Properties

Label 405.2.r.a.332.7
Level $405$
Weight $2$
Character 405.332
Analytic conductor $3.234$
Analytic rank $0$
Dimension $192$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [405,2,Mod(8,405)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(405, base_ring=CyclotomicField(36))
 
chi = DirichletCharacter(H, H._module([2, 27]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("405.8");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 405 = 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 405.r (of order \(36\), degree \(12\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.23394128186\)
Analytic rank: \(0\)
Dimension: \(192\)
Relative dimension: \(16\) over \(\Q(\zeta_{36})\)
Twist minimal: no (minimal twist has level 135)
Sato-Tate group: $\mathrm{SU}(2)[C_{36}]$

Embedding invariants

Embedding label 332.7
Character \(\chi\) \(=\) 405.332
Dual form 405.2.r.a.233.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.184358 - 0.263290i) q^{2} +(0.648706 - 1.78231i) q^{4} +(0.0853346 - 2.23444i) q^{5} +(4.46037 + 2.07991i) q^{7} +(-1.20979 + 0.324162i) q^{8} +(-0.604038 + 0.389469i) q^{10} +(-0.0393995 + 0.0469545i) q^{11} +(-0.0650996 - 0.0455832i) q^{13} +(-0.274686 - 1.55782i) q^{14} +(-2.59752 - 2.17957i) q^{16} +(3.89214 + 1.04290i) q^{17} +(-1.80193 - 1.04035i) q^{19} +(-3.92710 - 1.60159i) q^{20} +(0.0196263 + 0.00171708i) q^{22} +(-2.74553 - 5.88782i) q^{23} +(-4.98544 - 0.381350i) q^{25} +0.0255437i q^{26} +(6.60050 - 6.60050i) q^{28} +(-1.24585 + 7.06559i) q^{29} +(0.209263 + 0.0761654i) q^{31} +(-0.313308 + 3.58112i) q^{32} +(-0.442962 - 1.21703i) q^{34} +(5.02805 - 9.78894i) q^{35} +(1.69714 - 6.33380i) q^{37} +(0.0582873 + 0.666227i) q^{38} +(0.621084 + 2.73086i) q^{40} +(2.22023 - 0.391486i) q^{41} +(-3.71962 + 0.325424i) q^{43} +(0.0581286 + 0.100682i) q^{44} +(-1.04404 + 1.80834i) q^{46} +(0.591824 - 1.26917i) q^{47} +(11.0694 + 13.1920i) q^{49} +(0.818698 + 1.38292i) q^{50} +(-0.123474 + 0.0864573i) q^{52} +(8.67464 + 8.67464i) q^{53} +(0.101555 + 0.0920427i) q^{55} +(-6.07034 - 1.07036i) q^{56} +(2.08998 - 0.974575i) q^{58} +(-0.888968 + 0.745933i) q^{59} +(-6.77967 + 2.46760i) q^{61} +(-0.0185256 - 0.0691385i) q^{62} +(-4.87243 + 2.81310i) q^{64} +(-0.107408 + 0.141571i) q^{65} +(-4.36094 + 6.22807i) q^{67} +(4.38361 - 6.26045i) q^{68} +(-3.50429 + 0.480832i) q^{70} +(-6.33059 + 3.65497i) q^{71} +(-1.72056 - 6.42123i) q^{73} +(-1.98051 + 0.720846i) q^{74} +(-3.02314 + 2.53672i) q^{76} +(-0.273398 + 0.127487i) q^{77} +(6.06016 + 1.06857i) q^{79} +(-5.09178 + 5.61800i) q^{80} +(-0.512391 - 0.512391i) q^{82} +(3.30178 - 2.31193i) q^{83} +(2.66242 - 8.60775i) q^{85} +(0.771422 + 0.919344i) q^{86} +(0.0324443 - 0.0695770i) q^{88} +(-5.25350 + 9.09933i) q^{89} +(-0.195560 - 0.338719i) q^{91} +(-12.2749 + 1.07392i) q^{92} +(-0.443268 + 0.0781601i) q^{94} +(-2.47836 + 3.93753i) q^{95} +(0.855375 + 9.77698i) q^{97} +(1.43259 - 5.34651i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 192 q + 12 q^{2} + 12 q^{5} - 12 q^{7} + 18 q^{8} - 6 q^{10} + 36 q^{11} - 12 q^{13} - 24 q^{16} + 18 q^{17} - 36 q^{20} - 12 q^{22} + 36 q^{23} - 30 q^{25} - 24 q^{28} - 24 q^{31} + 48 q^{32} - 36 q^{35}+ \cdots - 324 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/405\mathbb{Z}\right)^\times\).

\(n\) \(82\) \(326\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{1}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.184358 0.263290i −0.130361 0.186174i 0.748665 0.662948i \(-0.230695\pi\)
−0.879026 + 0.476774i \(0.841806\pi\)
\(3\) 0 0
\(4\) 0.648706 1.78231i 0.324353 0.891153i
\(5\) 0.0853346 2.23444i 0.0381628 0.999272i
\(6\) 0 0
\(7\) 4.46037 + 2.07991i 1.68586 + 0.786130i 0.998192 + 0.0601067i \(0.0191441\pi\)
0.687670 + 0.726024i \(0.258634\pi\)
\(8\) −1.20979 + 0.324162i −0.427725 + 0.114609i
\(9\) 0 0
\(10\) −0.604038 + 0.389469i −0.191014 + 0.123161i
\(11\) −0.0393995 + 0.0469545i −0.0118794 + 0.0141573i −0.771951 0.635682i \(-0.780719\pi\)
0.760072 + 0.649839i \(0.225164\pi\)
\(12\) 0 0
\(13\) −0.0650996 0.0455832i −0.0180554 0.0126425i 0.564514 0.825424i \(-0.309064\pi\)
−0.582569 + 0.812781i \(0.697953\pi\)
\(14\) −0.274686 1.55782i −0.0734128 0.416345i
\(15\) 0 0
\(16\) −2.59752 2.17957i −0.649379 0.544894i
\(17\) 3.89214 + 1.04290i 0.943982 + 0.252939i 0.697807 0.716286i \(-0.254159\pi\)
0.246175 + 0.969225i \(0.420826\pi\)
\(18\) 0 0
\(19\) −1.80193 1.04035i −0.413392 0.238672i 0.278854 0.960333i \(-0.410045\pi\)
−0.692246 + 0.721662i \(0.743379\pi\)
\(20\) −3.92710 1.60159i −0.878126 0.358126i
\(21\) 0 0
\(22\) 0.0196263 + 0.00171708i 0.00418434 + 0.000366082i
\(23\) −2.74553 5.88782i −0.572483 1.22769i −0.953014 0.302926i \(-0.902036\pi\)
0.380531 0.924768i \(-0.375741\pi\)
\(24\) 0 0
\(25\) −4.98544 0.381350i −0.997087 0.0762700i
\(26\) 0.0255437i 0.00500954i
\(27\) 0 0
\(28\) 6.60050 6.60050i 1.24738 1.24738i
\(29\) −1.24585 + 7.06559i −0.231349 + 1.31205i 0.618818 + 0.785534i \(0.287612\pi\)
−0.850167 + 0.526512i \(0.823499\pi\)
\(30\) 0 0
\(31\) 0.209263 + 0.0761654i 0.0375847 + 0.0136797i 0.360744 0.932665i \(-0.382523\pi\)
−0.323159 + 0.946345i \(0.604745\pi\)
\(32\) −0.313308 + 3.58112i −0.0553855 + 0.633059i
\(33\) 0 0
\(34\) −0.442962 1.21703i −0.0759674 0.208719i
\(35\) 5.02805 9.78894i 0.849895 1.65463i
\(36\) 0 0
\(37\) 1.69714 6.33380i 0.279007 1.04127i −0.674101 0.738640i \(-0.735469\pi\)
0.953108 0.302630i \(-0.0978648\pi\)
\(38\) 0.0582873 + 0.666227i 0.00945545 + 0.108076i
\(39\) 0 0
\(40\) 0.621084 + 2.73086i 0.0982020 + 0.431787i
\(41\) 2.22023 0.391486i 0.346742 0.0611399i 0.00243462 0.999997i \(-0.499225\pi\)
0.344307 + 0.938857i \(0.388114\pi\)
\(42\) 0 0
\(43\) −3.71962 + 0.325424i −0.567236 + 0.0496267i −0.367167 0.930155i \(-0.619672\pi\)
−0.200069 + 0.979782i \(0.564117\pi\)
\(44\) 0.0581286 + 0.100682i 0.00876322 + 0.0151783i
\(45\) 0 0
\(46\) −1.04404 + 1.80834i −0.153936 + 0.266625i
\(47\) 0.591824 1.26917i 0.0863264 0.185128i −0.858405 0.512972i \(-0.828544\pi\)
0.944732 + 0.327844i \(0.106322\pi\)
\(48\) 0 0
\(49\) 11.0694 + 13.1920i 1.58134 + 1.88457i
\(50\) 0.818698 + 1.38292i 0.115781 + 0.195575i
\(51\) 0 0
\(52\) −0.123474 + 0.0864573i −0.0171227 + 0.0119895i
\(53\) 8.67464 + 8.67464i 1.19155 + 1.19155i 0.976631 + 0.214923i \(0.0689499\pi\)
0.214923 + 0.976631i \(0.431050\pi\)
\(54\) 0 0
\(55\) 0.101555 + 0.0920427i 0.0136937 + 0.0124110i
\(56\) −6.07034 1.07036i −0.811183 0.143033i
\(57\) 0 0
\(58\) 2.08998 0.974575i 0.274428 0.127968i
\(59\) −0.888968 + 0.745933i −0.115734 + 0.0971121i −0.698818 0.715300i \(-0.746290\pi\)
