Properties

Label 405.3.l.j.298.4
Level $405$
Weight $3$
Character 405.298
Analytic conductor $11.035$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [405,3,Mod(28,405)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(405, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([4, 9]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("405.28");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 405 = 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 405.l (of order \(12\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.0354507066\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 256x^{12} + 15630x^{8} + 235936x^{4} + 28561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 298.4
Root \(-1.96165 + 1.96165i\) of defining polynomial
Character \(\chi\) \(=\) 405.298
Dual form 405.3.l.j.352.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.718015 + 2.67967i) q^{2} +(-3.20097 + 1.84808i) q^{4} +(-4.53891 + 2.09721i) q^{5} +(2.21431 + 8.26391i) q^{7} +(0.596019 + 0.596019i) q^{8} +(-8.87884 - 10.6569i) q^{10} +(-0.222725 + 0.385771i) q^{11} +(0.975029 - 3.63886i) q^{13} +(-20.5546 + 11.8672i) q^{14} +(-8.56151 + 14.8290i) q^{16} +(-14.8395 + 14.8395i) q^{17} -29.1331i q^{19} +(10.6531 - 15.1014i) q^{20} +(-1.19366 - 0.319839i) q^{22} +(-5.32743 + 19.8822i) q^{23} +(16.2034 - 19.0381i) q^{25} +10.4510 q^{26} +(-22.3603 - 22.3603i) q^{28} +(-34.7292 - 20.0509i) q^{29} +(-7.64656 - 13.2442i) q^{31} +(-42.6273 - 11.4220i) q^{32} +(-50.4198 - 29.1099i) q^{34} +(-27.3817 - 32.8653i) q^{35} +(6.61115 - 6.61115i) q^{37} +(78.0669 - 20.9180i) q^{38} +(-3.95526 - 1.45530i) q^{40} +(21.2181 + 36.7507i) q^{41} +(-35.1195 + 9.41025i) q^{43} -1.64645i q^{44} -57.1029 q^{46} +(19.3932 + 72.3764i) q^{47} +(-20.9538 + 12.0977i) q^{49} +(62.6501 + 29.7501i) q^{50} +(3.60387 + 13.4498i) q^{52} +(-44.8558 - 44.8558i) q^{53} +(0.201884 - 2.21808i) q^{55} +(-3.60568 + 6.24522i) q^{56} +(28.7937 - 107.459i) q^{58} +(61.3077 - 35.3960i) q^{59} +(-53.5057 + 92.6746i) q^{61} +(29.9998 - 29.9998i) q^{62} -53.9361i q^{64} +(3.20589 + 18.5613i) q^{65} +(122.430 + 32.8051i) q^{67} +(20.0762 - 74.9253i) q^{68} +(68.4075 - 96.9716i) q^{70} +71.1649 q^{71} +(77.9049 + 77.9049i) q^{73} +(22.4626 + 12.9688i) q^{74} +(53.8403 + 93.2542i) q^{76} +(-3.68115 - 0.986362i) q^{77} +(-58.2435 - 33.6269i) q^{79} +(7.76041 - 85.2627i) q^{80} +(-83.2449 + 83.2449i) q^{82} +(-31.0330 + 8.31528i) q^{83} +(36.2335 - 98.4766i) q^{85} +(-50.4327 - 87.3520i) q^{86} +(-0.362675 + 0.0971784i) q^{88} +104.971i q^{89} +32.2302 q^{91} +(-19.6910 - 73.4880i) q^{92} +(-180.020 + 103.935i) q^{94} +(61.0983 + 132.232i) q^{95} +(38.5827 + 143.993i) q^{97} +(-47.4628 - 47.4628i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 6 q^{2} + 12 q^{5} - 20 q^{7} - 56 q^{10} + 22 q^{13} - 168 q^{14} + 16 q^{16} - 96 q^{20} - 16 q^{22} + 36 q^{23} + 46 q^{25} + 176 q^{28} - 252 q^{29} - 160 q^{31} - 114 q^{32} + 4 q^{37} + 192 q^{38}+ \cdots - 152 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/405\mathbb{Z}\right)^\times\).

