Properties

Label 405.2.r.a.233.1
Level $405$
Weight $2$
Character 405.233
Analytic conductor $3.234$
Analytic rank $0$
Dimension $192$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [405,2,Mod(8,405)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(405, base_ring=CyclotomicField(36))
 
chi = DirichletCharacter(H, H._module([2, 27]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("405.8");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 405 = 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 405.r (of order \(36\), degree \(12\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.23394128186\)
Analytic rank: \(0\)
Dimension: \(192\)
Relative dimension: \(16\) over \(\Q(\zeta_{36})\)
Twist minimal: no (minimal twist has level 135)
Sato-Tate group: $\mathrm{SU}(2)[C_{36}]$

Embedding invariants

Embedding label 233.1
Character \(\chi\) \(=\) 405.233
Dual form 405.2.r.a.332.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.43892 + 2.05499i) q^{2} +(-1.46845 - 4.03452i) q^{4} +(0.953539 - 2.02256i) q^{5} +(-2.44940 + 1.14217i) q^{7} +(5.55747 + 1.48912i) q^{8} +(2.78428 + 4.86981i) q^{10} +(2.09979 + 2.50243i) q^{11} +(-2.57758 + 1.80484i) q^{13} +(1.17733 - 6.67697i) q^{14} +(-4.47891 + 3.75825i) q^{16} +(-5.88806 + 1.57770i) q^{17} +(-2.91796 + 1.68469i) q^{19} +(-9.56030 - 0.877047i) q^{20} +(-8.16389 + 0.714248i) q^{22} +(-2.10003 + 4.50352i) q^{23} +(-3.18153 - 3.85719i) q^{25} -7.89390i q^{26} +(8.20493 + 8.20493i) q^{28} +(0.541940 + 3.07349i) q^{29} +(0.346096 - 0.125969i) q^{31} +(-0.275472 - 3.14866i) q^{32} +(5.23028 - 14.3701i) q^{34} +(-0.0254777 + 6.04317i) q^{35} +(1.14721 + 4.28145i) q^{37} +(0.736698 - 8.42050i) q^{38} +(8.31110 - 9.82040i) q^{40} +(-7.54663 - 1.33068i) q^{41} +(4.42293 + 0.386956i) q^{43} +(7.01269 - 12.1463i) q^{44} +(-6.23291 - 10.7957i) q^{46} +(-2.90859 - 6.23750i) q^{47} +(0.195477 - 0.232960i) q^{49} +(12.5044 - 0.987828i) q^{50} +(11.0667 + 7.74898i) q^{52} +(3.48010 - 3.48010i) q^{53} +(7.06356 - 1.86079i) q^{55} +(-15.3133 + 2.70014i) q^{56} +(-7.09579 - 3.30882i) q^{58} +(5.87095 + 4.92631i) q^{59} +(-6.73344 - 2.45077i) q^{61} +(-0.239140 + 0.892481i) q^{62} +(-3.26012 - 1.88223i) q^{64} +(1.19258 + 6.93430i) q^{65} +(0.221089 + 0.315748i) q^{67} +(15.0116 + 21.4388i) q^{68} +(-12.3820 - 8.74797i) q^{70} +(8.46099 + 4.88495i) q^{71} +(0.00667095 - 0.0248963i) q^{73} +(-10.4491 - 3.80315i) q^{74} +(11.0818 + 9.29871i) q^{76} +(-8.00143 - 3.73113i) q^{77} +(-10.9549 + 1.93165i) q^{79} +(3.33049 + 12.6425i) q^{80} +(13.5935 - 13.5935i) q^{82} +(0.896484 + 0.627725i) q^{83} +(-2.42349 + 13.4134i) q^{85} +(-7.15941 + 8.53226i) q^{86} +(7.94310 + 17.0340i) q^{88} +(-3.93198 - 6.81039i) q^{89} +(4.25207 - 7.36481i) q^{91} +(21.2533 + 1.85943i) q^{92} +(17.0032 + 2.99812i) q^{94} +(0.624996 + 7.50818i) q^{95} +(-0.446850 + 5.10752i) q^{97} +(0.197455 + 0.736913i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 192 q + 12 q^{2} + 12 q^{5} - 12 q^{7} + 18 q^{8} - 6 q^{10} + 36 q^{11} - 12 q^{13} - 24 q^{16} + 18 q^{17} - 36 q^{20} - 12 q^{22} + 36 q^{23} - 30 q^{25} - 24 q^{28} - 24 q^{31} + 48 q^{32} - 36 q^{35}+ \cdots - 324 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/405\mathbb{Z}\right)^\times\).

\(n\) \(82\) \(326\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{17}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.43892 + 2.05499i −1.01747 + 1.45309i −0.130396 + 0.991462i \(0.541625\pi\)
−0.887071 + 0.461633i \(0.847264\pi\)
\(3\) 0 0
\(4\) −1.46845 4.03452i −0.734223 2.01726i
\(5\) 0.953539 2.02256i 0.426435 0.904518i
\(6\) 0 0
\(7\) −2.44940 + 1.14217i −0.925785 + 0.431701i −0.826231 0.563331i \(-0.809519\pi\)
−0.0995542 + 0.995032i \(0.531742\pi\)
\(8\) 5.55747 + 1.48912i 1.96486 + 0.526483i
\(9\) 0 0
\(10\) 2.78428 + 4.86981i 0.880466 + 1.53997i
\(11\) 2.09979 + 2.50243i 0.633111 + 0.754512i 0.983265 0.182180i \(-0.0583154\pi\)
−0.350155 + 0.936692i \(0.613871\pi\)
\(12\) 0 0
\(13\) −2.57758 + 1.80484i −0.714891 + 0.500572i −0.873534 0.486764i \(-0.838177\pi\)
0.158642 + 0.987336i \(0.449288\pi\)
\(14\) 1.17733 6.67697i 0.314655 1.78450i
\(15\) 0 0
\(16\) −4.47891 + 3.75825i −1.11973 + 0.939563i
\(17\) −5.88806 + 1.57770i −1.42807 + 0.382649i −0.888338 0.459191i \(-0.848139\pi\)
−0.539728 + 0.841840i \(0.681473\pi\)
\(18\) 0 0
\(19\) −2.91796 + 1.68469i −0.669427 + 0.386494i −0.795859 0.605481i \(-0.792981\pi\)
0.126433 + 0.991975i \(0.459647\pi\)
\(20\) −9.56030 0.877047i −2.13775 0.196114i
\(21\) 0 0
\(22\) −8.16389 + 0.714248i −1.74055 + 0.152278i
\(23\) −2.10003 + 4.50352i −0.437886 + 0.939049i 0.556261 + 0.831008i \(0.312236\pi\)
−0.994146 + 0.108041i \(0.965542\pi\)
\(24\) 0 0
\(25\) −3.18153 3.85719i −0.636306 0.771437i
\(26\) 7.89390i 1.54812i
\(27\) 0 0
\(28\) 8.20493 + 8.20493i 1.55059 + 1.55059i
\(29\) 0.541940 + 3.07349i 0.100636 + 0.570733i 0.992874 + 0.119169i \(0.0380229\pi\)
−0.892238 + 0.451565i \(0.850866\pi\)
\(30\) 0 0
\(31\) 0.346096 0.125969i 0.0621607 0.0226246i −0.310753 0.950491i \(-0.600581\pi\)
0.372913 + 0.927866i \(0.378359\pi\)
\(32\) −0.275472 3.14866i −0.0486971 0.556610i
\(33\) 0 0
\(34\) 5.23028 14.3701i 0.896985 2.46445i
\(35\) −0.0254777 + 6.04317i −0.00430652 + 1.02148i
\(36\) 0 0
\(37\) 1.14721 + 4.28145i 0.188600 + 0.703866i 0.993831 + 0.110904i \(0.0353747\pi\)
−0.805231 + 0.592962i \(0.797959\pi\)
\(38\) 0.736698 8.42050i 0.119508 1.36599i
\(39\) 0 0
\(40\) 8.31110 9.82040i 1.31410 1.55274i
\(41\) −7.54663 1.33068i −1.17859 0.207817i −0.450164 0.892946i \(-0.648635\pi\)
−0.728422 + 0.685129i \(0.759746\pi\)
\(42\) 0 0
\(43\) 4.42293 + 0.386956i 0.674490 + 0.0590102i 0.419255 0.907869i \(-0.362291\pi\)
0.255236 + 0.966879i \(0.417847\pi\)
\(44\) 7.01269 12.1463i 1.05720 1.83113i
\(45\) 0 0
\(46\) −6.23291 10.7957i −0.918992 1.59174i
\(47\) −2.90859 6.23750i −0.424262 0.909832i −0.995996 0.0893938i \(-0.971507\pi\)
0.571735 0.820439i \(-0.306271\pi\)
\(48\) 0 0
\(49\) 0.195477 0.232960i 0.0279253 0.0332800i
\(50\) 12.5044 0.987828i 1.76839 0.139700i
\(51\) 0 0
\(52\) 11.0667 + 7.74898i 1.53467 + 1.07459i
\(53\) 3.48010 3.48010i 0.478029 0.478029i −0.426472 0.904501i \(-0.640244\pi\)
0.904501 + 0.426472i \(0.140244\pi\)
\(54\) 0 0
\(55\) 7.06356 1.86079i 0.952450 0.250909i
\(56\) −15.3133 + 2.70014i −2.04632 + 0.360822i
\(57\) 0 0
\(58\) −7.09579 3.30882i −0.931723 0.434470i
\(59\) 5.87095 + 4.92631i 0.764332 + 0.641351i 0.939251 0.343232i \(-0.111522\pi\)