0.583084 + 0.812412i \(0.301846\pi\)
\(60\) 0 0
\(61\) −6.77967 + 2.46760i −0.868048 + 0.315944i −0.737377 0.675482i \(-0.763936\pi\)
−0.130672 + 0.991426i \(0.541713\pi\)
\(62\) −0.0185256 0.0691385i −0.00235275 0.00878060i
\(63\) 0 0
\(64\) −4.87243 + 2.81310i −0.609054 + 0.351637i
\(65\) −0.107408 + 0.141571i −0.0133224 + 0.0175598i
\(66\) 0 0
\(67\) −4.36094 + 6.22807i −0.532774 + 0.760880i −0.991835 0.127524i \(-0.959297\pi\)
0.459061 + 0.888405i \(0.348186\pi\)
\(68\) 4.38361 6.26045i 0.531591 0.759191i
\(69\) 0 0
\(70\) −3.50429 + 0.480832i −0.418843 + 0.0574704i
\(71\) −6.33059 + 3.65497i −0.751303 + 0.433765i −0.826165 0.563429i \(-0.809482\pi\)
0.0748614 + 0.997194i \(0.476149\pi\)
\(72\) 0 0
\(73\) −1.72056 6.42123i −0.201377 0.751549i −0.990523 0.137344i \(-0.956144\pi\)
0.789147 0.614205i \(-0.210523\pi\)
\(74\) −1.98051 + 0.720846i −0.230229 + 0.0837966i
\(75\) 0 0
\(76\) −3.02314 + 2.53672i −0.346778 + 0.290981i
\(77\) −0.273398 + 0.127487i −0.0311565 + 0.0145285i
\(78\) 0 0
\(79\) 6.06016 + 1.06857i 0.681821 + 0.120223i 0.503822 0.863807i \(-0.331927\pi\)
0.177999 + 0.984031i \(0.443038\pi\)
\(80\) −5.09178 + 5.61800i −0.569279 + 0.628111i
\(81\) 0 0
\(82\) −0.512391 0.512391i −0.0565841 0.0565841i
\(83\) 3.30178 2.31193i 0.362417 0.253767i −0.378158 0.925741i \(-0.623442\pi\)
0.740575 + 0.671974i \(0.234553\pi\)
\(84\) 0 0
\(85\) 2.66242 8.60775i 0.288780 0.933642i
\(86\) 0.771422 + 0.919344i 0.0831845 + 0.0991355i
\(87\) 0 0
\(88\) 0.0324443 0.0695770i 0.00345857 0.00741693i
\(89\) −5.25350 + 9.09933i −0.556870 + 0.964527i 0.440886 + 0.897563i \(0.354664\pi\)
−0.997755 + 0.0669633i \(0.978669\pi\)
\(90\) 0 0
\(91\) −0.195560 0.338719i −0.0205002 0.0355074i
\(92\) −12.2749 + 1.07392i −1.27975 + 0.111964i
\(93\) 0 0
\(94\) −0.443268 + 0.0781601i −0.0457196 + 0.00806160i
\(95\) −2.47836 + 3.93753i −0.254274 + 0.403982i
\(96\) 0 0
\(97\) 0.855375 + 9.77698i 0.0868501 + 0.992702i 0.907161 + 0.420784i \(0.138245\pi\)
−0.820311 + 0.571918i \(0.806200\pi\)
\(98\) 1.43259 5.34651i 0.144714 0.540079i
\(99\) 0 0
\(100\) −3.91377 + 8.63819i −0.391377 + 0.863819i
\(101\) −1.28534 3.53144i −0.127896 0.351391i 0.859173 0.511684i \(-0.170978\pi\)
−0.987069 + 0.160293i \(0.948756\pi\)
\(102\) 0 0
\(103\) −0.211590 + 2.41848i −0.0208485 + 0.238300i 0.978619 + 0.205680i \(0.0659406\pi\)
−0.999468 + 0.0326198i \(0.989615\pi\)
\(104\) 0.0935332 + 0.0340433i 0.00917169 + 0.00333822i
\(105\) 0 0
\(106\) 0.684711 3.88319i 0.0665050 0.377168i
\(107\) 1.54852 1.54852i 0.149701 0.149701i −0.628284 0.777984i \(-0.716242\pi\)
0.777984 + 0.628284i \(0.216242\pi\)
\(108\) 0 0
\(109\) 0.257274i 0.0246424i 0.999924 + 0.0123212i \(0.00392206\pi\)
−0.999924 + 0.0123212i \(0.996078\pi\)
\(110\) 0.00551151 0.0437072i 0.000525502 0.00416732i
\(111\) 0 0
\(112\) −7.05257 15.1243i −0.666406 1.42911i
\(113\) 11.2070 + 0.980488i 1.05427 + 0.0922366i 0.601089 0.799182i \(-0.294734\pi\)
0.453180 + 0.891419i \(0.350289\pi\)
\(114\) 0 0
\(115\) −13.3903 + 5.63229i −1.24865 + 0.525214i
\(116\) 11.7848 + 6.80398i 1.09420 + 0.631734i
\(117\) 0 0
\(118\) 0.360285 + 0.0965380i 0.0331669 + 0.00888705i
\(119\) 15.1913 + 12.7470i 1.39258 + 1.16851i
\(120\) 0 0
\(121\) 1.90948 + 10.8292i 0.173589 + 0.984471i
\(122\) 1.89958 + 1.33010i 0.171980 + 0.120422i
\(123\) 0 0
\(124\) 0.271500 0.323561i 0.0243814 0.0290567i
\(125\) −1.27753 + 11.1071i −0.114266 + 0.993450i
\(126\) 0 0
\(127\) 7.47317 2.00243i 0.663137 0.177687i 0.0884755 0.996078i \(-0.471801\pi\)
0.574661 + 0.818391i \(0.305134\pi\)
\(128\) 8.15493 + 3.80270i 0.720800 + 0.336115i
\(129\) 0 0
\(130\) 0.0570759 + 0.00217976i 0.00500589 + 0.000191178i
\(131\) −3.14700 + 8.64630i −0.274954 + 0.755431i 0.722961 + 0.690889i \(0.242781\pi\)
−0.997915 + 0.0645417i \(0.979441\pi\)
\(132\) 0 0
\(133\) −5.87347 8.38818i −0.509294 0.727347i
\(134\) 2.44376 0.211109
\(135\) 0 0
\(136\) −5.04674 −0.432754
\(137\) 7.88810 + 11.2654i 0.673926 + 0.962466i 0.999854 + 0.0170715i \(0.00543428\pi\)
−0.325928 + 0.945394i \(0.605677\pi\)
\(138\) 0 0
\(139\) 0.364140 1.00047i 0.0308860 0.0848586i −0.923291 0.384101i \(-0.874512\pi\)
0.954177 + 0.299242i \(0.0967338\pi\)
\(140\) −14.1852 15.3117i −1.19886 1.29407i
\(141\) 0 0
\(142\) 2.12941 + 0.992961i 0.178696 + 0.0833274i
\(143\) 0.00470524 0.00126076i 0.000393472 0.000105430i
\(144\) 0 0
\(145\) 15.6813 + 3.38672i 1.30226 + 0.281252i
\(146\) −1.37345 + 1.63681i −0.113667 + 0.135464i
\(147\) 0 0
\(148\) −10.1878 7.13359i −0.837434 0.586378i
\(149\) −3.12678 17.7328i −0.256156 1.45273i −0.793089 0.609106i \(-0.791528\pi\)
0.536933 0.843625i \(-0.319583\pi\)
\(150\) 0 0
\(151\) 7.30896 + 6.13294i 0.594795 + 0.499092i 0.889768 0.456414i \(-0.150866\pi\)
−0.294973 + 0.955506i \(0.595311\pi\)
\(152\) 2.51720 + 0.674482i 0.204172 + 0.0547077i
\(153\) 0 0
\(154\) 0.0839692 + 0.0484796i 0.00676643 + 0.00390660i
\(155\) 0.188044 0.461085i 0.0151041 0.0370353i
\(156\) 0 0
\(157\) 16.1522 + 1.41313i 1.28908 + 0.112780i 0.710997 0.703195i \(-0.248244\pi\)
0.578087 + 0.815975i \(0.303799\pi\)
\(158\) −0.835893 1.79258i −0.0665001 0.142610i
\(159\) 0 0
\(160\) 7.97507 + 1.00566i 0.630484 + 0.0795045i
\(161\) 31.9723i 2.51977i
\(162\) 0 0
\(163\) −7.81801 + 7.81801i −0.612354 + 0.612354i −0.943559 0.331205i \(-0.892545\pi\)
0.331205 + 0.943559i \(0.392545\pi\)
\(164\) 0.742528 4.21109i 0.0579817 0.328831i
\(165\) 0 0
\(166\) −1.21742 0.443103i −0.0944898 0.0343915i
\(167\) −1.13992 + 13.0293i −0.0882093 + 1.00824i 0.815121 + 0.579291i \(0.196671\pi\)
−0.903330 + 0.428946i \(0.858885\pi\)
\(168\) 0 0
\(169\) −4.44410 12.2101i −0.341854 0.939236i
\(170\) −2.75717 + 0.885917i −0.211466 + 0.0679467i
\(171\) 0 0
\(172\) −1.83293 + 6.84060i −0.139760 + 0.521591i
\(173\) −1.98304 22.6663i −0.150768 1.72329i −0.575360 0.817900i \(-0.695138\pi\)
0.424592 0.905385i \(-0.360418\pi\)
\(174\) 0 0
\(175\) −21.4437 12.0702i −1.62099 0.912421i
\(176\) 0.204682 0.0360909i 0.0154285 0.00272046i
\(177\) 0 0
\(178\) 3.36429 0.294337i 0.252164 0.0220615i
\(179\) −9.11136 15.7813i −0.681015 1.17955i −0.974671 0.223642i \(-0.928205\pi\)
0.293656 0.955911i \(-0.405128\pi\)
\(180\) 0 0
\(181\) 6.18809 10.7181i 0.459957 0.796669i −0.539001 0.842305i \(-0.681198\pi\)
0.998958 + 0.0456358i \(0.0145314\pi\)
\(182\) −0.0531285 + 0.113934i −0.00393815 + 0.00844539i
\(183\) 0 0
\(184\) 5.23013 + 6.23302i 0.385570 + 0.459504i
\(185\) −14.0077 4.33264i −1.02986 0.318542i
\(186\) 0 0
\(187\) −0.202317 + 0.141664i −0.0147949 + 0.0103595i
\(188\) −1.87813 1.87813i −0.136977 0.136977i
\(189\) 0 0
