Properties

Label 405.3.l.i.28.1
Level $405$
Weight $3$
Character 405.28
Analytic conductor $11.035$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [405,3,Mod(28,405)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(405, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([4, 9]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("405.28");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 405 = 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 405.l (of order \(12\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.0354507066\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{12})\)
Coefficient field: 8.0.49787136.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 3x^{6} + 5x^{4} + 12x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 28.1
Root \(1.09445 + 0.895644i\) of defining polynomial
Character \(\chi\) \(=\) 405.28
Dual form 405.3.l.i.217.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.624069 - 0.167219i) q^{2} +(-3.10260 - 1.79129i) q^{4} +(-4.64741 + 1.84434i) q^{5} +(5.74921 + 1.54050i) q^{7} +(3.46410 + 3.46410i) q^{8} +(3.20871 - 0.373864i) q^{10} +(0.0476751 + 0.0825757i) q^{11} +(-3.30226 + 0.884839i) q^{13} +(-3.33030 - 1.92275i) q^{14} +(5.58258 + 9.66930i) q^{16} +(-14.4086 + 14.4086i) q^{17} -25.7477i q^{19} +(17.7228 + 2.60258i) q^{20} +(-0.0159443 - 0.0595051i) q^{22} +(4.60180 - 1.23305i) q^{23} +(18.1968 - 17.1428i) q^{25} +2.20880 q^{26} +(-15.0780 - 15.0780i) q^{28} +(35.6216 - 20.5661i) q^{29} +(18.5000 - 32.0429i) q^{31} +(-6.93882 - 25.8960i) q^{32} +(11.4014 - 6.58258i) q^{34} +(-29.5601 + 3.44420i) q^{35} +(50.6170 - 50.6170i) q^{37} +(-4.30550 + 16.0684i) q^{38} +(-22.4881 - 9.71010i) q^{40} +(1.13218 - 1.96099i) q^{41} +(9.04235 - 33.7465i) q^{43} -0.341599i q^{44} -3.07803 q^{46} +(-22.3091 - 5.97769i) q^{47} +(-11.7550 - 6.78674i) q^{49} +(-14.2227 + 7.65546i) q^{50} +(11.8306 + 3.17000i) q^{52} +(49.0894 + 49.0894i) q^{53} +(-0.373864 - 0.295834i) q^{55} +(14.5794 + 25.2523i) q^{56} +(-25.6694 + 6.87809i) q^{58} +(-86.6216 - 50.0110i) q^{59} +(27.7477 + 48.0605i) q^{61} +(-16.9035 + 16.9035i) q^{62} -27.3394i q^{64} +(13.7150 - 10.2027i) q^{65} +(13.6638 + 50.9941i) q^{67} +(70.5141 - 18.8942i) q^{68} +(19.0235 + 2.79359i) q^{70} +39.8770 q^{71} +(39.3739 + 39.3739i) q^{73} +(-40.0527 + 23.1244i) q^{74} +(-46.1216 + 79.8849i) q^{76} +(0.146887 + 0.548188i) q^{77} +(-52.0212 + 30.0345i) q^{79} +(-43.7780 - 34.6410i) q^{80} +(-1.03447 + 1.03447i) q^{82} +(28.3267 - 105.717i) q^{83} +(40.3883 - 93.5371i) q^{85} +(-11.2861 + 19.5481i) q^{86} +(-0.120899 + 0.451202i) q^{88} -51.6755i q^{89} -20.3485 q^{91} +(-16.4863 - 4.41749i) q^{92} +(12.9228 + 7.46099i) q^{94} +(47.4876 + 119.660i) q^{95} +(-96.7027 - 25.9114i) q^{97} +(6.20105 + 6.20105i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 6 q^{2} + 6 q^{5} + 26 q^{7} + 44 q^{10} - 28 q^{13} + 120 q^{14} + 8 q^{16} + 24 q^{20} + 46 q^{22} + 60 q^{23} + 32 q^{25} + 136 q^{28} + 120 q^{29} + 148 q^{31} - 168 q^{32} + 20 q^{37} - 54 q^{38}+ \cdots - 274 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/405\mathbb{Z}\right)^\times\).

\(n\) \(82\) \(326\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.624069 0.167219i −0.312035 0.0836094i 0.0994033 0.995047i \(-0.468307\pi\)
−0.411438 + 0.911438i \(0.634973\pi\)
\(3\) 0 0
\(4\) −3.10260 1.79129i −0.775650 0.447822i
\(5\) −4.64741 + 1.84434i −0.929482 + 0.368869i
\(6\) 0 0
\(7\) 5.74921 + 1.54050i 0.821315 + 0.220071i 0.644921 0.764249i \(-0.276890\pi\)
0.176394 + 0.984320i \(0.443557\pi\)
\(8\) 3.46410 + 3.46410i 0.433013 + 0.433013i
\(9\) 0 0
\(10\) 3.20871 0.373864i 0.320871 0.0373864i
\(11\) 0.0476751 + 0.0825757i 0.00433410 + 0.00750688i 0.868184 0.496242i \(-0.165287\pi\)
−0.863850 + 0.503749i \(0.831954\pi\)
\(12\) 0 0
\(13\) −3.30226 + 0.884839i −0.254020 + 0.0680645i −0.383582 0.923507i \(-0.625310\pi\)
0.129562 + 0.991571i \(0.458643\pi\)
\(14\) −3.33030 1.92275i −0.237879 0.137339i
\(15\) 0 0
\(16\) 5.58258 + 9.66930i 0.348911 + 0.604332i
\(17\) −14.4086 + 14.4086i −0.847565 + 0.847565i −0.989829 0.142264i \(-0.954562\pi\)
0.142264 + 0.989829i \(0.454562\pi\)
\(18\) 0 0
\(19\) 25.7477i 1.35514i −0.735457 0.677572i \(-0.763032\pi\)
0.735457 0.677572i \(-0.236968\pi\)
\(20\) 17.7228 + 2.60258i 0.886140 + 0.130129i
\(21\) 0 0
\(22\) −0.0159443 0.0595051i −0.000724743 0.00270478i
\(23\) 4.60180 1.23305i 0.200078 0.0536108i −0.157388 0.987537i \(-0.550307\pi\)
0.357466 + 0.933926i \(0.383641\pi\)
\(24\) 0 0
\(25\) 18.1968 17.1428i 0.727872 0.685713i
\(26\) 2.20880 0.0849539
\(27\) 0 0
\(28\) −15.0780 15.0780i −0.538501 0.538501i
\(29\) 35.6216 20.5661i 1.22833 0.709177i 0.261650 0.965163i \(-0.415733\pi\)
0.966681 + 0.255986i \(0.0824000\pi\)
\(30\) 0 0
\(31\) 18.5000 32.0429i 0.596774 1.03364i −0.396520 0.918026i \(-0.629782\pi\)
0.993294 0.115617i \(-0.0368845\pi\)
\(32\) −6.93882 25.8960i −0.216838 0.809251i
\(33\) 0 0
\(34\) 11.4014 6.58258i 0.335334 0.193605i
\(35\) −29.5601 + 3.44420i −0.844575 + 0.0984057i
\(36\) 0 0
\(37\) 50.6170 50.6170i 1.36803 1.36803i 0.504781 0.863248i \(-0.331573\pi\)
0.863248 0.504781i \(-0.168427\pi\)
\(38\) −4.30550 + 16.0684i −0.113303 + 0.422852i
\(39\) 0 0
\(40\) −22.4881 9.71010i −0.562202 0.242753i
\(41\) 1.13218 1.96099i 0.0276140 0.0478289i −0.851888 0.523724i \(-0.824542\pi\)
0.879502 + 0.475895i \(0.157876\pi\)
\(42\) 0 0
\(43\) 9.04235 33.7465i 0.210287 0.784803i −0.777485 0.628901i \(-0.783505\pi\)
0.987773 0.155902i \(-0.0498283\pi\)
\(44\) 0.341599i 0.00776362i
\(45\) 0 0
\(46\) −3.07803 −0.0669137
\(47\) −22.3091 5.97769i −0.474661 0.127185i 0.0135547 0.999908i \(-0.495685\pi\)
−0.488215 + 0.872723i \(0.662352\pi\)
\(48\) 0 0
\(49\) −11.7550 6.78674i −0.239898 0.138505i
\(50\) −14.2227 + 7.65546i −0.284453 + 0.153109i
\(51\) 0 0
\(52\) 11.8306 + 3.17000i 0.227512 + 0.0609616i
\(53\) 49.0894 + 49.0894i 0.926216 + 0.926216i 0.997459 0.0712434i \(-0.0226967\pi\)
−0.0712434 + 0.997459i \(0.522697\pi\)
\(54\) 0 0
\(55\) −0.373864 0.295834i −0.00679752 0.00537879i
\(56\) 14.5794 + 25.2523i 0.260347 + 0.450933i
\(57\) 0 0
\(58\) −25.6694 + 6.87809i −0.442575 + 0.118588i
\(59\) −86.6216 50.0110i −1.46816 0.847644i −0.468799 0.883305i \(-0.655313\pi\)
−0.999364 + 0.0356610i \(0.988646\pi\)
\(60\) 0 0