−0.174918 + 0.984583i \(0.555966\pi\)
\(60\) 0 0
\(61\) −6.73344 2.45077i −0.862128 0.313789i −0.127153 0.991883i \(-0.540584\pi\)
−0.734975 + 0.678094i \(0.762806\pi\)
\(62\) −0.239140 + 0.892481i −0.0303708 + 0.113345i
\(63\) 0 0
\(64\) −3.26012 1.88223i −0.407515 0.235279i
\(65\) 1.19258 + 6.93430i 0.147922 + 0.860094i
\(66\) 0 0
\(67\) 0.221089 + 0.315748i 0.0270103 + 0.0385747i 0.832430 0.554130i \(-0.186949\pi\)
−0.805420 + 0.592705i \(0.798060\pi\)
\(68\) 15.0116 + 21.4388i 1.82042 + 2.59983i
\(69\) 0 0
\(70\) −12.3820 8.74797i −1.47993 1.04558i
\(71\) 8.46099 + 4.88495i 1.00413 + 0.579737i 0.909469 0.415772i \(-0.136489\pi\)
0.0946655 + 0.995509i \(0.469822\pi\)
\(72\) 0 0
\(73\) 0.00667095 0.0248963i 0.000780776 0.00291389i −0.965534 0.260276i \(-0.916187\pi\)
0.966315 + 0.257362i \(0.0828532\pi\)
\(74\) −10.4491 3.80315i −1.21468 0.442107i
\(75\) 0 0
\(76\) 11.0818 + 9.29871i 1.27117 + 1.06664i
\(77\) −8.00143 3.73113i −0.911848 0.425202i
\(78\) 0 0
\(79\) −10.9549 + 1.93165i −1.23253 + 0.217327i −0.751710 0.659494i \(-0.770770\pi\)
−0.480816 + 0.876822i \(0.659659\pi\)
\(80\) 3.33049 + 12.6425i 0.372360 + 1.41348i
\(81\) 0 0
\(82\) 13.5935 13.5935i 1.50115 1.50115i
\(83\) 0.896484 + 0.627725i 0.0984019 + 0.0689018i 0.621742 0.783222i \(-0.286425\pi\)
−0.523340 + 0.852124i \(0.675314\pi\)
\(84\) 0 0
\(85\) −2.42349 + 13.4134i −0.262865 + 1.45489i
\(86\) −7.15941 + 8.53226i −0.772019 + 0.920057i
\(87\) 0 0
\(88\) 7.94310 + 17.0340i 0.846737 + 1.81583i
\(89\) −3.93198 6.81039i −0.416789 0.721900i 0.578825 0.815452i \(-0.303511\pi\)
−0.995614 + 0.0935515i \(0.970178\pi\)
\(90\) 0 0
\(91\) 4.25207 7.36481i 0.445738 0.772042i
\(92\) 21.2533 + 1.85943i 2.21581 + 0.193858i
\(93\) 0 0
\(94\) 17.0032 + 2.99812i 1.75375 + 0.309233i
\(95\) 0.624996 + 7.50818i 0.0641232 + 0.770323i
\(96\) 0 0
\(97\) −0.446850 + 5.10752i −0.0453707 + 0.518590i 0.939172 + 0.343447i \(0.111594\pi\)
−0.984543 + 0.175143i \(0.943961\pi\)
\(98\) 0.197455 + 0.736913i 0.0199460 + 0.0744394i
\(99\) 0 0
\(100\) −10.8900 + 18.5000i −1.08900 + 1.85000i
\(101\) −0.406707 + 1.11742i −0.0404688 + 0.111187i −0.958281 0.285827i \(-0.907732\pi\)
0.917812 + 0.397015i \(0.129954\pi\)
\(102\) 0 0
\(103\) 0.0163965 + 0.187413i 0.00161560 + 0.0184664i 0.996960 0.0779188i \(-0.0248275\pi\)
−0.995344 + 0.0963852i \(0.969272\pi\)
\(104\) −17.0124 + 6.19202i −1.66821 + 0.607177i
\(105\) 0 0
\(106\) 2.14398 + 12.1591i 0.208242 + 1.18100i
\(107\) −1.76707 1.76707i −0.170829 0.170829i 0.616515 0.787344i \(-0.288544\pi\)
−0.787344 + 0.616515i \(0.788544\pi\)
\(108\) 0 0
\(109\) 7.80745i 0.747818i 0.927465 + 0.373909i \(0.121983\pi\)
−0.927465 + 0.373909i \(0.878017\pi\)
\(110\) −6.33997 + 17.1930i −0.604492 + 1.63929i
\(111\) 0 0
\(112\) 6.67806 14.3211i 0.631017 1.35322i
\(113\) −19.4214 + 1.69916i −1.82701 + 0.159843i −0.948273 0.317455i \(-0.897172\pi\)
−0.878741 + 0.477298i \(0.841616\pi\)
\(114\) 0 0
\(115\) 7.10620 + 8.54172i 0.662657 + 0.796519i
\(116\) 11.6043 6.69973i 1.07743 0.622054i
\(117\) 0 0
\(118\) −18.5713 + 4.97617i −1.70963 + 0.458093i
\(119\) 12.6202 10.5896i 1.15689 0.970748i
\(120\) 0 0
\(121\) 0.0570802 0.323718i 0.00518911 0.0294289i
\(122\) 14.7252 10.3107i 1.33315 0.933484i
\(123\) 0 0
\(124\) −1.01645 1.21135i −0.0912796 0.108783i
\(125\) −10.8351 + 2.75687i −0.969122 + 0.246582i
\(126\) 0 0
\(127\) 20.6263 + 5.52679i 1.83028 + 0.490423i 0.997959 0.0638628i \(-0.0203420\pi\)
0.832326 + 0.554286i \(0.187009\pi\)
\(128\) 14.2881 6.66265i 1.26290 0.588901i
\(129\) 0 0
\(130\) −15.9659 7.52714i −1.40030 0.660174i
\(131\) 5.67190 + 15.5834i 0.495556 + 1.36153i 0.895529 + 0.445003i \(0.146797\pi\)
−0.399973 + 0.916527i \(0.630980\pi\)
\(132\) 0 0
\(133\) 5.22305 7.45929i 0.452896 0.646802i
\(134\) −0.966985 −0.0835348
\(135\) 0 0
\(136\) −35.0721 −3.00741
\(137\) 11.4989 16.4221i 0.982418 1.40304i 0.0682654 0.997667i \(-0.478254\pi\)
0.914152 0.405371i \(-0.132858\pi\)
\(138\) 0 0
\(139\) −6.07923 16.7026i −0.515634 1.41669i −0.875286 0.483606i \(-0.839327\pi\)
0.359652 0.933087i \(-0.382895\pi\)
\(140\) 24.4187 8.77128i 2.06376 0.741308i
\(141\) 0 0
\(142\) −22.2132 + 10.3582i −1.86409 + 0.869238i
\(143\) −9.92886 2.66043i −0.830293 0.222476i
\(144\) 0 0
\(145\) 6.73310 + 1.83459i 0.559153 + 0.152354i
\(146\) 0.0415627 + 0.0495324i 0.00343975 + 0.00409933i
\(147\) 0 0
\(148\) 15.5890 10.9155i 1.28141 0.897250i
\(149\) −0.147586 + 0.837002i −0.0120907 + 0.0685699i −0.990256 0.139258i \(-0.955528\pi\)
0.978165 + 0.207828i \(0.0666394\pi\)
\(150\) 0 0
\(151\) 11.3395 9.51495i 0.922794 0.774316i −0.0517160 0.998662i \(-0.516469\pi\)
0.974510 + 0.224346i \(0.0720246\pi\)
\(152\) −18.7252 + 5.01740i −1.51881 + 0.406965i
\(153\) 0 0
\(154\) 19.1808 11.0740i 1.54563 0.892372i
\(155\) 0.0752363 0.820118i 0.00604313 0.0658734i
\(156\) 0 0
\(157\) 10.1875 0.891290i 0.813051 0.0711327i 0.326957 0.945039i \(-0.393977\pi\)
0.486094 + 0.873907i \(0.338421\pi\)
\(158\) 11.7937 25.2917i 0.938257 2.01210i
\(159\) 0 0
\(160\) −6.63104 2.44521i −0.524230 0.193311i
\(161\) 13.4295i 1.05839i
\(162\) 0 0
\(163\) −9.20802 9.20802i −0.721228 0.721228i 0.247628 0.968855i \(-0.420349\pi\)
−0.968855 + 0.247628i \(0.920349\pi\)
\(164\) 5.71318 + 32.4011i 0.446125 + 2.53010i
\(165\) 0 0
\(166\) −2.57993 + 0.939019i −0.200242 + 0.0728820i
\(167\) 0.420214 + 4.80307i 0.0325171 + 0.371672i 0.994966 + 0.100210i \(0.0319516\pi\)
−0.962449 + 0.271462i \(0.912493\pi\)
\(168\) 0 0
\(169\) −1.05980 + 2.91178i −0.0815232 + 0.223983i
\(170\) −24.0771 24.2810i −1.84663 1.86227i
\(171\) 0 0
\(172\) −4.93365 18.4126i −0.376187 1.40395i
\(173\) 0.561923 6.42280i 0.0427222 0.488317i −0.944450 0.328656i \(-0.893404\pi\)
0.987172 0.159661i \(-0.0510401\pi\)
\(174\) 0 0
\(175\) 12.1984 + 5.81393i 0.922112 + 0.439491i
\(176\) −18.8095 3.31663i −1.41782 0.250000i
\(177\) 0 0
\(178\) 19.6531 + 1.71942i 1.47306 + 0.128876i
\(179\) 1.30891 2.26710i 0.0978327 0.169451i −0.812955 0.582327i \(-0.802142\pi\)
0.910787 + 0.412876i \(0.135476\pi\)
\(180\) 0 0
\(181\) 8.91293 + 15.4376i 0.662493 + 1.14747i 0.979959 + 0.199202i \(0.0638348\pi\)
−0.317466 + 0.948270i \(0.602832\pi\)
\(182\) 9.01620 + 19.3353i 0.668325 + 1.43323i
\(183\) 0 0
\(184\) −18.3771 + 21.9010i −1.35478 + 1.61456i
\(185\) 9.75341 + 1.76222i 0.717085 + 0.129561i
\(186\) 0 0
\(187\) −16.3118 11.4216i −1.19284 0.835233i
\(188\) −20.8942 + 20.8942i −1.52387 + 1.52387i
\(189\) 0 0
\(190\) −16.3285 9.51929i −1.18460 0.690602i