\(190\) 1.49362 0.0733872i 0.108358 0.00532407i
\(191\) −12.0893 2.13167i −0.874752 0.154242i −0.281793 0.959475i \(-0.590929\pi\)
−0.592959 + 0.805233i \(0.702040\pi\)
\(192\) 0 0
\(193\) 16.0742 7.49551i 1.15704 0.539538i 0.253205 0.967413i \(-0.418515\pi\)
0.903838 + 0.427874i \(0.140737\pi\)
\(194\) 2.41649 2.02767i 0.173494 0.145579i
\(195\) 0 0
\(196\) 30.6929 11.1713i 2.19235 0.797951i
\(197\) −2.35826 8.80113i −0.168019 0.627055i −0.997636 0.0687218i \(-0.978108\pi\)
0.829617 0.558333i \(-0.188559\pi\)
\(198\) 0 0
\(199\) −9.38387 + 5.41778i −0.665205 + 0.384056i −0.794257 0.607581i \(-0.792140\pi\)
0.129052 + 0.991638i \(0.458807\pi\)
\(200\) 6.15495 1.15474i 0.435221 0.0816522i
\(201\) 0 0
\(202\) −0.692831 + 0.989466i −0.0487474 + 0.0696186i
\(203\) −20.2527 + 28.9239i −1.42146 + 2.03006i
\(204\) 0 0
\(205\) −0.685290 4.99437i −0.0478627 0.348822i
\(206\) 0.675770 0.390156i 0.0470831 0.0271835i
\(207\) 0 0
\(208\) 0.0697452 + 0.260293i 0.00483596 + 0.0180480i
\(209\) 0.119844 0.0436198i 0.00828980 0.00301724i
\(210\) 0 0
\(211\) −1.55684 + 1.30634i −0.107177 + 0.0899325i −0.694802 0.719202i \(-0.744508\pi\)
0.587624 + 0.809134i \(0.300063\pi\)
\(212\) 21.0882 9.83357i 1.44834 0.675372i
\(213\) 0 0
\(214\) −0.693191 0.122228i −0.0473856 0.00835535i
\(215\) 0.409729 + 8.33903i 0.0279433 + 0.568717i
\(216\) 0 0
\(217\) 0.774973 + 0.774973i 0.0526086 + 0.0526086i
\(218\) 0.0677378 0.0474305i 0.00458779 0.00321240i
\(219\) 0 0
\(220\) 0.229928 0.121293i 0.0155017 0.00817759i
\(221\) −0.205838 0.245308i −0.0138462 0.0165012i
\(222\) 0 0
\(223\) −1.15123 + 2.46881i −0.0770918 + 0.165324i −0.941076 0.338195i \(-0.890184\pi\)
0.863984 + 0.503519i \(0.167961\pi\)
\(224\) −8.84586 + 15.3215i −0.591039 + 1.02371i
\(225\) 0 0
\(226\) −1.80795 3.13146i −0.120263 0.208302i
\(227\) −14.1158 + 1.23497i −0.936899 + 0.0819680i −0.545368 0.838197i \(-0.683610\pi\)
−0.391531 + 0.920165i \(0.628054\pi\)
\(228\) 0 0
\(229\) −13.0574 + 2.30237i −0.862857 + 0.152145i −0.587527 0.809205i \(-0.699898\pi\)
−0.275330 + 0.961350i \(0.588787\pi\)
\(230\) 3.95153 + 2.48717i 0.260556 + 0.163999i
\(231\) 0 0
\(232\) −0.783175 8.95173i −0.0514180 0.587710i
\(233\) 1.75621 6.55427i 0.115053 0.429384i −0.884238 0.467037i \(-0.845321\pi\)
0.999291 + 0.0376527i \(0.0119881\pi\)
\(234\) 0 0
\(235\) −2.78538 1.43070i −0.181698 0.0933285i
\(236\) 0.752801 + 2.06830i 0.0490032 + 0.134635i
\(237\) 0 0
\(238\) 0.555528 6.34972i 0.0360095 0.411591i
\(239\) 17.1554 + 6.24407i 1.10969 + 0.403895i 0.830881 0.556451i \(-0.187837\pi\)
0.278812 + 0.960346i \(0.410059\pi\)
\(240\) 0 0
\(241\) −2.76886 + 15.7030i −0.178358 + 1.01152i 0.755839 + 0.654758i \(0.227229\pi\)
−0.934196 + 0.356759i \(0.883882\pi\)
\(242\) 2.49919 2.49919i 0.160654 0.160654i
\(243\) 0 0
\(244\) 13.6842i 0.876041i
\(245\) 30.4213 23.6081i 1.94355 1.50827i
\(246\) 0 0
\(247\) 0.0698828 + 0.149864i 0.00444653 + 0.00953562i
\(248\) −0.277854 0.0243091i −0.0176437 0.00154363i
\(249\) 0 0
\(250\) 3.15992 1.71132i 0.199851 0.108233i
\(251\) −14.9016 8.60342i −0.940578 0.543043i −0.0504364 0.998727i \(-0.516061\pi\)
−0.890141 + 0.455684i \(0.849395\pi\)
\(252\) 0 0
\(253\) 0.384632 + 0.103062i 0.0241816 + 0.00647945i
\(254\) −1.90496 1.59845i −0.119528 0.100296i
\(255\) 0 0
\(256\) 1.45175 + 8.23327i 0.0907343 + 0.514580i
\(257\) 7.66961 + 5.37032i 0.478417 + 0.334991i 0.787784 0.615952i \(-0.211228\pi\)
−0.309367 + 0.950943i \(0.600117\pi\)
\(258\) 0 0
\(259\) 20.7436 24.7212i 1.28894 1.53610i
\(260\) 0.182647 + 0.283273i 0.0113273 + 0.0175678i
\(261\) 0 0
\(262\) 2.85666 0.765440i 0.176485 0.0472890i
\(263\) −0.828096 0.386147i −0.0510626 0.0238109i 0.396919 0.917854i \(-0.370079\pi\)
−0.447982 + 0.894043i \(0.647857\pi\)
\(264\) 0 0
\(265\) 20.1232 18.6427i 1.23616 1.14521i
\(266\) −1.12571 + 3.09285i −0.0690215 + 0.189635i
\(267\) 0 0
\(268\) 8.27136 + 11.8127i 0.505254 + 0.721577i
\(269\) −27.6508 −1.68590 −0.842951 0.537990i \(-0.819184\pi\)
−0.842951 + 0.537990i \(0.819184\pi\)
\(270\) 0 0
\(271\) −18.0879 −1.09876 −0.549380 0.835572i \(-0.685136\pi\)
−0.549380 + 0.835572i \(0.685136\pi\)
\(272\) −7.83682 11.1921i −0.475177 0.678623i
\(273\) 0 0
\(274\) 1.51183 4.15372i 0.0913330 0.250935i
\(275\) 0.214330 0.219064i 0.0129246 0.0132100i
\(276\) 0 0
\(277\) 4.69280 + 2.18829i 0.281963 + 0.131481i 0.558455 0.829535i \(-0.311394\pi\)
−0.276492 + 0.961016i \(0.589172\pi\)
\(278\) −0.330545 + 0.0885694i −0.0198248 + 0.00531204i
\(279\) 0 0
\(280\) −2.90967 + 13.4725i −0.173886 + 0.805134i
\(281\) 4.92653 5.87122i 0.293892 0.350247i −0.598812 0.800889i \(-0.704360\pi\)
0.892705 + 0.450642i \(0.148805\pi\)
\(282\) 0 0
\(283\) −7.76215 5.43511i −0.461412 0.323084i 0.319652 0.947535i \(-0.396434\pi\)
−0.781064 + 0.624451i \(0.785323\pi\)
\(284\) 2.40758 + 13.6541i 0.142863 + 0.810219i
\(285\) 0 0
\(286\) −0.00119939 0.00100641i −7.09216e−5 5.95103e-5i
\(287\) 10.7173 + 2.87169i 0.632622 + 0.169511i
\(288\) 0 0
\(289\) −0.661319 0.381813i −0.0389011 0.0224596i
\(290\) −1.99928 4.75310i −0.117402 0.279112i
\(291\) 0 0
\(292\) −12.5607 1.09892i −0.735062 0.0643096i
\(293\) 3.61107 + 7.74397i 0.210961 + 0.452408i 0.983106 0.183039i \(-0.0585936\pi\)
−0.772144 + 0.635447i \(0.780816\pi\)
\(294\) 0 0
\(295\) 1.59088 + 2.05000i 0.0926247 + 0.119356i
\(296\) 8.21271i 0.477354i
\(297\) 0 0
\(298\) −4.09244 + 4.09244i −0.237069 + 0.237069i
\(299\) −0.0896526 + 0.508445i −0.00518474 + 0.0294041i
\(300\) 0 0
\(301\) −17.2677 6.28494i −0.995295 0.362258i
\(302\) 0.267281 3.05503i 0.0153803 0.175797i
\(303\) 0 0
\(304\) 2.41304 + 6.62976i 0.138397 + 0.380243i
\(305\) 4.93516 + 15.3593i 0.282586 + 0.879473i
\(306\) 0 0
\(307\) 5.49053 20.4909i 0.313361 1.16948i −0.612145 0.790746i \(-0.709693\pi\)
0.925506 0.378734i \(-0.123640\pi\)
\(308\) 0.0498668 + 0.569980i 0.00284142 + 0.0324776i
\(309\) 0 0
\(310\) −0.156067 + 0.0354944i −0.00886399 + 0.00201595i
\(311\) 19.3816 3.41750i 1.09903 0.193788i 0.405413 0.914134i \(-0.367128\pi\)
0.693616 + 0.720345i \(0.256017\pi\)
\(312\) 0 0
\(313\) 4.18556 0.366189i 0.236582 0.0206983i 0.0317519 0.999496i \(-0.489891\pi\)
0.204830 + 0.978798i \(0.434336\pi\)
\(314\) −2.60572 4.51323i −0.147049 0.254696i
\(315\) 0 0
\(316\) 5.83578 10.1079i 0.328288 0.568612i
\(317\) 7.05644 15.1326i 0.396329 0.849930i −0.602334 0.798244i \(-0.705763\pi\)
0.998663 0.0516863i \(-0.0164596\pi\)
\(318\) 0 0
\(319\) −0.282675 0.336879i −0.0158268 0.0188616i
\(320\) 5.86991 + 11.1272i 0.328138 + 0.622029i
\(321\) 0 0
\(322\) −8.41799 + 5.89434i −0.469116 + 0.328479i