\(61\) 27.7477 + 48.0605i 0.454881 + 0.787877i 0.998681 0.0513379i \(-0.0163485\pi\)
−0.543801 + 0.839214i \(0.683015\pi\)
\(62\) −16.9035 + 16.9035i −0.272636 + 0.272636i
\(63\) 0 0
\(64\) 27.3394i 0.427178i
\(65\) 13.7150 10.2027i 0.211000 0.156965i
\(66\) 0 0
\(67\) 13.6638 + 50.9941i 0.203938 + 0.761107i 0.989771 + 0.142668i \(0.0455680\pi\)
−0.785833 + 0.618439i \(0.787765\pi\)
\(68\) 70.5141 18.8942i 1.03697 0.277856i
\(69\) 0 0
\(70\) 19.0235 + 2.79359i 0.271764 + 0.0399084i
\(71\) 39.8770 0.561647 0.280824 0.959759i \(-0.409392\pi\)
0.280824 + 0.959759i \(0.409392\pi\)
\(72\) 0 0
\(73\) 39.3739 + 39.3739i 0.539368 + 0.539368i 0.923343 0.383975i \(-0.125445\pi\)
−0.383975 + 0.923343i \(0.625445\pi\)
\(74\) −40.0527 + 23.1244i −0.541252 + 0.312492i
\(75\) 0 0
\(76\) −46.1216 + 79.8849i −0.606863 + 1.05112i
\(77\) 0.146887 + 0.548188i 0.00190762 + 0.00711933i
\(78\) 0 0
\(79\) −52.0212 + 30.0345i −0.658497 + 0.380183i −0.791704 0.610905i \(-0.790806\pi\)
0.133207 + 0.991088i \(0.457472\pi\)
\(80\) −43.7780 34.6410i −0.547225 0.433013i
\(81\) 0 0
\(82\) −1.03447 + 1.03447i −0.0126155 + 0.0126155i
\(83\) 28.3267 105.717i 0.341286 1.27370i −0.555606 0.831446i \(-0.687514\pi\)
0.896892 0.442251i \(-0.145820\pi\)
\(84\) 0 0
\(85\) 40.3883 93.5371i 0.475156 1.10044i
\(86\) −11.2861 + 19.5481i −0.131234 + 0.227304i
\(87\) 0 0
\(88\) −0.120899 + 0.451202i −0.00137385 + 0.00512730i
\(89\) 51.6755i 0.580623i −0.956932 0.290312i \(-0.906241\pi\)
0.956932 0.290312i \(-0.0937590\pi\)
\(90\) 0 0
\(91\) −20.3485 −0.223610
\(92\) −16.4863 4.41749i −0.179199 0.0480162i
\(93\) 0 0
\(94\) 12.9228 + 7.46099i 0.137477 + 0.0793722i
\(95\) 47.4876 + 119.660i 0.499870 + 1.25958i
\(96\) 0 0
\(97\) −96.7027 25.9114i −0.996935 0.267128i −0.276774 0.960935i \(-0.589265\pi\)
−0.720161 + 0.693807i \(0.755932\pi\)
\(98\) 6.20105 + 6.20105i 0.0632760 + 0.0632760i
\(99\) 0 0
\(100\) −87.1652 + 20.5917i −0.871652 + 0.205917i
\(101\) 9.06943 + 15.7087i 0.0897963 + 0.155532i 0.907425 0.420214i \(-0.138045\pi\)
−0.817629 + 0.575746i \(0.804712\pi\)
\(102\) 0 0
\(103\) 61.2331 16.4074i 0.594496 0.159295i 0.0509890 0.998699i \(-0.483763\pi\)
0.543507 + 0.839404i \(0.317096\pi\)
\(104\) −14.5045 8.37420i −0.139467 0.0805212i
\(105\) 0 0
\(106\) −22.4265 38.8439i −0.211571 0.366452i
\(107\) 150.617 150.617i 1.40764 1.40764i 0.635703 0.771934i \(-0.280710\pi\)
0.771934 0.635703i \(-0.219290\pi\)
\(108\) 0 0
\(109\) 126.495i 1.16051i 0.814435 + 0.580254i \(0.197047\pi\)
−0.814435 + 0.580254i \(0.802953\pi\)
\(110\) 0.183848 + 0.247138i 0.00167134 + 0.00224671i
\(111\) 0 0
\(112\) 17.1999 + 64.1908i 0.153570 + 0.573132i
\(113\) 181.354 48.5936i 1.60490 0.430032i 0.658383 0.752683i \(-0.271241\pi\)
0.946518 + 0.322652i \(0.104574\pi\)
\(114\) 0 0
\(115\) −19.1123 + 14.2178i −0.166194 + 0.123633i
\(116\) −147.359 −1.27034
\(117\) 0 0
\(118\) 45.6951 + 45.6951i 0.387246 + 0.387246i
\(119\) −105.034 + 60.6417i −0.882643 + 0.509594i
\(120\) 0 0
\(121\) 60.4955 104.781i 0.499962 0.865960i
\(122\) −9.27988 34.6330i −0.0760646 0.283877i
\(123\) 0 0
\(124\) −114.796 + 66.2777i −0.925776 + 0.534497i
\(125\) −52.9507 + 113.231i −0.423605 + 0.905847i
\(126\) 0 0
\(127\) −58.8693 + 58.8693i −0.463538 + 0.463538i −0.899813 0.436275i \(-0.856297\pi\)
0.436275 + 0.899813i \(0.356297\pi\)
\(128\) −32.3269 + 120.646i −0.252554 + 0.942545i
\(129\) 0 0
\(130\) −10.2652 + 4.07379i −0.0789631 + 0.0313368i
\(131\) −118.153 + 204.647i −0.901931 + 1.56219i −0.0769467 + 0.997035i \(0.524517\pi\)
−0.824984 + 0.565155i \(0.808816\pi\)
\(132\) 0 0
\(133\) 39.6643 148.029i 0.298228 1.11300i
\(134\) 34.1087i 0.254543i
\(135\) 0 0
\(136\) −99.8258 −0.734013
\(137\) −70.5141 18.8942i −0.514702 0.137914i −0.00788694 0.999969i \(-0.502511\pi\)
−0.506815 + 0.862055i \(0.669177\pi\)
\(138\) 0 0
\(139\) 138.044 + 79.6996i 0.993121 + 0.573379i 0.906206 0.422837i \(-0.138966\pi\)
0.0869151 + 0.996216i \(0.472299\pi\)
\(140\) 97.8828 + 42.2647i 0.699163 + 0.301891i
\(141\) 0 0
\(142\) −24.8860 6.66818i −0.175253 0.0469590i
\(143\) −0.230502 0.230502i −0.00161190 0.00161190i
\(144\) 0 0
\(145\) −127.617 + 161.278i −0.880118 + 1.11226i
\(146\) −17.9880 31.1561i −0.123205 0.213398i
\(147\) 0 0
\(148\) −247.714 + 66.3748i −1.67374 + 0.448479i
\(149\) −72.2341 41.7044i −0.484793 0.279895i 0.237619 0.971358i \(-0.423633\pi\)
−0.722412 + 0.691463i \(0.756966\pi\)
\(150\) 0 0
\(151\) 17.3784 + 30.1003i 0.115089 + 0.199340i 0.917815 0.397008i \(-0.129951\pi\)
−0.802726 + 0.596347i \(0.796618\pi\)
\(152\) 89.1927 89.1927i 0.586794 0.586794i
\(153\) 0 0
\(154\) 0.366669i 0.00238097i
\(155\) −26.8789 + 183.037i −0.173412 + 1.18088i
\(156\) 0 0
\(157\) 1.72850 + 6.45085i 0.0110096 + 0.0410882i 0.971212 0.238216i \(-0.0765627\pi\)
−0.960203 + 0.279305i \(0.909896\pi\)
\(158\) 37.4872 10.0447i 0.237261 0.0635738i
\(159\) 0 0
\(160\) 80.0087 + 107.552i 0.500054 + 0.672199i
\(161\) 28.3562 0.176126
\(162\) 0 0
\(163\) 171.374 + 171.374i 1.05137 + 1.05137i 0.998607 + 0.0527665i \(0.0168039\pi\)
0.0527665 + 0.998607i \(0.483196\pi\)
\(164\) −7.02538 + 4.05610i −0.0428377 + 0.0247323i
\(165\) 0 0
\(166\) −35.3557 + 61.2378i −0.212986 + 0.368903i
\(167\) −19.6402 73.2981i −0.117606 0.438911i 0.881863 0.471506i \(-0.156289\pi\)
−0.999469 + 0.0325953i \(0.989623\pi\)
\(168\) 0 0
\(169\) −136.236 + 78.6561i −0.806132 + 0.465420i
\(170\) −40.8462 + 51.6199i −0.240272 + 0.303647i
\(171\) 0 0
\(172\) −88.5045 + 88.5045i −0.514561 + 0.514561i
\(173\) 54.1816 202.209i 0.313189 1.16884i −0.612476 0.790489i \(-0.709826\pi\)
0.925664 0.378346i \(-0.123507\pi\)
\(174\) 0 0
\(175\) 131.026 70.5256i 0.748718 0.403003i
\(176\) −0.532300 + 0.921970i −0.00302443 + 0.00523847i
\(177\) 0 0
\(178\) −8.64111 + 32.2491i −0.0485456 + 0.181175i
\(179\) 140.296i 0.783777i −0.920013 0.391889i \(-0.871822\pi\)
0.920013 0.391889i \(-0.128178\pi\)
\(180\) 0 0
\(181\) 114.720 0.633815 0.316907 0.948457i \(-0.397356\pi\)
0.316907 + 0.948457i \(0.397356\pi\)
\(182\) 12.6989 + 3.40265i 0.0697740 + 0.0186959i
\(183\) 0 0
\(184\) 20.2125 + 11.6697i 0.109851 + 0.0634223i
\(185\) −141.883 + 328.593i −0.766934 + 1.77618i
\(186\) 0 0
\(187\) −1.87673 0.502869i −0.0100360 0.00268914i
\(188\) 58.5083 + 58.5083i 0.311215 + 0.311215i
\(189\) 0 0
\(190\) −9.62614 82.6170i −0.0506639 0.434827i
