0.464426i
\(498\) 0 0
\(499\) 1.12305 0.942347i 0.0502744 0.0421853i −0.617304 0.786725i \(-0.711775\pi\)
0.667579 + 0.744539i \(0.267331\pi\)
\(500\) −1.13626 + 0.953435i −0.0508151 + 0.0426389i
\(501\) 0 0
\(502\) −20.6661 + 7.52186i −0.922374 + 0.335717i
\(503\) −13.6055 23.5654i −0.606640 1.05073i −0.991790 0.127877i \(-0.959184\pi\)
0.385150 0.922854i \(-0.374150\pi\)
\(504\) 0 0
\(505\) −0.195914 + 0.339333i −0.00871805 + 0.0151001i
\(506\) −9.44204 + 53.5485i −0.419750 + 2.38052i
\(507\) 0 0
\(508\) −17.9145 6.52035i −0.794828 0.289294i
\(509\) 0.472987 + 2.68244i 0.0209648 + 0.118897i 0.993494 0.113883i \(-0.0363289\pi\)
−0.972529 + 0.232780i \(0.925218\pi\)
\(510\) 0 0
\(511\) −21.1549 17.7511i −0.935839 0.785262i
\(512\) −24.0150 −1.06132
\(513\) 0 0
\(514\) −19.0781 −0.841497
\(515\) 12.6013 + 10.5738i 0.555280 + 0.465935i
\(516\) 0 0
\(517\) −2.56621 14.5537i −0.112862 0.640070i
\(518\) 50.3019 + 18.3084i 2.21014 + 0.804425i
\(519\) 0 0
\(520\) 0.500909 2.84080i 0.0219663 0.124577i
\(521\) −2.22878 + 3.86036i −0.0976447 + 0.169126i −0.910709 0.413048i \(-0.864464\pi\)
0.813065 + 0.582173i \(0.197798\pi\)
\(522\) 0 0
\(523\) 18.2523 + 31.6140i 0.798119 + 1.38238i 0.920840 + 0.389941i \(0.127505\pi\)
−0.122721 + 0.992441i \(0.539162\pi\)
\(524\) −24.4406 + 8.89566i −1.06769 + 0.388609i
\(525\) 0 0
\(526\) −32.7274 + 27.4615i −1.42698 + 1.19738i
\(527\) −5.08545 + 4.26720i −0.221526 + 0.185882i
\(528\) 0 0
\(529\) −46.3514 + 16.8705i −2.01528 + 0.733502i
\(530\) −6.11701 10.5950i −0.265706 0.460216i
\(531\) 0 0
\(532\) 14.6002 25.2883i 0.632998 1.09639i
\(533\) 2.37016 13.4419i 0.102663 0.582232i
\(534\) 0 0
\(535\) −11.9192 4.33825i −0.515314 0.187559i
\(536\) −0.697638 3.95650i −0.0301334 0.170895i
\(537\) 0 0
\(538\) 0.654364 + 0.549076i 0.0282116 + 0.0236724i
\(539\) −17.4188 −0.750282
\(540\) 0 0
\(541\) −5.40959 −0.232577 −0.116288 0.993216i \(-0.537100\pi\)
−0.116288 + 0.993216i \(0.537100\pi\)
\(542\) 35.4423 + 29.7396i 1.52238 + 1.27743i
\(543\) 0 0
\(544\) −2.21400 12.5562i −0.0949243 0.538343i
\(545\) 13.1993 + 4.80416i 0.565397 + 0.205788i
\(546\) 0 0
\(547\) 3.75894 21.3180i 0.160721 0.911492i −0.792647 0.609681i \(-0.791298\pi\)
0.953368 0.301811i \(-0.0975912\pi\)
\(548\) −7.37129 + 12.7675i −0.314886 + 0.545399i
\(549\) 0 0
\(550\) −3.19682 5.53705i −0.136313 0.236101i
\(551\) −18.8848 + 6.87349i −0.804518 + 0.292820i
\(552\) 0 0
\(553\) 39.0288 32.7490i 1.65967 1.39263i
\(554\) 8.80259 7.38625i 0.373986 0.313812i
\(555\) 0 0
\(556\) −4.46778 + 1.62614i −0.189476 + 0.0689637i
\(557\) −2.62910 4.55373i −0.111399 0.192948i 0.804936 0.593362i \(-0.202200\pi\)
−0.916334 + 0.400414i \(0.868866\pi\)
\(558\) 0 0
\(559\) 10.1887 17.6473i 0.430936 0.746403i
\(560\) 2.87728 16.3179i 0.121587 0.689556i
\(561\) 0 0
\(562\) 31.8582 + 11.5954i 1.34386 + 0.489124i
\(563\) −4.12942 23.4191i −0.174034 0.986998i −0.939253 0.343227i \(-0.888480\pi\)