\(n\) \(82\) \(326\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.718015 + 2.67967i 0.359007 + 1.33983i 0.875366 + 0.483461i \(0.160621\pi\)
−0.516358 + 0.856373i \(0.672713\pi\)
\(3\) 0 0
\(4\) −3.20097 + 1.84808i −0.800243 + 0.462021i
\(5\) −4.53891 + 2.09721i −0.907782 + 0.419443i
\(6\) 0 0
\(7\) 2.21431 + 8.26391i 0.316330 + 1.18056i 0.922745 + 0.385410i \(0.125940\pi\)
−0.606416 + 0.795148i \(0.707393\pi\)
\(8\) 0.596019 + 0.596019i 0.0745024 + 0.0745024i
\(9\) 0 0
\(10\) −8.87884 10.6569i −0.887884 1.06569i
\(11\) −0.222725 + 0.385771i −0.0202477 + 0.0350700i −0.875972 0.482362i \(-0.839779\pi\)
0.855724 + 0.517433i \(0.173112\pi\)
\(12\) 0 0
\(13\) 0.975029 3.63886i 0.0750023 0.279912i −0.918232 0.396044i \(-0.870383\pi\)
0.993234 + 0.116132i \(0.0370495\pi\)
\(14\) −20.5546 + 11.8672i −1.46819 + 0.847658i
\(15\) 0 0
\(16\) −8.56151 + 14.8290i −0.535095 + 0.926811i
\(17\) −14.8395 + 14.8395i −0.872910 + 0.872910i −0.992789 0.119878i \(-0.961750\pi\)
0.119878 + 0.992789i \(0.461750\pi\)
\(18\) 0 0
\(19\) 29.1331i 1.53332i −0.642054 0.766660i \(-0.721917\pi\)
0.642054 0.766660i \(-0.278083\pi\)
\(20\) 10.6531 15.1014i 0.532655 0.755070i
\(21\) 0 0
\(22\) −1.19366 0.319839i −0.0542571 0.0145381i
\(23\) −5.32743 + 19.8822i −0.231627 + 0.864445i 0.748013 + 0.663684i \(0.231008\pi\)
−0.979640 + 0.200761i \(0.935659\pi\)
\(24\) 0 0
\(25\) 16.2034 19.0381i 0.648136 0.761525i
\(26\) 10.4510 0.401962
\(27\) 0 0
\(28\) −22.3603 22.3603i −0.798583 0.798583i
\(29\) −34.7292 20.0509i −1.19756 0.691410i −0.237547 0.971376i \(-0.576343\pi\)
−0.960010 + 0.279966i \(0.909677\pi\)
\(30\) 0 0
\(31\) −7.64656 13.2442i −0.246663 0.427234i 0.715935 0.698167i \(-0.246001\pi\)
−0.962598 + 0.270934i \(0.912668\pi\)
\(32\) −42.6273 11.4220i −1.33210 0.356936i
\(33\) 0 0
\(34\) −50.4198 29.1099i −1.48294 0.856174i
\(35\) −27.3817 32.8653i −0.782335 0.939007i
\(36\) 0 0
\(37\) 6.61115 6.61115i 0.178680 0.178680i −0.612100 0.790780i \(-0.709675\pi\)
0.790780 + 0.612100i \(0.209675\pi\)
\(38\) 78.0669 20.9180i 2.05439 0.550473i
\(39\) 0 0
\(40\) −3.95526 1.45530i −0.0988814 0.0363824i
\(41\) 21.2181 + 36.7507i 0.517513 + 0.896360i 0.999793 + 0.0203423i \(0.00647560\pi\)
−0.482280 + 0.876017i \(0.660191\pi\)
\(42\) 0 0
\(43\) −35.1195 + 9.41025i −0.816733 + 0.218843i −0.642918 0.765935i \(-0.722276\pi\)
−0.173816 + 0.984778i \(0.555610\pi\)
\(44\) 1.64645i 0.0374194i
\(45\) 0 0
\(46\) −57.1029 −1.24137
\(47\) 19.3932 + 72.3764i 0.412622 + 1.53992i 0.789552 + 0.613683i \(0.210313\pi\)
−0.376931 + 0.926241i \(0.623021\pi\)
\(48\) 0 0
\(49\) −20.9538 + 12.0977i −0.427628 + 0.246891i