\(191\) −128.545 222.647i −0.673012 1.16569i −0.977046 0.213030i \(-0.931667\pi\)
0.304034 0.952661i \(-0.401666\pi\)
\(192\) 0 0
\(193\) −120.577 + 32.3085i −0.624752 + 0.167402i −0.557287 0.830320i \(-0.688158\pi\)
−0.0674648 + 0.997722i \(0.521491\pi\)
\(194\) 56.0163 + 32.3410i 0.288744 + 0.166706i
\(195\) 0 0
\(196\) 24.3140 + 42.1131i 0.124051 + 0.214863i
\(197\) 44.6917 44.6917i 0.226862 0.226862i −0.584519 0.811380i \(-0.698717\pi\)
0.811380 + 0.584519i \(0.198717\pi\)
\(198\) 0 0
\(199\) 297.964i 1.49730i −0.662963 0.748652i \(-0.730701\pi\)
0.662963 0.748652i \(-0.269299\pi\)
\(200\) 122.420 + 3.65105i 0.612100 + 0.0182553i
\(201\) 0 0
\(202\) −3.03316 11.3199i −0.0150156 0.0560391i
\(203\) 236.478 63.3641i 1.16492 0.312138i
\(204\) 0 0
\(205\) −1.64495 + 11.2016i −0.00802415 + 0.0546420i
\(206\) −40.9573 −0.198822
\(207\) 0 0
\(208\) −26.9909 26.9909i −0.129764 0.129764i
\(209\) 2.12614 1.22753i 0.0101729 0.00587333i
\(210\) 0 0
\(211\) 67.9864 117.756i 0.322210 0.558085i −0.658734 0.752376i \(-0.728908\pi\)
0.980944 + 0.194292i \(0.0622409\pi\)
\(212\) −64.3716 240.238i −0.303640 1.13320i
\(213\) 0 0
\(214\) −119.182 + 68.8095i −0.556923 + 0.321540i
\(215\) 20.2167 + 173.511i 0.0940310 + 0.807028i
\(216\) 0 0
\(217\) 155.722 155.722i 0.717615 0.717615i
\(218\) 21.1524 78.9419i 0.0970294 0.362119i
\(219\) 0 0
\(220\) 0.630026 + 1.58755i 0.00286376 + 0.00721614i
\(221\) 34.8317 60.3303i 0.157610 0.272988i
\(222\) 0 0
\(223\) 58.5893 218.658i 0.262732 0.980530i −0.700892 0.713268i \(-0.747214\pi\)
0.963624 0.267262i \(-0.0861190\pi\)
\(224\) 159.571i 0.712370i
\(225\) 0 0
\(226\) −121.303 −0.536739
\(227\) 69.1844 + 18.5379i 0.304777 + 0.0816648i 0.407966 0.912997i \(-0.366238\pi\)
−0.103189 + 0.994662i \(0.532905\pi\)
\(228\) 0 0
\(229\) 30.8909 + 17.8348i 0.134895 + 0.0778814i 0.565929 0.824454i \(-0.308518\pi\)
−0.431034 + 0.902336i \(0.641851\pi\)
\(230\) 14.3049 5.67694i 0.0621950 0.0246824i
\(231\) 0 0
\(232\) 194.640 + 52.1536i 0.838965 + 0.224800i
\(233\) 191.102 + 191.102i 0.820180 + 0.820180i 0.986134 0.165954i \(-0.0530703\pi\)
−0.165954 + 0.986134i \(0.553070\pi\)
\(234\) 0 0
\(235\) 114.704 13.3648i 0.488103 0.0568714i
\(236\) 179.168 + 310.328i 0.759187 + 1.31495i
\(237\) 0 0
\(238\) 75.6892 20.2809i 0.318022 0.0852137i
\(239\) −300.495 173.491i −1.25730 0.725904i −0.284754 0.958601i \(-0.591912\pi\)
−0.972549 + 0.232696i \(0.925245\pi\)
\(240\) 0 0
\(241\) −7.14432 12.3743i −0.0296445 0.0513457i 0.850823 0.525453i \(-0.176104\pi\)
−0.880467 + 0.474107i \(0.842771\pi\)
\(242\) −55.2747 + 55.2747i −0.228408 + 0.228408i
\(243\) 0 0
\(244\) 198.817i 0.814822i
\(245\) 67.1473 + 9.86054i 0.274071 + 0.0402471i
\(246\) 0 0
\(247\) 22.7826 + 85.0258i 0.0922372 + 0.344234i
\(248\) 175.086 46.9141i 0.705991 0.189170i
\(249\) 0 0
\(250\) 51.9792 61.8095i 0.207917 0.247238i
\(251\) −399.294 −1.59081 −0.795406 0.606077i \(-0.792742\pi\)
−0.795406 + 0.606077i \(0.792742\pi\)
\(252\) 0 0
\(253\) 0.321211 + 0.321211i 0.00126961 + 0.00126961i
\(254\) 46.5826 26.8945i 0.183396 0.105884i
\(255\) 0 0
\(256\) −14.3303 + 24.8208i −0.0559777 + 0.0969563i
\(257\) −90.4083 337.408i −0.351783 1.31287i −0.884484 0.466570i \(-0.845490\pi\)
0.532701 0.846303i \(-0.321177\pi\)
\(258\) 0 0
\(259\) 368.983 213.033i 1.42465 0.822520i
\(260\) −60.8282 + 7.08741i −0.233955 + 0.0272593i
\(261\) 0 0
\(262\) 107.956 107.956i 0.412047 0.412047i
\(263\) −5.67663 + 21.1855i −0.0215842 + 0.0805532i −0.975878 0.218317i \(-0.929943\pi\)
0.954294 + 0.298871i \(0.0966099\pi\)
\(264\) 0 0
\(265\) −318.676 137.601i −1.20255 0.519248i
\(266\) −49.5065 + 85.7477i −0.186115 + 0.322360i
\(267\) 0 0
\(268\) 48.9517 182.690i 0.182656 0.681680i
\(269\) 298.922i 1.11123i 0.831439 + 0.555617i \(0.187518\pi\)
−0.831439 + 0.555617i \(0.812482\pi\)
\(270\) 0 0
\(271\) −21.0091 −0.0775243 −0.0387622 0.999248i \(-0.512341\pi\)
−0.0387622 + 0.999248i \(0.512341\pi\)
\(272\) −219.758 58.8841i −0.807935 0.216486i
\(273\) 0 0
\(274\) 40.8462 + 23.5826i 0.149074 + 0.0860678i
\(275\) 2.28312 + 0.685327i 0.00830224 + 0.00249210i
\(276\) 0 0
\(277\) −376.011 100.752i −1.35744 0.363725i −0.494565 0.869140i \(-0.664673\pi\)
−0.862876 + 0.505415i \(0.831339\pi\)
\(278\) −72.8216 72.8216i −0.261948 0.261948i
\(279\) 0 0
\(280\) −114.330 90.4682i −0.408323 0.323101i
\(281\) 81.1601 + 140.573i 0.288826 + 0.500262i 0.973530 0.228560i \(-0.0734017\pi\)
−0.684704 + 0.728822i \(0.740068\pi\)
\(282\) 0 0
\(283\) −174.031 + 46.6314i −0.614949 + 0.164775i −0.552831 0.833294i \(-0.686452\pi\)
−0.0621185 + 0.998069i \(0.519786\pi\)
\(284\) −123.722 71.4311i −0.435642 0.251518i
\(285\) 0 0
\(286\) 0.105305 + 0.182393i 0.000368199 + 0.000637739i
\(287\) 9.53000 9.53000i 0.0332056 0.0332056i
\(288\) 0 0
\(289\) 126.216i 0.436733i
\(290\) 106.611 79.3084i 0.367622 0.273477i
\(291\) 0 0
\(292\) −51.6315 192.691i −0.176820 0.659902i
\(293\) −264.588 + 70.8962i −0.903032 + 0.241967i −0.680318 0.732917i \(-0.738158\pi\)
−0.222714 + 0.974884i \(0.571492\pi\)
\(294\) 0 0
\(295\) 494.803 + 72.6616i 1.67730 + 0.246310i
\(296\) 350.685 1.18475
\(297\) 0 0
\(298\) 38.1053 + 38.1053i 0.127870 + 0.127870i
\(299\) −14.1053 + 8.14370i −0.0471749 + 0.0272365i
\(300\) 0 0
\(301\) 103.973 180.086i 0.345424 0.598292i
\(302\) −5.81199 21.6907i −0.0192450 0.0718234i
\(303\) 0 0
\(304\) 248.963 143.739i 0.818956 0.472824i
\(305\) −217.595 172.180i −0.713426 0.564526i
\(306\) 0 0
\(307\) 405.347 405.347i 1.32035 1.32035i 0.406854 0.913493i \(-0.366626\pi\)
0.913493 0.406854i \(-0.133374\pi\)
\(308\) 0.526232 1.96393i 0.00170855 0.00637638i
\(309\) 0 0
\(310\) 47.3815 109.733i 0.152844 0.353978i
\(311\) 87.9893 152.402i 0.282924 0.490038i −0.689180 0.724590i \(-0.742029\pi\)
0.972104 + 0.234552i \(0.0753623\pi\)
\(312\) 0 0
\(313\) −70.2383 + 262.133i −0.224404 + 0.837486i 0.758239 + 0.651977i \(0.226060\pi\)
−0.982643 + 0.185509i \(0.940607\pi\)
\(314\) 4.31481i 0.0137414i
\(315\) 0 0
\(316\) 215.202 0.681017
\(317\) 378.928 + 101.533i 1.19536 + 0.320294i 0.801000 0.598664i \(-0.204301\pi\)
0.394355 + 0.918958i \(0.370968\pi\)
\(318\) 0 0
\(319\) 3.39653 + 1.96099i 0.0106474 + 0.00614729i
\(320\) 50.4232 + 127.057i 0.157573 + 0.397054i
\(321\) 0 0
\(322\) −17.6962 4.74169i −0.0549572 0.0147257i
\(323\) 370.989 + 370.989i 1.14857 + 1.14857i