0.765218 0.643771i \(-0.222631\pi\)
\(564\) 0 0
\(565\) 5.70982 + 4.79111i 0.240214 + 0.201563i
\(566\) 13.1227 0.551587
\(567\) 0 0
\(568\) 8.39794 0.352370
\(569\) 23.3095 + 19.5590i 0.977185 + 0.819955i 0.983662 0.180024i \(-0.0576174\pi\)
−0.00647745 + 0.999979i \(0.502062\pi\)
\(570\) 0 0
\(571\) 3.24490 + 18.4027i 0.135795 + 0.770130i 0.974303 + 0.225241i \(0.0723170\pi\)
−0.838508 + 0.544889i \(0.816572\pi\)
\(572\) −14.2825 5.19840i −0.597181 0.217356i
\(573\) 0 0
\(574\) 5.14103 29.1562i 0.214582 1.21696i
\(575\) 4.25224 7.36510i 0.177331 0.307146i
\(576\) 0 0
\(577\) −9.24093 16.0058i −0.384705 0.666329i 0.607023 0.794684i \(-0.292363\pi\)
−0.991728 + 0.128355i \(0.959030\pi\)
\(578\) −23.9412 + 8.71389i −0.995823 + 0.362450i
\(579\) 0 0
\(580\) 4.03233 3.38353i 0.167434 0.140493i
\(581\) 38.4468 32.2607i 1.59504 1.33840i
\(582\) 0 0
\(583\) 21.1015 7.68033i 0.873936 0.318087i
\(584\) 3.83052 + 6.63465i 0.158508 + 0.274544i
\(585\) 0 0
\(586\) 22.1644 38.3899i 0.915603 1.58587i
\(587\) −4.62650 + 26.2382i −0.190956 + 1.08297i 0.727105 + 0.686527i \(0.240865\pi\)
−0.918061 + 0.396440i \(0.870246\pi\)
\(588\) 0 0
\(589\) 19.3043 + 7.02619i 0.795420 + 0.289509i
\(590\) −1.05654 5.99193i −0.0434971 0.246684i
\(591\) 0 0
\(592\) −30.1255 25.2783i −1.23815 1.03893i
\(593\) 4.62357 0.189867 0.0949337 0.995484i \(-0.469736\pi\)
0.0949337 + 0.995484i \(0.469736\pi\)
\(594\) 0 0
\(595\) 6.36168 0.260804
\(596\) −1.14753 0.962888i −0.0470045 0.0394414i
\(597\) 0 0
\(598\) −8.24429 46.7557i −0.337134 1.91198i
\(599\) 7.29668 + 2.65577i 0.298134 + 0.108512i 0.486756 0.873538i \(-0.338180\pi\)
−0.188622 + 0.982050i \(0.560402\pi\)
\(600\) 0 0
\(601\) −2.59767 + 14.7321i −0.105961 + 0.600936i 0.884871 + 0.465837i \(0.154247\pi\)
−0.990832 + 0.135099i \(0.956865\pi\)
\(602\) 22.0999 38.2782i 0.900725 1.56010i
\(603\) 0 0
\(604\) 8.81124 + 15.2615i 0.358524 + 0.620982i
\(605\) 0.691277 0.251604i 0.0281044 0.0102292i
\(606\) 0 0
\(607\) 19.7122 16.5405i 0.800094 0.671359i −0.148128 0.988968i \(-0.547325\pi\)
0.948222 + 0.317610i \(0.102880\pi\)
\(608\) −30.2241 + 25.3610i −1.22575 + 1.02853i
\(609\) 0 0
\(610\) −5.95355 + 2.16692i −0.241052 + 0.0877359i
\(611\) 6.45177 + 11.1748i 0.261011 + 0.452084i
\(612\) 0 0
\(613\) −14.5722 + 25.2399i −0.588567 + 1.01943i 0.405853 + 0.913938i \(0.366974\pi\)
−0.994420 + 0.105490i \(0.966359\pi\)
\(614\) 6.03625 34.2333i 0.243603 1.38154i
\(615\) 0 0
\(616\) 10.7921 + 3.92799i 0.434825 + 0.158263i
\(617\) −1.48661 8.43098i −0.0598486 0.339418i 0.940150 0.340760i \(-0.110684\pi\)
−0.999999 + 0.00134119i \(0.999573\pi\)
\(618\) 0 0
\(619\) 16.6721 + 13.9895i 0.670108 + 0.562287i 0.913097 0.407741i \(-0.133684\pi\)
−0.242989 + 0.970029i \(0.578128\pi\)
\(620\) −5.38078 −0.216097
\(621\) 0 0
\(622\) 3.61710 0.145032
\(623\) 9.52309 + 7.99082i 0.381535 + 0.320146i
\(624\) 0 0
\(625\) 0.173648 + 0.984808i 0.00694593 + 0.0393923i
\(626\) −53.0562 19.3109i −2.12055 0.771819i