\(50\) 62.6501 + 29.7501i 1.25300 + 0.595001i
\(51\) 0 0
\(52\) 3.60387 + 13.4498i 0.0693052 + 0.258650i
\(53\) −44.8558 44.8558i −0.846336 0.846336i 0.143338 0.989674i \(-0.454216\pi\)
−0.989674 + 0.143338i \(0.954216\pi\)
\(54\) 0 0
\(55\) 0.201884 2.21808i 0.00367062 0.0403287i
\(56\) −3.60568 + 6.24522i −0.0643871 + 0.111522i
\(57\) 0 0
\(58\) 28.7937 107.459i 0.496443 1.85275i
\(59\) 61.3077 35.3960i 1.03911 0.599932i 0.119531 0.992830i \(-0.461861\pi\)
0.919582 + 0.392898i \(0.128528\pi\)
\(60\) 0 0
\(61\) −53.5057 + 92.6746i −0.877143 + 1.51926i −0.0226804 + 0.999743i \(0.507220\pi\)
−0.854462 + 0.519513i \(0.826113\pi\)
\(62\) 29.9998 29.9998i 0.483868 0.483868i
\(63\) 0 0
\(64\) 53.9361i 0.842751i
\(65\) 3.20589 + 18.5613i 0.0493214 + 0.285558i
\(66\) 0 0
\(67\) 122.430 + 32.8051i 1.82732 + 0.489629i 0.997643 0.0686169i \(-0.0218586\pi\)
0.829676 + 0.558246i \(0.188525\pi\)
\(68\) 20.0762 74.9253i 0.295238 1.10184i
\(69\) 0 0
\(70\) 68.4075 96.9716i 0.977250 1.38531i
\(71\) 71.1649 1.00232 0.501161 0.865354i \(-0.332906\pi\)
0.501161 + 0.865354i \(0.332906\pi\)
\(72\) 0 0
\(73\) 77.9049 + 77.9049i 1.06719 + 1.06719i 0.997574 + 0.0696171i \(0.0221777\pi\)
0.0696171 + 0.997574i \(0.477822\pi\)
\(74\) 22.4626 + 12.9688i 0.303549 + 0.175254i
\(75\) 0 0
\(76\) 53.8403 + 93.2542i 0.708425 + 1.22703i
\(77\) −3.68115 0.986362i −0.0478072 0.0128099i
\(78\) 0 0
\(79\) −58.2435 33.6269i −0.737259 0.425657i 0.0838129 0.996482i \(-0.473290\pi\)
−0.821072 + 0.570825i \(0.806624\pi\)
\(80\) 7.76041 85.2627i 0.0970051 1.06578i
\(81\) 0 0
\(82\) −83.2449 + 83.2449i −1.01518 + 1.01518i
\(83\) −31.0330 + 8.31528i −0.373892 + 0.100184i −0.440871 0.897570i \(-0.645331\pi\)
0.0669793 + 0.997754i \(0.478664\pi\)
\(84\) 0 0
\(85\) 36.2335 98.4766i 0.426276 1.15855i
\(86\) −50.4327 87.3520i −0.586427 1.01572i
\(87\) 0 0
\(88\) −0.362675 + 0.0971784i −0.00412130 + 0.00110430i
\(89\) 104.971i 1.17945i 0.807603 + 0.589727i \(0.200765\pi\)
−0.807603 + 0.589727i \(0.799235\pi\)
\(90\) 0 0
\(91\) 32.2302 0.354178
\(92\) −19.6910 73.4880i −0.214033 0.798782i
\(93\) 0 0
\(94\) −180.020 + 103.935i −1.91511 + 1.10569i
\(95\) 61.0983 + 132.232i 0.643139 + 1.39192i
\(96\) 0 0
\(97\) 38.5827 + 143.993i 0.397760 + 1.48446i 0.817028 + 0.576598i \(0.195620\pi\)
−0.419268 + 0.907863i \(0.637713\pi\)
\(98\) −47.4628 47.4628i −0.484315 0.484315i
\(99\) 0 0
\(100\) −16.6826 + 90.8857i −0.166826 + 0.908857i
\(101\) −3.08602 + 5.34514i −0.0305546 + 0.0529222i −0.880898 0.473305i \(-0.843061\pi\)
0.850344 + 0.526228i \(0.176394\pi\)
\(102\) 0 0
\(103\) 5.06141 18.8895i 0.0491399 0.183393i −0.936994 0.349347i \(-0.886404\pi\)
