Properties

Label 405.3.l.d.28.1
Level $405$
Weight $3$
Character 405.28
Analytic conductor $11.035$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [405,3,Mod(28,405)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(405, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([4, 9]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("405.28");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 405 = 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 405.l (of order \(12\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.0354507066\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 28.1
Root \(-0.866025 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 405.28
Dual form 405.3.l.d.217.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.86603 + 0.500000i) q^{2} +(-0.232051 - 0.133975i) q^{4} -5.00000 q^{5} +(11.5622 + 3.09808i) q^{7} +(-5.83013 - 5.83013i) q^{8} +(-9.33013 - 2.50000i) q^{10} +(3.09808 + 5.36603i) q^{11} +(16.0622 - 4.30385i) q^{13} +(20.0263 + 11.5622i) q^{14} +(-7.42820 - 12.8660i) q^{16} +(22.2942 - 22.2942i) q^{17} +30.5885i q^{19} +(1.16025 + 0.669873i) q^{20} +(3.09808 + 11.5622i) q^{22} +(9.36603 - 2.50962i) q^{23} +25.0000 q^{25} +32.1244 q^{26} +(-2.26795 - 2.26795i) q^{28} +(0.990381 - 0.571797i) q^{29} +(2.58846 - 4.48334i) q^{31} +(1.10770 + 4.13397i) q^{32} +(52.7487 - 30.4545i) q^{34} +(-57.8109 - 15.4904i) q^{35} +(16.8827 - 16.8827i) q^{37} +(-15.2942 + 57.0788i) q^{38} +(29.1506 + 29.1506i) q^{40} +(-2.60770 + 4.51666i) q^{41} +(-0.346788 + 1.29423i) q^{43} -1.66025i q^{44} +18.7321 q^{46} +(-17.1244 - 4.58846i) q^{47} +(81.6506 + 47.1410i) q^{49} +(46.6506 + 12.5000i) q^{50} +(-4.30385 - 1.15321i) q^{52} +(-3.98076 - 3.98076i) q^{53} +(-15.4904 - 26.8301i) q^{55} +(-49.3468 - 85.4711i) q^{56} +(2.13397 - 0.571797i) q^{58} +(-33.8038 - 19.5167i) q^{59} +(16.0885 + 27.8660i) q^{61} +(7.07180 - 7.07180i) q^{62} +67.6936i q^{64} +(-80.3109 + 21.5192i) q^{65} +(-12.3468 - 46.0788i) q^{67} +(-8.16025 + 2.18653i) q^{68} +(-100.131 - 57.8109i) q^{70} -103.373 q^{71} +(-73.2750 - 73.2750i) q^{73} +(39.9449 - 23.0622i) q^{74} +(4.09808 - 7.09808i) q^{76} +(19.1962 + 71.6410i) q^{77} +(-83.8634 + 48.4186i) q^{79} +(37.1410 + 64.3301i) q^{80} +(-7.12436 + 7.12436i) q^{82} +(-12.2102 + 45.5692i) q^{83} +(-111.471 + 111.471i) q^{85} +(-1.29423 + 2.24167i) q^{86} +(13.2224 - 49.3468i) q^{88} -18.0577i q^{89} +199.047 q^{91} +(-2.50962 - 0.672450i) q^{92} +(-29.6603 - 17.1244i) q^{94} -152.942i q^{95} +(134.720 + 36.0981i) q^{97} +(128.792 + 128.792i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{2} + 6 q^{4} - 20 q^{5} + 22 q^{7} - 6 q^{8} - 20 q^{10} + 2 q^{11} + 40 q^{13} + 42 q^{14} - 2 q^{16} + 58 q^{17} - 30 q^{20} + 2 q^{22} + 34 q^{23} + 100 q^{25} + 80 q^{26} - 16 q^{28} - 48 q^{29}+ \cdots + 290 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/405\mathbb{Z}\right)^\times\).

\(n\) \(82\) \(326\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.86603 + 0.500000i 0.933013 + 0.250000i 0.693139 0.720804i \(-0.256227\pi\)
0.239874 + 0.970804i \(0.422894\pi\)
\(3\) 0 0
\(4\) −0.232051 0.133975i −0.0580127 0.0334936i
\(5\) −5.00000 −1.00000
\(6\) 0 0
\(7\) 11.5622 + 3.09808i 1.65174 + 0.442582i 0.960099 0.279660i \(-0.0902216\pi\)
0.691640 + 0.722242i \(0.256888\pi\)
\(8\) −5.83013 5.83013i −0.728766 0.728766i
\(9\) 0 0
\(10\) −9.33013 2.50000i −0.933013 0.250000i
\(11\) 3.09808 + 5.36603i 0.281643 + 0.487820i 0.971790 0.235849i \(-0.0757872\pi\)
−0.690146 + 0.723670i \(0.742454\pi\)
\(12\) 0 0
\(13\) 16.0622 4.30385i 1.23555 0.331065i 0.418813 0.908072i \(-0.362446\pi\)
0.816739 + 0.577007i \(0.195780\pi\)
\(14\) 20.0263 + 11.5622i 1.43045 + 0.825870i
\(15\) 0 0
\(16\) −7.42820 12.8660i −0.464263 0.804127i
\(17\) 22.2942 22.2942i 1.31143 1.31143i 0.391060 0.920365i \(-0.372108\pi\)
0.920365 0.391060i \(-0.127892\pi\)
\(18\) 0 0
\(19\) 30.5885i 1.60992i 0.593330 + 0.804959i \(0.297813\pi\)
−0.593330 + 0.804959i \(0.702187\pi\)
\(20\) 1.16025 + 0.669873i 0.0580127 + 0.0334936i
\(21\) 0 0
\(22\) 3.09808 + 11.5622i 0.140822 + 0.525554i
\(23\) 9.36603 2.50962i 0.407218 0.109114i −0.0493944 0.998779i \(-0.515729\pi\)
0.456613 + 0.889665i \(0.349062\pi\)
\(24\) 0 0
\(25\) 25.0000 1.00000
\(26\) 32.1244 1.23555
\(27\) 0 0
\(28\) −2.26795 2.26795i −0.0809982 0.0809982i
\(29\) 0.990381 0.571797i 0.0341511 0.0197171i −0.482827 0.875716i \(-0.660390\pi\)
0.516978 + 0.855998i \(0.327057\pi\)
\(30\) 0 0
\(31\) 2.58846 4.48334i 0.0834986 0.144624i −0.821252 0.570566i \(-0.806724\pi\)
0.904750 + 0.425942i \(0.140057\pi\)
\(32\) 1.10770 + 4.13397i 0.0346155 + 0.129187i
\(33\) 0 0
\(34\) 52.7487 30.4545i 1.55143 0.895720i
\(35\) −57.8109 15.4904i −1.65174 0.442582i
\(36\) 0 0
\(37\) 16.8827 16.8827i 0.456289 0.456289i −0.441146 0.897435i \(-0.645428\pi\)
0.897435 + 0.441146i \(0.145428\pi\)
\(38\) −15.2942 + 57.0788i −0.402480 + 1.50207i
\(39\) 0 0
\(40\) 29.1506 + 29.1506i 0.728766 + 0.728766i
\(41\) −2.60770 + 4.51666i −0.0636023 + 0.110162i −0.896073 0.443906i \(-0.853592\pi\)
0.832471 + 0.554069i \(0.186926\pi\)
\(42\) 0 0
\(43\) −0.346788 + 1.29423i −0.00806483 + 0.0300983i −0.969841 0.243738i \(-0.921626\pi\)
0.961776 + 0.273837i \(0.0882928\pi\)
\(44\) 1.66025i 0.0377330i
\(45\) 0 0
\(46\) 18.7321 0.407218
\(47\) −17.1244 4.58846i −0.364348 0.0976268i 0.0720003 0.997405i \(-0.477062\pi\)
−0.436348 + 0.899778i \(0.643728\pi\)
\(48\) 0 0
\(49\) 81.6506 + 47.1410i 1.66634 + 0.962062i
\(50\) 46.6506 + 12.5000i 0.933013 + 0.250000i
\(51\) 0 0
\(52\) −4.30385 1.15321i −0.0827663 0.0221772i
\(53\) −3.98076 3.98076i −0.0751087 0.0751087i 0.668554 0.743663i \(-0.266913\pi\)
−0.743663 + 0.668554i \(0.766913\pi\)
\(54\) 0 0
\(55\) −15.4904 26.8301i −0.281643 0.487820i
\(56\) −49.3468 85.4711i −0.881193 1.52627i
\(57\) 0 0
\(58\) 2.13397 0.571797i 0.0367927 0.00985856i
\(59\) −33.8038 19.5167i −0.572947 0.330791i 0.185379 0.982667i \(-0.440649\pi\)
−0.758325 + 0.651876i \(0.773982\pi\)
\(60\) 0 0
\(61\) 16.0885 + 27.8660i 0.263745 + 0.456820i 0.967234 0.253886i \(-0.0817089\pi\)
−0.703489 + 0.710706i \(0.748376\pi\)
\(62\) 7.07180 7.07180i 0.114061 0.114061i
\(63\) 0 0
\(64\) 67.6936i 1.05771i