\(324\) 0 0
\(325\) −44.9220 + 72.7114i −0.138221 + 0.223727i
\(326\) −78.2922 135.606i −0.240160 0.415969i
\(327\) 0 0
\(328\) 10.7150 2.87108i 0.0326677 0.00875330i
\(329\) −119.051 68.7340i −0.361856 0.208918i
\(330\) 0 0
\(331\) 151.622 + 262.616i 0.458071 + 0.793403i 0.998859 0.0477564i \(-0.0152071\pi\)
−0.540788 + 0.841159i \(0.681874\pi\)
\(332\) −277.256 + 277.256i −0.835108 + 0.835108i
\(333\) 0 0
\(334\) 49.0273i 0.146788i
\(335\) −157.552 211.790i −0.470305 0.632208i
\(336\) 0 0
\(337\) 15.6786 + 58.5135i 0.0465242 + 0.173631i 0.985279 0.170956i \(-0.0546857\pi\)
−0.938754 + 0.344587i \(0.888019\pi\)
\(338\) 98.1736 26.3055i 0.290455 0.0778271i
\(339\) 0 0
\(340\) −292.861 + 217.861i −0.861354 + 0.640769i
\(341\) 3.52796 0.0103459
\(342\) 0 0
\(343\) −263.354 263.354i −0.767795 0.767795i
\(344\) 148.225 85.5777i 0.430887 0.248773i
\(345\) 0 0
\(346\) −67.6261 + 117.132i −0.195451 + 0.338532i
\(347\) 165.789 + 618.732i 0.477777 + 1.78309i 0.610588 + 0.791948i \(0.290933\pi\)
−0.132811 + 0.991141i \(0.542400\pi\)
\(348\) 0 0
\(349\) −123.659 + 71.3947i −0.354324 + 0.204569i −0.666588 0.745426i \(-0.732246\pi\)
0.312264 + 0.949995i \(0.398913\pi\)
\(350\) −93.5622 + 22.1029i −0.267321 + 0.0631511i
\(351\) 0 0
\(352\) 1.80757 1.80757i 0.00513515 0.00513515i
\(353\) 70.7973 264.219i 0.200559 0.748496i −0.790199 0.612851i \(-0.790023\pi\)
0.990758 0.135645i \(-0.0433107\pi\)
\(354\) 0 0
\(355\) −185.325 + 73.5468i −0.522041 + 0.207174i
\(356\) −92.5656 + 160.328i −0.260016 + 0.450361i
\(357\) 0 0
\(358\) −23.4601 + 87.5545i −0.0655311 + 0.244566i
\(359\) 354.888i 0.988546i −0.869307 0.494273i \(-0.835434\pi\)
0.869307 0.494273i \(-0.164566\pi\)
\(360\) 0 0
\(361\) −301.945 −0.836414
\(362\) −71.5935 19.1834i −0.197772 0.0529929i
\(363\) 0 0
\(364\) 63.1332 + 36.4500i 0.173443 + 0.100137i
\(365\) −255.605 110.367i −0.700289 0.302377i
\(366\) 0 0
\(367\) 228.577 + 61.2471i 0.622827 + 0.166886i 0.556413 0.830906i \(-0.312177\pi\)
0.0664143 + 0.997792i \(0.478844\pi\)
\(368\) 37.6126 + 37.6126i 0.102208 + 0.102208i
\(369\) 0 0
\(370\) 143.492 181.339i 0.387815 0.490106i
\(371\) 206.603 + 357.847i 0.556882 + 0.964548i
\(372\) 0 0
\(373\) 227.685 61.0080i 0.610415 0.163560i 0.0596484 0.998219i \(-0.481002\pi\)
0.550767 + 0.834659i \(0.314335\pi\)
\(374\) 1.08712 + 0.627650i 0.00290674 + 0.00167821i
\(375\) 0 0
\(376\) −56.5735 97.9881i −0.150461 0.260607i
\(377\) −99.4341 + 99.4341i −0.263751 + 0.263751i
\(378\) 0 0
\(379\) 115.252i 0.304096i 0.988373 + 0.152048i \(0.0485868\pi\)
−0.988373 + 0.152048i \(0.951413\pi\)
\(380\) 67.0106 456.322i 0.176344 1.20085i
\(381\) 0 0
\(382\) 42.9904 + 160.442i 0.112540 + 0.420006i
\(383\) 467.540 125.277i 1.22073 0.327094i 0.409767 0.912190i \(-0.365610\pi\)
0.810964 + 0.585097i \(0.198943\pi\)
\(384\) 0 0
\(385\) −1.69369 2.27674i −0.00439919 0.00591362i
\(386\) 80.6510 0.208940
\(387\) 0 0
\(388\) 253.615 + 253.615i 0.653647 + 0.653647i
\(389\) −289.720 + 167.270i −0.744783 + 0.430000i −0.823806 0.566872i \(-0.808153\pi\)
0.0790230 + 0.996873i \(0.474820\pi\)
\(390\) 0 0
\(391\) −48.5390 + 84.0720i −0.124141 + 0.215018i
\(392\) −17.2105 64.2304i −0.0439043 0.163853i
\(393\) 0 0
\(394\) −35.3640 + 20.4174i −0.0897564 + 0.0518209i
\(395\) 186.370 235.527i 0.471823 0.596272i
\(396\) 0 0
\(397\) −469.973 + 469.973i −1.18381 + 1.18381i −0.205061 + 0.978749i \(0.565739\pi\)
−0.978749 + 0.205061i \(0.934261\pi\)
\(398\) −49.8251 + 185.950i −0.125189 + 0.467211i
\(399\) 0 0
\(400\) 267.344 + 80.2492i 0.668361 + 0.200623i
\(401\) 94.6393 163.920i 0.236008 0.408778i −0.723557 0.690265i \(-0.757494\pi\)
0.959565 + 0.281486i \(0.0908274\pi\)
\(402\) 0 0
\(403\) −32.7390 + 122.184i −0.0812383 + 0.303185i
\(404\) 64.9838i 0.160851i
\(405\) 0 0
\(406\) −158.174 −0.389592
\(407\) 6.59291 + 1.76656i 0.0161988 + 0.00434045i
\(408\) 0 0
\(409\) −370.071 213.661i −0.904819 0.522398i −0.0260585 0.999660i \(-0.508296\pi\)
−0.878761 + 0.477263i \(0.841629\pi\)
\(410\) 2.89968 6.71552i 0.00707240 0.0163793i
\(411\) 0 0
\(412\) −219.372 58.7806i −0.532457 0.142671i
\(413\) −420.964 420.964i −1.01928 1.01928i
\(414\) 0 0
\(415\) 63.3322 + 543.553i 0.152608 + 1.30977i
\(416\) 45.8276 + 79.3758i 0.110163 + 0.190807i
\(417\) 0 0
\(418\) −1.53212 + 0.410531i −0.00366536 + 0.000982131i
\(419\) 466.301 + 269.219i 1.11289 + 0.642528i 0.939577 0.342339i \(-0.111219\pi\)
0.173314 + 0.984867i \(0.444552\pi\)
\(420\) 0 0
\(421\) −197.500 342.080i −0.469121 0.812542i 0.530256 0.847838i \(-0.322096\pi\)
−0.999377 + 0.0352961i \(0.988763\pi\)
\(422\) −62.1192 + 62.1192i −0.147202 + 0.147202i
\(423\) 0 0
\(424\) 340.102i 0.802126i
\(425\) −15.1862 + 509.195i −0.0357322 + 1.19811i
\(426\) 0 0
\(427\) 85.4905 + 319.055i 0.200212 + 0.747201i
\(428\) −737.104 + 197.506i −1.72220 + 0.461463i
\(429\) 0 0
\(430\) 16.3977 111.663i 0.0381342 0.259682i
\(431\) 60.0895 0.139419 0.0697094 0.997567i \(-0.477793\pi\)
0.0697094 + 0.997567i \(0.477793\pi\)
\(432\) 0 0
\(433\) −192.514 192.514i −0.444604 0.444604i 0.448952 0.893556i \(-0.351798\pi\)
−0.893556 + 0.448952i \(0.851798\pi\)
\(434\) −123.221 + 71.1418i −0.283920 + 0.163921i
\(435\) 0 0
\(436\) 226.590 392.465i 0.519701 0.900149i
\(437\) −31.7482 118.486i −0.0726503 0.271135i
\(438\) 0 0
\(439\) 253.170 146.168i 0.576697 0.332956i −0.183123 0.983090i \(-0.558621\pi\)
0.759820 + 0.650134i \(0.225287\pi\)
\(440\) −0.270303 2.31990i −0.000614326 0.00527250i
\(441\) 0 0
\(442\) −31.8258 + 31.8258i −0.0720040 + 0.0720040i
\(443\) −97.8721 + 365.264i −0.220930 + 0.824523i 0.763064 + 0.646323i \(0.223694\pi\)
−0.983994 + 0.178200i \(0.942973\pi\)
\(444\) 0 0
\(445\) 95.3073 + 240.157i 0.214174 + 0.539679i
\(446\) −73.1275 + 126.661i −0.163963 + 0.283992i
\(447\) 0 0
\(448\) 42.1162 157.180i 0.0940094 0.350848i
\(449\) 101.349i 0.225721i 0.993611 + 0.112860i \(0.0360013\pi\)
−0.993611 + 0.112860i \(0.963999\pi\)
\(450\) 0 0
\(451\) 0.215906 0.000478728
\(452\) −649.714 174.090i −1.43742 0.385155i
\(453\) 0 0
\(454\) −40.0760 23.1379i −0.0882731 0.0509645i
\(455\) 94.5677 37.5296i 0.207841 0.0824826i
\(456\) 0 0
\(457\) −601.725 161.232i −1.31669 0.352805i −0.468950 0.883224i \(-0.655368\pi\)
−0.847735 + 0.530420i \(0.822034\pi\)
\(458\) −16.2957 16.2957i −0.0355802 0.0355802i
\(459\) 0 0