\(323\) −5.92840 5.92840i −0.329865 0.329865i
\(324\) 0 0
\(325\) 0.307167 + 0.252078i 0.0170386 + 0.0139828i
\(326\) 3.49972 + 0.617095i 0.193831 + 0.0341777i
\(327\) 0 0
\(328\) −2.55911 + 1.19333i −0.141303 + 0.0658907i
\(329\) 5.27951 4.43004i 0.291069 0.244236i
\(330\) 0 0
\(331\) −12.4570 + 4.53397i −0.684698 + 0.249210i −0.660863 0.750506i \(-0.729810\pi\)
−0.0238345 + 0.999716i \(0.507587\pi\)
\(332\) −1.97868 7.38454i −0.108594 0.405279i
\(333\) 0 0
\(334\) 3.64064 2.10192i 0.199207 0.115012i
\(335\) 13.5441 + 10.2757i 0.739994 + 0.561423i
\(336\) 0 0
\(337\) −12.1886 + 17.4071i −0.663953 + 0.948223i 0.336027 + 0.941852i \(0.390917\pi\)
−0.999980 + 0.00637058i \(0.997972\pi\)
\(338\) −2.39549 + 3.42111i −0.130297 + 0.186084i
\(339\) 0 0
\(340\) −13.6145 10.3292i −0.738351 0.560177i
\(341\) −0.0118212 + 0.00682495i −0.000640152 + 0.000369592i
\(342\) 0 0
\(343\) 13.0191 + 48.5880i 0.702966 + 2.62350i
\(344\) 4.39446 1.59945i 0.236934 0.0862368i
\(345\) 0 0
\(346\) −5.60222 + 4.70082i −0.301177 + 0.252718i
\(347\) −28.5852 + 13.3295i −1.53453 + 0.715565i −0.992207 0.124603i \(-0.960234\pi\)
−0.542327 + 0.840168i \(0.682456\pi\)
\(348\) 0 0
\(349\) −16.6978 2.94427i −0.893813 0.157603i −0.292168 0.956367i \(-0.594377\pi\)
−0.601645 + 0.798764i \(0.705488\pi\)
\(350\) 0.775353 + 7.87116i 0.0414444 + 0.420731i
\(351\) 0 0
\(352\) −0.155806 0.155806i −0.00830448 0.00830448i
\(353\) −15.5802 + 10.9094i −0.829252 + 0.580648i −0.909299 0.416143i \(-0.863382\pi\)
0.0800474 + 0.996791i \(0.474493\pi\)
\(354\) 0 0
\(355\) 7.62659 + 14.4572i 0.404777 + 0.767310i
\(356\) 12.8098 + 15.2661i 0.678918 + 0.809103i
\(357\) 0 0
\(358\) −2.47532 + 5.30835i −0.130825 + 0.280555i
\(359\) 15.6916 27.1786i 0.828170 1.43443i −0.0713028 0.997455i \(-0.522716\pi\)
0.899473 0.436977i \(-0.143951\pi\)
\(360\) 0 0
\(361\) −7.33536 12.7052i −0.386072 0.668696i
\(362\) −3.96279 + 0.346699i −0.208280 + 0.0182221i
\(363\) 0 0
\(364\) −0.730562 + 0.128818i −0.0382919 + 0.00675189i
\(365\) −14.4947 + 3.29654i −0.758686 + 0.172549i
\(366\) 0 0
\(367\) 1.56237 + 17.8579i 0.0815549 + 0.932177i 0.921212 + 0.389060i \(0.127200\pi\)
−0.839657 + 0.543117i \(0.817244\pi\)
\(368\) −5.70137 + 21.2778i −0.297204 + 1.10918i
\(369\) 0 0
\(370\) 1.44168 + 4.48684i 0.0749494 + 0.233260i
\(371\) 20.6497 + 56.7346i 1.07208 + 2.94551i
\(372\) 0 0
\(373\) −0.441145 + 5.04230i −0.0228416 + 0.261081i 0.976184 + 0.216945i \(0.0696091\pi\)
−0.999026 + 0.0441361i \(0.985946\pi\)
\(374\) 0.0745975 + 0.0271513i 0.00385734 + 0.00140396i
\(375\) 0 0
\(376\) −0.304566 + 1.72728i −0.0157068 + 0.0890775i
\(377\) 0.403177 0.403177i 0.0207647 0.0207647i
\(378\) 0 0
\(379\) 9.89195i 0.508115i −0.967189 0.254058i \(-0.918235\pi\)
0.967189 0.254058i \(-0.0817653\pi\)
\(380\) 5.41016 + 6.97149i 0.277535 + 0.357630i
\(381\) 0 0
\(382\) 1.66751 + 3.57599i 0.0853173 + 0.182963i
\(383\) −19.1117 1.67206i −0.976561 0.0854380i −0.412312 0.911043i \(-0.635279\pi\)
−0.564249 + 0.825605i \(0.690834\pi\)
\(384\) 0 0
\(385\) 0.261533 + 0.621769i 0.0133289 + 0.0316883i
\(386\) −4.93689 2.85032i −0.251281 0.145077i
\(387\) 0 0
\(388\) 17.9805 + 4.81785i 0.912819 + 0.244589i
\(389\) 5.65836 + 4.74792i 0.286890 + 0.240729i 0.774863 0.632130i \(-0.217819\pi\)
−0.487973 + 0.872859i \(0.662263\pi\)
\(390\) 0 0
\(391\) −4.54562 25.7795i −0.229882 1.30373i
\(392\) −17.6680 12.3713i −0.892368 0.624843i
\(393\) 0 0
\(394\) −1.88249 + 2.24346i −0.0948384 + 0.113024i
\(395\) 2.90479 13.4499i 0.146156 0.676736i
\(396\) 0 0
\(397\) −12.4735 + 3.34227i −0.626028 + 0.167744i −0.557866 0.829931i \(-0.688380\pi\)
−0.0681611 + 0.997674i \(0.521713\pi\)
\(398\) 3.15644 + 1.47187i 0.158218 + 0.0737783i
\(399\) 0 0
\(400\) 12.1186 + 11.8567i 0.605928 + 0.592834i
\(401\) 2.92360 8.03253i 0.145998 0.401125i −0.845041 0.534702i \(-0.820424\pi\)
0.991039 + 0.133576i \(0.0426461\pi\)
\(402\) 0 0
\(403\) −0.0101511 0.0144972i −0.000505660 0.000722158i
\(404\) −7.12791 −0.354627
\(405\) 0 0
\(406\) 11.3491 0.563248
\(407\) 0.230534 + 0.329237i 0.0114272 + 0.0163197i
\(408\) 0 0
\(409\) 4.56883 12.5528i 0.225914 0.620694i −0.774008 0.633176i \(-0.781751\pi\)
0.999922 + 0.0124819i \(0.00397323\pi\)
\(410\) −1.18863 + 1.10118i −0.0587023 + 0.0543835i
\(411\) 0 0
\(412\) 4.17321 + 1.94600i 0.205599 + 0.0958725i
\(413\) −5.51659 + 1.47817i −0.271454 + 0.0727359i
\(414\) 0 0
\(415\) −4.88411 7.57490i −0.239751 0.371837i
\(416\) 0.183635 0.218848i 0.00900347 0.0107299i
\(417\) 0 0
\(418\) −0.0335789 0.0235122i −0.00164240 0.00115002i
\(419\) −4.65475 26.3984i −0.227399 1.28964i −0.858045 0.513574i \(-0.828321\pi\)
0.630646 0.776071i \(-0.282790\pi\)
\(420\) 0 0
\(421\) 19.3371 + 16.2257i 0.942432 + 0.790794i 0.978007 0.208573i \(-0.0668818\pi\)
−0.0355751 + 0.999367i \(0.511326\pi\)
\(422\) 0.630963 + 0.169066i 0.0307148 + 0.00823001i
\(423\) 0 0
\(424\) −13.3065 7.68250i −0.646220 0.373095i
\(425\) −19.0063 6.68355i −0.921941 0.324200i
\(426\) 0 0
\(427\) −35.3722 3.09467i −1.71178 0.149762i
\(428\) −1.75540 3.76447i −0.0848504 0.181962i
\(429\) 0 0
\(430\) 2.12005 1.64524i 0.102238 0.0793406i
\(431\) 23.0274i 1.10919i 0.832121 + 0.554595i \(0.187127\pi\)
−0.832121 + 0.554595i \(0.812873\pi\)
\(432\) 0 0
\(433\) 12.8672 12.8672i 0.618357 0.618357i −0.326752 0.945110i \(-0.605954\pi\)
0.945110 + 0.326752i \(0.105954\pi\)
\(434\) 0.0611705 0.346915i 0.00293628 0.0166525i
\(435\) 0 0
\(436\) 0.458542 + 0.166896i 0.0219602 + 0.00799285i
\(437\) −1.17810 + 13.4658i −0.0563562 + 0.644154i
\(438\) 0 0
\(439\) −10.8870 29.9118i −0.519609 1.42761i −0.870952 0.491367i \(-0.836497\pi\)
0.351343 0.936247i \(-0.385725\pi\)
\(440\) −0.152697 0.0784321i −0.00727954 0.00373910i
\(441\) 0 0
\(442\) −0.0266394 + 0.0994197i −0.00126711 + 0.00472891i
\(443\) −0.783237 8.95244i −0.0372127 0.425343i −0.991835 0.127525i \(-0.959297\pi\)
0.954623 0.297818i \(-0.0962589\pi\)
\(444\) 0 0
\(445\) 19.8836 + 12.5151i 0.942572 + 0.593273i
\(446\) 0.862251 0.152038i 0.0408288 0.00719922i
\(447\) 0 0
\(448\) −27.5838 + 2.41327i −1.30321 + 0.114016i
\(449\) 5.30209 + 9.18349i 0.250221 + 0.433396i 0.963587 0.267396i \(-0.0861633\pi\)
−0.713365 + 0.700792i \(0.752830\pi\)
\(450\) 0 0
\(451\) −0.0690940 + 0.119674i −0.00325351 + 0.00563524i
\(452\) 9.01760 19.3383i 0.424152 0.909598i
\(453\) 0 0
\(454\) 2.92752 + 3.48888i 0.137395 + 0.163741i
\(455\) −0.773535 + 0.408062i −0.0362639 + 0.0191302i
\(456\) 0 0
\(457\) 27.2519 19.0820i 1.27479 0.892617i 0.277119 0.960836i \(-0.410620\pi\)
0.997670 + 0.0682185i \(0.0217315\pi\)
\(458\) 3.01343 + 3.01343i 0.140808 + 0.140808i