\(191\) 8.64200 1.52382i 0.625313 0.110260i 0.147992 0.988989i \(-0.452719\pi\)
0.477321 + 0.878729i \(0.341608\pi\)
\(192\) 0 0
\(193\) 1.10994 + 0.517574i 0.0798952 + 0.0372558i 0.462155 0.886799i \(-0.347076\pi\)
−0.382260 + 0.924055i \(0.624854\pi\)
\(194\) −9.85290 8.26756i −0.707397 0.593576i
\(195\) 0 0
\(196\) −1.22693 0.446566i −0.0876379 0.0318976i
\(197\) −3.63461 + 13.5645i −0.258955 + 0.966434i 0.706892 + 0.707321i \(0.250097\pi\)
−0.965847 + 0.259112i \(0.916570\pi\)
\(198\) 0 0
\(199\) 11.1726 + 6.45050i 0.792004 + 0.457264i 0.840668 0.541552i \(-0.182163\pi\)
−0.0486637 + 0.998815i \(0.515496\pi\)
\(200\) −11.9374 26.1739i −0.844104 1.85077i
\(201\) 0 0
\(202\) −1.71106 2.44365i −0.120390 0.171934i
\(203\) −4.83789 6.90922i −0.339553 0.484932i
\(204\) 0 0
\(205\) −9.88738 + 13.9947i −0.690565 + 0.977432i
\(206\) −0.408725 0.235978i −0.0284772 0.0164413i
\(207\) 0 0
\(208\) 4.76170 17.7709i 0.330164 1.23219i
\(209\) −10.3429 3.76452i −0.715435 0.260397i
\(210\) 0 0
\(211\) −0.0983096 0.0824916i −0.00676791 0.00567895i 0.639397 0.768876i \(-0.279184\pi\)
−0.646165 + 0.763197i \(0.723628\pi\)
\(212\) −19.1509 8.93021i −1.31529 0.613329i
\(213\) 0 0
\(214\) 6.17397 1.08864i 0.422044 0.0744177i
\(215\) 5.00008 8.57668i 0.341002 0.584924i
\(216\) 0 0
\(217\) −0.703849 + 0.703849i −0.0477804 + 0.0477804i
\(218\) −16.0442 11.2343i −1.08665 0.760881i
\(219\) 0 0
\(220\) −17.8799 25.7656i −1.20546 1.73712i
\(221\) 12.3294 14.6937i 0.829368 0.988402i
\(222\) 0 0
\(223\) −3.54033 7.59226i −0.237078 0.508415i 0.751388 0.659861i \(-0.229385\pi\)
−0.988466 + 0.151446i \(0.951607\pi\)
\(224\) 4.27106 + 7.39769i 0.285372 + 0.494279i
\(225\) 0 0
\(226\) 24.4541 42.3557i 1.62666 2.81746i
\(227\) 3.59601 + 0.314610i 0.238675 + 0.0208814i 0.205866 0.978580i \(-0.433999\pi\)
0.0328096 + 0.999462i \(0.489555\pi\)
\(228\) 0 0
\(229\) 1.22130 + 0.215349i 0.0807059 + 0.0142306i 0.213855 0.976865i \(-0.431398\pi\)
−0.133149 + 0.991096i \(0.542509\pi\)
\(230\) −27.7783 + 2.31233i −1.83165 + 0.152470i
\(231\) 0 0
\(232\) −1.56498 + 17.8879i −0.102746 + 1.17440i
\(233\) 5.37571 + 20.0624i 0.352175 + 1.31433i 0.884003 + 0.467481i \(0.154839\pi\)
−0.531828 + 0.846852i \(0.678495\pi\)
\(234\) 0 0
\(235\) −15.3892 0.0648800i −1.00388 0.00423231i
\(236\) 11.2541 30.9205i 0.732582 2.01275i
\(237\) 0 0
\(238\) 3.60207 + 41.1719i 0.233488 + 2.66878i
\(239\) −11.3730 + 4.13943i −0.735658 + 0.267758i −0.682558 0.730831i \(-0.739133\pi\)
−0.0531004 + 0.998589i \(0.516910\pi\)
\(240\) 0 0
\(241\) −1.19187 6.75943i −0.0767751 0.435413i −0.998830 0.0483548i \(-0.984602\pi\)
0.922055 0.387059i \(-0.126509\pi\)
\(242\) 0.583102 + 0.583102i 0.0374832 + 0.0374832i
\(243\) 0 0
\(244\) 30.7650i 1.96953i
\(245\) −0.284782 0.617501i −0.0181941 0.0394507i
\(246\) 0 0
\(247\) 4.48069 9.60887i 0.285099 0.611397i
\(248\) 2.11100 0.184689i 0.134049 0.0117277i
\(249\) 0 0
\(250\) 9.92550 26.2329i 0.627744 1.65911i
\(251\) −8.53784 + 4.92932i −0.538904 + 0.311136i −0.744634 0.667472i \(-0.767376\pi\)
0.205731 + 0.978609i \(0.434043\pi\)
\(252\) 0 0
\(253\) −15.6794 + 4.20128i −0.985754 + 0.264132i
\(254\) −41.0369 + 34.4341i −2.57489 + 2.16059i
\(255\) 0 0
\(256\) −5.56035 + 31.5343i −0.347522 + 1.97090i
\(257\) −9.21372 + 6.45152i −0.574736 + 0.402435i −0.824491 0.565874i \(-0.808539\pi\)
0.249755 + 0.968309i \(0.419650\pi\)
\(258\) 0 0
\(259\) −7.70013 9.17666i −0.478463 0.570210i
\(260\) 26.2253 14.9941i 1.62643 0.929897i
\(261\) 0 0
\(262\) −40.1851 10.7676i −2.48264 0.665222i
\(263\) 7.46977 3.48321i 0.460606 0.214784i −0.178443 0.983950i \(-0.557106\pi\)
0.639049 + 0.769166i \(0.279328\pi\)
\(264\) 0 0
\(265\) −3.72032 10.3571i −0.228537 0.636234i
\(266\) 7.81320 + 21.4666i 0.479058 + 1.31620i
\(267\) 0 0
\(268\) 0.949234 1.35565i 0.0579837 0.0828093i
\(269\) 21.3745 1.30322 0.651612 0.758553i \(-0.274093\pi\)
0.651612 + 0.758553i \(0.274093\pi\)
\(270\) 0 0
\(271\) −16.0063 −0.972313 −0.486157 0.873872i \(-0.661602\pi\)
−0.486157 + 0.873872i \(0.661602\pi\)
\(272\) 20.4427 29.1952i 1.23952 1.77022i
\(273\) 0 0
\(274\) 17.2013 + 47.2602i 1.03917 + 2.85509i
\(275\) 2.97180 16.0608i 0.179207 0.968505i
\(276\) 0 0
\(277\) 13.0267 6.07443i 0.782696 0.364977i 0.0101600 0.999948i \(-0.496766\pi\)
0.772536 + 0.634971i \(0.218988\pi\)
\(278\) 43.0710 + 11.5408i 2.58323 + 0.692174i
\(279\) 0 0
\(280\) −9.14059 + 33.5468i −0.546255 + 2.00480i
\(281\) 6.85563 + 8.17022i 0.408973 + 0.487395i 0.930734 0.365697i \(-0.119169\pi\)
−0.521761 + 0.853091i \(0.674725\pi\)
\(282\) 0 0
\(283\) −20.1559 + 14.1133i −1.19815 + 0.838951i −0.990264 0.139203i \(-0.955546\pi\)
−0.207882 + 0.978154i \(0.566657\pi\)
\(284\) 7.28395 41.3093i 0.432223 2.45126i
\(285\) 0 0
\(286\) 19.7539 16.5755i 1.16808 0.980132i
\(287\) 20.0046 5.36021i 1.18083 0.316403i
\(288\) 0 0
\(289\) 17.4577 10.0792i 1.02692 0.592895i
\(290\) −13.4584 + 11.1966i −0.790305 + 0.657487i
\(291\) 0 0
\(292\) −0.110241 + 0.00964481i −0.00645135 + 0.000564420i
\(293\) 10.1452 21.7565i 0.592691 1.27103i −0.349809 0.936821i \(-0.613753\pi\)
0.942499 0.334208i \(-0.108469\pi\)
\(294\) 0 0
\(295\) 15.5620 7.17694i 0.906052 0.417858i
\(296\) 25.5023i 1.48229i
\(297\) 0 0
\(298\) −1.50766 1.50766i −0.0873366 0.0873366i
\(299\) −2.71515 15.3984i −0.157021 0.890512i
\(300\) 0 0
\(301\) −11.2755 + 4.10394i −0.649908 + 0.236547i
\(302\) 3.23653 + 36.9937i 0.186241 + 2.12875i
\(303\) 0 0
\(304\) 6.73782 18.5120i 0.386440 1.06174i
\(305\) −11.3774 + 11.2819i −0.651470 + 0.646000i
\(306\) 0 0
\(307\) 1.05256 + 3.92820i 0.0600726 + 0.224194i 0.989436 0.144973i \(-0.0463096\pi\)
−0.929363 + 0.369167i \(0.879643\pi\)
\(308\) −3.30365 + 37.7609i −0.188243 + 2.15163i
\(309\) 0 0
\(310\) 1.57707 + 1.33469i 0.0895716 + 0.0758053i
\(311\) 9.98381 + 1.76041i 0.566130 + 0.0998239i 0.449385 0.893338i \(-0.351643\pi\)
0.116744 + 0.993162i \(0.462754\pi\)
\(312\) 0 0
\(313\) −29.3680 2.56936i −1.65998 0.145229i −0.781787 0.623545i \(-0.785692\pi\)
−0.878188 + 0.478316i \(0.841247\pi\)
\(314\) −12.8274 + 22.2177i −0.723890 + 1.25381i
\(315\) 0 0
\(316\) 23.8800 + 41.3614i 1.34335 + 2.32676i
\(317\) 1.32127 + 2.83348i 0.0742101 + 0.159144i 0.939913 0.341414i \(-0.110906\pi\)
−0.865703 + 0.500558i \(0.833128\pi\)
\(318\) 0 0
\(319\) −6.55325 + 7.80986i −0.366912 + 0.437268i
\(320\) −6.91558 + 4.79902i −0.386593 + 0.268273i
\(321\) 0 0
\(322\) 27.5975 + 19.3239i 1.53795 + 1.07688i
\(323\) 14.5232 14.5232i 0.808094 0.808094i