\(65\) −80.3109 + 21.5192i −1.23555 + 0.331065i
\(66\) 0 0
\(67\) −12.3468 46.0788i −0.184280 0.687744i −0.994783 0.102009i \(-0.967473\pi\)
0.810503 0.585734i \(-0.199194\pi\)
\(68\) −8.16025 + 2.18653i −0.120004 + 0.0321549i
\(69\) 0 0
\(70\) −100.131 57.8109i −1.43045 0.825870i
\(71\) −103.373 −1.45596 −0.727979 0.685599i \(-0.759540\pi\)
−0.727979 + 0.685599i \(0.759540\pi\)
\(72\) 0 0
\(73\) −73.2750 73.2750i −1.00377 1.00377i −0.999993 0.00377412i \(-0.998799\pi\)
−0.00377412 0.999993i \(-0.501201\pi\)
\(74\) 39.9449 23.0622i 0.539795 0.311651i
\(75\) 0 0
\(76\) 4.09808 7.09808i 0.0539221 0.0933957i
\(77\) 19.1962 + 71.6410i 0.249301 + 0.930403i
\(78\) 0 0
\(79\) −83.8634 + 48.4186i −1.06156 + 0.612893i −0.925864 0.377857i \(-0.876661\pi\)
−0.135699 + 0.990750i \(0.543328\pi\)
\(80\) 37.1410 + 64.3301i 0.464263 + 0.804127i
\(81\) 0 0
\(82\) −7.12436 + 7.12436i −0.0868824 + 0.0868824i
\(83\) −12.2102 + 45.5692i −0.147111 + 0.549027i 0.852541 + 0.522660i \(0.175060\pi\)
−0.999652 + 0.0263665i \(0.991606\pi\)
\(84\) 0 0
\(85\) −111.471 + 111.471i −1.31143 + 1.31143i
\(86\) −1.29423 + 2.24167i −0.0150492 + 0.0260659i
\(87\) 0 0
\(88\) 13.2224 49.3468i 0.150255 0.560759i
\(89\) 18.0577i 0.202896i −0.994841 0.101448i \(-0.967653\pi\)
0.994841 0.101448i \(-0.0323475\pi\)
\(90\) 0 0
\(91\) 199.047 2.18733
\(92\) −2.50962 0.672450i −0.0272785 0.00730924i
\(93\) 0 0
\(94\) −29.6603 17.1244i −0.315535 0.182174i
\(95\) 152.942i 1.60992i
\(96\) 0 0
\(97\) 134.720 + 36.0981i 1.38886 + 0.372145i 0.874333 0.485326i \(-0.161299\pi\)
0.514531 + 0.857472i \(0.327966\pi\)
\(98\) 128.792 + 128.792i 1.31420 + 1.31420i
\(99\) 0 0
\(100\) −5.80127 3.34936i −0.0580127 0.0334936i
\(101\) 43.5692 + 75.4641i 0.431378 + 0.747169i 0.996992 0.0775009i \(-0.0246941\pi\)
−0.565614 + 0.824670i \(0.691361\pi\)
\(102\) 0 0
\(103\) 1.24871 0.334591i 0.0121234 0.00324846i −0.252752 0.967531i \(-0.581336\pi\)
0.264876 + 0.964283i \(0.414669\pi\)
\(104\) −118.737 68.5526i −1.14170 0.659159i
\(105\) 0 0
\(106\) −5.43782 9.41858i −0.0513002 0.0888546i
\(107\) 4.00000 4.00000i 0.0373832 0.0373832i −0.688168 0.725551i \(-0.741585\pi\)
0.725551 + 0.688168i \(0.241585\pi\)
\(108\) 0 0
\(109\) 14.8423i 0.136168i 0.997680 + 0.0680841i \(0.0216886\pi\)
−0.997680 + 0.0680841i \(0.978311\pi\)
\(110\) −15.4904 57.8109i −0.140822 0.525554i
\(111\) 0 0
\(112\) −46.0263 171.772i −0.410949 1.53368i
\(113\) 46.1410 12.3634i 0.408328 0.109411i −0.0488078 0.998808i \(-0.515542\pi\)
0.457135 + 0.889397i \(0.348876\pi\)
\(114\) 0 0
\(115\) −46.8301 + 12.5481i −0.407218 + 0.109114i
\(116\) −0.306425 −0.00264159
\(117\) 0 0
\(118\) −53.3205 53.3205i −0.451869 0.451869i
\(119\) 326.839 188.701i 2.74655 1.58572i
\(120\) 0 0
\(121\) 41.3038 71.5404i 0.341354 0.591243i
\(122\) 16.0885 + 60.0429i 0.131873 + 0.492155i
\(123\) 0 0
\(124\) −1.20131 + 0.693575i −0.00968796 + 0.00559335i
\(125\) −125.000 −1.00000
\(126\) 0 0
\(127\) −2.64617 + 2.64617i −0.0208360 + 0.0208360i −0.717448 0.696612i \(-0.754690\pi\)
0.696612 + 0.717448i \(0.254690\pi\)
\(128\) −29.4160 + 109.782i −0.229813 + 0.857672i
\(129\) 0 0
\(130\) −160.622 −1.23555
\(131\) −71.0404 + 123.046i −0.542293 + 0.939279i 0.456479 + 0.889734i \(0.349110\pi\)
−0.998772 + 0.0495446i \(0.984223\pi\)
\(132\) 0 0
\(133\) −94.7654 + 353.669i −0.712522 + 2.65917i
\(134\) 92.1577i 0.687744i
\(135\) 0 0
\(136\) −259.956 −1.91144
\(137\) 153.789 + 41.2077i 1.12255 + 0.300786i 0.771914 0.635727i \(-0.219300\pi\)
0.350634 + 0.936513i \(0.385966\pi\)
\(138\) 0 0
\(139\) −160.923 92.9090i −1.15772 0.668410i −0.206963 0.978349i \(-0.566358\pi\)
−0.950756 + 0.309939i \(0.899691\pi\)
\(140\) 11.3397 + 11.3397i 0.0809982 + 0.0809982i
\(141\) 0 0
\(142\) −192.897 51.6865i −1.35843 0.363990i
\(143\) 72.8564 + 72.8564i 0.509485 + 0.509485i
\(144\) 0 0
\(145\) −4.95191 + 2.85898i −0.0341511 + 0.0197171i
\(146\) −100.095 173.370i −0.685586 1.18747i
\(147\) 0 0
\(148\) −6.17949 + 1.65579i −0.0417533 + 0.0111878i
\(149\) −19.9308 11.5070i −0.133764 0.0772285i 0.431625 0.902053i \(-0.357940\pi\)
−0.565389 + 0.824825i \(0.691274\pi\)
\(150\) 0 0
\(151\) −29.8231 51.6551i −0.197504 0.342087i 0.750215 0.661194i \(-0.229950\pi\)
−0.947718 + 0.319108i \(0.896617\pi\)
\(152\) 178.335 178.335i 1.17325 1.17325i
\(153\) 0 0
\(154\) 143.282i 0.930403i
\(155\) −12.9423 + 22.4167i −0.0834986 + 0.144624i
\(156\) 0 0
\(157\) −58.2006 217.208i −0.370705 1.38349i −0.859520 0.511101i \(-0.829238\pi\)
0.488816 0.872387i \(-0.337429\pi\)
\(158\) −180.701 + 48.4186i −1.14367 + 0.306447i
\(159\) 0 0
\(160\) −5.53848 20.6699i −0.0346155 0.129187i
\(161\) 116.067 0.720911
\(162\) 0 0
\(163\) 6.35383 + 6.35383i 0.0389805 + 0.0389805i 0.726328 0.687348i \(-0.241225\pi\)
−0.687348 + 0.726328i \(0.741225\pi\)
\(164\) 1.21024 0.698730i 0.00737948 0.00426055i
\(165\) 0 0
\(166\) −45.5692 + 78.9282i −0.274513 + 0.475471i
\(167\) −47.4430 177.060i −0.284090 1.06024i −0.949502 0.313761i \(-0.898411\pi\)
0.665412 0.746476i \(-0.268256\pi\)
\(168\) 0 0
\(169\) 93.1122 53.7583i 0.550960 0.318097i
\(170\) −263.744 + 152.272i −1.55143 + 0.895720i
\(171\) 0 0
\(172\) 0.253866 0.253866i 0.00147597 0.00147597i
\(173\) −52.4948 + 195.913i −0.303438 + 1.13245i 0.630843 + 0.775911i \(0.282709\pi\)
−0.934281 + 0.356537i \(0.883957\pi\)
\(174\) 0 0
\(175\) 289.054 + 77.4519i 1.65174 + 0.442582i
\(176\) 46.0263 79.7199i 0.261513 0.452954i
\(177\) 0 0
\(178\) 9.02886 33.6962i 0.0507239 0.189304i
\(179\) 52.7077i 0.294456i 0.989103 + 0.147228i \(0.0470351\pi\)
−0.989103 + 0.147228i \(0.952965\pi\)
\(180\) 0 0
\(181\) 239.962 1.32575 0.662877 0.748728i \(-0.269335\pi\)
0.662877 + 0.748728i \(0.269335\pi\)
\(182\) 371.428 + 99.5237i 2.04081 + 0.546834i
\(183\) 0 0
\(184\) −69.2365 39.9737i −0.376285 0.217248i
\(185\) −84.4134 + 84.4134i −0.456289 + 0.456289i
\(186\) 0 0
\(187\) 188.701 + 50.5622i 1.00909 + 0.270386i
\(188\) 3.35898 + 3.35898i 0.0178669 + 0.0178669i
\(189\) 0 0
\(190\) 76.4711 285.394i 0.402480 1.50207i
\(191\) −76.8827 133.165i −0.402527 0.697197i 0.591503 0.806303i \(-0.298535\pi\)
−0.994030 + 0.109105i \(0.965201\pi\)
\(192\) 0 0
\(193\) −120.703 + 32.3423i −0.625405 + 0.167577i −0.557584 0.830121i \(-0.688271\pi\)