\(459\) 0 0
\(460\) 1.35213 + 27.5192i 0.0630432 + 1.28309i
\(461\) −7.72166 1.36154i −0.359634 0.0634131i −0.00908790 0.999959i \(-0.502893\pi\)
−0.350546 + 0.936546i \(0.614004\pi\)
\(462\) 0 0
\(463\) −16.0360 + 7.47769i −0.745254 + 0.347518i −0.757873 0.652403i \(-0.773761\pi\)
0.0126183 + 0.999920i \(0.495983\pi\)
\(464\) 18.6361 15.6375i 0.865159 0.725955i
\(465\) 0 0
\(466\) −2.04945 + 0.745938i −0.0949388 + 0.0345549i
\(467\) 4.09572 + 15.2854i 0.189527 + 0.707325i 0.993616 + 0.112816i \(0.0359870\pi\)
−0.804089 + 0.594509i \(0.797346\pi\)
\(468\) 0 0
\(469\) −32.4052 + 18.7092i −1.49633 + 0.863909i
\(470\) 0.136818 + 0.997125i 0.00631094 + 0.0459939i
\(471\) 0 0
\(472\) 0.833661 1.19059i 0.0383724 0.0548014i
\(473\) 0.131271 0.187475i 0.00603585 0.00862009i
\(474\) 0 0
\(475\) 8.58668 + 5.87375i 0.393984 + 0.269506i
\(476\) 32.5737 18.8064i 1.49301 0.861991i
\(477\) 0 0
\(478\) −1.51874 5.66800i −0.0694654 0.259248i
\(479\) −25.2585 + 9.19333i −1.15409 + 0.420054i −0.846982 0.531621i \(-0.821583\pi\)
−0.307106 + 0.951675i \(0.599361\pi\)
\(480\) 0 0
\(481\) −0.399198 + 0.334967i −0.0182019 + 0.0152732i
\(482\) 4.64490 2.16595i 0.211569 0.0986564i
\(483\) 0 0
\(484\) 20.5396 + 3.62169i 0.933619 + 0.164622i
\(485\) 21.9191 1.07697i 0.995293 0.0489026i
\(486\) 0 0
\(487\) −12.2573 12.2573i −0.555433 0.555433i 0.372571 0.928004i \(-0.378476\pi\)
−0.928004 + 0.372571i \(0.878476\pi\)
\(488\) 7.40208 5.18299i 0.335076 0.234623i
\(489\) 0 0
\(490\) −11.8242 3.65728i −0.534163 0.165219i
\(491\) −8.64628 10.3042i −0.390201 0.465024i 0.534805 0.844976i \(-0.320385\pi\)
−0.925006 + 0.379952i \(0.875941\pi\)
\(492\) 0 0
\(493\) −12.2177 + 26.2010i −0.550258 + 1.18003i
\(494\) 0.0265743 0.0460281i 0.00119563 0.00207090i
\(495\) 0 0
\(496\) −0.377555 0.653944i −0.0169527 0.0293630i
\(497\) −35.8388 + 3.13549i −1.60759 + 0.140646i
\(498\) 0 0
\(499\) 37.5256 6.61678i 1.67988 0.296208i 0.749281 0.662252i \(-0.230399\pi\)
0.930597 + 0.366044i \(0.119288\pi\)
\(500\) 18.9675 + 9.48221i 0.848254 + 0.424057i
\(501\) 0 0
\(502\) 0.482022 + 5.50954i 0.0215137 + 0.245903i
\(503\) −4.95246 + 18.4828i −0.220819 + 0.824109i 0.763217 + 0.646142i \(0.223619\pi\)
−0.984036 + 0.177967i \(0.943048\pi\)
\(504\) 0 0
\(505\) −8.00047 + 2.57066i −0.356016 + 0.114393i
\(506\) −0.0437748 0.120270i −0.00194603 0.00534666i
\(507\) 0 0
\(508\) 1.27895 14.6185i 0.0567442 0.648590i
\(509\) 22.8762 + 8.32625i 1.01397 + 0.369054i 0.794956 0.606667i \(-0.207494\pi\)
0.219013 + 0.975722i \(0.429716\pi\)
\(510\) 0 0
\(511\) 5.68120 32.2197i 0.251322 1.42532i
\(512\) 14.6251 14.6251i 0.646346 0.646346i
\(513\) 0 0
\(514\) 3.00939i 0.132739i
\(515\) 5.38589 + 0.679164i 0.237331 + 0.0299275i
\(516\) 0 0
\(517\) 0.0362758 + 0.0777936i 0.00159541 + 0.00342136i
\(518\) −10.3331 0.904028i −0.454010 0.0397207i
\(519\) 0 0
\(520\) 0.0840493 0.206089i 0.00368581 0.00903761i
\(521\) −23.8927 13.7944i −1.04676 0.604345i −0.125017 0.992155i \(-0.539898\pi\)
−0.921739 + 0.387810i \(0.873232\pi\)
\(522\) 0 0
\(523\) −12.5250 3.35607i −0.547681 0.146751i −0.0256401 0.999671i \(-0.508162\pi\)
−0.522041 + 0.852921i \(0.674829\pi\)
\(524\) 13.3689 + 11.2178i 0.584022 + 0.490053i
\(525\) 0 0
\(526\) 0.0509971 + 0.289219i 0.00222358 + 0.0126105i
\(527\) 0.735047 + 0.514685i 0.0320191 + 0.0224200i
\(528\) 0 0
\(529\) −12.3443 + 14.7114i −0.536709 + 0.639625i
\(530\) −8.61831 1.86131i −0.374356 0.0808503i
\(531\) 0 0
\(532\) −18.7605 + 5.02685i −0.813369 + 0.217942i
\(533\) −0.162381 0.0757196i −0.00703351 0.00327978i
\(534\) 0 0
\(535\) −3.32793 3.59221i −0.143879 0.155305i
\(536\) 3.25692 8.94831i 0.140677 0.386508i
\(537\) 0 0
\(538\) 5.09765 + 7.28020i 0.219775 + 0.313872i
\(539\) −1.05555 −0.0454659
\(540\) 0 0
\(541\) 37.8477 1.62720 0.813600 0.581425i \(-0.197505\pi\)
0.813600 + 0.581425i \(0.197505\pi\)
\(542\) 3.33464 + 4.76236i 0.143235 + 0.204561i
\(543\) 0 0
\(544\) −4.95417 + 13.6115i −0.212408 + 0.583587i
\(545\) 0.574864 + 0.0219544i 0.0246245 + 0.000940423i
\(546\) 0 0
\(547\) −13.4509 6.27224i −0.575117 0.268182i 0.113223 0.993570i \(-0.463883\pi\)
−0.688340 + 0.725388i \(0.741660\pi\)
\(548\) 25.1954 6.75109i 1.07629 0.288392i
\(549\) 0 0
\(550\) −0.0971908 0.0160449i −0.00414423 0.000684155i
\(551\) 9.59560 11.4356i 0.408786 0.487173i
\(552\) 0 0
\(553\) 24.8080 + 17.3708i 1.05494 + 0.738680i
\(554\) −0.288999 1.63900i −0.0122784 0.0696342i
\(555\) 0 0
\(556\) −1.54692 1.29802i −0.0656040 0.0550483i
\(557\) −13.9965 3.75036i −0.593052 0.158908i −0.0502041 0.998739i \(-0.515987\pi\)
−0.542847 + 0.839831i \(0.682654\pi\)
\(558\) 0 0
\(559\) 0.256980 + 0.148367i 0.0108691 + 0.00627527i
\(560\) −34.3961 + 14.4679i −1.45350 + 0.611381i
\(561\) 0 0
\(562\) −2.45408 0.214704i −0.103519 0.00905674i
\(563\) −14.4812 31.0550i −0.610309 1.30881i −0.932169 0.362025i \(-0.882086\pi\)
0.321859 0.946787i \(-0.395692\pi\)
\(564\) 0 0
\(565\) 3.14719 24.9578i 0.132403 1.04998i
\(566\) 3.04570i 0.128020i
\(567\) 0 0
\(568\) 6.47388 6.47388i 0.271638 0.271638i
\(569\) 1.25548 7.12016i 0.0526323 0.298493i −0.947117 0.320889i \(-0.896018\pi\)
0.999749 + 0.0223961i \(0.00712951\pi\)
\(570\) 0 0
\(571\) 25.3539 + 9.22807i 1.06103 + 0.386183i 0.812815 0.582522i \(-0.197934\pi\)
0.248214 + 0.968705i \(0.420156\pi\)
\(572\) 0.000805249 0.00920404i 3.36691e−5 0.000384840i
\(573\) 0 0
\(574\) −1.21973 3.35118i −0.0509105 0.139876i
\(575\) 11.4424 + 30.4003i 0.477180 + 1.26778i
\(576\) 0 0
\(577\) 1.64754 6.14870i 0.0685880 0.255974i −0.923115 0.384524i \(-0.874366\pi\)
0.991703 + 0.128550i \(0.0410323\pi\)
\(578\) 0.0213918 + 0.244509i 0.000889781 + 0.0101702i
\(579\) 0 0
\(580\) 16.2087 25.7519i 0.673031 1.06929i
\(581\) 19.5357 3.44468i 0.810479 0.142909i
\(582\) 0 0
\(583\) −0.749091 + 0.0655370i −0.0310242 + 0.00271426i
\(584\) 4.16304 + 7.21060i 0.172268 + 0.298377i
\(585\) 0 0
\(586\) 1.37318 2.37842i 0.0567256 0.0982517i
\(587\) 16.0039 34.3204i 0.660550 1.41656i −0.235177 0.971952i \(-0.575567\pi\)
0.895728 0.444603i \(-0.146655\pi\)
\(588\) 0 0
\(589\) −0.297839 0.354951i −0.0122722 0.0146255i
\(590\) 0.246453 0.796797i 0.0101463 0.0328036i
\(591\) 0 0
\(592\) −18.2133 + 12.7531i −0.748563 + 0.524149i
\(593\) −3.48236 3.48236i −0.143004 0.143004i 0.631981 0.774984i \(-0.282242\pi\)
−0.774984 + 0.631981i \(0.782242\pi\)
\(594\) 0 0
\(595\) 29.7787 32.8562i 1.22081 1.34697i
\(596\) −33.6337 5.93053i −1.37769 0.242924i
\(597\) 0 0
\(598\) 0.150397 0.0701311i 0.00615018 0.00286788i
\(599\) −7.62357 + 6.39694i −0.311491 + 0.261372i −0.785108 0.619359i \(-0.787392\pi\)