0.986134 + 0.165954i \(0.0530703\pi\)
\(104\) 2.74997 1.58769i 0.0264420 0.0152663i
\(105\) 0 0
\(106\) 87.9915 152.406i 0.830109 1.43779i
\(107\) −47.8849 + 47.8849i −0.447522 + 0.447522i −0.894530 0.447008i \(-0.852490\pi\)
0.447008 + 0.894530i \(0.352490\pi\)
\(108\) 0 0
\(109\) 60.2436i 0.552694i −0.961058 0.276347i \(-0.910876\pi\)
0.961058 0.276347i \(-0.0891239\pi\)
\(110\) 6.08867 1.05163i 0.0553515 0.00956028i
\(111\) 0 0
\(112\) −141.503 37.9156i −1.26342 0.338532i
\(113\) 20.7967 77.6142i 0.184041 0.686851i −0.810793 0.585334i \(-0.800964\pi\)
0.994834 0.101518i \(-0.0323698\pi\)
\(114\) 0 0
\(115\) −17.5166 101.416i −0.152318 0.881881i
\(116\) 148.223 1.27778
\(117\) 0 0
\(118\) 138.869 + 138.869i 1.17686 + 1.17686i
\(119\) −155.491 89.7729i −1.30665 0.754394i
\(120\) 0 0
\(121\) 60.4008 + 104.617i 0.499180 + 0.864605i
\(122\) −286.755 76.8358i −2.35045 0.629802i
\(123\) 0 0
\(124\) 48.9529 + 28.2630i 0.394781 + 0.227927i
\(125\) −33.6187 + 120.394i −0.268950 + 0.963154i
\(126\) 0 0
\(127\) 113.537 113.537i 0.893994 0.893994i −0.100902 0.994896i \(-0.532173\pi\)
0.994896 + 0.100902i \(0.0321730\pi\)
\(128\) −25.9785 + 6.96092i −0.202957 + 0.0543822i
\(129\) 0 0
\(130\) −47.4362 + 21.9180i −0.364894 + 0.168600i
\(131\) 39.6983 + 68.7595i 0.303041 + 0.524882i 0.976823 0.214048i \(-0.0686649\pi\)
−0.673783 + 0.738930i \(0.735332\pi\)
\(132\) 0 0
\(133\) 240.753 64.5096i 1.81017 0.485034i
\(134\) 351.627i 2.62408i
\(135\) 0 0
\(136\) −17.6892 −0.130068
\(137\) −25.5439 95.3311i −0.186452 0.695848i −0.994315 0.106478i \(-0.966043\pi\)
0.807863 0.589370i \(-0.200624\pi\)
\(138\) 0 0
\(139\) −74.3143 + 42.9054i −0.534635 + 0.308672i −0.742902 0.669400i \(-0.766551\pi\)
0.208267 + 0.978072i \(0.433218\pi\)
\(140\) 148.386 + 54.5971i 1.05990 + 0.389979i
\(141\) 0 0
\(142\) 51.0975 + 190.698i 0.359841 + 1.34295i
\(143\) 1.18660 + 1.18660i 0.00829791 + 0.00829791i
\(144\) 0 0
\(145\) 199.683 + 18.1747i 1.37713 + 0.125343i
\(146\) −152.822 + 264.696i −1.04673 + 1.81299i
\(147\) 0 0
\(148\) −8.94417 + 33.3801i −0.0604335 + 0.225541i
\(149\) −117.167 + 67.6464i −0.786356 + 0.454003i −0.838678 0.544627i \(-0.816671\pi\)
0.0523222 + 0.998630i \(0.483338\pi\)
\(150\) 0 0
\(151\) −72.1025 + 124.885i −0.477500 + 0.827054i −0.999667 0.0257891i \(-0.991790\pi\)
0.522168 + 0.852843i \(0.325123\pi\)
\(152\) 17.3639 17.3639i 0.114236 0.114236i
\(153\) 0 0
\(154\) 10.5725i 0.0686525i
\(155\) 62.4831 + 44.0779i 0.403116 + 0.284374i
\(156\) 0 0
\(157\) −62.0546 16.6275i −0.395252 0.105907i 0.0557181 0.998447i \(-0.482255\pi\)
−0.450970 + 0.892539i \(0.648922\pi\)
\(158\) 48.2892 180.218i 0.305628 1.14062i
\(159\) 0 0