−0.0678214 + 0.997697i \(0.521605\pi\)
\(194\) 233.342 + 134.720i 1.20279 + 0.694432i
\(195\) 0 0
\(196\) −12.6314 21.8782i −0.0644459 0.111624i
\(197\) −55.0019 + 55.0019i −0.279197 + 0.279197i −0.832789 0.553591i \(-0.813257\pi\)
0.553591 + 0.832789i \(0.313257\pi\)
\(198\) 0 0
\(199\) 241.923i 1.21569i 0.794054 + 0.607847i \(0.207967\pi\)
−0.794054 + 0.607847i \(0.792033\pi\)
\(200\) −145.753 145.753i −0.728766 0.728766i
\(201\) 0 0
\(202\) 43.5692 + 162.603i 0.215689 + 0.804963i
\(203\) 13.2224 3.54294i 0.0651351 0.0174529i
\(204\) 0 0
\(205\) 13.0385 22.5833i 0.0636023 0.110162i
\(206\) 2.49742 0.0121234
\(207\) 0 0
\(208\) −174.687 174.687i −0.839839 0.839839i
\(209\) −164.138 + 94.7654i −0.785351 + 0.453423i
\(210\) 0 0
\(211\) −109.510 + 189.676i −0.519003 + 0.898939i 0.480753 + 0.876856i \(0.340363\pi\)
−0.999756 + 0.0220835i \(0.992970\pi\)
\(212\) 0.390418 + 1.45706i 0.00184159 + 0.00687292i
\(213\) 0 0
\(214\) 9.46410 5.46410i 0.0442248 0.0255332i
\(215\) 1.73394 6.47114i 0.00806483 0.0300983i
\(216\) 0 0
\(217\) 43.8179 43.8179i 0.201926 0.201926i
\(218\) −7.42116 + 27.6962i −0.0340420 + 0.127047i
\(219\) 0 0
\(220\) 8.30127i 0.0377330i
\(221\) 262.143 454.045i 1.18617 2.05450i
\(222\) 0 0
\(223\) −15.8775 + 59.2558i −0.0711997 + 0.265721i −0.992345 0.123499i \(-0.960589\pi\)
0.921145 + 0.389219i \(0.127255\pi\)
\(224\) 51.2295i 0.228703i
\(225\) 0 0
\(226\) 92.2820 0.408328
\(227\) −169.184 45.3327i −0.745304 0.199704i −0.133870 0.990999i \(-0.542740\pi\)
−0.611434 + 0.791295i \(0.709407\pi\)
\(228\) 0 0
\(229\) −121.952 70.4090i −0.532541 0.307463i 0.209510 0.977807i \(-0.432813\pi\)
−0.742051 + 0.670344i \(0.766147\pi\)
\(230\) −93.6603 −0.407218
\(231\) 0 0
\(232\) −9.10770 2.44040i −0.0392573 0.0105190i
\(233\) 125.960 + 125.960i 0.540599 + 0.540599i 0.923705 0.383105i \(-0.125145\pi\)
−0.383105 + 0.923705i \(0.625145\pi\)
\(234\) 0 0
\(235\) 85.6218 + 22.9423i 0.364348 + 0.0976268i
\(236\) 5.22947 + 9.05771i 0.0221588 + 0.0383801i
\(237\) 0 0
\(238\) 704.240 188.701i 2.95899 0.792860i
\(239\) 177.000 + 102.191i 0.740586 + 0.427577i 0.822282 0.569080i \(-0.192700\pi\)
−0.0816965 + 0.996657i \(0.526034\pi\)
\(240\) 0 0
\(241\) −167.521 290.155i −0.695108 1.20396i −0.970144 0.242529i \(-0.922023\pi\)
0.275036 0.961434i \(-0.411310\pi\)
\(242\) 112.844 112.844i 0.466298 0.466298i
\(243\) 0 0
\(244\) 8.62178i 0.0353352i
\(245\) −408.253 235.705i −1.66634 0.962062i
\(246\) 0 0
\(247\) 131.648 + 491.317i 0.532988 + 1.98914i
\(248\) −41.2295 + 11.0474i −0.166248 + 0.0445460i
\(249\) 0 0
\(250\) −233.253 62.5000i −0.933013 0.250000i
\(251\) −353.965 −1.41022 −0.705110 0.709098i \(-0.749102\pi\)
−0.705110 + 0.709098i \(0.749102\pi\)
\(252\) 0 0
\(253\) 42.4833 + 42.4833i 0.167918 + 0.167918i
\(254\) −6.26091 + 3.61474i −0.0246492 + 0.0142312i
\(255\) 0 0
\(256\) 25.6051 44.3494i 0.100020 0.173240i
\(257\) 37.5474 + 140.129i 0.146099 + 0.545248i 0.999704 + 0.0243278i \(0.00774455\pi\)
−0.853605 + 0.520921i \(0.825589\pi\)
\(258\) 0 0
\(259\) 247.504 142.897i 0.955616 0.551725i
\(260\) 21.5192 + 5.76606i 0.0827663 + 0.0221772i
\(261\) 0 0
\(262\) −194.086 + 194.086i −0.740786 + 0.740786i
\(263\) −103.703 + 387.023i −0.394306 + 1.47157i 0.428653 + 0.903469i \(0.358988\pi\)
−0.822959 + 0.568101i \(0.807678\pi\)
\(264\) 0 0
\(265\) 19.9038 + 19.9038i 0.0751087 + 0.0751087i
\(266\) −353.669 + 612.573i −1.32958 + 2.30291i
\(267\) 0 0
\(268\) −3.30831 + 12.3468i −0.0123444 + 0.0460701i
\(269\) 359.396i 1.33604i −0.744141 0.668022i \(-0.767141\pi\)
0.744141 0.668022i \(-0.232859\pi\)
\(270\) 0 0
\(271\) −154.588 −0.570437 −0.285219 0.958463i \(-0.592066\pi\)
−0.285219 + 0.958463i \(0.592066\pi\)
\(272\) −452.444 121.232i −1.66340 0.445706i
\(273\) 0 0
\(274\) 266.370 + 153.789i 0.972155 + 0.561274i
\(275\) 77.4519 + 134.151i 0.281643 + 0.487820i
\(276\) 0 0
\(277\) 117.308 + 31.4327i 0.423496 + 0.113475i 0.464271 0.885693i \(-0.346316\pi\)
−0.0407757 + 0.999168i \(0.512983\pi\)
\(278\) −253.832 253.832i −0.913065 0.913065i
\(279\) 0 0
\(280\) 246.734 + 427.356i 0.881193 + 1.52627i
\(281\) 134.502 + 232.964i 0.478654 + 0.829054i 0.999700 0.0244748i \(-0.00779136\pi\)
−0.521046 + 0.853529i \(0.674458\pi\)
\(282\) 0 0
\(283\) 126.072 33.7808i 0.445483 0.119367i −0.0291019 0.999576i \(-0.509265\pi\)
0.474585 + 0.880210i \(0.342598\pi\)
\(284\) 23.9878 + 13.8494i 0.0844641 + 0.0487654i
\(285\) 0 0
\(286\) 99.5237 + 172.380i 0.347985 + 0.602728i
\(287\) −44.1436 + 44.1436i −0.153810 + 0.153810i
\(288\) 0 0
\(289\) 705.065i 2.43967i
\(290\) −10.6699 + 2.85898i −0.0367927 + 0.00985856i
\(291\) 0 0
\(292\) 7.18653 + 26.8205i 0.0246114 + 0.0918511i
\(293\) 164.533 44.0866i 0.561547 0.150466i 0.0331301 0.999451i \(-0.489452\pi\)
0.528417 + 0.848985i \(0.322786\pi\)
\(294\) 0 0
\(295\) 169.019 + 97.5833i 0.572947 + 0.330791i
\(296\) −196.856 −0.665055
\(297\) 0 0
\(298\) −31.4378 31.4378i −0.105496 0.105496i
\(299\) 139.638 80.6199i 0.467016 0.269632i
\(300\) 0 0
\(301\) −8.01924 + 13.8897i −0.0266420 + 0.0461453i
\(302\) −29.8231 111.301i −0.0987519 0.368547i
\(303\) 0 0
\(304\) 393.552 227.217i 1.29458 0.747425i
\(305\) −80.4423 139.330i −0.263745 0.456820i
\(306\) 0 0
\(307\) −334.669 + 334.669i −1.09013 + 1.09013i −0.0946136 + 0.995514i \(0.530162\pi\)
−0.995514 + 0.0946136i \(0.969838\pi\)
\(308\) 5.14359 19.1962i 0.0167000 0.0623252i
\(309\) 0 0
\(310\) −35.3590 + 35.3590i −0.114061 + 0.114061i
\(311\) 227.904 394.741i 0.732810 1.26926i −0.222868 0.974849i \(-0.571542\pi\)
0.955678 0.294415i \(-0.0951248\pi\)
\(312\) 0 0
\(313\) 99.3494 370.777i 0.317410 1.18459i −0.604315 0.796746i \(-0.706553\pi\)
0.921725 0.387845i \(-0.126780\pi\)
\(314\) 434.415i 1.38349i
\(315\) 0 0
\(316\) 25.9474 0.0821122
\(317\) 433.751 + 116.223i 1.36830 + 0.366634i 0.866857 0.498557i \(-0.166137\pi\)
0.501442 + 0.865192i \(0.332803\pi\)
\(318\) 0 0
\(319\) 6.13655 + 3.54294i 0.0192368 + 0.0111064i
\(320\) 338.468i 1.05771i
\(321\) 0 0
\(322\) 216.583 + 58.0333i 0.672619 + 0.180228i
\(323\) 681.946 + 681.946i 2.11129 + 2.11129i
\(324\) 0 0
\(325\) 401.554 107.596i 1.23555 0.331065i
\(326\) 8.67949 + 15.0333i 0.0266242 + 0.0461145i