\(324\) 0 0
\(325\) 15.1622 + 4.20005i 0.841049 + 0.232977i
\(326\) 32.1719 5.67278i 1.78184 0.314186i
\(327\) 0 0
\(328\) −39.9586 18.6330i −2.20635 1.02884i
\(329\) 14.2486 + 11.9560i 0.785551 + 0.659155i
\(330\) 0 0
\(331\) 27.5786 + 10.0378i 1.51586 + 0.551727i 0.960109 0.279624i \(-0.0902099\pi\)
0.555747 + 0.831351i \(0.312432\pi\)
\(332\) 1.21613 4.53867i 0.0667439 0.249092i
\(333\) 0 0
\(334\) −10.4749 6.04768i −0.573160 0.330914i
\(335\) 0.849436 0.146089i 0.0464097 0.00798168i
\(336\) 0 0
\(337\) −9.18427 13.1165i −0.500299 0.714501i 0.486995 0.873405i \(-0.338093\pi\)
−0.987294 + 0.158904i \(0.949204\pi\)
\(338\) −4.45870 6.36769i −0.242521 0.346356i
\(339\) 0 0
\(340\) 57.6754 9.91919i 3.12789 0.537944i
\(341\) 1.04196 + 0.601574i 0.0564252 + 0.0325771i
\(342\) 0 0
\(343\) 4.68369 17.4798i 0.252896 0.943819i
\(344\) 24.0041 + 8.73676i 1.29421 + 0.471055i
\(345\) 0 0
\(346\) 12.3902 + 10.3966i 0.666102 + 0.558926i
\(347\) 1.87163 + 0.872755i 0.100474 + 0.0468520i 0.472206 0.881488i \(-0.343458\pi\)
−0.371731 + 0.928340i \(0.621236\pi\)
\(348\) 0 0
\(349\) −0.561803 + 0.0990609i −0.0300726 + 0.00530261i −0.188664 0.982042i \(-0.560416\pi\)
0.158592 + 0.987344i \(0.449305\pi\)
\(350\) −29.5000 + 16.7018i −1.57684 + 0.892748i
\(351\) 0 0
\(352\) 7.30088 7.30088i 0.389138 0.389138i
\(353\) −6.18882 4.33346i −0.329398 0.230647i 0.397165 0.917747i \(-0.369994\pi\)
−0.726562 + 0.687101i \(0.758883\pi\)
\(354\) 0 0
\(355\) 17.9480 12.4549i 0.952581 0.661037i
\(356\) −21.7028 + 25.8644i −1.15024 + 1.37081i
\(357\) 0 0
\(358\) 2.77545 + 5.95197i 0.146687 + 0.314571i
\(359\) 7.12655 + 12.3435i 0.376125 + 0.651467i 0.990495 0.137551i \(-0.0439231\pi\)
−0.614370 + 0.789018i \(0.710590\pi\)
\(360\) 0 0
\(361\) −3.82366 + 6.62277i −0.201245 + 0.348567i
\(362\) −44.5491 3.89754i −2.34145 0.204850i
\(363\) 0 0
\(364\) −35.9574 6.34026i −1.88468 0.332320i
\(365\) −0.0439934 0.0372320i −0.00230272 0.00194881i
\(366\) 0 0
\(367\) −1.57285 + 17.9778i −0.0821024 + 0.938434i 0.837720 + 0.546100i \(0.183888\pi\)
−0.919823 + 0.392335i \(0.871668\pi\)
\(368\) −7.51954 28.0633i −0.391983 1.46290i
\(369\) 0 0
\(370\) −17.6557 + 17.5074i −0.917875 + 0.910168i
\(371\) −4.54928 + 12.4990i −0.236187 + 0.648918i
\(372\) 0 0
\(373\) −0.475246 5.43209i −0.0246073 0.281263i −0.998522 0.0543485i \(-0.982692\pi\)
0.973915 0.226914i \(-0.0728638\pi\)
\(374\) 46.9426 17.0857i 2.42735 0.883481i
\(375\) 0 0
\(376\) −6.87604 38.9959i −0.354604 2.01106i
\(377\) −6.94405 6.94405i −0.357637 0.357637i
\(378\) 0 0
\(379\) 4.04015i 0.207529i 0.994602 + 0.103764i \(0.0330888\pi\)
−0.994602 + 0.103764i \(0.966911\pi\)
\(380\) 29.3741 13.5469i 1.50686 0.694942i
\(381\) 0 0
\(382\) −9.30369 + 19.9518i −0.476018 + 1.02082i
\(383\) −30.5793 + 2.67534i −1.56253 + 0.136704i −0.835341 0.549732i \(-0.814730\pi\)
−0.727190 + 0.686436i \(0.759174\pi\)
\(384\) 0 0
\(385\) −15.1761 + 12.6256i −0.773447 + 0.643462i
\(386\) −2.66072 + 1.53617i −0.135427 + 0.0781888i
\(387\) 0 0
\(388\) 21.2626 5.69729i 1.07944 0.289236i
\(389\) −23.0823 + 19.3684i −1.17032 + 0.982014i −0.999994 0.00337359i \(-0.998926\pi\)
−0.170325 + 0.985388i \(0.554482\pi\)
\(390\) 0 0
\(391\) 5.25988 29.8302i 0.266003 1.50858i
\(392\) 1.43326 1.00358i 0.0723907 0.0506885i
\(393\) 0 0
\(394\) −22.6451 26.9873i −1.14084 1.35960i
\(395\) −6.53906 + 23.9989i −0.329016 + 1.20752i
\(396\) 0 0
\(397\) −27.5321 7.37720i −1.38180 0.370251i −0.510023 0.860161i \(-0.670363\pi\)
−0.871773 + 0.489910i \(0.837030\pi\)
\(398\) −29.3321 + 13.6778i −1.47029 + 0.685605i
\(399\) 0 0
\(400\) 28.7460 + 5.31900i 1.43730 + 0.265950i
\(401\) −9.65646 26.5309i −0.482221 1.32489i −0.907585 0.419868i \(-0.862076\pi\)
0.425364 0.905022i \(-0.360146\pi\)
\(402\) 0 0
\(403\) −0.664736 + 0.949342i −0.0331129 + 0.0472901i
\(404\) 5.10547 0.254007
\(405\) 0 0
\(406\) 21.1597 1.05014
\(407\) −8.30514 + 11.8610i −0.411670 + 0.587926i
\(408\) 0 0
\(409\) −6.83310 18.7738i −0.337875 0.928304i −0.985996 0.166767i \(-0.946667\pi\)
0.648121 0.761537i \(-0.275555\pi\)
\(410\) −14.5318 40.4556i −0.717674 1.99796i
\(411\) 0 0
\(412\) 0.732046 0.341359i 0.0360653 0.0168175i
\(413\) −20.0070 5.36086i −0.984479 0.263790i
\(414\) 0 0
\(415\) 2.12445 1.21464i 0.104285 0.0596242i
\(416\) 6.39288 + 7.61873i 0.313437 + 0.373539i
\(417\) 0 0
\(418\) 22.6186 15.8377i 1.10631 0.774649i
\(419\) 1.26780 7.19003i 0.0619359 0.351256i −0.938053 0.346492i \(-0.887373\pi\)
0.999989 0.00476336i \(-0.00151623\pi\)
\(420\) 0 0
\(421\) −22.3147 + 18.7243i −1.08755 + 0.912566i −0.996526 0.0832827i \(-0.973460\pi\)
−0.0910275 + 0.995848i \(0.529015\pi\)
\(422\) 0.310978 0.0833264i 0.0151382 0.00405627i
\(423\) 0 0
\(424\) 24.5229 14.1583i 1.19094 0.687587i
\(425\) 24.8185 + 17.6918i 1.20388 + 0.858181i
\(426\) 0 0
\(427\) 19.2921 1.68784i 0.933609 0.0816802i
\(428\) −4.53443 + 9.72412i −0.219180 + 0.470033i
\(429\) 0 0
\(430\) 10.4303 + 22.6162i 0.502992 + 1.09065i
\(431\) 14.3391i 0.690690i 0.938476 + 0.345345i \(0.112238\pi\)
−0.938476 + 0.345345i \(0.887762\pi\)
\(432\) 0 0
\(433\) 16.2907 + 16.2907i 0.782881 + 0.782881i 0.980316 0.197435i \(-0.0632612\pi\)
−0.197435 + 0.980316i \(0.563261\pi\)
\(434\) −0.433620 2.45918i −0.0208144 0.118044i
\(435\) 0 0
\(436\) 31.4993 11.4648i 1.50854 0.549065i
\(437\) −1.45922 16.6790i −0.0698041 0.797865i
\(438\) 0 0
\(439\) −6.36027 + 17.4747i −0.303559 + 0.834021i 0.690316 + 0.723508i \(0.257472\pi\)
−0.993875 + 0.110513i \(0.964751\pi\)
\(440\) 42.0265 + 0.177181i 2.00353 + 0.00844679i
\(441\) 0 0
\(442\) 12.4542 + 46.4798i 0.592387 + 2.21082i
\(443\) 2.37273 27.1205i 0.112732 1.28853i −0.703453 0.710741i \(-0.748360\pi\)
0.816185 0.577790i \(-0.196085\pi\)
\(444\) 0 0
\(445\) −17.5238 + 1.45871i −0.830705 + 0.0691496i
\(446\) 20.6962 + 3.64930i 0.979994 + 0.172799i
\(447\) 0 0
\(448\) 10.1352 + 0.886712i 0.478841 + 0.0418932i
\(449\) 15.3860 26.6493i 0.726109 1.25766i −0.232407 0.972619i \(-0.574660\pi\)
0.958516 0.285039i \(-0.0920064\pi\)
\(450\) 0 0
\(451\) −12.5164 21.6791i −0.589375 1.02083i
\(452\) 35.3746 + 75.8611i 1.66388 + 3.56820i
\(453\) 0 0
\(454\) −5.82087 + 6.93705i −0.273187 + 0.325572i
\(455\) −10.8413 15.6227i −0.508247 0.732404i
\(456\) 0 0
\(457\) −19.1830 13.4321i −0.897344 0.628327i 0.0312144 0.999513i \(-0.490063\pi\)
−0.928559 + 0.371185i \(0.878951\pi\)
\(458\) −2.19989 + 2.19989i −0.102794 + 0.102794i
\(459\) 0 0
\(460\) 24.0267 41.2132i 1.12025 1.92157i