\(160\) 217.436 37.5553i 1.35897 0.234721i
\(161\) −176.101 −1.09380
\(162\) 0 0
\(163\) −18.1117 18.1117i −0.111115 0.111115i 0.649364 0.760478i \(-0.275035\pi\)
−0.760478 + 0.649364i \(0.775035\pi\)
\(164\) −135.837 78.4254i −0.828273 0.478204i
\(165\) 0 0
\(166\) −44.5644 77.1878i −0.268460 0.464987i
\(167\) −42.3880 11.3578i −0.253821 0.0680110i 0.129665 0.991558i \(-0.458610\pi\)
−0.383486 + 0.923547i \(0.625276\pi\)
\(168\) 0 0
\(169\) 134.068 + 77.4040i 0.793300 + 0.458012i
\(170\) 289.901 + 26.3861i 1.70530 + 0.155212i
\(171\) 0 0
\(172\) 95.0258 95.0258i 0.552475 0.552475i
\(173\) 77.8985 20.8728i 0.450280 0.120652i −0.0265503 0.999647i \(-0.508452\pi\)
0.476831 + 0.878995i \(0.341786\pi\)
\(174\) 0 0
\(175\) 193.209 + 91.7471i 1.10405 + 0.524269i
\(176\) −3.81372 6.60556i −0.0216689 0.0375316i
\(177\) 0 0
\(178\) −281.288 + 75.3710i −1.58027 + 0.423433i
\(179\) 55.1405i 0.308047i 0.988067 + 0.154024i \(0.0492232\pi\)
−0.988067 + 0.154024i \(0.950777\pi\)
\(180\) 0 0
\(181\) −180.687 −0.998270 −0.499135 0.866524i \(-0.666349\pi\)
−0.499135 + 0.866524i \(0.666349\pi\)
\(182\) 23.1418 + 86.3663i 0.127153 + 0.474540i
\(183\) 0 0
\(184\) −15.0254 + 8.67494i −0.0816600 + 0.0471464i
\(185\) −16.1424 + 43.8724i −0.0872564 + 0.237148i
\(186\) 0 0
\(187\) −2.41951 9.02975i −0.0129386 0.0482874i
\(188\) −195.835 195.835i −1.04167 1.04167i
\(189\) 0 0
\(190\) −310.469 + 258.668i −1.63405 + 1.36141i
\(191\) 95.1445 164.795i 0.498139 0.862802i −0.501859 0.864949i \(-0.667350\pi\)
0.999998 + 0.00214785i \(0.000683684\pi\)
\(192\) 0 0
\(193\) 2.35869 8.80274i 0.0122212 0.0456101i −0.959546 0.281552i \(-0.909151\pi\)
0.971767 + 0.235942i \(0.0758175\pi\)
\(194\) −358.150 + 206.778i −1.84613 + 1.06587i
\(195\) 0 0
\(196\) 44.7150 77.4486i 0.228138 0.395146i
\(197\) 116.112 116.112i 0.589403 0.589403i −0.348067 0.937470i \(-0.613162\pi\)
0.937470 + 0.348067i \(0.113162\pi\)
\(198\) 0 0
\(199\) 281.684i 1.41550i 0.706465 + 0.707748i \(0.250289\pi\)
−0.706465 + 0.707748i \(0.749711\pi\)
\(200\) 21.0046 1.68955i 0.105023 0.00844775i
\(201\) 0 0
\(202\) −16.5390 4.43162i −0.0818763 0.0219387i
\(203\) 88.7977 331.397i 0.437427 1.63250i
\(204\) 0 0
\(205\) −173.381 122.310i −0.845761 0.596632i
\(206\) 54.2516 0.263357
\(207\) 0 0
\(208\) 45.6128 + 45.6128i 0.219292 + 0.219292i
\(209\) 11.2387 + 6.48865i 0.0537736 + 0.0310462i
\(210\) 0 0
\(211\) 120.426 + 208.584i 0.570739 + 0.988548i 0.996490 + 0.0837081i \(0.0266763\pi\)
−0.425752 + 0.904840i \(0.639990\pi\)
\(212\) 226.479 + 60.6850i 1.06830 + 0.286250i
\(213\) 0 0
\(214\) −162.698 93.9335i −0.760269 0.438942i
\(215\) 139.669 116.365i 0.649624 0.541235i