\(327\) 0 0
\(328\) 41.5359 11.1295i 0.126634 0.0339314i
\(329\) −183.779 106.105i −0.558600 0.322508i
\(330\) 0 0
\(331\) 123.256 + 213.485i 0.372374 + 0.644970i 0.989930 0.141556i \(-0.0452106\pi\)
−0.617556 + 0.786527i \(0.711877\pi\)
\(332\) 8.93851 8.93851i 0.0269232 0.0269232i
\(333\) 0 0
\(334\) 354.119i 1.06024i
\(335\) 61.7339 + 230.394i 0.184280 + 0.687744i
\(336\) 0 0
\(337\) −88.1929 329.140i −0.261700 0.976678i −0.964239 0.265033i \(-0.914617\pi\)
0.702539 0.711645i \(-0.252049\pi\)
\(338\) 200.629 53.7583i 0.593576 0.159048i
\(339\) 0 0
\(340\) 40.8013 10.9327i 0.120004 0.0321549i
\(341\) 32.0770 0.0940673
\(342\) 0 0
\(343\) 383.272 + 383.272i 1.11741 + 1.11741i
\(344\) 9.56733 5.52370i 0.0278120 0.0160573i
\(345\) 0 0
\(346\) −195.913 + 339.332i −0.566224 + 0.980728i
\(347\) 144.515 + 539.336i 0.416469 + 1.55428i 0.781875 + 0.623435i \(0.214264\pi\)
−0.365406 + 0.930848i \(0.619070\pi\)
\(348\) 0 0
\(349\) −240.258 + 138.713i −0.688417 + 0.397458i −0.803019 0.595954i \(-0.796774\pi\)
0.114602 + 0.993412i \(0.463441\pi\)
\(350\) 500.657 + 289.054i 1.43045 + 0.825870i
\(351\) 0 0
\(352\) −18.7513 + 18.7513i −0.0532707 + 0.0532707i
\(353\) 144.930 540.886i 0.410567 1.53226i −0.382986 0.923754i \(-0.625104\pi\)
0.793552 0.608502i \(-0.208229\pi\)
\(354\) 0 0
\(355\) 516.865 1.45596
\(356\) −2.41927 + 4.19031i −0.00679572 + 0.0117705i
\(357\) 0 0
\(358\) −26.3538 + 98.3538i −0.0736140 + 0.274731i
\(359\) 494.196i 1.37659i −0.725430 0.688295i \(-0.758359\pi\)
0.725430 0.688295i \(-0.241641\pi\)
\(360\) 0 0
\(361\) −574.654 −1.59184
\(362\) 447.774 + 119.981i 1.23695 + 0.331439i
\(363\) 0 0
\(364\) −46.1891 26.6673i −0.126893 0.0732618i
\(365\) 366.375 + 366.375i 1.00377 + 1.00377i
\(366\) 0 0
\(367\) −191.713 51.3693i −0.522378 0.139971i −0.0120118 0.999928i \(-0.503824\pi\)
−0.510366 + 0.859957i \(0.670490\pi\)
\(368\) −101.862 101.862i −0.276798 0.276798i
\(369\) 0 0
\(370\) −199.724 + 115.311i −0.539795 + 0.311651i
\(371\) −33.6936 58.3590i −0.0908183 0.157302i
\(372\) 0 0
\(373\) −309.165 + 82.8404i −0.828860 + 0.222092i −0.648216 0.761456i \(-0.724485\pi\)
−0.180644 + 0.983549i \(0.557818\pi\)
\(374\) 326.839 + 188.701i 0.873901 + 0.504547i
\(375\) 0 0
\(376\) 73.0859 + 126.588i 0.194377 + 0.336671i
\(377\) 13.4468 13.4468i 0.0356678 0.0356678i
\(378\) 0 0
\(379\) 442.161i 1.16665i 0.812238 + 0.583326i \(0.198249\pi\)
−0.812238 + 0.583326i \(0.801751\pi\)
\(380\) −20.4904 + 35.4904i −0.0539221 + 0.0933957i
\(381\) 0 0
\(382\) −76.8827 286.930i −0.201264 0.751126i
\(383\) −599.245 + 160.567i −1.56461 + 0.419236i −0.934119 0.356961i \(-0.883813\pi\)
−0.630490 + 0.776197i \(0.717146\pi\)
\(384\) 0 0
\(385\) −95.9808 358.205i −0.249301 0.930403i
\(386\) −241.406 −0.625405
\(387\) 0 0
\(388\) −26.4256 26.4256i −0.0681073 0.0681073i
\(389\) −467.669 + 270.009i −1.20223 + 0.694110i −0.961052 0.276369i \(-0.910869\pi\)
−0.241183 + 0.970480i \(0.577535\pi\)
\(390\) 0 0
\(391\) 152.858 264.758i 0.390942 0.677131i
\(392\) −201.195 750.872i −0.513254 1.91549i
\(393\) 0 0
\(394\) −130.136 + 75.1340i −0.330294 + 0.190695i
\(395\) 419.317 242.093i 1.06156 0.612893i
\(396\) 0 0
\(397\) −298.002 + 298.002i −0.750634 + 0.750634i −0.974598 0.223963i \(-0.928100\pi\)
0.223963 + 0.974598i \(0.428100\pi\)
\(398\) −120.962 + 451.435i −0.303923 + 1.13426i
\(399\) 0 0
\(400\) −185.705 321.651i −0.464263 0.804127i
\(401\) −66.0307 + 114.369i −0.164665 + 0.285208i −0.936536 0.350571i \(-0.885988\pi\)
0.771871 + 0.635779i \(0.219321\pi\)
\(402\) 0 0
\(403\) 22.2807 83.1525i 0.0552870 0.206334i
\(404\) 23.3487i 0.0577937i
\(405\) 0 0
\(406\) 26.4449 0.0651351
\(407\) 142.897 + 38.2891i 0.351098 + 0.0940763i
\(408\) 0 0
\(409\) −598.579 345.590i −1.46352 0.844962i −0.464346 0.885654i \(-0.653711\pi\)
−0.999172 + 0.0406913i \(0.987044\pi\)
\(410\) 35.6218 35.6218i 0.0868824 0.0868824i
\(411\) 0 0
\(412\) −0.334591 0.0896534i −0.000812115 0.000217605i
\(413\) −330.382 330.382i −0.799956 0.799956i
\(414\) 0 0
\(415\) 61.0512 227.846i 0.147111 0.549027i
\(416\) 35.5840 + 61.6333i 0.0855384 + 0.148157i
\(417\) 0 0
\(418\) −353.669 + 94.7654i −0.846099 + 0.226711i
\(419\) −339.531 196.028i −0.810336 0.467848i 0.0367366 0.999325i \(-0.488304\pi\)
−0.847073 + 0.531477i \(0.821637\pi\)
\(420\) 0 0
\(421\) −146.658 254.019i −0.348356 0.603369i 0.637602 0.770366i \(-0.279926\pi\)
−0.985957 + 0.166997i \(0.946593\pi\)
\(422\) −299.186 + 299.186i −0.708971 + 0.708971i
\(423\) 0 0
\(424\) 46.4167i 0.109473i
\(425\) 557.356 557.356i 1.31143 1.31143i
\(426\) 0 0
\(427\) 99.6865 + 372.035i 0.233458 + 0.871277i
\(428\) −1.46410 + 0.392305i −0.00342080 + 0.000916600i
\(429\) 0 0
\(430\) 6.47114 11.2083i 0.0150492 0.0260659i
\(431\) 630.792 1.46355 0.731777 0.681544i \(-0.238691\pi\)
0.731777 + 0.681544i \(0.238691\pi\)
\(432\) 0 0
\(433\) −155.925 155.925i −0.360104 0.360104i 0.503747 0.863851i \(-0.331954\pi\)
−0.863851 + 0.503747i \(0.831954\pi\)
\(434\) 103.674 59.8564i 0.238881 0.137918i
\(435\) 0 0
\(436\) 1.98849 3.44417i 0.00456077 0.00789948i
\(437\) 76.7654 + 286.492i 0.175664 + 0.655589i
\(438\) 0 0
\(439\) −505.981 + 292.128i −1.15258 + 0.665440i −0.949514 0.313726i \(-0.898423\pi\)
−0.203062 + 0.979166i \(0.565089\pi\)
\(440\) −66.1122 + 246.734i −0.150255 + 0.560759i
\(441\) 0 0
\(442\) 716.188 716.188i 1.62033 1.62033i
\(443\) 148.713 555.004i 0.335695 1.25283i −0.567419 0.823429i \(-0.692058\pi\)
0.903114 0.429401i \(-0.141275\pi\)
\(444\) 0 0
\(445\) 90.2886i 0.202896i
\(446\) −59.2558 + 102.634i −0.132860 + 0.230121i
\(447\) 0 0
\(448\) −209.720 + 782.685i −0.468125 + 1.74707i
\(449\) 804.631i 1.79205i 0.444003 + 0.896025i \(0.353558\pi\)
−0.444003 + 0.896025i \(0.646442\pi\)
\(450\) 0 0
\(451\) −32.3154 −0.0716527
\(452\) −12.3634 3.31278i −0.0273528 0.00732915i
\(453\) 0 0
\(454\) −293.035 169.184i −0.645452 0.372652i
\(455\) −995.237 −2.18733
\(456\) 0 0
\(457\) 29.4545 + 7.89230i 0.0644518 + 0.0172698i 0.290901 0.956753i \(-0.406045\pi\)
−0.226449 + 0.974023i \(0.572712\pi\)
\(458\) −192.361 192.361i −0.420002 0.420002i
\(459\) 0 0
\(460\) 12.5481 + 3.36225i 0.0272785 + 0.00730924i
\(461\) 31.4693 + 54.5064i 0.0682630 + 0.118235i 0.898137 0.439716i \(-0.144921\pi\)