\(627\) 0 0
\(628\) 5.04226 28.5961i 0.201208 1.14111i
\(629\) 7.54937 13.0759i 0.301013 0.521370i
\(630\) 0 0
\(631\) 22.3730 + 38.7512i 0.890657 + 1.54266i 0.839090 + 0.543993i \(0.183088\pi\)
0.0515673 + 0.998670i \(0.483578\pi\)
\(632\) −13.2815 + 4.83407i −0.528309 + 0.192289i
\(633\) 0 0
\(634\) 4.18990 3.51574i 0.166402 0.139628i
\(635\) −9.84577 + 8.26158i −0.390717 + 0.327851i
\(636\) 0 0
\(637\) 14.2920 5.20185i 0.566268 0.206105i
\(638\) 11.3448 + 19.6498i 0.449145 + 0.777941i
\(639\) 0 0
\(640\) −3.72877 + 6.45842i −0.147393 + 0.255292i
\(641\) −4.57420 + 25.9416i −0.180670 + 1.02463i 0.750723 + 0.660617i \(0.229705\pi\)
−0.931393 + 0.364014i \(0.881406\pi\)
\(642\) 0 0
\(643\) −34.1452 12.4278i −1.34656 0.490106i −0.434684 0.900583i \(-0.643140\pi\)
−0.911871 + 0.410477i \(0.865362\pi\)
\(644\) −7.61482 43.1858i −0.300066 1.70176i
\(645\) 0 0
\(646\) −14.8166 12.4326i −0.582952 0.489155i
\(647\) 39.1069 1.53745 0.768725 0.639580i \(-0.220892\pi\)
0.768725 + 0.639580i \(0.220892\pi\)
\(648\) 0 0
\(649\) 11.1680 0.438382
\(650\) 4.27651 + 3.58841i 0.167738 + 0.140749i
\(651\) 0 0
\(652\) 2.38627 + 13.5332i 0.0934536 + 0.530002i
\(653\) −13.7430 5.00203i −0.537804 0.195744i 0.0588158 0.998269i \(-0.481268\pi\)
−0.596619 + 0.802524i \(0.703490\pi\)
\(654\) 0 0
\(655\) −3.04490 + 17.2685i −0.118974 + 0.674736i
\(656\) −10.8751 + 18.8362i −0.424600 + 0.735428i
\(657\) 0 0
\(658\) 13.9943 + 24.2388i 0.545553 + 0.944926i
\(659\) −19.5964 + 7.13252i −0.763369 + 0.277844i −0.694220 0.719763i \(-0.744251\pi\)
−0.0691489 + 0.997606i \(0.522028\pi\)
\(660\) 0 0
\(661\) 13.5383 11.3600i 0.526580 0.441853i −0.340339 0.940303i \(-0.610542\pi\)
0.866918 + 0.498450i \(0.166097\pi\)
\(662\) 15.4669 12.9783i 0.601140 0.504416i
\(663\) 0 0
\(664\) −13.0834 + 4.76198i −0.507735 + 0.184801i
\(665\) −9.84316 17.0489i −0.381701 0.661126i
\(666\) 0 0
\(667\) −15.0903 + 26.1371i −0.584297 + 1.01203i
\(668\) −2.62629 + 14.8944i −0.101614 + 0.576282i
\(669\) 0 0
\(670\) 7.30621 + 2.65924i 0.282263 + 0.102735i
\(671\) −2.01939 11.4525i −0.0779576 0.442120i
\(672\) 0 0
\(673\) −18.0270 15.1265i −0.694890 0.583082i 0.225425 0.974261i \(-0.427623\pi\)
−0.920315 + 0.391179i \(0.872067\pi\)
\(674\) 25.5349 0.983567
\(675\) 0 0
\(676\) −6.01162 −0.231216
\(677\) −29.2846 24.5727i −1.12550 0.944407i −0.126631 0.991950i \(-0.540416\pi\)
−0.998869 + 0.0475429i \(0.984861\pi\)
\(678\) 0 0
\(679\) −2.20978 12.5323i −0.0848038 0.480946i
\(680\) −1.65839 0.603606i −0.0635965 0.0231472i
\(681\) 0 0
\(682\) 4.02754 22.8413i 0.154222 0.874639i
\(683\) 2.77501 4.80646i 0.106183 0.183914i −0.808038 0.589130i \(-0.799470\pi\)
0.914221 + 0.405216i \(0.132804\pi\)
\(684\) 0 0
\(685\) 4.96958 + 8.60757i 0.189878 + 0.328878i
\(686\) −11.6771 + 4.25011i −0.445833 + 0.162270i
\(687\) 0 0
\(688\) −24.8746 + 20.8723i −0.948335 + 0.795748i
\(689\) −15.0200 + 12.6033i −0.572216 + 0.480146i