\(216\) 0 0
\(217\) 92.5173 92.5173i 0.426347 0.426347i
\(218\) 161.433 43.2558i 0.740518 0.198421i
\(219\) 0 0
\(220\) 3.45297 + 7.47311i 0.0156953 + 0.0339687i
\(221\) 39.5298 + 68.4677i 0.178868 + 0.309809i
\(222\) 0 0
\(223\) −73.6750 + 19.7412i −0.330381 + 0.0885253i −0.420197 0.907433i \(-0.638039\pi\)
0.0898156 + 0.995958i \(0.471372\pi\)
\(224\) 377.560i 1.68554i
\(225\) 0 0
\(226\) 222.913 0.986339
\(227\) −2.17831 8.12957i −0.00959608 0.0358131i 0.960962 0.276681i \(-0.0892346\pi\)
−0.970558 + 0.240868i \(0.922568\pi\)
\(228\) 0 0
\(229\) 187.477 108.240i 0.818678 0.472664i −0.0312821 0.999511i \(-0.509959\pi\)
0.849961 + 0.526846i \(0.176626\pi\)
\(230\) 259.185 119.757i 1.12689 0.520683i
\(231\) 0 0
\(232\) −8.74853 32.6499i −0.0377092 0.140733i
\(233\) −85.0860 85.0860i −0.365176 0.365176i 0.500538 0.865714i \(-0.333135\pi\)
−0.865714 + 0.500538i \(0.833135\pi\)
\(234\) 0 0
\(235\) −239.813 287.838i −1.02048 1.22484i
\(236\) −130.829 + 226.603i −0.554362 + 0.960183i
\(237\) 0 0
\(238\) 128.917 481.123i 0.541666 2.02153i
\(239\) 231.345 133.567i 0.967971 0.558858i 0.0693536 0.997592i \(-0.477906\pi\)
0.898617 + 0.438734i \(0.144573\pi\)
\(240\) 0 0
\(241\) 141.000 244.219i 0.585063 1.01336i −0.409805 0.912173i \(-0.634403\pi\)
0.994868 0.101186i \(-0.0322636\pi\)
\(242\) −236.971 + 236.971i −0.979218 + 0.979218i
\(243\) 0 0
\(244\) 395.532i 1.62103i
\(245\) 69.7359 98.8547i 0.284636 0.403489i
\(246\) 0 0
\(247\) −106.011 28.4056i −0.429195 0.115002i
\(248\) 3.33632 12.4513i 0.0134529 0.0502069i
\(249\) 0 0
\(250\) −346.755 3.64219i −1.38702 0.0145688i
\(251\) −29.8384 −0.118878 −0.0594390 0.998232i \(-0.518931\pi\)
−0.0594390 + 0.998232i \(0.518931\pi\)
\(252\) 0 0
\(253\) −6.48343 6.48343i −0.0256262 0.0256262i
\(254\) 385.763 + 222.721i 1.51875 + 0.876853i
\(255\) 0 0
\(256\) −145.178 251.456i −0.567102 0.982249i
\(257\) 151.242 + 40.5253i 0.588492 + 0.157686i 0.540764 0.841174i \(-0.318135\pi\)
0.0477280 + 0.998860i \(0.484802\pi\)
\(258\) 0 0
\(259\) 69.2731 + 39.9948i 0.267464 + 0.154420i
\(260\) −44.5648 53.4894i −0.171403 0.205729i
\(261\) 0 0
\(262\) −155.749 + 155.749i −0.594461 + 0.594461i
\(263\) −26.9567 + 7.22301i −0.102497 + 0.0274639i −0.309703 0.950833i \(-0.600230\pi\)
0.207206 + 0.978297i \(0.433563\pi\)
\(264\) 0 0
\(265\) 297.669 + 109.524i 1.12328 + 0.413299i
\(266\) 345.728 + 598.819i 1.29973 + 2.25120i
\(267\) 0 0
\(268\) −452.523 + 121.253i −1.68852 + 0.452437i
\(269\) 100.763i 0.374584i −0.982304 0.187292i \(-0.940029\pi\)
0.982304 0.187292i \(-0.0599711\pi\)
\(270\) 0 0
\(271\) −342.248 −1.26291 −0.631453 0.775414i \(-0.717541\pi\)