−0.829874 + 0.557951i \(0.811588\pi\)
\(462\) 0 0
\(463\) 105.445 28.2539i 0.227743 0.0610235i −0.143143 0.989702i \(-0.545721\pi\)
0.370886 + 0.928679i \(0.379054\pi\)
\(464\) −14.7135 8.49485i −0.0317101 0.0183079i
\(465\) 0 0
\(466\) 172.064 + 298.024i 0.369236 + 0.639536i
\(467\) −634.512 + 634.512i −1.35870 + 1.35870i −0.483171 + 0.875526i \(0.660515\pi\)
−0.875526 + 0.483171i \(0.839485\pi\)
\(468\) 0 0
\(469\) 571.023i 1.21753i
\(470\) 148.301 + 85.6218i 0.315535 + 0.182174i
\(471\) 0 0
\(472\) 83.2961 + 310.865i 0.176475 + 0.658613i
\(473\) −8.01924 + 2.14875i −0.0169540 + 0.00454281i
\(474\) 0 0
\(475\) 764.711i 1.60992i
\(476\) −101.124 −0.212446
\(477\) 0 0
\(478\) 279.191 + 279.191i 0.584082 + 0.584082i
\(479\) 105.037 60.6429i 0.219283 0.126603i −0.386335 0.922358i \(-0.626259\pi\)
0.605618 + 0.795755i \(0.292926\pi\)
\(480\) 0 0
\(481\) 198.512 343.833i 0.412707 0.714830i
\(482\) −167.521 625.197i −0.347554 1.29709i
\(483\) 0 0
\(484\) −19.1692 + 11.0673i −0.0396057 + 0.0228664i
\(485\) −673.599 180.490i −1.38886 0.372145i
\(486\) 0 0
\(487\) −20.3154 + 20.3154i −0.0417153 + 0.0417153i −0.727657 0.685941i \(-0.759391\pi\)
0.685941 + 0.727657i \(0.259391\pi\)
\(488\) 68.6647 256.260i 0.140706 0.525123i
\(489\) 0 0
\(490\) −643.958 643.958i −1.31420 1.31420i
\(491\) 281.940 488.335i 0.574217 0.994572i −0.421910 0.906638i \(-0.638640\pi\)
0.996126 0.0879346i \(-0.0280266\pi\)
\(492\) 0 0
\(493\) 9.33201 34.8275i 0.0189290 0.0706441i
\(494\) 982.634i 1.98914i
\(495\) 0 0
\(496\) −76.9103 −0.155061
\(497\) −1195.22 320.258i −2.40486 0.644382i
\(498\) 0 0
\(499\) 180.767 + 104.366i 0.362259 + 0.209150i 0.670071 0.742297i \(-0.266264\pi\)
−0.307812 + 0.951447i \(0.599597\pi\)
\(500\) 29.0064 + 16.7468i 0.0580127 + 0.0334936i
\(501\) 0 0
\(502\) −660.508 176.983i −1.31575 0.352555i
\(503\) −76.7424 76.7424i −0.152569 0.152569i 0.626695 0.779264i \(-0.284407\pi\)
−0.779264 + 0.626695i \(0.784407\pi\)
\(504\) 0 0
\(505\) −217.846 377.321i −0.431378 0.747169i
\(506\) 58.0333 + 100.517i 0.114690 + 0.198650i
\(507\) 0 0
\(508\) 0.968566 0.259526i 0.00190663 0.000510879i
\(509\) 122.427 + 70.6833i 0.240525 + 0.138867i 0.615418 0.788201i \(-0.288987\pi\)
−0.374893 + 0.927068i \(0.622321\pi\)
\(510\) 0 0
\(511\) −620.207 1074.23i −1.21371 2.10221i
\(512\) 391.419 391.419i 0.764489 0.764489i
\(513\) 0 0
\(514\) 280.258i 0.545248i
\(515\) −6.24356 + 1.67296i −0.0121234 + 0.00324846i
\(516\) 0 0
\(517\) −28.4308 106.105i −0.0549918 0.205232i
\(518\) 533.298 142.897i 1.02953 0.275862i
\(519\) 0 0
\(520\) 593.683 + 342.763i 1.14170 + 0.659159i
\(521\) 406.038 0.779344 0.389672 0.920954i \(-0.372588\pi\)
0.389672 + 0.920954i \(0.372588\pi\)
\(522\) 0 0
\(523\) −354.492 354.492i −0.677805 0.677805i 0.281698 0.959503i \(-0.409102\pi\)
−0.959503 + 0.281698i \(0.909102\pi\)
\(524\) 32.9699 19.0352i 0.0629197 0.0363267i
\(525\) 0 0
\(526\) −387.023 + 670.344i −0.735785 + 1.27442i
\(527\) −42.2449 157.660i −0.0801612 0.299166i
\(528\) 0 0
\(529\) −376.703 + 217.490i −0.712104 + 0.411134i
\(530\) 27.1891 + 47.0929i 0.0513002 + 0.0888546i
\(531\) 0 0
\(532\) 69.3731 69.3731i 0.130401 0.130401i
\(533\) −22.4462 + 83.7705i −0.0421130 + 0.157168i
\(534\) 0 0
\(535\) −20.0000 + 20.0000i −0.0373832 + 0.0373832i
\(536\) −196.662 + 340.629i −0.366907 + 0.635502i
\(537\) 0 0
\(538\) 179.698 670.642i 0.334011 1.24655i
\(539\) 584.186i 1.08383i
\(540\) 0 0
\(541\) 490.727 0.907074 0.453537 0.891238i \(-0.350162\pi\)
0.453537 + 0.891238i \(0.350162\pi\)
\(542\) −288.466 77.2942i −0.532225 0.142609i
\(543\) 0 0
\(544\) 116.859 + 67.4686i 0.214814 + 0.124023i
\(545\) 74.2116i 0.136168i
\(546\) 0 0
\(547\) −764.797 204.927i −1.39817 0.374638i −0.520481 0.853873i \(-0.674247\pi\)
−0.877686 + 0.479236i \(0.840914\pi\)
\(548\) −30.1661 30.1661i −0.0550476 0.0550476i
\(549\) 0 0
\(550\) 77.4519 + 289.054i 0.140822 + 0.525554i
\(551\) 17.4904 + 30.2942i 0.0317430 + 0.0549805i
\(552\) 0 0
\(553\) −1119.65 + 300.009i −2.02468 + 0.542512i
\(554\) 203.184 + 117.308i 0.366758 + 0.211748i
\(555\) 0 0
\(556\) 24.8949 + 43.1192i 0.0447750 + 0.0775525i
\(557\) 486.517 486.517i 0.873460 0.873460i −0.119388 0.992848i \(-0.538093\pi\)
0.992848 + 0.119388i \(0.0380932\pi\)
\(558\) 0 0
\(559\) 22.2807i 0.0398581i
\(560\) 230.131 + 858.862i 0.410949 + 1.53368i
\(561\) 0 0
\(562\) 134.502 + 501.968i 0.239327 + 0.893181i
\(563\) −150.890 + 40.4308i −0.268010 + 0.0718131i −0.390321 0.920679i \(-0.627636\pi\)
0.122311 + 0.992492i \(0.460969\pi\)
\(564\) 0 0
\(565\) −230.705 + 61.8172i −0.408328 + 0.109411i
\(566\) 252.144 0.445483
\(567\) 0 0
\(568\) 602.678 + 602.678i 1.06105 + 1.06105i
\(569\) −396.056 + 228.663i −0.696056 + 0.401868i −0.805877 0.592083i \(-0.798306\pi\)
0.109821 + 0.993951i \(0.464972\pi\)
\(570\) 0 0
\(571\) 158.962 275.329i 0.278391 0.482188i −0.692594 0.721328i \(-0.743532\pi\)
0.970985 + 0.239140i \(0.0768654\pi\)
\(572\) −7.14548 26.6673i −0.0124921 0.0466211i
\(573\) 0 0
\(574\) −104.445 + 60.3013i −0.181960 + 0.105054i
\(575\) 234.151 62.7405i 0.407218 0.109114i
\(576\) 0 0
\(577\) 178.252 178.252i 0.308929 0.308929i −0.535565 0.844494i \(-0.679901\pi\)
0.844494 + 0.535565i \(0.179901\pi\)
\(578\) 352.533 1315.67i 0.609918 2.27625i
\(579\) 0 0
\(580\) 1.53212 0.00264159
\(581\) −282.354 + 489.051i −0.485979 + 0.841740i
\(582\) 0 0
\(583\) 9.02817 33.6936i 0.0154857 0.0577934i
\(584\) 854.405i 1.46302i
\(585\) 0 0
\(586\) 329.067 0.561547
\(587\) 101.720 + 27.2558i 0.173288 + 0.0464323i 0.344420 0.938816i \(-0.388076\pi\)
−0.171132 + 0.985248i \(0.554742\pi\)
\(588\) 0 0
\(589\) 137.138 + 79.1769i 0.232833 + 0.134426i
\(590\) 266.603 + 266.603i 0.451869 + 0.451869i
\(591\) 0 0
\(592\) −342.621 91.8050i −0.578752 0.155076i
\(593\) −615.083 615.083i −1.03724 1.03724i −0.999279 0.0379595i \(-0.987914\pi\)
−0.0379595 0.999279i \(-0.512086\pi\)
\(594\) 0 0
\(595\) −1634.20 + 943.503i −2.74655 + 1.58572i
\(596\) 3.08330 + 5.34044i 0.00517333 + 0.00896046i
\(597\) 0 0
\(598\) 300.878 80.6199i 0.503140 0.134816i
\(599\) −677.727 391.286i −1.13143 0.653232i −0.187136 0.982334i \(-0.559921\pi\)
−0.944294 + 0.329102i \(0.893254\pi\)