\(460\) 84.7659 9.87651i 0.184274 0.0214707i
\(461\) −291.735 505.300i −0.632831 1.09610i −0.986970 0.160903i \(-0.948559\pi\)
0.354139 0.935193i \(-0.384774\pi\)
\(462\) 0 0
\(463\) 111.764 29.9470i 0.241390 0.0646803i −0.136096 0.990696i \(-0.543455\pi\)
0.377486 + 0.926015i \(0.376789\pi\)
\(464\) 397.720 + 229.624i 0.857156 + 0.494879i
\(465\) 0 0
\(466\) −87.3049 151.217i −0.187350 0.324499i
\(467\) 145.933 145.933i 0.312491 0.312491i −0.533383 0.845874i \(-0.679079\pi\)
0.845874 + 0.533383i \(0.179079\pi\)
\(468\) 0 0
\(469\) 314.225i 0.669989i
\(470\) −73.8182 10.8402i −0.157060 0.0230642i
\(471\) 0 0
\(472\) −126.823 473.309i −0.268692 1.00277i
\(473\) 3.21774 0.862190i 0.00680283 0.00182281i
\(474\) 0 0
\(475\) −441.389 468.526i −0.929240 0.986371i
\(476\) 434.507 0.912829
\(477\) 0 0
\(478\) 158.519 + 158.519i 0.331630 + 0.331630i
\(479\) −325.761 + 188.078i −0.680086 + 0.392648i −0.799888 0.600150i \(-0.795108\pi\)
0.119801 + 0.992798i \(0.461774\pi\)
\(480\) 0 0
\(481\) −122.363 + 211.939i −0.254393 + 0.440621i
\(482\) 2.38933 + 8.91710i 0.00495711 + 0.0185002i
\(483\) 0 0
\(484\) −375.387 + 216.730i −0.775592 + 0.447788i
\(485\) 497.206 57.9321i 1.02517 0.119448i
\(486\) 0 0
\(487\) −402.693 + 402.693i −0.826885 + 0.826885i −0.987085 0.160199i \(-0.948786\pi\)
0.160199 + 0.987085i \(0.448786\pi\)
\(488\) −70.3654 + 262.607i −0.144191 + 0.538130i
\(489\) 0 0
\(490\) −40.2557 17.3819i −0.0821544 0.0354734i
\(491\) 174.608 302.429i 0.355616 0.615945i −0.631607 0.775289i \(-0.717604\pi\)
0.987223 + 0.159343i \(0.0509377\pi\)
\(492\) 0 0
\(493\) −216.928 + 809.587i −0.440017 + 1.64216i
\(494\) 56.8716i 0.115125i
\(495\) 0 0
\(496\) 413.111 0.832884
\(497\) 229.261 + 61.4303i 0.461290 + 0.123602i
\(498\) 0 0
\(499\) 462.780 + 267.186i 0.927414 + 0.535443i 0.885993 0.463699i \(-0.153478\pi\)
0.0414214 + 0.999142i \(0.486811\pi\)
\(500\) 367.114 256.460i 0.734228 0.512921i
\(501\) 0 0
\(502\) 249.187 + 66.7694i 0.496388 + 0.133007i
\(503\) −441.936 441.936i −0.878600 0.878600i 0.114790 0.993390i \(-0.463381\pi\)
−0.993390 + 0.114790i \(0.963381\pi\)
\(504\) 0 0
\(505\) −71.1216 56.2777i −0.140835 0.111441i
\(506\) −0.146745 0.254170i −0.000290011 0.000502313i
\(507\) 0 0
\(508\) 288.100 77.1961i 0.567126 0.151961i
\(509\) 217.149 + 125.371i 0.426619 + 0.246308i 0.697905 0.716190i \(-0.254116\pi\)
−0.271286 + 0.962499i \(0.587449\pi\)
\(510\) 0 0
\(511\) 165.713 + 287.024i 0.324292 + 0.561690i
\(512\) 366.369 366.369i 0.715564 0.715564i
\(513\) 0 0
\(514\) 225.684i 0.439074i
\(515\) −254.314 + 189.187i −0.493815 + 0.367353i
\(516\) 0 0
\(517\) −0.569974 2.12717i −0.00110246 0.00411445i
\(518\) −265.894 + 71.2461i −0.513309 + 0.137541i
\(519\) 0 0
\(520\) 82.8534 + 12.1670i 0.159334 + 0.0233980i
\(521\) −450.350 −0.864395 −0.432198 0.901779i \(-0.642262\pi\)
−0.432198 + 0.901779i \(0.642262\pi\)
\(522\) 0 0
\(523\) −233.027 233.027i −0.445559 0.445559i 0.448316 0.893875i \(-0.352024\pi\)
−0.893875 + 0.448316i \(0.852024\pi\)
\(524\) 733.163 423.292i 1.39917 0.807809i
\(525\) 0 0
\(526\) 7.08522 12.2720i 0.0134700 0.0233307i
\(527\) 195.135 + 728.253i 0.370275 + 1.38188i
\(528\) 0 0
\(529\) −438.471 + 253.152i −0.828868 + 0.478547i
\(530\) 175.867 + 139.161i 0.331824 + 0.262568i
\(531\) 0 0
\(532\) −388.225 + 388.225i −0.729746 + 0.729746i
\(533\) −2.00358 + 7.47748i −0.00375907 + 0.0140290i
\(534\) 0 0
\(535\) −422.190 + 977.769i −0.789139 + 1.82761i
\(536\) −129.316 + 223.982i −0.241261 + 0.417877i
\(537\) 0 0
\(538\) 49.9853 186.548i 0.0929096 0.346743i
\(539\) 1.29423i 0.00240118i
\(540\) 0 0
\(541\) −36.3250 −0.0671442 −0.0335721 0.999436i \(-0.510688\pi\)
−0.0335721 + 0.999436i \(0.510688\pi\)
\(542\) 13.1111 + 3.51312i 0.0241903 + 0.00648176i
\(543\) 0 0
\(544\) 473.104 + 273.147i 0.869677 + 0.502108i
\(545\) −233.301 587.876i −0.428075 1.07867i
\(546\) 0 0
\(547\) 478.843 + 128.305i 0.875398 + 0.234562i 0.668420 0.743784i \(-0.266971\pi\)
0.206977 + 0.978346i \(0.433637\pi\)
\(548\) 184.932 + 184.932i 0.337468 + 0.337468i
\(549\) 0 0
\(550\) −1.31022 0.809471i −0.00238222 0.00147177i
\(551\) −529.531 917.175i −0.961037 1.66456i
\(552\) 0 0
\(553\) −345.349 + 92.5359i −0.624501 + 0.167334i
\(554\) 217.809 + 125.752i 0.393158 + 0.226990i
\(555\) 0 0
\(556\) −285.530 494.552i −0.513543 0.889483i
\(557\) 22.1908 22.1908i 0.0398399 0.0398399i −0.686906 0.726746i \(-0.741032\pi\)
0.726746 + 0.686906i \(0.241032\pi\)
\(558\) 0 0
\(559\) 119.441i 0.213669i
\(560\) −198.325 266.598i −0.354151 0.476068i
\(561\) 0 0
\(562\) −27.1430 101.299i −0.0482972 0.180247i
\(563\) −230.270 + 61.7007i −0.409006 + 0.109593i −0.457455 0.889233i \(-0.651239\pi\)
0.0484491 + 0.998826i \(0.484572\pi\)
\(564\) 0 0
\(565\) −753.202 + 560.313i −1.33310 + 0.991704i
\(566\) 116.405 0.205662
\(567\) 0 0
\(568\) 138.138 + 138.138i 0.243200 + 0.243200i
\(569\) 500.670 289.062i 0.879913 0.508018i 0.00928322 0.999957i \(-0.497045\pi\)
0.870630 + 0.491939i \(0.163712\pi\)
\(570\) 0 0
\(571\) −382.716 + 662.883i −0.670256 + 1.16092i 0.307576 + 0.951524i \(0.400482\pi\)
−0.977832 + 0.209393i \(0.932851\pi\)
\(572\) 0.302260 + 1.12805i 0.000528427 + 0.00197212i
\(573\) 0 0
\(574\) −7.54097 + 4.35378i −0.0131376 + 0.00758499i
\(575\) 62.6001 101.325i 0.108870 0.176218i
\(576\) 0 0
\(577\) 176.644 176.644i 0.306143 0.306143i −0.537269 0.843411i \(-0.680544\pi\)
0.843411 + 0.537269i \(0.180544\pi\)
\(578\) −21.1057 + 78.7674i −0.0365150 + 0.136276i
\(579\) 0 0
\(580\) 684.840 271.781i 1.18076 0.468589i
\(581\) 325.713 564.151i 0.560607 0.971000i
\(582\) 0 0
\(583\) −1.71325 + 6.39394i −0.00293868 + 0.0109673i
\(584\) 272.790i 0.467106i
\(585\) 0 0
\(586\) 176.977 0.302008
\(587\) 527.304 + 141.291i 0.898304 + 0.240700i 0.678288 0.734796i \(-0.262722\pi\)
0.220016 + 0.975496i \(0.429389\pi\)
\(588\) 0 0
\(589\) −825.033 476.333i −1.40073 0.808715i
\(590\) −296.641 128.086i −0.502781 0.217095i
\(591\) 0 0
\(592\) 772.005 + 206.858i 1.30406 + 0.349423i
\(593\) −595.579 595.579i −1.00435 1.00435i −0.999990 0.00435896i \(-0.998612\pi\)
−0.00435896 0.999990i \(-0.501388\pi\)
\(594\) 0 0
\(595\) 376.294 475.546i 0.632427 0.799237i
\(596\) 149.409 + 258.784i 0.250686 + 0.434201i
\(597\) 0 0
\(598\) 10.1645 2.72356i 0.0169974 0.00455445i
\(599\) 384.062 + 221.739i 0.641173 + 0.370181i 0.785066 0.619412i \(-0.212629\pi\)