−0.631453 + 0.775414i \(0.717541\pi\)
\(272\) −93.0058 347.103i −0.341933 1.27611i
\(273\) 0 0
\(274\) 237.115 136.898i 0.865383 0.499629i
\(275\) 3.73545 + 10.4911i 0.0135835 + 0.0381493i
\(276\) 0 0
\(277\) −58.9481 219.997i −0.212809 0.794214i −0.986926 0.161172i \(-0.948473\pi\)
0.774117 0.633042i \(-0.218194\pi\)
\(278\) −168.331 168.331i −0.605507 0.605507i
\(279\) 0 0
\(280\) 3.26829 35.9083i 0.0116725 0.128244i
\(281\) 254.834 441.385i 0.906882 1.57077i 0.0885115 0.996075i \(-0.471789\pi\)
0.818371 0.574691i \(-0.194878\pi\)
\(282\) 0 0
\(283\) −93.3222 + 348.283i −0.329761 + 1.23068i 0.579678 + 0.814845i \(0.303178\pi\)
−0.909439 + 0.415838i \(0.863488\pi\)
\(284\) −227.797 + 131.519i −0.802102 + 0.463094i
\(285\) 0 0
\(286\) −2.32770 + 4.03170i −0.00813881 + 0.0140968i
\(287\) −256.721 + 256.721i −0.894500 + 0.894500i
\(288\) 0 0
\(289\) 151.420i 0.523945i
\(290\) 94.6735 + 548.135i 0.326460 + 1.89012i
\(291\) 0 0
\(292\) −393.346 105.397i −1.34708 0.360948i
\(293\) 51.3251 191.548i 0.175171 0.653747i −0.821352 0.570422i \(-0.806780\pi\)
0.996522 0.0833245i \(-0.0265538\pi\)
\(294\) 0 0
\(295\) −204.037 + 289.235i −0.691651 + 0.980456i
\(296\) 7.88075 0.0266241
\(297\) 0 0
\(298\) −265.398 265.398i −0.890596 0.890596i
\(299\) 67.1542 + 38.7715i 0.224596 + 0.129671i
\(300\) 0 0
\(301\) −155.531 269.387i −0.516714 0.894975i
\(302\) −386.421 103.541i −1.27954 0.342852i
\(303\) 0 0
\(304\) 432.014 + 249.423i 1.42110 + 0.820471i
\(305\) 48.4992 532.855i 0.159014 1.74706i
\(306\) 0 0
\(307\) 123.104 123.104i 0.400990 0.400990i −0.477592 0.878582i \(-0.658490\pi\)
0.878582 + 0.477592i \(0.158490\pi\)
\(308\) 13.6061 3.64576i 0.0441758 0.0118369i
\(309\) 0 0
\(310\) −73.2504 + 199.082i −0.236292 + 0.642201i
\(311\) −124.009 214.790i −0.398742 0.690642i 0.594829 0.803852i \(-0.297220\pi\)
−0.993571 + 0.113211i \(0.963887\pi\)
\(312\) 0 0
\(313\) −174.262 + 46.6933i −0.556747 + 0.149180i −0.526211 0.850354i \(-0.676388\pi\)
−0.0305356 + 0.999534i \(0.509721\pi\)
\(314\) 178.224i 0.567594i
\(315\) 0 0
\(316\) 248.581 0.786649
\(317\) 86.1891 + 321.662i 0.271890 + 1.01471i 0.957897 + 0.287112i \(0.0926951\pi\)
−0.686007 + 0.727595i \(0.740638\pi\)
\(318\) 0 0
\(319\) 15.4701 8.93166i 0.0484956 0.0279989i
\(320\) 113.115 + 244.811i 0.353486 + 0.765034i
\(321\) 0 0
\(322\) −126.443 471.893i −0.392681 1.46551i
\(323\) 432.319 + 432.319i 1.33845 + 1.33845i
\(324\) 0 0
\(325\) −53.4782 77.5246i −0.164548 0.238537i
\(326\) 35.5288 61.5377i 0.108984 0.188766i
\(327\) 0 0
\(328\) −9.25778 + 34.5505i −0.0282249 + 0.105337i
\(329\) −555.170 + 320.527i −1.68745 + 0.974247i
\(330\) 0 0