\(600\) 0 0
\(601\) 319.167 + 552.814i 0.531060 + 0.919824i 0.999343 + 0.0362448i \(0.0115396\pi\)
−0.468283 + 0.883579i \(0.655127\pi\)
\(602\) −21.9090 + 21.9090i −0.0363936 + 0.0363936i
\(603\) 0 0
\(604\) 15.9821i 0.0264605i
\(605\) −206.519 + 357.702i −0.341354 + 0.591243i
\(606\) 0 0
\(607\) −267.993 1000.16i −0.441504 1.64772i −0.725005 0.688744i \(-0.758163\pi\)
0.283501 0.958972i \(-0.408504\pi\)
\(608\) −126.452 + 33.8827i −0.207980 + 0.0557281i
\(609\) 0 0
\(610\) −80.4423 300.215i −0.131873 0.492155i
\(611\) −294.802 −0.482492
\(612\) 0 0
\(613\) −186.535 186.535i −0.304298 0.304298i 0.538395 0.842693i \(-0.319031\pi\)
−0.842693 + 0.538395i \(0.819031\pi\)
\(614\) −791.836 + 457.167i −1.28963 + 0.744571i
\(615\) 0 0
\(616\) 305.760 529.592i 0.496364 0.859728i
\(617\) 66.9801 + 249.973i 0.108558 + 0.405143i 0.998724 0.0504921i \(-0.0160790\pi\)
−0.890167 + 0.455635i \(0.849412\pi\)
\(618\) 0 0
\(619\) 366.373 211.526i 0.591879 0.341721i −0.173961 0.984753i \(-0.555657\pi\)
0.765840 + 0.643031i \(0.222323\pi\)
\(620\) 6.00654 3.46788i 0.00968796 0.00559335i
\(621\) 0 0
\(622\) 622.645 622.645i 1.00104 1.00104i
\(623\) 55.9442 208.786i 0.0897980 0.335131i
\(624\) 0 0
\(625\) 625.000 1.00000
\(626\) 370.777 642.204i 0.592295 1.02589i
\(627\) 0 0
\(628\) −15.5948 + 58.2006i −0.0248325 + 0.0926761i
\(629\) 752.773i 1.19678i
\(630\) 0 0
\(631\) −145.562 −0.230684 −0.115342 0.993326i \(-0.536796\pi\)
−0.115342 + 0.993326i \(0.536796\pi\)
\(632\) 771.221 + 206.648i 1.22029 + 0.326975i
\(633\) 0 0
\(634\) 751.278 + 433.751i 1.18498 + 0.684149i
\(635\) 13.2309 13.2309i 0.0208360 0.0208360i
\(636\) 0 0
\(637\) 1514.37 + 405.775i 2.37735 + 0.637010i
\(638\) 9.67949 + 9.67949i 0.0151716 + 0.0151716i
\(639\) 0 0
\(640\) 147.080 548.910i 0.229813 0.857672i
\(641\) −20.7365 35.9167i −0.0323503 0.0560323i 0.849397 0.527754i \(-0.176966\pi\)
−0.881747 + 0.471722i \(0.843633\pi\)
\(642\) 0 0
\(643\) −290.324 + 77.7922i −0.451515 + 0.120983i −0.477408 0.878682i \(-0.658424\pi\)
0.0258931 + 0.999665i \(0.491757\pi\)
\(644\) −26.9334 15.5500i −0.0418220 0.0241459i
\(645\) 0 0
\(646\) 931.556 + 1613.50i 1.44204 + 2.49768i
\(647\) −816.177 + 816.177i −1.26148 + 1.26148i −0.311103 + 0.950376i \(0.600698\pi\)
−0.950376 + 0.311103i \(0.899302\pi\)
\(648\) 0 0
\(649\) 241.856i 0.372660i
\(650\) 803.109 1.23555
\(651\) 0 0
\(652\) −0.623159 2.32566i −0.000955766 0.00356697i
\(653\) 392.762 105.240i 0.601473 0.161164i 0.0547818 0.998498i \(-0.482554\pi\)
0.546692 + 0.837334i \(0.315887\pi\)
\(654\) 0 0
\(655\) 355.202 615.228i 0.542293 0.939279i
\(656\) 77.4820 0.118113
\(657\) 0 0
\(658\) −289.885 289.885i −0.440554 0.440554i
\(659\) 723.006 417.428i 1.09713 0.633426i 0.161661 0.986846i \(-0.448315\pi\)
0.935464 + 0.353421i \(0.114982\pi\)
\(660\) 0 0
\(661\) −205.165 + 355.357i −0.310386 + 0.537605i −0.978446 0.206503i \(-0.933792\pi\)
0.668060 + 0.744108i \(0.267125\pi\)
\(662\) 123.256 + 459.997i 0.186187 + 0.694859i
\(663\) 0 0
\(664\) 336.862 194.487i 0.507322 0.292902i
\(665\) 473.827 1768.35i 0.712522 2.65917i
\(666\) 0 0
\(667\) 7.84094 7.84094i 0.0117555 0.0117555i
\(668\) −12.7123 + 47.4430i −0.0190304 + 0.0710224i
\(669\) 0 0
\(670\) 460.788i 0.687744i
\(671\) −99.6865 + 172.662i −0.148564 + 0.257321i
\(672\) 0 0
\(673\) 330.470 1233.33i 0.491041 1.83259i −0.0601214 0.998191i \(-0.519149\pi\)
0.551162 0.834398i \(-0.314185\pi\)
\(674\) 658.281i 0.976678i
\(675\) 0 0
\(676\) −28.8090 −0.0426169
\(677\) −905.876 242.729i −1.33807 0.358536i −0.482355 0.875976i \(-0.660218\pi\)
−0.855719 + 0.517440i \(0.826885\pi\)
\(678\) 0 0
\(679\) 1445.82 + 834.745i 2.12934 + 1.22937i
\(680\) 1299.78 1.91144
\(681\) 0 0
\(682\) 59.8564 + 16.0385i 0.0877660 + 0.0235168i
\(683\) −75.3346 75.3346i −0.110300 0.110300i 0.649803 0.760103i \(-0.274851\pi\)
−0.760103 + 0.649803i \(0.774851\pi\)
\(684\) 0 0
\(685\) −768.945 206.038i −1.12255 0.300786i
\(686\) 523.559 + 906.831i 0.763205 + 1.32191i
\(687\) 0 0
\(688\) 19.2276 5.15202i 0.0279471 0.00748840i
\(689\) −81.0723 46.8071i −0.117667 0.0679349i
\(690\) 0 0
\(691\) 38.5096 + 66.7006i 0.0557303 + 0.0965277i 0.892545 0.450959i \(-0.148918\pi\)
−0.836814 + 0.547487i \(0.815585\pi\)
\(692\) 38.4289 38.4289i 0.0555331 0.0555331i
\(693\) 0 0
\(694\) 1078.67i 1.55428i
\(695\) 804.615 + 464.545i 1.15772 + 0.668410i
\(696\) 0 0
\(697\) 42.5589 + 158.832i 0.0610601 + 0.227880i
\(698\) −517.683 + 138.713i −0.741667 + 0.198729i
\(699\) 0 0
\(700\) −56.6987 56.6987i −0.0809982 0.0809982i
\(701\) 1086.18 1.54947 0.774734 0.632287i \(-0.217884\pi\)
0.774734 + 0.632287i \(0.217884\pi\)
\(702\) 0 0
\(703\) 516.415 + 516.415i 0.734588 + 0.734588i
\(704\) −363.245 + 209.720i −0.515974 + 0.297898i
\(705\) 0 0
\(706\) 540.886 936.843i 0.766128 1.32697i
\(707\) 269.962 + 1007.51i 0.381841 + 1.42505i
\(708\) 0 0
\(709\) −220.233 + 127.151i −0.310624 + 0.179339i −0.647206 0.762315i \(-0.724063\pi\)
0.336582 + 0.941654i \(0.390729\pi\)
\(710\) 964.484 + 258.433i 1.35843 + 0.363990i
\(711\) 0 0
\(712\) −105.279 + 105.279i −0.147863 + 0.147863i
\(713\) 12.9921 48.4871i 0.0182217 0.0680044i
\(714\) 0 0
\(715\) −364.282 364.282i −0.509485 0.509485i
\(716\) 7.06149 12.2309i 0.00986241 0.0170822i
\(717\) 0 0
\(718\) 247.098 922.183i 0.344148 1.28438i
\(719\) 357.573i 0.497320i −0.968591 0.248660i \(-0.920010\pi\)
0.968591 0.248660i \(-0.0799902\pi\)
\(720\) 0 0
\(721\) 15.4744 0.0214624
\(722\) −1072.32 287.327i −1.48521 0.397960i
\(723\) 0 0
\(724\) −55.6833 32.1487i −0.0769106 0.0444043i
\(725\) 24.7595 14.2949i 0.0341511 0.0197171i
\(726\) 0 0
\(727\) −207.380 55.5673i −0.285255 0.0764337i 0.113355 0.993555i \(-0.463840\pi\)
−0.398609 + 0.917121i \(0.630507\pi\)
\(728\) −1160.47 1160.47i −1.59405 1.59405i
\(729\) 0 0
\(730\) 500.477 + 866.852i 0.685586 + 1.18747i
\(731\) 21.1225 + 36.5852i 0.0288953 + 0.0500481i
\(732\) 0 0
\(733\) 596.762 159.902i 0.814137 0.218147i 0.172355 0.985035i \(-0.444862\pi\)
0.641781 + 0.766888i \(0.278196\pi\)
\(734\) −332.056 191.713i −0.452393 0.261189i
\(735\) 0 0
\(736\) 20.7494 + 35.9390i 0.0281921 + 0.0488302i
\(737\) 209.009 209.009i 0.283594 0.283594i
\(738\) 0 0