\(690\) 0 0
\(691\) 28.6323 10.4213i 1.08922 0.396445i 0.265890 0.964003i \(-0.414334\pi\)
0.823333 + 0.567559i \(0.192112\pi\)
\(692\) −8.38577 14.5246i −0.318779 0.552142i
\(693\) 0 0
\(694\) 16.7868 29.0756i 0.637217 1.10369i
\(695\) −0.556612 + 3.15670i −0.0211135 + 0.119741i
\(696\) 0 0
\(697\) −7.84707 2.85610i −0.297229 0.108183i
\(698\) −1.21447 6.88762i −0.0459685 0.260700i
\(699\) 0 0
\(700\) 3.94999 + 3.31443i 0.149295 + 0.125274i
\(701\) 9.84780 0.371946 0.185973 0.982555i \(-0.440456\pi\)
0.185973 + 0.982555i \(0.440456\pi\)
\(702\) 0 0
\(703\) −46.7233 −1.76220
\(704\) 9.10678 + 7.64150i 0.343225 + 0.288000i
\(705\) 0 0
\(706\) −0.105966 0.600964i −0.00398809 0.0226176i
\(707\) 1.27997 + 0.465870i 0.0481381 + 0.0175208i
\(708\) 0 0
\(709\) −7.42637 + 42.1171i −0.278903 + 1.58174i 0.447380 + 0.894344i \(0.352357\pi\)
−0.726284 + 0.687395i \(0.758754\pi\)
\(710\) −8.12623 + 14.0750i −0.304972 + 0.528227i
\(711\) 0 0
\(712\) −1.72434 2.98665i −0.0646225 0.111929i
\(713\) 28.9905 10.5517i 1.08570 0.395163i
\(714\) 0 0
\(715\) −7.84961 + 6.58661i −0.293559 + 0.246325i
\(716\) 27.3421 22.9427i 1.02182 0.857410i
\(717\) 0 0
\(718\) 11.2446 4.09268i 0.419643 0.152738i
\(719\) −5.28698 9.15732i −0.197171 0.341510i 0.750439 0.660940i \(-0.229842\pi\)
−0.947610 + 0.319429i \(0.896509\pi\)
\(720\) 0 0
\(721\) 28.5923 49.5234i 1.06483 1.84435i
\(722\) −4.23571 + 24.0219i −0.157637 + 0.894004i
\(723\) 0 0
\(724\) −12.8423 4.67423i −0.477282 0.173716i
\(725\) −0.616239 3.49486i −0.0228865 0.129796i
\(726\) 0 0
\(727\) 30.8438 + 25.8811i 1.14393 + 0.959875i 0.999560 0.0296480i \(-0.00943865\pi\)
0.144374 + 0.989523i \(0.453883\pi\)
\(728\) −10.0278 −0.371656
\(729\) 0 0
\(730\) −14.8263 −0.548748
\(731\) −9.55028 8.01364i −0.353230 0.296395i
\(732\) 0 0
\(733\) 7.76303 + 44.0263i 0.286734 + 1.62615i 0.699025 + 0.715098i \(0.253618\pi\)
−0.412290 + 0.911052i \(0.635271\pi\)
\(734\) −14.3054 5.20676i −0.528024 0.192185i
\(735\) 0 0
\(736\) −10.2889 + 58.3515i −0.379255 + 2.15086i
\(737\) −7.13568 + 12.3594i −0.262846 + 0.455263i
\(738\) 0 0
\(739\) −7.15194 12.3875i −0.263088 0.455682i 0.703973 0.710227i \(-0.251408\pi\)
−0.967061 + 0.254545i \(0.918074\pi\)
\(740\) 11.5000 4.18564i 0.422747 0.153867i
\(741\) 0 0
\(742\) −32.5792 + 27.3372i −1.19602 + 1.00358i
\(743\) −16.7804 + 14.0804i −0.615612 + 0.516560i −0.896421 0.443204i \(-0.853842\pi\)
0.280809 + 0.959764i \(0.409397\pi\)
\(744\) 0 0
\(745\) −0.949009 + 0.345411i −0.0347690 + 0.0126549i
\(746\) 0.781395 + 1.35342i 0.0286089 + 0.0495521i
\(747\) 0 0
\(748\) −4.64945 + 8.05308i −0.170001 + 0.294450i
\(749\) −7.65686 + 43.4242i −0.279776 + 1.58669i
\(750\) 0 0
\(751\) −2.77841 1.01126i −0.101386 0.0369014i 0.290829 0.956775i \(-0.406069\pi\)
−0.392215 + 0.919874i \(0.628291\pi\)
\(752\) −3.57053 20.2495i −0.130204 0.738422i
\(753\) 0 0
\(754\) −15.1764 12.7345i −0.552691 0.463763i
\(755\) 11.8807 0.432384
\(756\) 0 0