0.473617 + 0.880731i \(0.342948\pi\)
\(600\) 0 0
\(601\) −16.6225 + 6.05010i −0.678046 + 0.246789i −0.658008 0.753011i \(-0.728601\pi\)
−0.0200379 + 0.999799i \(0.506379\pi\)
\(602\) 1.52868 + 5.70510i 0.0623042 + 0.232523i
\(603\) 0 0
\(604\) 15.6721 9.04832i 0.637691 0.368171i
\(605\) 24.3601 3.34251i 0.990379 0.135892i
\(606\) 0 0
\(607\) 8.36932 11.9526i 0.339700 0.485142i −0.612563 0.790422i \(-0.709861\pi\)
0.952263 + 0.305280i \(0.0987501\pi\)
\(608\) 4.29017 6.12699i 0.173989 0.248482i
\(609\) 0 0
\(610\) 3.13413 4.13099i 0.126897 0.167259i
\(611\) −0.0963805 + 0.0556453i −0.00389914 + 0.00225117i
\(612\) 0 0
\(613\) −9.82295 36.6597i −0.396745 1.48067i −0.818787 0.574097i \(-0.805353\pi\)
0.422042 0.906576i \(-0.361313\pi\)
\(614\) −6.40729 + 2.33206i −0.258577 + 0.0941143i
\(615\) 0 0
\(616\) 0.289427 0.242858i 0.0116613 0.00978503i
\(617\) −4.95529 + 2.31069i −0.199493 + 0.0930249i −0.519797 0.854290i \(-0.673993\pi\)
0.320305 + 0.947315i \(0.396215\pi\)
\(618\) 0 0
\(619\) −35.6556 6.28705i −1.43312 0.252698i −0.597440 0.801913i \(-0.703816\pi\)
−0.835681 + 0.549215i \(0.814927\pi\)
\(620\) −0.699809 0.634261i −0.0281050 0.0254726i
\(621\) 0 0
\(622\) −4.47294 4.47294i −0.179349 0.179349i
\(623\) −42.3583 + 29.6596i −1.69705 + 1.18829i
\(624\) 0 0
\(625\) 24.7091 + 3.80239i 0.988366 + 0.152096i
\(626\) −0.868056 1.03451i −0.0346945 0.0413473i
\(627\) 0 0
\(628\) 12.9967 27.8714i 0.518623 1.11219i
\(629\) 13.2110 22.8821i 0.526756 0.912368i
\(630\) 0 0
\(631\) 8.04151 + 13.9283i 0.320128 + 0.554477i 0.980514 0.196449i \(-0.0629409\pi\)
−0.660387 + 0.750926i \(0.729608\pi\)
\(632\) −7.67791 + 0.671730i −0.305411 + 0.0267200i
\(633\) 0 0
\(634\) −5.28517 + 0.931918i −0.209901 + 0.0370112i
\(635\) −3.83659 16.8692i −0.152250 0.669435i
\(636\) 0 0
\(637\) −0.119280 1.36337i −0.00472603 0.0540188i
\(638\) −0.0365836 + 0.136532i −0.00144836 + 0.00540535i
\(639\) 0 0
\(640\) 9.19281 17.8972i 0.363378 0.707448i
\(641\) −12.7590 35.0551i −0.503951 1.38459i −0.887387 0.461026i \(-0.847482\pi\)
0.383436 0.923567i \(-0.374741\pi\)
\(642\) 0 0
\(643\) −1.25970 + 14.3985i −0.0496779 + 0.567821i 0.930043 + 0.367452i \(0.119770\pi\)
−0.979720 + 0.200369i \(0.935786\pi\)
\(644\) −56.9844 20.7406i −2.24550 0.817295i
\(645\) 0 0
\(646\) −0.467943 + 2.65384i −0.0184110 + 0.104414i
\(647\) 18.6385 18.6385i 0.732757 0.732757i −0.238408 0.971165i \(-0.576626\pi\)
0.971165 + 0.238408i \(0.0766256\pi\)
\(648\) 0 0
\(649\) 0.0711305i 0.00279212i
\(650\) 0.00974110 0.127347i 0.000382077 0.00499494i
\(651\) 0 0
\(652\) 8.86250 + 19.0057i 0.347082 + 0.744320i
\(653\) 15.1018 + 1.32123i 0.590977 + 0.0517038i 0.378722 0.925510i \(-0.376364\pi\)
0.212255 + 0.977214i \(0.431919\pi\)
\(654\) 0 0
\(655\) 19.0511 + 7.76960i 0.744388 + 0.303583i
\(656\) −6.62035 3.82226i −0.258481 0.149234i
\(657\) 0 0
\(658\) −2.13970 0.573332i −0.0834144 0.0223508i
\(659\) 14.6857 + 12.3228i 0.572075 + 0.480028i 0.882334 0.470624i \(-0.155971\pi\)
−0.310258 + 0.950652i \(0.600416\pi\)
\(660\) 0 0
\(661\) 3.24511 + 18.4039i 0.126220 + 0.715829i 0.980576 + 0.196141i \(0.0628409\pi\)
−0.854356 + 0.519689i \(0.826048\pi\)
\(662\) 3.49029 + 2.44393i 0.135654 + 0.0949860i
\(663\) 0 0
\(664\) −3.24502 + 3.86726i −0.125931 + 0.150079i
\(665\) −19.2441 + 12.4081i −0.746253 + 0.481165i
\(666\) 0 0
\(667\) 45.0214 12.0634i 1.74324 0.467099i
\(668\) 22.4827 + 10.4839i 0.869883 + 0.405633i
\(669\) 0 0
\(670\) 0.208538 5.46044i 0.00805651 0.210955i
\(671\) 0.151251 0.415559i 0.00583898 0.0160425i
\(672\) 0 0
\(673\) −4.69863 6.71034i −0.181119 0.258665i 0.718318 0.695715i \(-0.244912\pi\)
−0.899437 + 0.437050i \(0.856023\pi\)
\(674\) 6.83016 0.263088
\(675\) 0 0
\(676\) −24.6450 −0.947884
\(677\) 22.9922 + 32.8363i 0.883663 + 1.26200i 0.964180 + 0.265249i \(0.0854541\pi\)
−0.0805166 + 0.996753i \(0.525657\pi\)
\(678\) 0 0
\(679\) −16.5199 + 45.3880i −0.633976 + 1.74183i
\(680\) −0.430661 + 11.2766i −0.0165151 + 0.432439i
\(681\) 0 0
\(682\) 0.00397627 + 0.00185416i 0.000152259 + 7.09996e-5i
\(683\) 0.912231 0.244432i 0.0349056 0.00935292i −0.241324 0.970445i \(-0.577582\pi\)
0.276230 + 0.961092i \(0.410915\pi\)
\(684\) 0 0
\(685\) 25.8449 16.6642i 0.987484 0.636705i
\(686\) 10.3926 12.3854i 0.396790 0.472876i
\(687\) 0 0
\(688\) 10.3710 + 7.26189i 0.395393 + 0.276857i
\(689\) −0.169298 0.960134i −0.00644972 0.0365782i
\(690\) 0 0
\(691\) −19.0181 15.9581i −0.723481 0.607073i 0.204865 0.978790i \(-0.434325\pi\)
−0.928346 + 0.371717i \(0.878769\pi\)
\(692\) −41.6847 11.1694i −1.58461 0.424596i
\(693\) 0 0
\(694\) 8.77943 + 5.06881i 0.333263 + 0.192409i
\(695\) −2.20441 0.899024i −0.0836180 0.0341019i
\(696\) 0 0
\(697\) 9.04972 + 0.791748i 0.342783 + 0.0299896i
\(698\) 2.30317 + 4.93917i 0.0871763 + 0.186950i
\(699\) 0 0
\(700\) −35.4235 + 30.3893i −1.33888 + 1.14861i
\(701\) 30.1877i 1.14018i 0.821584 + 0.570088i \(0.193091\pi\)
−0.821584 + 0.570088i \(0.806909\pi\)
\(702\) 0 0
\(703\) −9.64747 + 9.64747i −0.363861 + 0.363861i
\(704\) 0.0598837 0.339617i 0.00225695 0.0127998i
\(705\) 0 0
\(706\) 5.74467 + 2.09089i 0.216204 + 0.0786917i
\(707\) 1.61197 18.4249i 0.0606244 0.692940i
\(708\) 0 0
\(709\) 17.1846 + 47.2142i 0.645379 + 1.77317i 0.634127 + 0.773229i \(0.281360\pi\)
0.0112523 + 0.999937i \(0.496418\pi\)
\(710\) 2.40042 4.67331i 0.0900863 0.175386i
\(711\) 0 0
\(712\) 3.40597 12.7113i 0.127644 0.476374i
\(713\) −0.126090 1.44121i −0.00472211 0.0539739i
\(714\) 0 0
\(715\) −0.00241558 0.0106211i −9.03376e−5 0.000397208i
\(716\) −34.0378 + 6.00178i −1.27205 + 0.224297i
\(717\) 0 0
\(718\) −10.0487 + 0.879150i −0.375015 + 0.0328096i
\(719\) 6.68387 + 11.5768i 0.249266 + 0.431742i 0.963322 0.268346i \(-0.0864772\pi\)
−0.714056 + 0.700089i \(0.753144\pi\)
\(720\) 0 0
\(721\) −5.97397 + 10.3472i −0.222482 + 0.385351i
\(722\) −1.99283 + 4.27363i −0.0741654 + 0.159048i
\(723\) 0 0
\(724\) −15.0887 17.9820i −0.560766 0.668295i
\(725\) 8.90558 34.7499i 0.330745 1.29058i
\(726\) 0 0
\(727\) −19.5460 + 13.6862i −0.724920 + 0.507595i −0.876830 0.480800i \(-0.840346\pi\)
0.151910 + 0.988394i \(0.451458\pi\)
\(728\) 0.346386 + 0.346386i 0.0128379 + 0.0128379i
\(729\) 0 0
\(730\) 3.54015 + 3.20856i 0.131027 + 0.118754i
\(731\) −14.8167 2.61258i −0.548014 0.0966296i
\(732\) 0 0
\(733\) −21.1646 + 9.86921i −0.781732 + 0.364527i −0.772161 0.635427i \(-0.780824\pi\)
−0.00957046 + 0.999954i \(0.503046\pi\)
\(734\) 4.41379 3.70361i 0.162916 0.136703i
\(735\) 0 0
\(736\) 21.9452 7.98740i 0.808910 0.294419i
\(737\) −0.120617 0.450149i −0.00444299 0.0165815i
\(738\) 0 0