−0.143893 + 0.989593i \(0.545962\pi\)
\(600\) 0 0
\(601\) 163.594 + 283.354i 0.272204 + 0.471470i 0.969426 0.245385i \(-0.0789143\pi\)
−0.697222 + 0.716855i \(0.745581\pi\)
\(602\) −94.9999 + 94.9999i −0.157807 + 0.157807i
\(603\) 0 0
\(604\) 124.519i 0.206157i
\(605\) −87.8946 + 598.535i −0.145280 + 0.989315i
\(606\) 0 0
\(607\) −43.0356 160.611i −0.0708988 0.264598i 0.921373 0.388679i \(-0.127068\pi\)
−0.992272 + 0.124081i \(0.960402\pi\)
\(608\) −666.764 + 178.659i −1.09665 + 0.293847i
\(609\) 0 0
\(610\) 107.003 + 143.838i 0.175414 + 0.235801i
\(611\) 78.9596 0.129230
\(612\) 0 0
\(613\) −60.4318 60.4318i −0.0985837 0.0985837i 0.656095 0.754678i \(-0.272207\pi\)
−0.754678 + 0.656095i \(0.772207\pi\)
\(614\) −320.746 + 185.183i −0.522387 + 0.301600i
\(615\) 0 0
\(616\) −1.39015 + 2.40781i −0.00225674 + 0.00390878i
\(617\) 105.071 + 392.130i 0.170293 + 0.635544i 0.997306 + 0.0733596i \(0.0233721\pi\)
−0.827012 + 0.562184i \(0.809961\pi\)
\(618\) 0 0
\(619\) 391.642 226.114i 0.632701 0.365290i −0.149097 0.988823i \(-0.547637\pi\)
0.781797 + 0.623533i \(0.214303\pi\)
\(620\) 411.266 519.743i 0.663333 0.838295i
\(621\) 0 0
\(622\) −80.3958 + 80.3958i −0.129254 + 0.129254i
\(623\) 79.6058 297.093i 0.127778 0.476875i
\(624\) 0 0
\(625\) 37.2468 623.889i 0.0595949 0.998223i
\(626\) 87.6671 151.844i 0.140043 0.242562i
\(627\) 0 0
\(628\) 6.19248 23.1107i 0.00986064 0.0368004i
\(629\) 1458.64i 2.31899i
\(630\) 0 0
\(631\) −195.973 −0.310575 −0.155287 0.987869i \(-0.549630\pi\)
−0.155287 + 0.987869i \(0.549630\pi\)
\(632\) −284.249 76.1644i −0.449761 0.120513i
\(633\) 0 0
\(634\) −219.499 126.728i −0.346212 0.199886i
\(635\) 165.014 382.165i 0.259865 0.601835i
\(636\) 0 0
\(637\) 44.8232 + 12.0103i 0.0703661 + 0.0188545i
\(638\) −1.79175 1.79175i −0.00280839 0.00280839i
\(639\) 0 0
\(640\) −72.2758 620.312i −0.112931 0.969238i
\(641\) 130.750 + 226.466i 0.203978 + 0.353300i 0.949807 0.312838i \(-0.101280\pi\)
−0.745829 + 0.666138i \(0.767946\pi\)
\(642\) 0 0
\(643\) 964.305 258.385i 1.49970 0.401842i 0.586698 0.809806i \(-0.300428\pi\)
0.912998 + 0.407963i \(0.133761\pi\)
\(644\) −87.9780 50.7941i −0.136612 0.0788729i
\(645\) 0 0
\(646\) −169.486 293.559i −0.262363 0.454426i
\(647\) −172.569 + 172.569i −0.266722 + 0.266722i −0.827778 0.561056i \(-0.810395\pi\)
0.561056 + 0.827778i \(0.310395\pi\)
\(648\) 0 0
\(649\) 9.53712i 0.0146951i
\(650\) 40.1931 37.8651i 0.0618356 0.0582540i
\(651\) 0 0
\(652\) −224.725 838.685i −0.344670 1.28633i
\(653\) −1068.93 + 286.420i −1.63696 + 0.438622i −0.955920 0.293626i \(-0.905138\pi\)
−0.681038 + 0.732248i \(0.738471\pi\)
\(654\) 0 0
\(655\) 171.666 1168.99i 0.262085 1.78472i
\(656\) 25.2818 0.0385394
\(657\) 0 0
\(658\) 62.8023 + 62.8023i 0.0954442 + 0.0954442i
\(659\) −373.508 + 215.645i −0.566780 + 0.327231i −0.755862 0.654731i \(-0.772782\pi\)
0.189082 + 0.981961i \(0.439449\pi\)
\(660\) 0 0
\(661\) −252.072 + 436.601i −0.381349 + 0.660516i −0.991255 0.131958i \(-0.957874\pi\)
0.609906 + 0.792473i \(0.291207\pi\)
\(662\) −50.7080 189.245i −0.0765981 0.285868i
\(663\) 0 0
\(664\) 464.341 268.087i 0.699308 0.403746i
\(665\) 88.6803 + 761.106i 0.133354 + 1.14452i
\(666\) 0 0
\(667\) 138.564 138.564i 0.207743 0.207743i
\(668\) −70.3624 + 262.596i −0.105333 + 0.393108i
\(669\) 0 0
\(670\) 62.9082 + 158.517i 0.0938928 + 0.236593i
\(671\) −2.64575 + 4.58258i −0.00394300 + 0.00682947i
\(672\) 0 0
\(673\) 96.6593 360.737i 0.143624 0.536014i −0.856188 0.516664i \(-0.827174\pi\)
0.999813 0.0193499i \(-0.00615965\pi\)
\(674\) 39.1382i 0.0580686i
\(675\) 0 0
\(676\) 563.583 0.833702
\(677\) 1119.55 + 299.983i 1.65370 + 0.443107i 0.960645 0.277779i \(-0.0895984\pi\)
0.693053 + 0.720886i \(0.256265\pi\)
\(678\) 0 0
\(679\) −516.047 297.940i −0.760011 0.438793i
\(680\) 463.931 184.113i 0.682251 0.270754i
\(681\) 0 0
\(682\) −2.20169 0.589941i −0.00322828 0.000865016i
\(683\) −390.999 390.999i −0.572473 0.572473i 0.360346 0.932819i \(-0.382659\pi\)
−0.932819 + 0.360346i \(0.882659\pi\)
\(684\) 0 0
\(685\) 362.555 42.2432i 0.529278 0.0616689i
\(686\) 120.313 + 208.389i 0.175384 + 0.303774i
\(687\) 0 0
\(688\) 376.785 100.959i 0.547653 0.146743i
\(689\) −205.542 118.670i −0.298320 0.172235i
\(690\) 0 0
\(691\) 206.234 + 357.208i 0.298457 + 0.516943i 0.975783 0.218740i \(-0.0701946\pi\)
−0.677326 + 0.735683i \(0.736861\pi\)
\(692\) −530.318 + 530.318i −0.766355 + 0.766355i
\(693\) 0 0
\(694\) 413.855i 0.596332i
\(695\) −788.539 115.797i −1.13459 0.166614i
\(696\) 0 0
\(697\) 11.9420 + 44.5681i 0.0171334 + 0.0639428i
\(698\) 89.1104 23.8771i 0.127665 0.0342078i
\(699\) 0 0
\(700\) −532.852 15.8918i −0.761217 0.0227025i
\(701\) −458.287 −0.653762 −0.326881 0.945066i \(-0.605998\pi\)
−0.326881 + 0.945066i \(0.605998\pi\)
\(702\) 0 0
\(703\) −1303.27 1303.27i −1.85387 1.85387i
\(704\) 2.25757 1.30341i 0.00320677 0.00185143i
\(705\) 0 0
\(706\) −88.3648 + 153.052i −0.125163 + 0.216788i
\(707\) 27.9428 + 104.284i 0.0395231 + 0.147502i
\(708\) 0 0
\(709\) 560.267 323.470i 0.790221 0.456234i −0.0498194 0.998758i \(-0.515865\pi\)
0.840040 + 0.542524i \(0.182531\pi\)
\(710\) 127.954 14.9085i 0.180217 0.0209980i
\(711\) 0 0
\(712\) 179.009 179.009i 0.251417 0.251417i
\(713\) 45.6228 170.267i 0.0639871 0.238803i
\(714\) 0 0
\(715\) 1.49636 + 0.646112i 0.00209281 + 0.000903653i
\(716\) −251.311 + 435.283i −0.350993 + 0.607937i
\(717\) 0 0
\(718\) −59.3439 + 221.475i −0.0826517 + 0.308460i
\(719\) 98.3936i 0.136848i −0.997656 0.0684239i \(-0.978203\pi\)
0.997656 0.0684239i \(-0.0217970\pi\)
\(720\) 0 0
\(721\) 377.317 0.523325
\(722\) 188.435 + 50.4910i 0.260990 + 0.0699321i
\(723\) 0 0
\(724\) −355.932 205.497i −0.491619 0.283836i
\(725\) 295.637 984.893i 0.407775 1.35847i
\(726\) 0 0
\(727\) 1019.79 + 273.252i 1.40274 + 0.375862i 0.879326 0.476220i \(-0.157993\pi\)
0.523409 + 0.852082i \(0.324660\pi\)
\(728\) −70.4892 70.4892i −0.0968259 0.0968259i
\(729\) 0 0
\(730\) 141.060 + 111.619i 0.193233 + 0.152903i
\(731\) 355.953 + 616.528i 0.486939 + 0.843404i
\(732\) 0 0
\(733\) −111.526 + 29.8832i −0.152150 + 0.0407684i −0.334090 0.942541i \(-0.608429\pi\)
0.181940 + 0.983310i \(0.441762\pi\)
\(734\) −132.406 76.4449i −0.180390 0.104148i
\(735\) 0 0
\(736\) −63.8621 110.612i −0.0867692 0.150289i
\(737\) −3.55945 + 3.55945i −0.00482965 + 0.00482965i