\(461\) −31.1056 + 5.48476i −1.44873 + 0.255451i −0.842010 0.539462i \(-0.818628\pi\)
−0.606724 + 0.794913i \(0.707517\pi\)
\(462\) 0 0
\(463\) 26.5805 + 12.3947i 1.23530 + 0.576030i 0.926929 0.375236i \(-0.122438\pi\)
0.308371 + 0.951266i \(0.400216\pi\)
\(464\) −13.9783 11.7292i −0.648924 0.544512i
\(465\) 0 0
\(466\) −48.9632 17.8212i −2.26818 0.825549i
\(467\) 5.36199 20.0112i 0.248123 0.926008i −0.723665 0.690152i \(-0.757544\pi\)
0.971788 0.235857i \(-0.0757896\pi\)
\(468\) 0 0
\(469\) −0.902173 0.520870i −0.0416585 0.0240515i
\(470\) 22.2771 31.5312i 1.02757 1.45443i
\(471\) 0 0
\(472\) 25.2917 + 36.1204i 1.16415 + 1.66257i
\(473\) 8.31889 + 11.8806i 0.382503 + 0.546271i
\(474\) 0 0
\(475\) 15.7817 + 5.89525i 0.724116 + 0.270492i
\(476\) −61.2561 35.3662i −2.80767 1.62101i
\(477\) 0 0
\(478\) 7.85832 29.3277i 0.359431 1.34142i
\(479\) 7.18880 + 2.61651i 0.328465 + 0.119551i 0.500988 0.865454i \(-0.332970\pi\)
−0.172524 + 0.985005i \(0.555192\pi\)
\(480\) 0 0
\(481\) −10.6843 8.96523i −0.487164 0.408779i
\(482\) 15.6055 + 7.27698i 0.710813 + 0.331458i
\(483\) 0 0
\(484\) −1.38986 + 0.245071i −0.0631757 + 0.0111396i
\(485\) 9.90419 + 5.77400i 0.449726 + 0.262184i
\(486\) 0 0
\(487\) 8.90898 8.90898i 0.403704 0.403704i −0.475832 0.879536i \(-0.657853\pi\)
0.879536 + 0.475832i \(0.157853\pi\)
\(488\) −33.7714 23.6470i −1.52876 1.07045i
\(489\) 0 0
\(490\) 1.67873 + 0.303309i 0.0758375 + 0.0137021i
\(491\) −2.30460 + 2.74652i −0.104005 + 0.123949i −0.815536 0.578706i \(-0.803558\pi\)
0.711531 + 0.702655i \(0.248002\pi\)
\(492\) 0 0
\(493\) −8.04003 17.2419i −0.362105 0.776536i
\(494\) 13.2987 + 23.0341i 0.598339 + 1.03635i
\(495\) 0 0
\(496\) −1.07671 + 1.86492i −0.0483458 + 0.0837373i
\(497\) −26.3038 2.30128i −1.17989 0.103227i
\(498\) 0 0
\(499\) 0.621729 + 0.109628i 0.0278324 + 0.00490760i 0.187547 0.982256i \(-0.439946\pi\)
−0.159715 + 0.987163i \(0.551057\pi\)
\(500\) 27.0334 + 39.6662i 1.20897 + 1.77393i
\(501\) 0 0
\(502\) 2.15555 24.6380i 0.0962068 1.09965i
\(503\) 9.79612 + 36.5596i 0.436788 + 1.63011i 0.736752 + 0.676163i \(0.236359\pi\)
−0.299964 + 0.953950i \(0.596975\pi\)
\(504\) 0 0
\(505\) 1.87224 + 1.88809i 0.0833135 + 0.0840190i
\(506\) 13.9278 38.2662i 0.619164 1.70114i
\(507\) 0 0
\(508\) −7.99059 91.3329i −0.354525 4.05224i
\(509\) −27.9791 + 10.1836i −1.24015 + 0.451378i −0.877063 0.480376i \(-0.840500\pi\)
−0.363089 + 0.931754i \(0.618278\pi\)
\(510\) 0 0
\(511\) 0.0120961 + 0.0686004i 0.000535100 + 0.00303470i
\(512\) −34.5064 34.5064i −1.52498 1.52498i
\(513\) 0 0
\(514\) 28.2173i 1.24461i
\(515\) 0.394690 + 0.145543i 0.0173921 + 0.00641338i
\(516\) 0 0
\(517\) 9.50148 20.3760i 0.417875 0.896135i
\(518\) 29.9377 2.61921i 1.31539 0.115082i
\(519\) 0 0
\(520\) −3.69826 + 40.3130i −0.162179 + 1.76784i
\(521\) −27.1230 + 15.6595i −1.18828 + 0.686054i −0.957915 0.287050i \(-0.907325\pi\)
−0.230365 + 0.973104i \(0.573992\pi\)
\(522\) 0 0
\(523\) −31.8316 + 8.52925i −1.39190 + 0.372958i −0.875429 0.483347i \(-0.839421\pi\)
−0.516470 + 0.856305i \(0.672754\pi\)
\(524\) 54.5428 45.7668i 2.38271 1.99933i
\(525\) 0 0
\(526\) −3.59043 + 20.3623i −0.156550 + 0.887840i
\(527\) −1.83910 + 1.28775i −0.0801122 + 0.0560952i
\(528\) 0 0
\(529\) −1.08748 1.29601i −0.0472817 0.0563482i
\(530\) 26.6370 + 7.25787i 1.15704 + 0.315262i
\(531\) 0 0
\(532\) −37.7644 10.1189i −1.63730 0.438712i
\(533\) 21.8537 10.1905i 0.946588 0.441401i
\(534\) 0 0
\(535\) −5.25898 + 1.88904i −0.227365 + 0.0816704i
\(536\) 0.758509 + 2.08399i 0.0327626 + 0.0900144i
\(537\) 0 0
\(538\) −30.7561 + 43.9242i −1.32599 + 1.89371i
\(539\) 0.993428 0.0427900
\(540\) 0 0
\(541\) −19.8436 −0.853142 −0.426571 0.904454i \(-0.640279\pi\)
−0.426571 + 0.904454i \(0.640279\pi\)
\(542\) 23.0317 32.8927i 0.989297 1.41286i
\(543\) 0 0
\(544\) 6.58965 + 18.1049i 0.282529 + 0.776241i
\(545\) 15.7911 + 7.44471i 0.676415 + 0.318896i
\(546\) 0 0
\(547\) 15.7916 7.36373i 0.675199 0.314851i −0.0546038 0.998508i \(-0.517390\pi\)
0.729803 + 0.683658i \(0.239612\pi\)
\(548\) −83.1410 22.2776i −3.55161 0.951650i
\(549\) 0 0
\(550\) 28.7286 + 29.2172i 1.22499 + 1.24583i
\(551\) −6.75924 8.05534i −0.287953 0.343169i
\(552\) 0 0
\(553\) 24.6267 17.2438i 1.04723 0.733281i
\(554\) −6.26140 + 35.5102i −0.266022 + 1.50868i
\(555\) 0 0
\(556\) −58.4598 + 49.0536i −2.47925 + 2.08034i
\(557\) 9.77513 2.61924i 0.414185 0.110981i −0.0457078 0.998955i \(-0.514554\pi\)
0.459893 + 0.887974i \(0.347888\pi\)
\(558\) 0 0
\(559\) −12.0988 + 6.98526i −0.511726 + 0.295445i
\(560\) −22.5976 27.1626i −0.954924 1.14783i
\(561\) 0 0
\(562\) −26.6544 + 2.33196i −1.12435 + 0.0983676i
\(563\) −15.7891 + 33.8599i −0.665432 + 1.42702i 0.226118 + 0.974100i \(0.427397\pi\)
−0.891550 + 0.452923i \(0.850381\pi\)
\(564\) 0 0
\(565\) −15.0824 + 40.9013i −0.634523 + 1.72073i
\(566\) 61.7281i 2.59462i
\(567\) 0 0
\(568\) 39.7474 + 39.7474i 1.66776 + 1.66776i
\(569\) 0.949414 + 5.38439i 0.0398015 + 0.225725i 0.998220 0.0596413i \(-0.0189957\pi\)
−0.958418 + 0.285367i \(0.907885\pi\)
\(570\) 0 0
\(571\) −27.1899 + 9.89631i −1.13786 + 0.414148i −0.841141 0.540817i \(-0.818115\pi\)
−0.296721 + 0.954964i \(0.595893\pi\)
\(572\) 3.84643 + 43.9649i 0.160827 + 1.83826i
\(573\) 0 0
\(574\) −17.7698 + 48.8220i −0.741695 + 2.03779i
\(575\) 24.0522 6.22789i 1.00305 0.259721i
\(576\) 0 0
\(577\) 3.56601 + 13.3085i 0.148455 + 0.554041i 0.999577 + 0.0290738i \(0.00925578\pi\)
−0.851122 + 0.524967i \(0.824078\pi\)
\(578\) −4.40755 + 50.3785i −0.183330 + 2.09547i
\(579\) 0 0
\(580\) −2.48551 29.8588i −0.103205 1.23982i
\(581\) −2.91282 0.513608i −0.120844 0.0213081i
\(582\) 0 0
\(583\) 16.0162 + 1.40124i 0.663324 + 0.0580333i
\(584\) 0.0741472 0.128427i 0.00306823 0.00531433i
\(585\) 0 0
\(586\) 30.1112 + 52.1541i 1.24388 + 2.15447i
\(587\) −8.99405 19.2878i −0.371224 0.796093i −0.999831 0.0183698i \(-0.994152\pi\)
0.628607 0.777723i \(-0.283625\pi\)
\(588\) 0 0
\(589\) −0.797678 + 0.950636i −0.0328678 + 0.0391703i
\(590\) −7.64384 + 42.3066i −0.314692 + 1.74174i
\(591\) 0 0
\(592\) −21.2290 14.8647i −0.872507 0.610936i
\(593\) −9.84862 + 9.84862i −0.404434 + 0.404434i −0.879792 0.475358i \(-0.842319\pi\)
0.475358 + 0.879792i \(0.342319\pi\)
\(594\) 0 0
\(595\) −9.38431 35.6228i −0.384719 1.46039i
\(596\) 3.59362 0.633653i 0.147201 0.0259554i
\(597\) 0 0
\(598\) 35.5503 + 16.5774i 1.45376 + 0.677900i
\(599\) 7.79546 + 6.54117i 0.318514 + 0.267265i 0.788000 0.615675i \(-0.211116\pi\)