\(757\) 31.6130 1.14899 0.574497 0.818507i \(-0.305198\pi\)
0.574497 + 0.818507i \(0.305198\pi\)
\(758\) 10.5557 + 8.85729i 0.383401 + 0.321711i
\(759\) 0 0
\(760\) 0.948342 + 5.37831i 0.0344000 + 0.195092i
\(761\) −15.9097 5.79066i −0.576727 0.209911i 0.0371547 0.999310i \(-0.488171\pi\)
−0.613882 + 0.789398i \(0.710393\pi\)
\(762\) 0 0
\(763\) 8.47918 48.0878i 0.306967 1.74090i
\(764\) −1.45354 + 2.51761i −0.0525873 + 0.0910839i
\(765\) 0 0
\(766\) −16.0005 27.7136i −0.578120 1.00133i
\(767\) −9.16321 + 3.33514i −0.330864 + 0.120425i
\(768\) 0 0
\(769\) −15.8071 + 13.2638i −0.570020 + 0.478303i −0.881653 0.471899i \(-0.843569\pi\)
0.311633 + 0.950203i \(0.399124\pi\)
\(770\) −17.0263 + 14.2867i −0.613584 + 0.514858i
\(771\) 0 0
\(772\) −14.7163 + 5.35628i −0.529650 + 0.192777i
\(773\) 7.16157 + 12.4042i 0.257584 + 0.446148i 0.965594 0.260054i \(-0.0837403\pi\)
−0.708010 + 0.706202i \(0.750407\pi\)
\(774\) 0 0
\(775\) −1.81381 + 3.14161i −0.0651540 + 0.112850i
\(776\) −0.613027 + 3.47665i −0.0220064 + 0.124804i
\(777\) 0 0
\(778\) 11.3949 + 4.14742i 0.408528 + 0.148692i
\(779\) 4.48729 + 25.4487i 0.160774 + 0.911795i
\(780\) 0 0
\(781\) −22.8524 19.1755i −0.817724 0.686152i
\(782\) −29.0467 −1.03871
\(783\) 0 0
\(784\) −24.2359 −0.865568
\(785\) −14.9963 12.5834i −0.535242 0.449122i
\(786\) 0 0
\(787\) 5.33548 + 30.2590i 0.190189 + 1.07862i 0.919105 + 0.394013i \(0.128914\pi\)
−0.728916 + 0.684603i \(0.759975\pi\)
\(788\) −2.74479 0.999023i −0.0977792 0.0355887i
\(789\) 0 0
\(790\) 4.74982 26.9376i 0.168991 0.958397i
\(791\) 12.9556 22.4397i 0.460647 0.797864i
\(792\) 0 0
\(793\) 5.07700 + 8.79362i 0.180289 + 0.312270i
\(794\) 12.6489 4.60382i 0.448893 0.163384i
\(795\) 0 0
\(796\) 16.5216 13.8633i 0.585594 0.491371i
\(797\) 23.7219 19.9050i 0.840271 0.705071i −0.117354 0.993090i \(-0.537441\pi\)
0.957625 + 0.288019i \(0.0929966\pi\)
\(798\) 0 0
\(799\) 7.41836 2.70006i 0.262443 0.0955213i
\(800\) −3.48355 6.03369i −0.123162 0.213323i
\(801\) 0 0
\(802\) 9.92532 17.1912i 0.350475 0.607041i
\(803\) 4.72567 26.8006i 0.166765 0.945773i
\(804\) 0 0
\(805\) −27.7812 10.1115i −0.979160 0.356385i
\(806\) 3.51663 + 19.9438i 0.123868 + 0.702491i
\(807\) 0 0
\(808\) −0.289465 0.242890i −0.0101834 0.00854485i
\(809\) 2.58326 0.0908226 0.0454113 0.998968i \(-0.485540\pi\)
0.0454113 + 0.998968i \(0.485540\pi\)
\(810\) 0 0
\(811\) −24.6638 −0.866064 −0.433032 0.901379i \(-0.642556\pi\)
−0.433032 + 0.901379i \(0.642556\pi\)
\(812\) −14.0176 11.7622i −0.491922 0.412772i
\(813\) 0 0
\(814\) 9.16019 + 51.9500i 0.321065 + 1.82085i
\(815\) 8.70586 + 3.16867i 0.304953 + 0.110994i
\(816\) 0 0
\(817\) −6.69923 + 37.9932i −0.234376 + 1.32922i
\(818\) 9.24583 16.0142i 0.323273 0.559925i
\(819\) 0 0
\(820\) −3.38424 5.86168i −0.118183 0.204699i
\(821\) 21.3469 7.76964i 0.745013 0.271162i 0.0585070 0.998287i \(-0.481366\pi\)
0.686505 + 0.727125i \(0.259144\pi\)
\(822\) 0 0