\(739\) 3.52276 2.03387i 0.129587 0.0748169i −0.433805 0.901007i \(-0.642829\pi\)
0.563392 + 0.826190i \(0.309496\pi\)
\(740\) −16.8089 + 22.1553i −0.617909 + 0.814446i
\(741\) 0 0
\(742\) 11.1307 15.8963i 0.408622 0.583572i
\(743\) 28.8659 41.2248i 1.05899 1.51239i 0.214569 0.976709i \(-0.431165\pi\)
0.844419 0.535683i \(-0.179946\pi\)
\(744\) 0 0
\(745\) −39.8898 + 5.47337i −1.46145 + 0.200529i
\(746\) 1.40892 0.813439i 0.0515842 0.0297821i
\(747\) 0 0
\(748\) 0.121244 + 0.452489i 0.00443313 + 0.0165447i
\(749\) 10.1277 3.68619i 0.370059 0.134691i
\(750\) 0 0
\(751\) 2.00167 1.67960i 0.0730419 0.0612895i −0.605536 0.795818i \(-0.707041\pi\)
0.678578 + 0.734529i \(0.262597\pi\)
\(752\) −4.30353 + 2.00677i −0.156933 + 0.0731793i
\(753\) 0 0
\(754\) −0.180481 0.0318237i −0.00657274 0.00115895i
\(755\) 14.3274 15.8081i 0.521427 0.575315i
\(756\) 0 0
\(757\) 28.7222 + 28.7222i 1.04393 + 1.04393i 0.998990 + 0.0449357i \(0.0143083\pi\)
0.0449357 + 0.998990i \(0.485692\pi\)
\(758\) −2.60445 + 1.82366i −0.0945980 + 0.0662383i
\(759\) 0 0
\(760\) 1.72189 5.56697i 0.0624596 0.201935i
\(761\) −3.22815 3.84716i −0.117020 0.139459i 0.704354 0.709849i \(-0.251237\pi\)
−0.821374 + 0.570389i \(0.806792\pi\)
\(762\) 0 0
\(763\) −0.535106 + 1.14754i −0.0193722 + 0.0415437i
\(764\) −11.6417 + 20.1640i −0.421182 + 0.729509i
\(765\) 0 0
\(766\) 3.08315 + 5.34017i 0.111399 + 0.192948i
\(767\) 0.0918735 0.00803789i 0.00331736 0.000290231i
\(768\) 0 0
\(769\) 41.2856 7.27976i 1.48880 0.262515i 0.630709 0.776019i \(-0.282764\pi\)
0.858087 + 0.513504i \(0.171653\pi\)
\(770\) 0.115490 0.183487i 0.00416198 0.00661241i
\(771\) 0 0
\(772\) −2.93187 33.5115i −0.105520 1.20610i
\(773\) 1.57609 5.88204i 0.0566879 0.211562i −0.931772 0.363043i \(-0.881738\pi\)
0.988460 + 0.151481i \(0.0484043\pi\)
\(774\) 0 0
\(775\) −1.01422 0.459520i −0.0364319 0.0165064i
\(776\) −4.20415 11.5508i −0.150920 0.414650i
\(777\) 0 0
\(778\) 0.206920 2.36511i 0.00741844 0.0847932i
\(779\) −4.40798 1.60437i −0.157932 0.0574827i
\(780\) 0 0
\(781\) 0.0778050 0.441254i 0.00278408 0.0157893i
\(782\) −5.94947 + 5.94947i −0.212753 + 0.212753i
\(783\) 0 0
\(784\) 58.3929i 2.08546i
\(785\) 4.53590 35.9705i 0.161893 1.28384i
\(786\) 0 0
\(787\) −1.76535 3.78582i −0.0629281 0.134950i 0.872328 0.488920i \(-0.162609\pi\)
−0.935257 + 0.353971i \(0.884831\pi\)
\(788\) −17.2161 1.50622i −0.613299 0.0536567i
\(789\) 0 0
\(790\) −4.07674 + 1.71478i −0.145044 + 0.0610093i
\(791\) 47.9482 + 27.6829i 1.70484 + 0.984291i
\(792\) 0 0
\(793\) 0.553835 + 0.148400i 0.0196673 + 0.00526983i
\(794\) 3.17958 + 2.66798i 0.112839 + 0.0946831i
\(795\) 0 0
\(796\) 3.56877 + 20.2395i 0.126492 + 0.717369i
\(797\) 35.6551 + 24.9660i 1.26297 + 0.884339i 0.996827 0.0795948i \(-0.0253626\pi\)
0.266140 + 0.963934i \(0.414252\pi\)
\(798\) 0 0
\(799\) 3.62708 4.32258i 0.128317 0.152922i
\(800\) 2.92764 17.7340i 0.103508 0.626991i
\(801\) 0 0
\(802\) −2.65388 + 0.711104i −0.0937116 + 0.0251100i
\(803\) 0.369296 + 0.172205i 0.0130322 + 0.00607699i
\(804\) 0 0
\(805\) −71.4401 2.72834i −2.51793 0.0961614i
\(806\) −0.00194555 + 0.00534535i −6.85290e−5 + 0.000188282i
\(807\) 0 0
\(808\) 2.69975 + 3.85564i 0.0949768 + 0.135641i
\(809\) 16.9733 0.596751 0.298375 0.954449i \(-0.403555\pi\)
0.298375 + 0.954449i \(0.403555\pi\)
\(810\) 0 0
\(811\) −40.1642 −1.41036 −0.705178 0.709030i \(-0.749133\pi\)
−0.705178 + 0.709030i \(0.749133\pi\)
\(812\) 38.4131 + 54.8597i 1.34804 + 1.92520i
\(813\) 0 0
\(814\) 0.0441841 0.121395i 0.00154865 0.00425489i
\(815\) 16.8017 + 18.1360i 0.588539 + 0.635277i
\(816\) 0 0
\(817\) 7.04105 + 3.28330i 0.246335 + 0.114868i
\(818\) −4.14732 + 1.11127i −0.145008 + 0.0388547i
\(819\) 0 0
\(820\) −9.34606 2.01849i −0.326378 0.0704886i
\(821\) −10.6701 + 12.7162i −0.372390 + 0.443797i −0.919397 0.393331i \(-0.871323\pi\)
0.547007 + 0.837128i \(0.315767\pi\)
\(822\) 0 0
\(823\) 7.03825 + 4.92823i 0.245338 + 0.171787i 0.689778 0.724021i \(-0.257708\pi\)
−0.444440 + 0.895809i \(0.646597\pi\)
\(824\) −0.528001 2.99444i −0.0183938 0.104316i
\(825\) 0 0
\(826\) 1.40621 + 1.17995i 0.0489285 + 0.0410558i
\(827\) 8.98430 + 2.40734i 0.312415 + 0.0837113i 0.411620 0.911356i \(-0.364963\pi\)
−0.0992048 + 0.995067i \(0.531630\pi\)
\(828\) 0 0
\(829\) −36.4376 21.0373i −1.26553 0.730655i −0.291392 0.956604i \(-0.594118\pi\)
−0.974139 + 0.225949i \(0.927452\pi\)
\(830\) −1.09398 + 2.68243i −0.0379724 + 0.0931085i
\(831\) 0 0
\(832\) 0.445423 + 0.0389695i 0.0154423 + 0.00135102i
\(833\) 29.3257 + 62.8893i 1.01608 + 2.17898i
\(834\) 0 0
\(835\) 29.0159 + 3.65892i 1.00414 + 0.126622i
\(836\) 0.241896i 0.00836613i
\(837\) 0 0
\(838\) −6.09230 + 6.09230i −0.210455 + 0.210455i
\(839\) 6.54601 37.1243i 0.225993 1.28167i −0.634783 0.772690i \(-0.718911\pi\)
0.860777 0.508983i \(-0.169978\pi\)
\(840\) 0 0
\(841\) −21.1193 7.68679i −0.728251 0.265062i
\(842\) 0.707136 8.08261i 0.0243695 0.278545i
\(843\) 0 0
\(844\) 1.31837 + 3.62220i 0.0453803 + 0.124681i
\(845\) −27.6619 + 8.88813i −0.951598 + 0.305761i
\(846\) 0 0
\(847\) −14.0067 + 52.2737i −0.481276 + 1.79615i
\(848\) −3.62549 41.4395i −0.124500 1.42304i
\(849\) 0 0
\(850\) 1.74425 + 6.23634i 0.0598271 + 0.213905i
\(851\) −41.9518 + 7.39723i −1.43809 + 0.253574i
\(852\) 0 0
\(853\) 40.4116 3.53555i 1.38367 0.121055i 0.629123 0.777306i \(-0.283414\pi\)
0.754543 + 0.656251i \(0.227859\pi\)
\(854\) 5.70635 + 9.88369i 0.195267 + 0.338213i
\(855\) 0 0
\(856\) −1.37141 + 2.37535i −0.0468738 + 0.0811879i
\(857\) −15.2865 + 32.7821i −0.522178 + 1.11982i 0.451580 + 0.892231i \(0.350861\pi\)
−0.973758 + 0.227585i \(0.926917\pi\)
\(858\) 0 0
\(859\) −26.6915 31.8097i −0.910701 1.08533i −0.996034 0.0889788i \(-0.971640\pi\)
0.0853324 0.996353i \(-0.472805\pi\)
\(860\) 15.1285 + 4.67932i 0.515877 + 0.159563i
\(861\) 0 0
\(862\) 6.06288 4.24528i 0.206503 0.144595i
\(863\) −1.97436 1.97436i −0.0672079 0.0672079i 0.672704 0.739912i \(-0.265133\pi\)
−0.739912 + 0.672704i \(0.765133\pi\)
\(864\) 0 0
\(865\) −50.8156 + 2.49677i −1.72778 + 0.0848927i
\(866\) −5.75997 1.01564i −0.195732 0.0345128i
\(867\) 0 0
\(868\) 1.88397 0.878509i 0.0639460 0.0298185i
\(869\) −0.288942 + 0.242451i −0.00980167 + 0.00822458i
\(870\) 0 0
\(871\) 0.567792 0.206659i 0.0192389 0.00700238i
\(872\) −0.0833986 0.311248i −0.00282423 0.0105402i
\(873\) 0 0
\(874\) 3.76259 2.17233i 0.127272 0.0734803i
\(875\) −28.8000 + 46.8847i −0.973618 + 1.58499i
\(876\) 0 0
\(877\) 21.7084 31.0028i 0.733042 1.04689i −0.263570 0.964640i \(-0.584900\pi\)
0.996612 0.0822516i \(-0.0262111\pi\)