−0.469486 + 0.882940i \(0.655561\pi\)
\(600\) 0 0
\(601\) 29.1191 + 10.5985i 1.18779 + 0.432321i 0.858948 0.512063i \(-0.171119\pi\)
0.328845 + 0.944384i \(0.393341\pi\)
\(602\) 7.79094 29.0762i 0.317535 1.18506i
\(603\) 0 0
\(604\) −55.0397 31.7772i −2.23953 1.29299i
\(605\) −0.600311 0.424126i −0.0244061 0.0172432i
\(606\) 0 0
\(607\) 17.4264 + 24.8874i 0.707315 + 1.01015i 0.998568 + 0.0535038i \(0.0170389\pi\)
−0.291253 + 0.956646i \(0.594072\pi\)
\(608\) 6.10833 + 8.72359i 0.247725 + 0.353788i
\(609\) 0 0
\(610\) −6.81297 39.6142i −0.275849 1.60393i
\(611\) 18.7548 + 10.8281i 0.758738 + 0.438058i
\(612\) 0 0
\(613\) −0.956834 + 3.57095i −0.0386462 + 0.144229i −0.982553 0.185982i \(-0.940453\pi\)
0.943907 + 0.330211i \(0.107120\pi\)
\(614\) −9.58694 3.48936i −0.386897 0.140819i
\(615\) 0 0
\(616\) −38.9116 32.6507i −1.56779 1.31553i
\(617\) 14.6652 + 6.83850i 0.590399 + 0.275308i 0.694771 0.719231i \(-0.255506\pi\)
−0.104372 + 0.994538i \(0.533283\pi\)
\(618\) 0 0
\(619\) 20.5670 3.62651i 0.826656 0.145762i 0.255714 0.966752i \(-0.417689\pi\)
0.570942 + 0.820991i \(0.306578\pi\)
\(620\) −3.41926 + 0.900756i −0.137321 + 0.0361752i
\(621\) 0 0
\(622\) −17.9835 + 17.9835i −0.721072 + 0.721072i
\(623\) 17.4096 + 12.1904i 0.697502 + 0.488396i
\(624\) 0 0
\(625\) −4.75575 + 24.5435i −0.190230 + 0.981740i
\(626\) 47.5380 56.6536i 1.90000 2.26433i
\(627\) 0 0
\(628\) −18.5557 39.7929i −0.740454 1.58791i
\(629\) −13.5097 23.3995i −0.538667 0.932999i
\(630\) 0 0
\(631\) 7.86152 13.6165i 0.312962 0.542066i −0.666040 0.745916i \(-0.732012\pi\)
0.979002 + 0.203850i \(0.0653454\pi\)
\(632\) −63.7581 5.57811i −2.53616 0.221885i
\(633\) 0 0
\(634\) −7.72396 1.36194i −0.306758 0.0540897i
\(635\) 30.8462 36.4479i 1.22410 1.44639i
\(636\) 0 0
\(637\) −0.0834010 + 0.953277i −0.00330447 + 0.0377702i
\(638\) −6.61957 24.7046i −0.262071 0.978063i
\(639\) 0 0
\(640\) 0.148619 35.2517i 0.00587470 1.39345i
\(641\) −13.8355 + 38.0128i −0.546471 + 1.50142i 0.291971 + 0.956427i \(0.405689\pi\)
−0.838443 + 0.544990i \(0.816533\pi\)
\(642\) 0 0
\(643\) 2.25900 + 25.8204i 0.0890861 + 1.01826i 0.900809 + 0.434216i \(0.142974\pi\)
−0.811723 + 0.584043i \(0.801470\pi\)
\(644\) −54.1816 + 19.7205i −2.13506 + 0.777097i
\(645\) 0 0
\(646\) 8.94731 + 50.7427i 0.352027 + 1.99645i
\(647\) 23.1817 + 23.1817i 0.911366 + 0.911366i 0.996380 0.0850141i \(-0.0270935\pi\)
−0.0850141 + 0.996380i \(0.527094\pi\)
\(648\) 0 0
\(649\) 25.0359i 0.982744i
\(650\) −30.4482 + 25.1147i −1.19428 + 0.985078i
\(651\) 0 0
\(652\) −23.6285 + 50.6714i −0.925362 + 1.98445i
\(653\) 32.8699 2.87574i 1.28630 0.112537i 0.576591 0.817033i \(-0.304383\pi\)
0.709708 + 0.704496i \(0.248827\pi\)
\(654\) 0 0
\(655\) 36.9268 + 3.38761i 1.44285 + 0.132365i
\(656\) 38.8017 22.4022i 1.51495 0.874658i
\(657\) 0 0
\(658\) −45.0720 + 12.0770i −1.75709 + 0.470810i
\(659\) 12.5302 10.5141i 0.488108 0.409571i −0.365240 0.930914i \(-0.619013\pi\)
0.853348 + 0.521342i \(0.174568\pi\)
\(660\) 0 0
\(661\) 4.84704 27.4889i 0.188528 1.06920i −0.732810 0.680433i \(-0.761792\pi\)
0.921338 0.388762i \(-0.127097\pi\)
\(662\) −60.3108 + 42.2301i −2.34405 + 1.64132i
\(663\) 0 0
\(664\) 4.04743 + 4.82353i 0.157071 + 0.187189i
\(665\) −10.1065 17.6767i −0.391913 0.685472i
\(666\) 0 0
\(667\) −14.9796 4.01378i −0.580014 0.155414i
\(668\) 18.7610 8.74840i 0.725885 0.338486i
\(669\) 0 0
\(670\) −0.922058 + 1.95579i −0.0356222 + 0.0755587i
\(671\) −8.00592 21.9961i −0.309065 0.849149i
\(672\) 0 0
\(673\) 20.3600 29.0771i 0.784821 1.12084i −0.205034 0.978755i \(-0.565730\pi\)
0.989854 0.142085i \(-0.0453807\pi\)
\(674\) 40.1696 1.54728
\(675\) 0 0
\(676\) 13.3039 0.511688
\(677\) 1.17325 1.67557i 0.0450916 0.0643975i −0.795973 0.605332i \(-0.793040\pi\)
0.841065 + 0.540934i \(0.181929\pi\)
\(678\) 0 0
\(679\) −4.73916 13.0207i −0.181872 0.499689i
\(680\) −33.4426 + 70.9356i −1.28247 + 2.72026i
\(681\) 0 0
\(682\) −2.73552 + 1.27559i −0.104748 + 0.0488450i
\(683\) −8.66609 2.32207i −0.331599 0.0888516i 0.0891783 0.996016i \(-0.471576\pi\)
−0.420777 + 0.907164i \(0.638243\pi\)
\(684\) 0 0
\(685\) −22.2502 38.9164i −0.850135 1.48692i
\(686\) 29.1812 + 34.7769i 1.11415 + 1.32779i
\(687\) 0 0
\(688\) −21.2642 + 14.8893i −0.810689 + 0.567650i
\(689\) −2.68921 + 15.2513i −0.102451 + 0.581027i
\(690\) 0 0
\(691\) −22.2034 + 18.6309i −0.844657 + 0.708752i −0.958606 0.284735i \(-0.908094\pi\)
0.113949 + 0.993487i \(0.463650\pi\)
\(692\) −26.7381 + 7.16445i −1.01643 + 0.272352i
\(693\) 0 0
\(694\) −4.48662 + 2.59035i −0.170310 + 0.0983284i
\(695\) −39.5788 3.63090i −1.50131 0.137728i
\(696\) 0 0
\(697\) 46.5345 4.07124i 1.76262 0.154209i
\(698\) 0.604818 1.29704i 0.0228927 0.0490936i
\(699\) 0 0
\(700\) 5.54372 57.7521i 0.209533 2.18283i
\(701\) 4.40189i 0.166257i 0.996539 + 0.0831285i \(0.0264912\pi\)
−0.996539 + 0.0831285i \(0.973509\pi\)
\(702\) 0 0
\(703\) −10.5604 10.5604i −0.398294 0.398294i
\(704\) −2.13541 12.1105i −0.0804813 0.456432i
\(705\) 0 0
\(706\) 17.8104 6.48245i 0.670303 0.243970i
\(707\) −0.280098 3.20153i −0.0105342 0.120406i
\(708\) 0 0
\(709\) 8.05475 22.1303i 0.302503 0.831119i −0.691561 0.722318i \(-0.743077\pi\)
0.994064 0.108801i \(-0.0347011\pi\)
\(710\) −0.231053 + 54.8045i −0.00867125 + 2.05677i
\(711\) 0 0
\(712\) −11.7104 43.7037i −0.438865 1.63787i
\(713\) −0.159508 + 1.82319i −0.00597364 + 0.0682790i
\(714\) 0 0
\(715\) −14.8484 + 17.5449i −0.555300 + 0.656143i
\(716\) −11.0687 1.95172i −0.413658 0.0729391i
\(717\) 0 0
\(718\) −35.6203 3.11637i −1.32934 0.116302i
\(719\) −3.55440 + 6.15640i −0.132557 + 0.229595i −0.924661 0.380790i \(-0.875652\pi\)
0.792105 + 0.610385i \(0.208985\pi\)
\(720\) 0 0
\(721\) −0.254220 0.440322i −0.00946765 0.0163985i
\(722\) −8.10778 17.3872i −0.301740 0.647084i
\(723\) 0 0
\(724\) 49.1954 58.6288i 1.82833 2.17892i
\(725\) 10.1308 11.8688i 0.376250 0.440795i
\(726\) 0 0
\(727\) −15.9661 11.1796i −0.592148 0.414627i 0.238726 0.971087i \(-0.423270\pi\)
−0.830874 + 0.556460i \(0.812159\pi\)
\(728\) 34.5978 34.5978i 1.28228 1.28228i
\(729\) 0 0
\(730\) 0.139814 0.0368320i 0.00517475 0.00136321i
\(731\) −26.6530 + 4.69964i −0.985796 + 0.173822i
\(732\) 0 0
\(733\) 33.2213 + 15.4914i 1.22706 + 0.572186i 0.924587 0.380972i \(-0.124411\pi\)
0.302471 + 0.953159i \(0.402188\pi\)
\(734\) −34.6809 29.1008i −1.28010 1.07413i
\(735\) 0 0
\(736\) 14.7586 + 5.37168i 0.544008 + 0.198003i
\(737\) −0.325897 + 1.21626i −0.0120046 + 0.0448017i
\(738\) 0 0