\(823\) 20.4763 17.1816i 0.713758 0.598914i −0.211893 0.977293i \(-0.567963\pi\)
0.925651 + 0.378379i \(0.123518\pi\)
\(824\) −12.1524 + 10.1971i −0.423350 + 0.355233i
\(825\) 0 0
\(826\) −19.8756 + 7.23411i −0.691559 + 0.251707i
\(827\) 7.72449 + 13.3792i 0.268607 + 0.465241i 0.968502 0.249005i \(-0.0801034\pi\)
−0.699895 + 0.714245i \(0.746770\pi\)
\(828\) 0 0
\(829\) 6.87832 11.9136i 0.238894 0.413776i −0.721503 0.692411i \(-0.756549\pi\)
0.960397 + 0.278635i \(0.0898819\pi\)
\(830\) 4.67899 26.5359i 0.162410 0.921074i
\(831\) 0 0
\(832\) −9.75403 3.55018i −0.338160 0.123080i
\(833\) −1.61581 9.16370i −0.0559844 0.317504i
\(834\) 0 0
\(835\) 7.81092 + 6.55414i 0.270308 + 0.226815i
\(836\) 28.7756 0.995224
\(837\) 0 0
\(838\) −19.8747 −0.686559
\(839\) −7.36180 6.17729i −0.254158 0.213264i 0.506803 0.862062i \(-0.330827\pi\)
−0.760960 + 0.648799i \(0.775272\pi\)
\(840\) 0 0
\(841\) −2.84890 16.1569i −0.0982380 0.557135i
\(842\) 67.6788 + 24.6331i 2.33237 + 0.848912i
\(843\) 0 0
\(844\) 3.11186 17.6482i 0.107115 0.607477i
\(845\) −2.02646 + 3.50993i −0.0697123 + 0.120745i
\(846\) 0 0
\(847\) −1.27866 2.21470i −0.0439352 0.0760980i
\(848\) 29.3599 10.6861i 1.00822 0.366963i
\(849\) 0 0
\(850\) 2.61639 2.19541i 0.0897414 0.0753020i
\(851\) −53.7512 + 45.1026i −1.84257 + 1.54610i
\(852\) 0 0
\(853\) 19.3174 7.03097i 0.661416 0.240736i 0.0105685 0.999944i \(-0.496636\pi\)
0.650848 + 0.759208i \(0.274414\pi\)
\(854\) 11.0123 + 19.0739i 0.376834 + 0.652695i
\(855\) 0 0
\(856\) 6.11618 10.5935i 0.209047 0.362080i
\(857\) 7.03369 39.8901i 0.240266 1.36262i −0.590967 0.806695i \(-0.701254\pi\)
0.831234 0.555923i \(-0.187635\pi\)
\(858\) 0 0
\(859\) −23.7524 8.64516i −0.810421 0.294969i −0.0966234 0.995321i \(-0.530804\pi\)
−0.713798 + 0.700352i \(0.753026\pi\)
\(860\) −1.75470 9.95138i −0.0598347 0.339339i
\(861\) 0 0
\(862\) −34.4853 28.9366i −1.17458 0.985585i
\(863\) −47.4531 −1.61532 −0.807661 0.589648i \(-0.799267\pi\)
−0.807661 + 0.589648i \(0.799267\pi\)
\(864\) 0 0
\(865\) −11.3070 −0.384451
\(866\) 13.9185 + 11.6790i 0.472969 + 0.396868i
\(867\) 0 0
\(868\) 3.24813 + 18.4211i 0.110249 + 0.625252i
\(869\) 47.1794 + 17.1719i 1.60045 + 0.582516i
\(870\) 0 0
\(871\) 2.16383 12.2717i 0.0733185 0.415810i
\(872\) −6.77304 + 11.7312i −0.229364 + 0.397270i
\(873\) 0 0
\(874\) 44.9427 + 77.8430i 1.52021 + 2.63308i
\(875\) 3.26666 1.18897i 0.110433 0.0401944i
\(876\) 0 0
\(877\) −2.59201 + 2.17496i −0.0875260 + 0.0734430i −0.685501 0.728072i \(-0.740417\pi\)
0.597975 + 0.801515i \(0.295972\pi\)
\(878\) −40.8680 + 34.2923i −1.37923 + 1.15731i
\(879\) 0 0
\(880\) 15.3438 5.58469i 0.517240 0.188260i
\(881\) 11.9030 + 20.6166i 0.401022 + 0.694591i 0.993850 0.110738i \(-0.0353216\pi\)
−0.592827 + 0.805330i \(0.701988\pi\)
\(882\) 0 0
\(883\) −11.6829 + 20.2353i −0.393159 + 0.680972i −0.992864 0.119249i \(-0.961951\pi\)
0.599705 + 0.800221i \(0.295285\pi\)
\(884\) 1.40990 7.99595i 0.0474201 0.268933i