\(878\) −5.86839 + 8.38093i −0.198049 + 0.282843i
\(879\) 0 0
\(880\) −0.0631765 0.460429i −0.00212968 0.0155211i
\(881\) 14.1727 8.18263i 0.477491 0.275680i −0.241879 0.970306i \(-0.577764\pi\)
0.719370 + 0.694627i \(0.244430\pi\)
\(882\) 0 0
\(883\) 0.217699 + 0.812463i 0.00732615 + 0.0273416i 0.969492 0.245122i \(-0.0788281\pi\)
−0.962166 + 0.272464i \(0.912161\pi\)
\(884\) −0.570743 + 0.207734i −0.0191962 + 0.00698683i
\(885\) 0 0
\(886\) −2.21269 + 1.85667i −0.0743369 + 0.0623761i
\(887\) 22.8678 10.6634i 0.767825 0.358043i 0.00108401 0.999999i \(-0.499655\pi\)
0.766741 + 0.641957i \(0.221877\pi\)
\(888\) 0 0
\(889\) 37.4980 + 6.61191i 1.25764 + 0.221756i
\(890\) −0.370588 7.54241i −0.0124221 0.252822i
\(891\) 0 0
\(892\) 3.65337 + 3.65337i 0.122324 + 0.122324i
\(893\) −2.38680 + 1.67126i −0.0798714 + 0.0559265i
\(894\) 0 0
\(895\) −36.0400 + 19.0121i −1.20468 + 0.635504i
\(896\) 28.4647 + 33.9229i 0.950940 + 1.13329i
\(897\) 0 0
\(898\) 1.44044 3.08904i 0.0480682 0.103083i
\(899\) −0.798864 + 1.38367i −0.0266436 + 0.0461481i
\(900\) 0 0
\(901\) 24.7162 + 42.8097i 0.823415 + 1.42620i
\(902\) 0.0442471 0.00387112i 0.00147327 0.000128894i
\(903\) 0 0
\(904\) −13.8760 + 2.44671i −0.461509 + 0.0813764i
\(905\) −23.4209 14.7415i −0.778536 0.490025i
\(906\) 0 0
\(907\) 0.265160 + 3.03079i 0.00880450 + 0.100636i 0.999325 0.0367266i \(-0.0116931\pi\)
−0.990521 + 0.137362i \(0.956138\pi\)
\(908\) −6.95591 + 25.9598i −0.230840 + 0.861507i
\(909\) 0 0
\(910\) 0.250046 + 0.128435i 0.00828894 + 0.00425758i
\(911\) 16.0677 + 44.1456i 0.532346 + 1.46261i 0.856272 + 0.516526i \(0.172775\pi\)
−0.323926 + 0.946082i \(0.605003\pi\)
\(912\) 0 0
\(913\) −0.0215329 + 0.246122i −0.000712635 + 0.00814546i
\(914\) −10.0482 3.65724i −0.332365 0.120971i
\(915\) 0 0
\(916\) −4.36689 + 24.7658i −0.144286 + 0.818287i
\(917\) −32.0203 + 32.0203i −1.05740 + 1.05740i
\(918\) 0 0
\(919\) 57.4802i 1.89610i 0.318128 + 0.948048i \(0.396946\pi\)
−0.318128 + 0.948048i \(0.603054\pi\)
\(920\) 14.3736 11.1545i 0.473884 0.367753i
\(921\) 0 0
\(922\) 1.06507 + 2.28405i 0.0350762 + 0.0752211i
\(923\) 0.578725 + 0.0506318i 0.0190490 + 0.00166657i
\(924\) 0 0
\(925\) −10.8764 + 30.9295i −0.357612 + 1.01696i
\(926\) 4.92516 + 2.84354i 0.161851 + 0.0934446i
\(927\) 0 0
\(928\) −24.9124 6.67526i −0.817790 0.219126i
\(929\) −40.6798 34.1344i −1.33466 1.11991i −0.982963 0.183802i \(-0.941160\pi\)
−0.351699 0.936113i \(-0.614396\pi\)
\(930\) 0 0
\(931\) −6.22206 35.2871i −0.203920 1.15649i
\(932\) −10.5424 7.38190i −0.345329 0.241802i
\(933\) 0 0
\(934\) 3.26943 3.89635i 0.106979 0.127492i
\(935\) 0.299275 + 0.464154i 0.00978734 + 0.0151795i
\(936\) 0 0
\(937\) −27.8763 + 7.46943i −0.910679 + 0.244016i −0.683597 0.729860i \(-0.739585\pi\)
−0.227082 + 0.973876i \(0.572919\pi\)
\(938\) 10.9001 + 5.08280i 0.355901 + 0.165959i
\(939\) 0 0
\(940\) −4.35684 + 4.03630i −0.142104 + 0.131650i
\(941\) −4.85822 + 13.3478i −0.158373 + 0.435127i −0.993347 0.115163i \(-0.963261\pi\)
0.834973 + 0.550291i \(0.185483\pi\)
\(942\) 0 0
\(943\) −8.40071 11.9975i −0.273565 0.390691i
\(944\) 3.93492 0.128071
\(945\) 0 0
\(946\) −0.0735611 −0.00239168
\(947\) −1.16551 1.66453i −0.0378741 0.0540898i 0.799768 0.600309i \(-0.204956\pi\)
−0.837643 + 0.546219i \(0.816067\pi\)
\(948\) 0 0
\(949\) −0.180693 + 0.496449i −0.00586553 + 0.0161154i
\(950\) −0.0365221 3.34366i −0.00118493 0.108483i
\(951\) 0 0
\(952\) −22.5103 10.4967i −0.729564 0.340201i
\(953\) 23.1836 6.21202i 0.750990 0.201227i 0.137033 0.990567i \(-0.456243\pi\)
0.613957 + 0.789339i \(0.289577\pi\)
\(954\) 0 0
\(955\) −5.79473 + 26.8309i −0.187513 + 0.868228i
\(956\) 22.2577 26.5257i 0.719865 0.857901i
\(957\) 0 0
\(958\) 7.07711 + 4.95544i 0.228651 + 0.160103i
\(959\) 11.7529 + 66.6543i 0.379522 + 2.15238i
\(960\) 0 0
\(961\) −23.7094 19.8945i −0.764819 0.641759i
\(962\) 0.161789 + 0.0433512i 0.00521628 + 0.00139770i
\(963\) 0 0
\(964\) 26.1913 + 15.1216i 0.843566 + 0.487033i
\(965\) −15.3766 36.5564i −0.494989 1.17679i
\(966\) 0 0
\(967\) 9.40347 + 0.822697i 0.302395 + 0.0264561i 0.237344 0.971426i \(-0.423723\pi\)
0.0650515 + 0.997882i \(0.479279\pi\)
\(968\) −5.82048 12.4821i −0.187077 0.401189i
\(969\) 0 0
\(970\) −4.32450 5.57253i −0.138851 0.178923i
\(971\) 16.0188i 0.514066i −0.966403 0.257033i \(-0.917255\pi\)
0.966403 0.257033i \(-0.0827450\pi\)
\(972\) 0 0
\(973\) 3.70508 3.70508i 0.118779 0.118779i
\(974\) −0.967501 + 5.48697i −0.0310007 + 0.175814i
\(975\) 0 0
\(976\) 22.9886 + 8.36718i 0.735848 + 0.267827i
\(977\) 1.38013 15.7750i 0.0441544 0.504687i −0.941627 0.336657i \(-0.890704\pi\)
0.985782 0.168030i \(-0.0537406\pi\)
\(978\) 0 0
\(979\) −0.220269 0.605185i −0.00703984 0.0193418i
\(980\) −22.3425 69.5348i −0.713704 2.22121i
\(981\) 0 0
\(982\) −1.11900 + 4.17615i −0.0357086 + 0.133266i
\(983\) 3.78597 + 43.2738i 0.120754 + 1.38022i 0.778814 + 0.627255i \(0.215822\pi\)
−0.658060 + 0.752965i \(0.728623\pi\)
\(984\) 0 0
\(985\) −19.8668 + 4.51834i −0.633010 + 0.143966i
\(986\) 9.15088 1.61355i 0.291424 0.0513858i
\(987\) 0 0
\(988\) 0.312437 0.0273347i 0.00993995 0.000869633i
\(989\) 12.1284 + 21.0070i 0.385660 + 0.667982i
\(990\) 0 0
\(991\) −5.77036 + 9.99455i −0.183301 + 0.317487i −0.943003 0.332785i \(-0.892012\pi\)
0.759701 + 0.650272i \(0.225345\pi\)
\(992\) −0.338321 + 0.725532i −0.0107417 + 0.0230357i
\(993\) 0 0
\(994\) 7.43270 + 8.85795i 0.235751 + 0.280957i
\(995\) 11.3049 + 21.4300i 0.358391 + 0.679377i
\(996\) 0 0
\(997\) 19.9126 13.9430i 0.630639 0.441579i −0.214059 0.976821i \(-0.568669\pi\)
0.844699 + 0.535242i \(0.179780\pi\)
\(998\) −8.66028 8.66028i −0.274136 0.274136i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 405.2.r.a.332.7 192
3.2 odd 2 135.2.q.a.2.10 192
5.3 odd 4 inner 405.2.r.a.8.7 192
15.2 even 4 675.2.ba.b.218.7 192
15.8 even 4 135.2.q.a.83.10 yes 192
15.14 odd 2 675.2.ba.b.407.7 192
27.13 even 9 135.2.q.a.122.10 yes 192
27.14 odd 18 inner 405.2.r.a.152.7 192
135.13 odd 36 135.2.q.a.68.10 yes 192
135.67 odd 36 675.2.ba.b.68.7 192
135.68 even 36 inner 405.2.r.a.233.7 192
135.94 even 18 675.2.ba.b.257.7 192
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
135.2.q.a.2.10 192 3.2 odd 2
135.2.q.a.68.10 yes 192 135.13 odd 36
135.2.q.a.83.10 yes 192 15.8 even 4
135.2.q.a.122.10 yes 192 27.13 even 9
405.2.r.a.8.7 192 5.3 odd 4 inner
405.2.r.a.152.7 192 27.14 odd 18 inner
405.2.r.a.233.7 192 135.68 even 36 inner
405.2.r.a.332.7 192 1.1 even 1 trivial
675.2.ba.b.68.7 192 135.67 odd 36
675.2.ba.b.218.7 192 15.2 even 4
675.2.ba.b.257.7 192 135.94 even 18
675.2.ba.b.407.7 192 15.14 odd 2