\(739\) 39.9362 + 23.0572i 1.46908 + 0.848172i 0.999399 0.0346657i \(-0.0110366\pi\)
0.469678 + 0.882838i \(0.344370\pi\)
\(740\) −7.21264 41.9381i −0.265142 1.54167i
\(741\) 0 0
\(742\) −19.1393 27.3338i −0.702626 1.00345i
\(743\) −4.00223 5.71577i −0.146828 0.209691i 0.739001 0.673705i \(-0.235298\pi\)
−0.885828 + 0.464013i \(0.846409\pi\)
\(744\) 0 0
\(745\) 1.55216 + 1.09662i 0.0568668 + 0.0401769i
\(746\) 11.8467 + 6.83970i 0.433739 + 0.250419i
\(747\) 0 0
\(748\) −22.1279 + 82.5823i −0.809075 + 3.01951i
\(749\) 6.34655 + 2.30996i 0.231898 + 0.0844040i
\(750\) 0 0
\(751\) 14.9900 + 12.5781i 0.546995 + 0.458983i 0.873922 0.486067i \(-0.161569\pi\)
−0.326927 + 0.945050i \(0.606013\pi\)
\(752\) 36.4694 + 17.0060i 1.32990 + 0.620144i
\(753\) 0 0
\(754\) 24.2618 4.27802i 0.883564 0.155796i
\(755\) −8.43197 32.0077i −0.306871 1.16488i
\(756\) 0 0
\(757\) −13.8377 + 13.8377i −0.502940 + 0.502940i −0.912350 0.409411i \(-0.865734\pi\)
0.409411 + 0.912350i \(0.365734\pi\)
\(758\) −8.30245 5.81344i −0.301559 0.211154i
\(759\) 0 0
\(760\) −7.70718 + 42.6572i −0.279569 + 1.54734i
\(761\) 4.04597 4.82180i 0.146666 0.174790i −0.687710 0.725986i \(-0.741384\pi\)
0.834376 + 0.551196i \(0.185828\pi\)
\(762\) 0 0
\(763\) −8.91746 19.1236i −0.322834 0.692319i
\(764\) −18.8382 32.6287i −0.681542 1.18046i
\(765\) 0 0
\(766\) 38.5033 66.6897i 1.39118 2.40960i
\(767\) −24.0240 2.10183i −0.867457 0.0758927i
\(768\) 0 0
\(769\) 43.7099 + 7.70724i 1.57622 + 0.277930i 0.892237 0.451567i \(-0.149135\pi\)
0.683983 + 0.729498i \(0.260246\pi\)
\(770\) −4.10832 49.3539i −0.148054 1.77859i
\(771\) 0 0
\(772\) 0.458275 5.23811i 0.0164937 0.188524i
\(773\) −4.60315 17.1792i −0.165564 0.617893i −0.997968 0.0637231i \(-0.979703\pi\)
0.832404 0.554170i \(-0.186964\pi\)
\(774\) 0 0
\(775\) −1.58700 0.934184i −0.0570067 0.0335569i
\(776\) −10.0891 + 27.7195i −0.362176 + 0.995071i
\(777\) 0 0
\(778\) −6.58818 75.3032i −0.236198 2.69975i
\(779\) 24.2626 8.83085i 0.869297 0.316398i
\(780\) 0 0
\(781\) 5.54203 + 31.4304i 0.198310 + 1.12467i
\(782\) 53.7322 + 53.7322i 1.92146 + 1.92146i
\(783\) 0 0
\(784\) 1.77806i 0.0635021i
\(785\) 7.91148 21.4547i 0.282373 0.765752i
\(786\) 0 0
\(787\) −12.6422 + 27.1112i −0.450644 + 0.966410i 0.541429 + 0.840747i \(0.317884\pi\)
−0.992073 + 0.125663i \(0.959894\pi\)
\(788\) 60.0637 5.25489i 2.13968 0.187198i
\(789\) 0 0
\(790\) −39.9083 47.9701i −1.41987 1.70670i
\(791\) 45.6301 26.3445i 1.62242 0.936704i
\(792\) 0 0
\(793\) 21.7792 5.83572i 0.773402 0.207232i
\(794\) 54.7764 45.9629i 1.94394 1.63116i
\(795\) 0 0
\(796\) 9.61833 54.5483i 0.340913 1.93341i
\(797\) 20.3795 14.2699i 0.721880 0.505466i −0.153954 0.988078i \(-0.549201\pi\)
0.875834 + 0.482612i \(0.160312\pi\)
\(798\) 0 0
\(799\) 26.9669 + 32.1379i 0.954020 + 1.13696i
\(800\) −11.2685 + 11.0801i −0.398403 + 0.391741i
\(801\) 0 0
\(802\) 68.4155 + 18.3319i 2.41584 + 0.647321i
\(803\) 0.0763090 0.0355835i 0.00269289 0.00125571i
\(804\) 0 0
\(805\) −27.1620 12.8056i −0.957336 0.451337i
\(806\) −0.994384 2.73205i −0.0350257 0.0962323i
\(807\) 0 0
\(808\) −3.92423 + 5.60438i −0.138054 + 0.197161i
\(809\) −27.7036 −0.974006 −0.487003 0.873400i \(-0.661910\pi\)
−0.487003 + 0.873400i \(0.661910\pi\)
\(810\) 0 0
\(811\) −16.0245 −0.562695 −0.281347 0.959606i \(-0.590781\pi\)
−0.281347 + 0.959606i \(0.590781\pi\)
\(812\) −20.7712 + 29.6644i −0.728927 + 1.04102i
\(813\) 0 0
\(814\) −12.4237 34.1339i −0.435451 1.19639i
\(815\) −27.4040 + 9.84360i −0.959920 + 0.344806i
\(816\) 0 0
\(817\) −13.5578 + 6.32213i −0.474329 + 0.221183i
\(818\) 48.4121 + 12.9720i 1.69269 + 0.453555i
\(819\) 0 0
\(820\) 70.9810 + 19.3404i 2.47876 + 0.675396i
\(821\) 36.5832 + 43.5982i 1.27676 + 1.52159i 0.727920 + 0.685663i \(0.240487\pi\)
0.548844 + 0.835925i \(0.315068\pi\)
\(822\) 0 0
\(823\) −42.9536 + 30.0764i −1.49727 + 1.04840i −0.515815 + 0.856700i \(0.672511\pi\)
−0.981454 + 0.191699i \(0.938600\pi\)
\(824\) −0.187958 + 1.06596i −0.00654781 + 0.0371345i
\(825\) 0 0
\(826\) 39.8049 33.4002i 1.38499 1.16214i
\(827\) 20.7603 5.56271i 0.721907 0.193434i 0.120885 0.992667i \(-0.461427\pi\)
0.601023 + 0.799232i \(0.294760\pi\)
\(828\) 0 0
\(829\) 27.5695 15.9172i 0.957527 0.552828i 0.0621158 0.998069i \(-0.480215\pi\)
0.895411 + 0.445241i \(0.146882\pi\)
\(830\) −0.560840 + 6.11347i −0.0194670 + 0.212202i
\(831\) 0 0
\(832\) 11.8003 1.03240i 0.409103 0.0357919i
\(833\) −0.783438 + 1.68009i −0.0271445 + 0.0582116i
\(834\) 0 0
\(835\) 10.1152 + 3.73000i 0.350051 + 0.129082i
\(836\) 47.2568i 1.63441i
\(837\) 0 0
\(838\) 12.9511 + 12.9511i 0.447390 + 0.447390i
\(839\) 5.41257 + 30.6962i 0.186863 + 1.05975i 0.923539 + 0.383505i \(0.125283\pi\)
−0.736676 + 0.676246i \(0.763606\pi\)
\(840\) 0 0
\(841\) 18.0984 6.58729i 0.624084 0.227148i
\(842\) −6.36910 72.7991i −0.219494 2.50882i
\(843\) 0 0
\(844\) −0.188452 + 0.517767i −0.00648677 + 0.0178223i
\(845\) 4.87870 + 4.92001i 0.167832 + 0.169254i
\(846\) 0 0
\(847\) 0.229930 + 0.858109i 0.00790047 + 0.0294850i
\(848\) −2.50796 + 28.6662i −0.0861239 + 0.984400i
\(849\) 0 0
\(850\) −72.0683 + 25.5446i −2.47192 + 0.876174i
\(851\) −21.6908 3.82467i −0.743550 0.131108i
\(852\) 0 0
\(853\) 34.9235 + 3.05541i 1.19576 + 0.104615i 0.667593 0.744526i \(-0.267325\pi\)
0.528165 + 0.849142i \(0.322880\pi\)
\(854\) −24.2912 + 42.0736i −0.831228 + 1.43973i
\(855\) 0 0
\(856\) −7.18905 12.4518i −0.245717 0.425594i
\(857\) −23.5835 50.5751i −0.805599 1.72761i −0.677086 0.735904i \(-0.736758\pi\)
−0.128512 0.991708i \(-0.541020\pi\)
\(858\) 0 0
\(859\) −18.4923 + 22.0383i −0.630949 + 0.751936i −0.982912 0.184078i \(-0.941070\pi\)
0.351962 + 0.936014i \(0.385514\pi\)
\(860\) −41.9451 7.57853i −1.43032 0.258426i
\(861\) 0 0
\(862\) −29.4666 20.6328i −1.00364 0.702754i
\(863\) −20.3595 + 20.3595i −0.693044 + 0.693044i −0.962901 0.269856i \(-0.913024\pi\)
0.269856 + 0.962901i \(0.413024\pi\)
\(864\) 0 0
\(865\) −12.4547 7.26092i −0.423473 0.246879i
\(866\) −56.9181 + 10.0362i −1.93416 + 0.341044i
\(867\) 0 0
\(868\) 3.87326 + 1.80613i 0.131467 + 0.0613040i
\(869\) −27.8369 23.3579i −0.944301 0.792363i
\(870\) 0 0
\(871\) −1.13975 0.414834i −0.0386189 0.0140561i
\(872\) −11.6262 + 43.3897i −0.393714 + 1.46936i
\(873\) 0 0
\(874\) 36.3748 + 21.0010i 1.23040 + 0.710370i
\(875\) 23.3907 19.1282i 0.790749 0.646653i
\(876\) 0 0
\(877\) −24.2499 34.6324i −0.818860 1.16945i −0.983107 0.183034i \(-0.941408\pi\)
0.164247 0.986419i \(-0.447481\pi\)
\(878\) −26.7583 38.2149i −0.903050 1.28969i