\(885\) 0 0
\(886\) −51.4212 18.7158i −1.72753 0.628769i
\(887\) −5.36066 30.4018i −0.179993 1.02079i −0.932221 0.361890i \(-0.882132\pi\)
0.752228 0.658903i \(-0.228979\pi\)
\(888\) 0 0
\(889\) 34.2269 + 28.7198i 1.14793 + 0.963231i
\(890\) 6.67422 0.223720
\(891\) 0 0
\(892\) −30.8698 −1.03360
\(893\) −18.7141 15.7030i −0.626243 0.525480i
\(894\) 0 0
\(895\) −4.17854 23.6977i −0.139673 0.792125i
\(896\) 24.3613 + 8.86677i 0.813853 + 0.296218i
\(897\) 0 0
\(898\) −8.82332 + 50.0395i −0.294438 + 1.66984i
\(899\) 6.43681 11.1489i 0.214680 0.371836i
\(900\) 0 0
\(901\) 5.99790 + 10.3887i 0.199819 + 0.346097i
\(902\) 27.4158 9.97854i 0.912847 0.332249i
\(903\) 0 0
\(904\) −5.50643 + 4.62045i −0.183141 + 0.153674i
\(905\) −7.05812 + 5.92246i −0.234620 + 0.196869i
\(906\) 0 0
\(907\) 10.5268 3.83144i 0.349537 0.127221i −0.161284 0.986908i \(-0.551564\pi\)
0.510821 + 0.859687i \(0.329341\pi\)
\(908\) 6.32589 + 10.9568i 0.209932 + 0.363613i
\(909\) 0 0
\(910\) 9.70338 16.8067i 0.321664 0.557138i
\(911\) 4.51397 25.6000i 0.149555 0.848166i −0.814042 0.580806i \(-0.802738\pi\)
0.963597 0.267360i \(-0.0861514\pi\)
\(912\) 0 0
\(913\) 46.4758 + 16.9158i 1.53813 + 0.559832i
\(914\) 10.6351 + 60.3147i 0.351778 + 1.99503i
\(915\) 0 0
\(916\) 17.9329 + 15.0475i 0.592520 + 0.497183i
\(917\) 60.9566 2.01296
\(918\) 0 0
\(919\) −9.14191 −0.301564 −0.150782 0.988567i \(-0.548179\pi\)
−0.150782 + 0.988567i \(0.548179\pi\)
\(920\) 6.28275 + 5.27185i 0.207136 + 0.173808i
\(921\) 0 0
\(922\) 2.03603 + 11.5469i 0.0670530 + 0.380276i
\(923\) 24.4766 + 8.90876i 0.805657 + 0.293235i
\(924\) 0 0
\(925\) 1.43270 8.12527i 0.0471070 0.267157i
\(926\) −23.2178 + 40.2145i −0.762986 + 1.32153i
\(927\) 0 0
\(928\) 12.3624 + 21.4122i 0.405814 + 0.702891i
\(929\) −51.0829 + 18.5927i −1.67598 + 0.610005i −0.992749 0.120202i \(-0.961646\pi\)
−0.683226 + 0.730207i \(0.739424\pi\)
\(930\) 0 0
\(931\) −22.0580 + 18.5089i −0.722922 + 0.606603i
\(932\) −20.6553 + 17.3319i −0.676588 + 0.567725i
\(933\) 0 0
\(934\) 53.0193 19.2975i 1.73485 0.631432i
\(935\) 3.13457 + 5.42923i 0.102511 + 0.177555i
\(936\) 0 0
\(937\) 0.513624 0.889623i 0.0167794 0.0290627i −0.857514 0.514461i \(-0.827992\pi\)
0.874293 + 0.485398i \(0.161325\pi\)
\(938\) 4.69347 26.6180i 0.153247 0.869109i
\(939\) 0 0
\(940\) 6.01281 + 2.18848i 0.196116 + 0.0713805i
\(941\) −8.92999 50.6445i −0.291109 1.65096i −0.682608 0.730785i \(-0.739154\pi\)
0.391499 0.920179i \(-0.371957\pi\)
\(942\) 0 0
\(943\) 29.7283 + 24.9450i 0.968085 + 0.812320i
\(944\) 15.5387 0.505742
\(945\) 0 0
\(946\) 43.5568 1.41615
\(947\) 20.8637 + 17.5068i 0.677980 + 0.568893i 0.915415 0.402510i \(-0.131862\pi\)
−0.237435 + 0.971403i \(0.576307\pi\)
\(948\) 0 0
\(949\) 4.12620 + 23.4009i 0.133942 + 0.759624i
\(950\) −9.93177 3.61487i −0.322229 0.117282i
\(951\) 0 0
\(952\) −1.06534 + 6.04187i −0.0345280 + 0.195818i
\(953\) −6.60432 + 11.4390i −0.213935 + 0.370546i −0.952943 0.303151i \(-0.901961\pi\)