\(739\) 934.877i 1.26506i 0.774537 + 0.632528i \(0.217983\pi\)
−0.774537 + 0.632528i \(0.782017\pi\)
\(740\) 30.8975 8.27895i 0.0417533 0.0111878i
\(741\) 0 0
\(742\) −33.6936 125.746i −0.0454091 0.169469i
\(743\) 884.352 236.962i 1.19025 0.318925i 0.391263 0.920279i \(-0.372038\pi\)
0.798983 + 0.601354i \(0.205372\pi\)
\(744\) 0 0
\(745\) 99.6539 + 57.5352i 0.133764 + 0.0772285i
\(746\) −618.329 −0.828860
\(747\) 0 0
\(748\) −37.0141 37.0141i −0.0494841 0.0494841i
\(749\) 58.6410 33.8564i 0.0782924 0.0452021i
\(750\) 0 0
\(751\) 541.202 937.389i 0.720642 1.24819i −0.240101 0.970748i \(-0.577181\pi\)
0.960743 0.277440i \(-0.0894860\pi\)
\(752\) 68.1680 + 254.406i 0.0906489 + 0.338306i
\(753\) 0 0
\(754\) 31.8154 18.3686i 0.0421954 0.0243615i
\(755\) 149.115 + 258.275i 0.197504 + 0.342087i
\(756\) 0 0
\(757\) −184.412 + 184.412i −0.243608 + 0.243608i −0.818341 0.574733i \(-0.805106\pi\)
0.574733 + 0.818341i \(0.305106\pi\)
\(758\) −221.081 + 825.084i −0.291663 + 1.08850i
\(759\) 0 0
\(760\) −891.673 + 891.673i −1.17325 + 1.17325i
\(761\) −618.719 + 1071.65i −0.813034 + 1.40822i 0.0976964 + 0.995216i \(0.468853\pi\)
−0.910731 + 0.413001i \(0.864481\pi\)
\(762\) 0 0
\(763\) −45.9826 + 171.610i −0.0602656 + 0.224914i
\(764\) 41.2013i 0.0539284i
\(765\) 0 0
\(766\) −1198.49 −1.56461
\(767\) −626.960 167.993i −0.817419 0.219027i
\(768\) 0 0
\(769\) 766.154 + 442.339i 0.996299 + 0.575213i 0.907151 0.420805i \(-0.138252\pi\)
0.0891476 + 0.996018i \(0.471586\pi\)
\(770\) 716.410i 0.930403i
\(771\) 0 0
\(772\) 32.3423 + 8.66610i 0.0418942 + 0.0112255i
\(773\) 936.359 + 936.359i 1.21133 + 1.21133i 0.970589 + 0.240743i \(0.0773911\pi\)
0.240743 + 0.970589i \(0.422609\pi\)
\(774\) 0 0
\(775\) 64.7114 112.083i 0.0834986 0.144624i
\(776\) −574.977 995.890i −0.740950 1.28336i
\(777\) 0 0
\(778\) −1007.69 + 270.009i −1.29523 + 0.347055i
\(779\) −138.158 79.7654i −0.177353 0.102395i
\(780\) 0 0
\(781\) −320.258 554.703i −0.410061 0.710246i
\(782\) 417.617 417.617i 0.534037 0.534037i
\(783\) 0 0
\(784\) 1400.69i 1.78660i
\(785\) 291.003 + 1086.04i 0.370705 + 1.38349i
\(786\) 0 0
\(787\) 272.811 + 1018.14i 0.346647 + 1.29370i 0.890677 + 0.454637i \(0.150231\pi\)
−0.544030 + 0.839066i \(0.683102\pi\)
\(788\) 20.1321 5.39438i 0.0255483 0.00684566i
\(789\) 0 0
\(790\) 903.503 242.093i 1.14367 0.306447i
\(791\) 571.794 0.722874
\(792\) 0 0
\(793\) 378.347 + 378.347i 0.477108 + 0.477108i
\(794\) −705.080 + 407.078i −0.888010 + 0.512693i
\(795\) 0 0
\(796\) 32.4115 56.1384i 0.0407180 0.0705257i
\(797\) 81.4282 + 303.894i 0.102168 + 0.381298i 0.998009 0.0630788i \(-0.0200919\pi\)
−0.895840 + 0.444376i \(0.853425\pi\)
\(798\) 0 0
\(799\) −484.070 + 279.478i −0.605845 + 0.349785i
\(800\) 27.6924 + 103.349i 0.0346155 + 0.129187i
\(801\) 0 0
\(802\) −180.399 + 180.399i −0.224937 + 0.224937i
\(803\) 166.184 620.207i 0.206954 0.772362i
\(804\) 0 0
\(805\) −580.333 −0.720911
\(806\) 83.1525 144.024i 0.103167 0.178690i
\(807\) 0 0
\(808\) 185.951 693.979i 0.230138 0.858885i
\(809\) 907.404i 1.12164i 0.827939 + 0.560818i \(0.189513\pi\)
−0.827939 + 0.560818i \(0.810487\pi\)
\(810\) 0 0
\(811\) 1386.99 1.71022 0.855112 0.518443i \(-0.173488\pi\)
0.855112 + 0.518443i \(0.173488\pi\)
\(812\) −3.54294 0.949328i −0.00436323 0.00116912i
\(813\) 0 0
\(814\) 247.504 + 142.897i 0.304060 + 0.175549i
\(815\) −31.7691 31.7691i −0.0389805 0.0389805i
\(816\) 0 0
\(817\) −39.5885 10.6077i −0.0484559 0.0129837i
\(818\) −944.168 944.168i −1.15424 1.15424i
\(819\) 0 0
\(820\) −6.05118 + 3.49365i −0.00737948 + 0.00426055i
\(821\) 445.231 + 771.162i 0.542303 + 0.939296i 0.998771 + 0.0495565i \(0.0157808\pi\)
−0.456468 + 0.889740i \(0.650886\pi\)
\(822\) 0 0
\(823\) 61.7372 16.5424i 0.0750148 0.0201002i −0.221116 0.975247i \(-0.570970\pi\)
0.296131 + 0.955147i \(0.404303\pi\)
\(824\) −9.23085 5.32944i −0.0112025 0.00646776i
\(825\) 0 0
\(826\) −451.310 781.692i −0.546380 0.946359i
\(827\) −323.315 + 323.315i −0.390950 + 0.390950i −0.875026 0.484076i \(-0.839156\pi\)
0.484076 + 0.875026i \(0.339156\pi\)
\(828\) 0 0
\(829\) 611.569i 0.737719i −0.929485 0.368860i \(-0.879748\pi\)
0.929485 0.368860i \(-0.120252\pi\)
\(830\) 227.846 394.641i 0.274513 0.475471i
\(831\) 0 0
\(832\) 291.343 + 1087.31i 0.350172 + 1.30686i
\(833\) 2871.31 769.365i 3.44695 0.923608i
\(834\) 0 0
\(835\) 237.215 + 885.298i 0.284090 + 1.06024i
\(836\) 50.7846 0.0607471
\(837\) 0 0
\(838\) −535.559 535.559i −0.639092 0.639092i
\(839\) 734.017 423.785i 0.874872 0.505107i 0.00590760 0.999983i \(-0.498120\pi\)
0.868964 + 0.494875i \(0.164786\pi\)
\(840\) 0 0
\(841\) −419.846 + 727.195i −0.499222 + 0.864679i
\(842\) −146.658 547.334i −0.174178 0.650040i
\(843\) 0 0
\(844\) 50.8236 29.3430i 0.0602175 0.0347666i
\(845\) −465.561 + 268.792i −0.550960 + 0.318097i
\(846\) 0 0
\(847\) 699.200 699.200i 0.825502 0.825502i
\(848\) −21.6467 + 80.7865i −0.0255267 + 0.0952671i
\(849\) 0 0
\(850\) 1318.72 761.362i 1.55143 0.895720i
\(851\) 115.755 200.493i 0.136022 0.235597i
\(852\) 0 0
\(853\) −110.501 + 412.394i −0.129544 + 0.483463i −0.999961 0.00885150i \(-0.997182\pi\)
0.870417 + 0.492315i \(0.163849\pi\)
\(854\) 744.070i 0.871277i
\(855\) 0 0
\(856\) −46.6410 −0.0544872
\(857\) −266.705 71.4634i −0.311208 0.0833879i 0.0998348 0.995004i \(-0.468169\pi\)
−0.411043 + 0.911616i \(0.634835\pi\)
\(858\) 0 0
\(859\) 871.419 + 503.114i 1.01446 + 0.585697i 0.912494 0.409091i \(-0.134154\pi\)
0.101964 + 0.994788i \(0.467487\pi\)
\(860\) −1.26933 + 1.26933i −0.00147597 + 0.00147597i
\(861\) 0 0
\(862\) 1177.07 + 315.396i 1.36552 + 0.365889i
\(863\) −369.550 369.550i −0.428216 0.428216i 0.459805 0.888020i \(-0.347919\pi\)
−0.888020 + 0.459805i \(0.847919\pi\)
\(864\) 0 0
\(865\) 262.474 979.567i 0.303438 1.13245i
\(866\) −212.997 368.922i −0.245955 0.426007i
\(867\) 0 0
\(868\) −16.0385 + 4.29750i −0.0184775 + 0.00495103i
\(869\) −519.631 300.009i −0.597964 0.345235i
\(870\) 0 0
\(871\) −396.633 686.988i −0.455376 0.788735i
\(872\) 86.5326 86.5326i 0.0992347 0.0992347i
\(873\) 0 0
\(874\) 572.985i 0.655589i
\(875\) −1445.27 387.260i −1.65174 0.442582i
\(876\) 0 0
\(877\) −414.860 1548.28i −0.473044 1.76543i −0.628735 0.777620i \(-0.716427\pi\)
0.155690 0.987806i \(-0.450240\pi\)