\(738\) 0 0
\(739\) 427.280i 0.578186i 0.957301 + 0.289093i \(0.0933537\pi\)
−0.957301 + 0.289093i \(0.906646\pi\)
\(740\) 1028.81 765.341i 1.39029 1.03424i
\(741\) 0 0
\(742\) −69.0959 257.869i −0.0931212 0.347533i
\(743\) −330.163 + 88.4669i −0.444365 + 0.119067i −0.474061 0.880492i \(-0.657213\pi\)
0.0296967 + 0.999559i \(0.490546\pi\)
\(744\) 0 0
\(745\) 412.618 + 60.5928i 0.553850 + 0.0813326i
\(746\) −152.293 −0.204146
\(747\) 0 0
\(748\) 4.92197 + 4.92197i 0.00658017 + 0.00658017i
\(749\) 1097.95 633.904i 1.46589 0.846334i
\(750\) 0 0
\(751\) 521.702 903.615i 0.694677 1.20322i −0.275613 0.961269i \(-0.588881\pi\)
0.970290 0.241947i \(-0.0777859\pi\)
\(752\) −66.7418 249.084i −0.0887524 0.331229i
\(753\) 0 0
\(754\) 78.6810 45.4265i 0.104352 0.0602474i
\(755\) −136.280 107.837i −0.180503 0.142830i
\(756\) 0 0
\(757\) 641.252 641.252i 0.847097 0.847097i −0.142673 0.989770i \(-0.545570\pi\)
0.989770 + 0.142673i \(0.0455698\pi\)
\(758\) 19.2723 71.9254i 0.0254253 0.0948884i
\(759\) 0 0
\(760\) −250.013 + 579.017i −0.328964 + 0.761865i
\(761\) 307.586 532.754i 0.404186 0.700071i −0.590040 0.807374i \(-0.700888\pi\)
0.994226 + 0.107303i \(0.0342214\pi\)
\(762\) 0 0
\(763\) −194.866 + 727.249i −0.255394 + 0.953144i
\(764\) 921.046i 1.20556i
\(765\) 0 0
\(766\) −312.726 −0.408258
\(767\) 330.299 + 88.5033i 0.430637 + 0.115389i
\(768\) 0 0
\(769\) −217.822 125.759i −0.283253 0.163536i 0.351642 0.936135i \(-0.385623\pi\)
−0.634895 + 0.772598i \(0.718957\pi\)
\(770\) 0.676264 + 1.70406i 0.000878265 + 0.00221307i
\(771\) 0 0
\(772\) 431.977 + 115.748i 0.559555 + 0.149932i
\(773\) −364.839 364.839i −0.471978 0.471978i 0.430576 0.902554i \(-0.358310\pi\)
−0.902554 + 0.430576i \(0.858310\pi\)
\(774\) 0 0
\(775\) −212.666 900.221i −0.274408 1.16158i
\(776\) −245.228 424.748i −0.316016 0.547355i
\(777\) 0 0
\(778\) 208.776 55.9414i 0.268350 0.0719042i
\(779\) −50.4909 29.1509i −0.0648150 0.0374210i
\(780\) 0 0
\(781\) 1.90114 + 3.29287i 0.00243424 + 0.00421622i
\(782\) 44.3501 44.3501i 0.0567137 0.0567137i
\(783\) 0 0
\(784\) 151.550i 0.193304i
\(785\) −19.9306 26.7918i −0.0253893 0.0341297i
\(786\) 0 0
\(787\) 243.371 + 908.273i 0.309239 + 1.15410i 0.929235 + 0.369490i \(0.120468\pi\)
−0.619996 + 0.784605i \(0.712866\pi\)
\(788\) −218.716 + 58.6049i −0.277559 + 0.0743717i
\(789\) 0 0
\(790\) −155.692 + 115.821i −0.197079 + 0.146609i
\(791\) 1117.50 1.41277
\(792\) 0 0
\(793\) −134.156 134.156i −0.169175 0.169175i
\(794\) 371.884 214.707i 0.468367 0.270412i
\(795\) 0 0
\(796\) −533.739 + 924.462i −0.670526 + 1.16138i
\(797\) 301.039 + 1123.49i 0.377716 + 1.40965i 0.849336 + 0.527852i \(0.177003\pi\)
−0.471621 + 0.881802i \(0.656331\pi\)
\(798\) 0 0
\(799\) 407.573 235.312i 0.510103 0.294508i
\(800\) −570.195 352.274i −0.712744 0.440342i
\(801\) 0 0
\(802\) −86.4720 + 86.4720i −0.107820 + 0.107820i
\(803\) −1.37417 + 5.12848i −0.00171130 + 0.00638665i
\(804\) 0 0
\(805\) −131.783 + 52.2986i −0.163705 + 0.0649672i
\(806\) 40.8628 70.7765i 0.0506983 0.0878120i
\(807\) 0 0
\(808\) −22.9992 + 85.8340i −0.0284643 + 0.106230i
\(809\) 753.586i 0.931504i 0.884915 + 0.465752i \(0.154216\pi\)
−0.884915 + 0.465752i \(0.845784\pi\)
\(810\) 0 0
\(811\) 568.270 0.700703 0.350352 0.936618i \(-0.386062\pi\)
0.350352 + 0.936618i \(0.386062\pi\)
\(812\) −847.200 227.007i −1.04335 0.279565i
\(813\) 0 0
\(814\) −3.81903 2.20492i −0.00469168 0.00270874i
\(815\) −1112.52 480.372i −1.36505 0.589414i
\(816\) 0 0
\(817\) −868.896 232.820i −1.06352 0.284969i
\(818\) 195.222 + 195.222i 0.238657 + 0.238657i
\(819\) 0 0
\(820\) 25.1689 31.8076i 0.0306938 0.0387897i
\(821\) −298.755 517.458i −0.363891 0.630278i 0.624706 0.780860i \(-0.285219\pi\)
−0.988598 + 0.150582i \(0.951885\pi\)
\(822\) 0 0
\(823\) 90.1649 24.1596i 0.109556 0.0293555i −0.203624 0.979049i \(-0.565272\pi\)
0.313181 + 0.949694i \(0.398605\pi\)
\(824\) 268.955 + 155.281i 0.326401 + 0.188448i
\(825\) 0 0
\(826\) 192.317 + 333.104i 0.232830 + 0.403273i
\(827\) −7.50861 + 7.50861i −0.00907934 + 0.00907934i −0.711632 0.702553i \(-0.752044\pi\)
0.702553 + 0.711632i \(0.252044\pi\)
\(828\) 0 0
\(829\) 161.036i 0.194254i −0.995272 0.0971269i \(-0.969035\pi\)
0.995272 0.0971269i \(-0.0309653\pi\)
\(830\) 51.3687 349.805i 0.0618900 0.421452i
\(831\) 0 0
\(832\) 24.1910 + 90.2819i 0.0290757 + 0.108512i
\(833\) 267.160 71.5854i 0.320721 0.0859369i
\(834\) 0 0
\(835\) 226.463 + 304.423i 0.271213 + 0.364578i
\(836\) −8.79541 −0.0105208
\(837\) 0 0
\(838\) −245.986 245.986i −0.293539 0.293539i
\(839\) −80.9864 + 46.7575i −0.0965272 + 0.0557300i −0.547487 0.836814i \(-0.684415\pi\)
0.450959 + 0.892545i \(0.351082\pi\)
\(840\) 0 0
\(841\) 425.432 736.870i 0.505864 0.876183i
\(842\) 66.0514 + 246.507i 0.0784459 + 0.292764i
\(843\) 0 0
\(844\) −421.869 + 243.566i −0.499845 + 0.288586i
\(845\) 488.077 616.813i 0.577606 0.729957i
\(846\) 0 0
\(847\) 509.216 509.216i 0.601199 0.601199i
\(848\) −200.615 + 748.706i −0.236575 + 0.882908i
\(849\) 0 0
\(850\) 94.6242 315.233i 0.111323 0.370863i
\(851\) 170.516 295.343i 0.200372 0.347054i
\(852\) 0 0
\(853\) −40.7138 + 151.946i −0.0477301 + 0.178131i −0.985676 0.168651i \(-0.946059\pi\)
0.937946 + 0.346782i \(0.112726\pi\)
\(854\) 213.408i 0.249892i
\(855\) 0 0
\(856\) 1043.51 1.21905
\(857\) −100.177 26.8424i −0.116893 0.0313214i 0.199898 0.979817i \(-0.435939\pi\)
−0.316791 + 0.948495i \(0.602605\pi\)
\(858\) 0 0
\(859\) −431.090 248.890i −0.501851 0.289744i 0.227626 0.973749i \(-0.426904\pi\)
−0.729478 + 0.684004i \(0.760237\pi\)
\(860\) 248.084 574.549i 0.288470 0.668081i
\(861\) 0 0
\(862\) −37.5000 10.0481i −0.0435035 0.0116567i
\(863\) 597.165 + 597.165i 0.691965 + 0.691965i 0.962664 0.270699i \(-0.0872549\pi\)
−0.270699 + 0.962664i \(0.587255\pi\)
\(864\) 0 0
\(865\) 121.138 + 1039.67i 0.140044 + 1.20194i
\(866\) 87.9499 + 152.334i 0.101559 + 0.175905i
\(867\) 0 0
\(868\) −762.088 + 204.201i −0.877982 + 0.235254i
\(869\) −4.96023 2.86379i −0.00570798 0.00329550i
\(870\) 0 0
\(871\) −90.2432 156.306i −0.103609 0.179456i
\(872\) −438.193 + 438.193i −0.502515 + 0.502515i
\(873\) 0 0
\(874\) 79.2523i 0.0906777i
\(875\) −478.856 + 569.417i −0.547264 + 0.650763i
\(876\) 0 0
\(877\) −230.613 860.660i −0.262957 0.981368i −0.963489 0.267748i \(-0.913721\pi\)