0.739008 + 0.673697i \(0.235295\pi\)
\(954\) 0 0
\(955\) 0.979950 + 1.69732i 0.0317104 + 0.0549241i
\(956\) −17.2782 + 6.28875i −0.558817 + 0.203393i
\(957\) 0 0
\(958\) −12.0081 + 10.0760i −0.387965 + 0.325542i
\(959\) 26.4680 22.2093i 0.854698 0.717177i
\(960\) 0 0
\(961\) 16.7645 6.10177i 0.540790 0.196831i
\(962\) −23.0299 39.8889i −0.742513 1.28607i
\(963\) 0 0
\(964\) 6.65187 11.5214i 0.214242 0.371079i
\(965\) −1.83340 + 10.3977i −0.0590194 + 0.334715i
\(966\) 0 0
\(967\) 8.14181 + 2.96338i 0.261823 + 0.0952958i 0.469596 0.882881i \(-0.344399\pi\)
−0.207773 + 0.978177i \(0.566622\pi\)
\(968\) 0.123193 + 0.698660i 0.00395956 + 0.0224558i
\(969\) 0 0
\(970\) −5.23372 4.39161i −0.168044 0.141006i
\(971\) −27.5409 −0.883831 −0.441915 0.897057i \(-0.645701\pi\)
−0.441915 + 0.897057i \(0.645701\pi\)
\(972\) 0 0
\(973\) 11.1430 0.357227
\(974\) −36.5824 30.6963i −1.17218 0.983572i
\(975\) 0 0
\(976\) −2.80970 15.9346i −0.0899364 0.510055i
\(977\) 6.21685 + 2.26275i 0.198895 + 0.0723917i 0.439547 0.898220i \(-0.355139\pi\)
−0.240652 + 0.970611i \(0.577361\pi\)
\(978\) 0 0
\(979\) −2.12730 + 12.0645i −0.0679889 + 0.385584i
\(980\) 3.77102 6.53160i 0.120461 0.208644i
\(981\) 0 0
\(982\) 2.21441 + 3.83548i 0.0706648 + 0.122395i
\(983\) 35.0558 12.7593i 1.11811 0.406958i 0.284147 0.958781i \(-0.408290\pi\)
0.833961 + 0.551823i \(0.186068\pi\)
\(984\) 0 0
\(985\) −1.50853 + 1.26581i −0.0480658 + 0.0403320i
\(986\) −9.28499 + 7.79103i −0.295694 + 0.248117i
\(987\) 0 0
\(988\) −23.6101 + 8.59336i −0.751136 + 0.273391i
\(989\) 28.9685 + 50.1749i 0.921144 + 1.59547i
\(990\) 0 0
\(991\) 20.4866 35.4838i 0.650777 1.12718i −0.332158 0.943224i \(-0.607777\pi\)
0.982935 0.183955i \(-0.0588900\pi\)
\(992\) 4.38879 24.8900i 0.139344 0.790260i
\(993\) 0 0
\(994\) 53.0912 + 19.3236i 1.68395 + 0.612908i
\(995\) −2.52491 14.3195i −0.0800449 0.453957i
\(996\) 0 0
\(997\) −17.7398 14.8855i −0.561826 0.471428i 0.317096 0.948393i \(-0.397292\pi\)
−0.878922 + 0.476965i \(0.841737\pi\)
\(998\) −2.73614 −0.0866109
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 405.2.k.b.46.2 42
3.2 odd 2 135.2.k.b.16.6 42
15.2 even 4 675.2.u.d.124.3 84
15.8 even 4 675.2.u.d.124.12 84
15.14 odd 2 675.2.l.e.151.2 42
27.5 odd 18 135.2.k.b.76.6 yes 42
27.7 even 9 3645.2.a.k.1.5 21
27.20 odd 18 3645.2.a.l.1.17 21
27.22 even 9 inner 405.2.k.b.361.2 42
135.32 even 36 675.2.u.d.49.12 84
135.59 odd 18 675.2.l.e.76.2 42
135.113 even 36 675.2.u.d.49.3 84
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
135.2.k.b.16.6 42 3.2 odd 2
135.2.k.b.76.6 yes 42 27.5 odd 18
405.2.k.b.46.2 42 1.1 even 1 trivial
405.2.k.b.361.2 42 27.22 even 9 inner
675.2.l.e.76.2 42 135.59 odd 18
675.2.l.e.151.2 42 15.14 odd 2
675.2.u.d.49.3 84 135.113 even 36
675.2.u.d.49.12 84 135.32 even 36
675.2.u.d.124.3 84 15.2 even 4
675.2.u.d.124.12 84 15.8 even 4
3645.2.a.k.1.5 21 27.7 even 9
3645.2.a.l.1.17 21 27.20 odd 18