\(878\) −1090.24 + 292.128i −1.24173 + 0.332720i
\(879\) 0 0
\(880\) −230.131 + 398.599i −0.261513 + 0.452954i
\(881\) −1314.95 −1.49257 −0.746285 0.665627i \(-0.768164\pi\)
−0.746285 + 0.665627i \(0.768164\pi\)
\(882\) 0 0
\(883\) 1060.20 + 1060.20i 1.20068 + 1.20068i 0.973960 + 0.226719i \(0.0728000\pi\)
0.226719 + 0.973960i \(0.427200\pi\)
\(884\) −121.661 + 70.2410i −0.137626 + 0.0794581i
\(885\) 0 0
\(886\) 555.004 961.295i 0.626415 1.08498i
\(887\) −302.989 1130.77i −0.341589 1.27483i −0.896547 0.442948i \(-0.853933\pi\)
0.554958 0.831878i \(-0.312734\pi\)
\(888\) 0 0
\(889\) −38.7935 + 22.3975i −0.0436373 + 0.0251940i
\(890\) −45.1443 + 168.481i −0.0507239 + 0.189304i
\(891\) 0 0
\(892\) 11.6232 11.6232i 0.0130304 0.0130304i
\(893\) 140.354 523.808i 0.157171 0.586571i
\(894\) 0 0
\(895\) 263.538i 0.294456i
\(896\) −680.226 + 1178.19i −0.759181 + 1.31494i
\(897\) 0 0
\(898\) −402.315 + 1501.46i −0.448013 + 1.67201i
\(899\) 5.92029i 0.00658541i
\(900\) 0 0
\(901\) −177.496 −0.196999
\(902\) −60.3013 16.1577i −0.0668528 0.0179132i
\(903\) 0 0
\(904\) −341.088 196.928i −0.377310 0.217840i
\(905\) −1199.81 −1.32575
\(906\) 0 0
\(907\) 276.976 + 74.2154i 0.305376 + 0.0818251i 0.408253 0.912869i \(-0.366138\pi\)
−0.102877 + 0.994694i \(0.532805\pi\)
\(908\) 33.1858 + 33.1858i 0.0365483 + 0.0365483i
\(909\) 0 0
\(910\) −1857.14 497.619i −2.04081 0.546834i
\(911\) −329.871 571.353i −0.362098 0.627172i 0.626208 0.779656i \(-0.284606\pi\)
−0.988306 + 0.152484i \(0.951273\pi\)
\(912\) 0 0
\(913\) −282.354 + 75.6565i −0.309259 + 0.0828658i
\(914\) 51.0167 + 29.4545i 0.0558169 + 0.0322259i
\(915\) 0 0
\(916\) 18.8660 + 32.6769i 0.0205961 + 0.0356735i
\(917\) −1202.59 + 1202.59i −1.31143 + 1.31143i
\(918\) 0 0
\(919\) 43.0502i 0.0468446i 0.999726 + 0.0234223i \(0.00745623\pi\)
−0.999726 + 0.0234223i \(0.992544\pi\)
\(920\) 346.183 + 199.869i 0.376285 + 0.217248i
\(921\) 0 0
\(922\) 31.4693 + 117.445i 0.0341315 + 0.127381i
\(923\) −1660.40 + 444.902i −1.79891 + 0.482017i
\(924\) 0 0
\(925\) 422.067 422.067i 0.456289 0.456289i
\(926\) 210.890 0.227743
\(927\) 0 0
\(928\) 3.46083 + 3.46083i 0.00372935 + 0.00372935i
\(929\) −1100.57 + 635.413i −1.18468 + 0.683975i −0.957092 0.289783i \(-0.906417\pi\)
−0.227587 + 0.973758i \(0.573084\pi\)
\(930\) 0 0
\(931\) −1441.97 + 2497.57i −1.54884 + 2.68267i
\(932\) −12.3536 46.1044i −0.0132550 0.0494683i
\(933\) 0 0
\(934\) −1501.27 + 866.759i −1.60736 + 0.928007i
\(935\) −943.503 252.811i −1.00909 0.270386i
\(936\) 0 0
\(937\) 516.286 516.286i 0.550999 0.550999i −0.375730 0.926729i \(-0.622608\pi\)
0.926729 + 0.375730i \(0.122608\pi\)
\(938\) 285.512 1065.54i 0.304383 1.13597i
\(939\) 0 0
\(940\) −16.7949 16.7949i −0.0178669 0.0178669i
\(941\) 532.798 922.833i 0.566204 0.980694i −0.430733 0.902480i \(-0.641745\pi\)
0.996937 0.0782145i \(-0.0249219\pi\)
\(942\) 0 0
\(943\) −13.0886 + 48.8475i −0.0138798 + 0.0518001i
\(944\) 579.895i 0.614295i
\(945\) 0 0
\(946\) −16.0385 −0.0169540
\(947\) 824.331 + 220.879i 0.870466 + 0.233241i 0.666289 0.745693i \(-0.267882\pi\)
0.204177 + 0.978934i \(0.434548\pi\)
\(948\) 0 0
\(949\) −1492.32 861.592i −1.57252 0.907894i
\(950\) −382.356 + 1426.97i −0.402480 + 1.50207i
\(951\) 0 0
\(952\) −3005.66 805.365i −3.15721 0.845971i
\(953\) 681.160 + 681.160i 0.714753 + 0.714753i 0.967526 0.252773i \(-0.0813425\pi\)
−0.252773 + 0.967526i \(0.581342\pi\)
\(954\) 0 0
\(955\) 384.413 + 665.824i 0.402527 + 0.697197i
\(956\) −27.3820 47.4270i −0.0286423 0.0496098i
\(957\) 0 0
\(958\) 226.322 60.6429i 0.236245 0.0633016i
\(959\) 1650.47 + 952.901i 1.72103 + 0.993640i
\(960\) 0 0
\(961\) 467.100 + 809.041i 0.486056 + 0.841874i
\(962\) 542.345 542.345i 0.563769 0.563769i
\(963\) 0 0
\(964\) 89.7743i 0.0931269i
\(965\) 603.516 161.712i 0.625405 0.167577i
\(966\) 0 0
\(967\) −67.3970 251.529i −0.0696970 0.260113i 0.922282 0.386519i \(-0.126322\pi\)
−0.991979 + 0.126406i \(0.959656\pi\)
\(968\) −657.896 + 176.283i −0.679645 + 0.182110i
\(969\) 0 0
\(970\) −1166.71 673.599i −1.20279 0.694432i
\(971\) 1449.90 1.49321 0.746603 0.665270i \(-0.231683\pi\)
0.746603 + 0.665270i \(0.231683\pi\)
\(972\) 0 0
\(973\) −1572.78 1572.78i −1.61643 1.61643i
\(974\) −48.0666 + 27.7513i −0.0493497 + 0.0284921i
\(975\) 0 0
\(976\) 239.017 413.989i 0.244894 0.424169i
\(977\) −33.6889 125.729i −0.0344820 0.128689i 0.946539 0.322588i \(-0.104553\pi\)
−0.981021 + 0.193900i \(0.937886\pi\)
\(978\) 0 0
\(979\) 96.8982 55.9442i 0.0989767 0.0571442i
\(980\) 63.1570 + 109.391i 0.0644459 + 0.111624i
\(981\) 0 0
\(982\) 770.275 770.275i 0.784395 0.784395i
\(983\) −201.179 + 750.811i −0.204659 + 0.763796i 0.784895 + 0.619629i \(0.212717\pi\)
−0.989553 + 0.144167i \(0.953950\pi\)
\(984\) 0 0
\(985\) 275.009 275.009i 0.279197 0.279197i
\(986\) 34.8275 60.3231i 0.0353221 0.0611796i
\(987\) 0 0
\(988\) 35.2750 131.648i 0.0357034 0.133247i
\(989\) 12.9921i 0.0131366i
\(990\) 0 0
\(991\) 58.7424 0.0592758 0.0296379 0.999561i \(-0.490565\pi\)
0.0296379 + 0.999561i \(0.490565\pi\)
\(992\) 21.4012 + 5.73444i 0.0215738 + 0.00578069i
\(993\) 0 0
\(994\) −2070.18 1195.22i −2.08267 1.20243i
\(995\) 1209.62i 1.21569i
\(996\) 0 0
\(997\) −1485.46 398.027i −1.48993 0.399225i −0.580214 0.814464i \(-0.697031\pi\)
−0.909712 + 0.415239i \(0.863698\pi\)
\(998\) 285.133 + 285.133i 0.285705 + 0.285705i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 405.3.l.d.28.1 4
3.2 odd 2 405.3.l.a.28.1 4
5.2 odd 4 405.3.l.b.352.1 4
9.2 odd 6 405.3.l.c.298.1 4
9.4 even 3 405.3.g.a.163.1 yes 4
9.5 odd 6 405.3.g.b.163.2 yes 4
9.7 even 3 405.3.l.b.298.1 4
15.2 even 4 405.3.l.c.352.1 4
45.2 even 12 405.3.l.a.217.1 4
45.7 odd 12 inner 405.3.l.d.217.1 4
45.22 odd 12 405.3.g.a.82.1 4
45.32 even 12 405.3.g.b.82.2 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
405.3.g.a.82.1 4 45.22 odd 12
405.3.g.a.163.1 yes 4 9.4 even 3
405.3.g.b.82.2 yes 4 45.32 even 12
405.3.g.b.163.2 yes 4 9.5 odd 6
405.3.l.a.28.1 4 3.2 odd 2
405.3.l.a.217.1 4 45.2 even 12
405.3.l.b.298.1 4 9.7 even 3
405.3.l.b.352.1 4 5.2 odd 4
405.3.l.c.298.1 4 9.2 odd 6
405.3.l.c.352.1 4 15.2 even 4
405.3.l.d.28.1 4 1.1 even 1 trivial
405.3.l.d.217.1 4 45.7 odd 12 inner