0.700532 0.713621i \(-0.252946\pi\)
\(878\) −182.438 + 48.8840i −0.207788 + 0.0556765i
\(879\) 0 0
\(880\) 0.773384 5.26651i 0.000878846 0.00598468i
\(881\) 1619.10 1.83780 0.918902 0.394487i \(-0.129078\pi\)
0.918902 + 0.394487i \(0.129078\pi\)
\(882\) 0 0
\(883\) 881.301 + 881.301i 0.998076 + 0.998076i 0.999998 0.00192213i \(-0.000611833\pi\)
−0.00192213 + 0.999998i \(0.500612\pi\)
\(884\) −216.138 + 124.787i −0.244500 + 0.141162i
\(885\) 0 0
\(886\) 122.158 211.584i 0.137876 0.238808i
\(887\) 94.6674 + 353.303i 0.106728 + 0.398313i 0.998535 0.0541016i \(-0.0172295\pi\)
−0.891808 + 0.452414i \(0.850563\pi\)
\(888\) 0 0
\(889\) −429.140 + 247.764i −0.482722 + 0.278700i
\(890\) −19.3196 165.812i −0.0217074 0.186305i
\(891\) 0 0
\(892\) −573.459 + 573.459i −0.642891 + 0.642891i
\(893\) −153.912 + 574.407i −0.172354 + 0.643233i
\(894\) 0 0
\(895\) 258.754 + 652.013i 0.289111 + 0.728506i
\(896\) −371.709 + 643.818i −0.414853 + 0.718547i
\(897\) 0 0
\(898\) 16.9474 63.2485i 0.0188724 0.0704327i
\(899\) 1521.89i 1.69287i
\(900\) 0 0
\(901\) −1414.62 −1.57006
\(902\) −0.134740 0.0361036i −0.000149380 4.00262e-5i
\(903\) 0 0
\(904\) 796.561 + 459.895i 0.881152 + 0.508733i
\(905\) −533.153 + 211.584i −0.589119 + 0.233794i
\(906\) 0 0
\(907\) 103.567 + 27.7508i 0.114187 + 0.0305963i 0.315460 0.948939i \(-0.397841\pi\)
−0.201273 + 0.979535i \(0.564508\pi\)
\(908\) −181.445 181.445i −0.199829 0.199829i
\(909\) 0 0
\(910\) −65.2924 + 7.60756i −0.0717499 + 0.00835995i
\(911\) −422.343 731.520i −0.463604 0.802985i 0.535533 0.844514i \(-0.320111\pi\)
−0.999137 + 0.0415286i \(0.986777\pi\)
\(912\) 0 0
\(913\) 10.0801 2.70096i 0.0110407 0.00295834i
\(914\) 348.557 + 201.240i 0.381354 + 0.220175i
\(915\) 0 0
\(916\) −63.8947 110.669i −0.0697540 0.120818i
\(917\) −994.544 + 994.544i −1.08456 + 1.08456i
\(918\) 0 0
\(919\) 298.720i 0.325049i 0.986704 + 0.162525i \(0.0519637\pi\)
−0.986704 + 0.162525i \(0.948036\pi\)
\(920\) −115.459 16.9550i −0.125499 0.0184294i
\(921\) 0 0
\(922\) 97.5673 + 364.126i 0.105821 + 0.394931i
\(923\) −131.684 + 35.2847i −0.142670 + 0.0382283i
\(924\) 0 0
\(925\) 53.3487 1788.79i 0.0576743 1.93382i
\(926\) −74.7559 −0.0807299
\(927\) 0 0
\(928\) −779.753 779.753i −0.840251 0.840251i
\(929\) −959.561 + 554.003i −1.03290 + 0.596343i −0.917813 0.397012i \(-0.870047\pi\)
−0.115084 + 0.993356i \(0.536714\pi\)
\(930\) 0 0
\(931\) −174.743 + 302.664i −0.187694 + 0.325096i
\(932\) −250.594 935.231i −0.268878 1.00347i
\(933\) 0 0
\(934\) −115.475 + 66.6697i −0.123635 + 0.0713808i
\(935\) 9.64940 1.12430i 0.0103202 0.00120246i
\(936\) 0 0
\(937\) −895.973 + 895.973i −0.956214 + 0.956214i −0.999081 0.0428666i \(-0.986351\pi\)
0.0428666 + 0.999081i \(0.486351\pi\)
\(938\) 52.5443 196.098i 0.0560174 0.209060i
\(939\) 0 0
\(940\) −379.821 164.003i −0.404065 0.174471i
\(941\) 647.160 1120.91i 0.687737 1.19119i −0.284832 0.958578i \(-0.591938\pi\)
0.972568 0.232617i \(-0.0747290\pi\)
\(942\) 0 0
\(943\) 2.79205 10.4201i 0.00296082 0.0110499i
\(944\) 1116.76i 1.18301i
\(945\) 0 0
\(946\) −2.15226 −0.00227512
\(947\) −214.593 57.4999i −0.226602 0.0607179i 0.143731 0.989617i \(-0.454090\pi\)
−0.370334 + 0.928899i \(0.620757\pi\)
\(948\) 0 0
\(949\) −164.862 95.1833i −0.173722 0.100299i
\(950\) 197.111 + 366.201i 0.207485 + 0.385475i
\(951\) 0 0
\(952\) −573.919 153.781i −0.602856 0.161535i
\(953\) 342.541 + 342.541i 0.359435 + 0.359435i 0.863605 0.504170i \(-0.168201\pi\)
−0.504170 + 0.863605i \(0.668201\pi\)
\(954\) 0 0
\(955\) 1008.04 + 797.650i 1.05554 + 0.835235i
\(956\) 621.545 + 1076.55i 0.650152 + 1.12610i
\(957\) 0 0
\(958\) 234.748 62.9005i 0.245039 0.0656581i
\(959\) −376.294 217.253i −0.392382 0.226542i
\(960\) 0 0
\(961\) −204.000 353.338i −0.212279 0.367678i
\(962\) 111.803 111.803i 0.116219 0.116219i
\(963\) 0 0
\(964\) 51.1901i 0.0531018i
\(965\) 500.783 372.536i 0.518946 0.386048i
\(966\) 0 0
\(967\) 303.679 + 1133.35i 0.314043 + 1.17202i 0.924877 + 0.380266i \(0.124167\pi\)
−0.610834 + 0.791758i \(0.709166\pi\)
\(968\) 572.535 153.410i 0.591462 0.158482i
\(969\) 0 0
\(970\) −319.978 46.9886i −0.329875 0.0484419i
\(971\) −1454.35 −1.49779 −0.748894 0.662690i \(-0.769415\pi\)
−0.748894 + 0.662690i \(0.769415\pi\)
\(972\) 0 0
\(973\) 670.866 + 670.866i 0.689482 + 0.689482i
\(974\) 318.646 183.970i 0.327152 0.188881i
\(975\) 0 0
\(976\) −309.808 + 536.602i −0.317426 + 0.549798i
\(977\) −6.20014 23.1393i −0.00634610 0.0236840i 0.962680 0.270642i \(-0.0872358\pi\)
−0.969026 + 0.246958i \(0.920569\pi\)
\(978\) 0 0
\(979\) 4.26714 2.46363i 0.00435867 0.00251648i
\(980\) −190.668 150.873i −0.194559 0.153952i
\(981\) 0 0
\(982\) −159.539 + 159.539i −0.162463 + 0.162463i
\(983\) −108.551 + 405.117i −0.110428 + 0.412123i −0.998904 0.0467995i \(-0.985098\pi\)
0.888476 + 0.458923i \(0.151764\pi\)
\(984\) 0 0
\(985\) −125.274 + 290.128i −0.127182 + 0.294546i
\(986\) 270.756 468.964i 0.274601 0.475622i
\(987\) 0 0
\(988\) 81.6203 304.611i 0.0826117 0.308311i
\(989\) 166.444i 0.168296i
\(990\) 0 0
\(991\) −632.405 −0.638148 −0.319074 0.947730i \(-0.603372\pi\)
−0.319074 + 0.947730i \(0.603372\pi\)
\(992\) −958.153 256.736i −0.965880 0.258807i
\(993\) 0 0
\(994\) −132.802 76.6735i −0.133604 0.0771363i
\(995\) 549.547 + 1384.76i 0.552309 + 1.39172i
\(996\) 0 0
\(997\) −842.872 225.847i −0.845409 0.226527i −0.189984 0.981787i \(-0.560844\pi\)
−0.655425 + 0.755261i \(0.727510\pi\)
\(998\) −244.128 244.128i −0.244617 0.244617i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 405.3.l.i.28.1 8
3.2 odd 2 405.3.l.e.28.2 8
5.2 odd 4 405.3.l.e.352.2 8
9.2 odd 6 inner 405.3.l.i.298.1 8
9.4 even 3 405.3.g.d.163.3 yes 8
9.5 odd 6 405.3.g.d.163.2 yes 8
9.7 even 3 405.3.l.e.298.2 8
15.2 even 4 inner 405.3.l.i.352.1 8
45.2 even 12 405.3.l.e.217.2 8
45.7 odd 12 inner 405.3.l.i.217.1 8
45.22 odd 12 405.3.g.d.82.3 yes 8
45.32 even 12 405.3.g.d.82.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
405.3.g.d.82.2 8 45.32 even 12
405.3.g.d.82.3 yes 8 45.22 odd 12
405.3.g.d.163.2 yes 8 9.5 odd 6
405.3.g.d.163.3 yes 8 9.4 even 3
405.3.l.e.28.2 8 3.2 odd 2
405.3.l.e.217.2 8 45.2 even 12
405.3.l.e.298.2 8 9.7 even 3
405.3.l.e.352.2 8 5.2 odd 4
405.3.l.i.28.1 8 1.1 even 1 trivial
405.3.l.i.217.1 8 45.7 odd 12 inner
405.3.l.i.298.1 8 9.2 odd 6 inner
405.3.l.i.352.1 8 15.2 even 4 inner