\(879\) 0 0
\(880\) −24.6437 + 34.8810i −0.830739 + 1.17584i
\(881\) −17.8875 10.3273i −0.602644 0.347936i 0.167437 0.985883i \(-0.446451\pi\)
−0.770081 + 0.637946i \(0.779784\pi\)
\(882\) 0 0
\(883\) −4.93007 + 18.3993i −0.165910 + 0.619185i 0.832012 + 0.554757i \(0.187189\pi\)
−0.997922 + 0.0644275i \(0.979478\pi\)
\(884\) −77.3870 28.1666i −2.60281 0.947344i
\(885\) 0 0
\(886\) 52.3180 + 43.9000i 1.75766 + 1.47485i
\(887\) 33.0811 + 15.4260i 1.11076 + 0.517954i 0.889350 0.457228i \(-0.151158\pi\)
0.221406 + 0.975182i \(0.428935\pi\)
\(888\) 0 0
\(889\) −56.8345 + 10.0215i −1.90617 + 0.336109i
\(890\) 22.2176 38.1100i 0.744735 1.27745i
\(891\) 0 0
\(892\) −25.4323 + 25.4323i −0.851538 + 0.851538i
\(893\) 18.9954 + 13.3007i 0.635657 + 0.445092i
\(894\) 0 0
\(895\) −3.33726 4.80913i −0.111552 0.160751i
\(896\) −27.3874 + 32.6390i −0.914947 + 1.09039i
\(897\) 0 0
\(898\) 32.6248 + 69.9640i 1.08870 + 2.33473i
\(899\) 0.574727 + 0.995457i 0.0191682 + 0.0332003i
\(900\) 0 0
\(901\) −15.0005 + 25.9816i −0.499739 + 0.865574i
\(902\) 62.5603 + 5.47332i 2.08303 + 0.182242i
\(903\) 0 0
\(904\) −110.464 19.4778i −3.67399 0.647823i
\(905\) 39.7224 3.30658i 1.32042 0.109914i
\(906\) 0 0
\(907\) 3.14986 36.0031i 0.104589 1.19546i −0.744650 0.667455i \(-0.767384\pi\)
0.849240 0.528008i \(-0.177061\pi\)
\(908\) −4.01124 14.9702i −0.133118 0.496802i
\(909\) 0 0
\(910\) 47.7042 + 0.201118i 1.58138 + 0.00666701i
\(911\) 1.01321 2.78377i 0.0335691 0.0922304i −0.921776 0.387723i \(-0.873262\pi\)
0.955345 + 0.295493i \(0.0954838\pi\)
\(912\) 0 0
\(913\) 0.311589 + 3.56148i 0.0103121 + 0.117868i
\(914\) 55.2056 20.0932i 1.82604 0.664623i
\(915\) 0 0
\(916\) −0.924588 5.24360i −0.0305492 0.173253i
\(917\) −31.6917 31.6917i −1.04655 1.04655i
\(918\) 0 0
\(919\) 31.4414i 1.03716i 0.855030 + 0.518578i \(0.173538\pi\)
−0.855030 + 0.518578i \(0.826462\pi\)
\(920\) 26.7729 + 58.0523i 0.882675 + 1.91393i
\(921\) 0 0
\(922\) 33.4873 71.8138i 1.10285 2.36506i
\(923\) −30.6254 + 2.67938i −1.00805 + 0.0881927i
\(924\) 0 0
\(925\) 12.8645 18.0466i 0.422981 0.593367i
\(926\) −63.7180 + 36.7876i −2.09390 + 1.20892i
\(927\) 0 0
\(928\) 9.52810 2.55305i 0.312775 0.0838079i
\(929\) −35.9403 + 30.1575i −1.17916 + 0.989435i −0.179178 + 0.983817i \(0.557344\pi\)
−0.999984 + 0.00561833i \(0.998212\pi\)
\(930\) 0 0
\(931\) −0.177929 + 1.00909i −0.00583140 + 0.0330715i
\(932\) 73.0484 51.1490i 2.39278 1.67544i
\(933\) 0 0
\(934\) 33.4073 + 39.8133i 1.09312 + 1.30273i
\(935\) −38.6549 + 22.1007i −1.26415 + 0.722769i
\(936\) 0 0
\(937\) 45.8184 + 12.2770i 1.49682 + 0.401072i 0.912034 0.410114i \(-0.134511\pi\)
0.584788 + 0.811186i \(0.301178\pi\)
\(938\) 2.36853 1.10446i 0.0773353 0.0360620i
\(939\) 0 0
\(940\) 22.3364 + 62.1833i 0.728534 + 2.02820i
\(941\) −3.46508 9.52023i −0.112958 0.310351i 0.870313 0.492500i \(-0.163917\pi\)
−0.983271 + 0.182149i \(0.941695\pi\)
\(942\) 0 0
\(943\) 21.8409 31.1920i 0.711236 1.01575i
\(944\) −44.8097 −1.45843
\(945\) 0 0
\(946\) −36.3847 −1.18297
\(947\) −16.1599 + 23.0787i −0.525126 + 0.749958i −0.990849 0.134973i \(-0.956905\pi\)
0.465723 + 0.884930i \(0.345794\pi\)
\(948\) 0 0
\(949\) 0.0277390 + 0.0762122i 0.000900445 + 0.00247395i
\(950\) −34.8232 + 23.9485i −1.12982 + 0.776991i
\(951\) 0 0
\(952\) 85.9056 40.0584i 2.78422 1.29830i
\(953\) −0.146858 0.0393504i −0.00475719 0.00127468i 0.256440 0.966560i \(-0.417451\pi\)
−0.261197 + 0.965286i \(0.584117\pi\)
\(954\) 0 0
\(955\) 5.15846 18.9320i 0.166924 0.612626i
\(956\) 33.4013 + 39.8061i 1.08027 + 1.28742i
\(957\) 0 0
\(958\) −15.7210 + 11.0079i −0.507922 + 0.355651i
\(959\) −9.40847 + 53.3581i −0.303815 + 1.72302i
\(960\) 0 0
\(961\) −23.6435 + 19.8392i −0.762692 + 0.639975i
\(962\) 33.7973 9.05596i 1.08967 0.291976i
\(963\) 0 0
\(964\) −25.5209 + 14.7345i −0.821972 + 0.474566i
\(965\) 2.10520 1.75140i 0.0677687 0.0563795i
\(966\) 0 0
\(967\) −39.1584 + 3.42592i −1.25925 + 0.110170i −0.697165 0.716910i \(-0.745556\pi\)
−0.562084 + 0.827080i \(0.690000\pi\)
\(968\) 0.799275 1.71405i 0.0256897 0.0550917i
\(969\) 0 0
\(970\) −26.1168 + 12.0447i −0.838560 + 0.386731i
\(971\) 16.2895i 0.522755i −0.965237 0.261378i \(-0.915823\pi\)
0.965237 0.261378i \(-0.0841768\pi\)
\(972\) 0 0
\(973\) 33.9677 + 33.9677i 1.08895 + 1.08895i
\(974\) 5.48855 + 31.1271i 0.175864 + 0.997376i
\(975\) 0 0
\(976\) 39.3691 14.3292i 1.26017 0.458665i
\(977\) 3.90528 + 44.6375i 0.124941 + 1.42808i 0.757129 + 0.653266i \(0.226602\pi\)
−0.632188 + 0.774815i \(0.717843\pi\)
\(978\) 0 0
\(979\) 8.78621 24.1399i 0.280809 0.771515i
\(980\) −2.07313 + 2.05573i −0.0662238 + 0.0656678i
\(981\) 0 0
\(982\) −2.32792 8.68793i −0.0742871 0.277243i
\(983\) −0.145188 + 1.65951i −0.00463078 + 0.0529300i −0.998158 0.0606600i \(-0.980679\pi\)
0.993528 + 0.113590i \(0.0362350\pi\)
\(984\) 0 0
\(985\) 23.9694 + 20.2855i 0.763729 + 0.646351i
\(986\) 47.0008 + 8.28751i 1.49681 + 0.263928i
\(987\) 0 0
\(988\) −45.3468 3.96733i −1.44267 0.126218i
\(989\) −11.0309 + 19.1061i −0.350763 + 0.607540i
\(990\) 0 0
\(991\) 20.3962 + 35.3273i 0.647908 + 1.12221i 0.983622 + 0.180246i \(0.0576892\pi\)
−0.335714 + 0.941964i \(0.608977\pi\)
\(992\) −0.491973 1.05504i −0.0156201 0.0334975i
\(993\) 0 0
\(994\) 42.5781 50.7425i 1.35049 1.60946i
\(995\) 23.7000 16.4465i 0.751342 0.521388i
\(996\) 0 0
\(997\) 46.5404 + 32.5879i 1.47395 + 1.03207i 0.987370 + 0.158432i \(0.0506439\pi\)
0.486578 + 0.873637i \(0.338245\pi\)
\(998\) −1.11990 + 1.11990i −0.0354498 + 0.0354498i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 405.2.r.a.233.1 192
3.2 odd 2 135.2.q.a.68.16 yes 192
5.2 odd 4 inner 405.2.r.a.152.1 192
15.2 even 4 135.2.q.a.122.16 yes 192
15.8 even 4 675.2.ba.b.257.1 192
15.14 odd 2 675.2.ba.b.68.1 192
27.2 odd 18 inner 405.2.r.a.8.1 192
27.25 even 9 135.2.q.a.83.16 yes 192
135.2 even 36 inner 405.2.r.a.332.1 192
135.52 odd 36 135.2.q.a.2.16 192
135.79 even 18 675.2.ba.b.218.1 192
135.133 odd 36 675.2.ba.b.407.1 192
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
135.2.q.a.2.16 192 135.52 odd 36
135.2.q.a.68.16 yes 192 3.2 odd 2
135.2.q.a.83.16 yes 192 27.25 even 9
135.2.q.a.122.16 yes 192 15.2 even 4
405.2.r.a.8.1 192 27.2 odd 18 inner
405.2.r.a.152.1 192 5.2 odd 4 inner
405.2.r.a.233.1 192 1.1 even 1 trivial
405.2.r.a.332.1 192 135.2 even 36 inner
675.2.ba.b.68.1 192 15.14 odd 2
675.2.ba.b.218.1 192 135.79 even 18
675.2.ba.b.257.1 192 15.8 even 4
675.2.ba.b.407.1 192 135.133 odd 36