\(331\) −8.88086 + 15.3821i −0.0268304 + 0.0464716i −0.879129 0.476584i \(-0.841875\pi\)
0.852298 + 0.523056i \(0.175208\pi\)
\(332\) 83.9686 83.9686i 0.252918 0.252918i
\(333\) 0 0
\(334\) 121.741i 0.364494i
\(335\) −624.500 + 107.863i −1.86418 + 0.321979i
\(336\) 0 0
\(337\) 267.126 + 71.5761i 0.792657 + 0.212392i 0.632358 0.774677i \(-0.282087\pi\)
0.160300 + 0.987068i \(0.448754\pi\)
\(338\) −111.154 + 414.834i −0.328859 + 1.22732i
\(339\) 0 0
\(340\) 66.0104 + 382.183i 0.194148 + 1.12407i
\(341\) 6.81232 0.0199775
\(342\) 0 0
\(343\) 150.058 + 150.058i 0.437488 + 0.437488i
\(344\) −26.5406 15.3232i −0.0771529 0.0445443i
\(345\) 0 0
\(346\) 111.865 + 193.755i 0.323308 + 0.559986i
\(347\) −305.488 81.8553i −0.880369 0.235894i −0.209803 0.977744i \(-0.567282\pi\)
−0.670566 + 0.741850i \(0.733949\pi\)
\(348\) 0 0
\(349\) 585.272 + 337.907i 1.67700 + 0.968215i 0.963559 + 0.267497i \(0.0861967\pi\)
0.713439 + 0.700718i \(0.247137\pi\)
\(350\) −107.125 + 583.611i −0.306072 + 1.66746i
\(351\) 0 0
\(352\) 13.9004 13.9004i 0.0394898 0.0394898i
\(353\) 401.068 107.466i 1.13617 0.304436i 0.358761 0.933430i \(-0.383199\pi\)
0.777411 + 0.628993i \(0.216533\pi\)
\(354\) 0 0
\(355\) −323.011 + 149.248i −0.909890 + 0.420417i
\(356\) −193.996 336.010i −0.544932 0.943850i
\(357\) 0 0
\(358\) −147.758 + 39.5917i −0.412732 + 0.110591i
\(359\) 206.110i 0.574122i 0.957912 + 0.287061i \(0.0926783\pi\)
−0.957912 + 0.287061i \(0.907322\pi\)
\(360\) 0 0
\(361\) −487.736 −1.35107
\(362\) −129.736 484.181i −0.358386 1.33752i
\(363\) 0 0
\(364\) −103.168 + 59.5641i −0.283429 + 0.163638i
\(365\) −516.987 190.220i −1.41640 0.521151i
\(366\) 0 0
\(367\) −47.8780 178.683i −0.130458 0.486875i 0.869518 0.493902i \(-0.164430\pi\)
−0.999975 + 0.00702710i \(0.997763\pi\)
\(368\) −249.222 249.222i −0.677234 0.677234i
\(369\) 0 0
\(370\) −129.154 11.7553i −0.349065 0.0317711i
\(371\) 271.360 470.009i 0.731428 1.26687i
\(372\) 0 0
\(373\) 63.0242 235.210i 0.168966 0.630589i −0.828535 0.559937i \(-0.810825\pi\)
0.997501 0.0706518i \(-0.0225079\pi\)
\(374\) 22.4595 12.9670i 0.0600521 0.0346711i
\(375\) 0 0
\(376\) −31.5790 + 54.6965i −0.0839867 + 0.145469i
\(377\) −106.824 + 106.824i −0.283354 + 0.283354i
\(378\) 0 0
\(379\) 240.778i 0.635297i 0.948208 + 0.317649i \(0.102893\pi\)
−0.948208 + 0.317649i \(0.897107\pi\)
\(380\) −439.950 310.358i −1.15776 0.816730i
\(381\) 0 0
\(382\) 509.911 + 136.630i 1.33485 + 0.357671i
\(383\) −43.8384 + 163.607i −0.114461 + 0.427173i −0.999246 0.0388260i \(-0.987638\pi\)
0.884785 + 0.465999i \(0.154305\pi\)
\(384\) 0 0
\(385\) 18.7770 3.24315i 0.0487715 0.00842378i
\(386\) 25.2820 0.0654974
\(387\) 0 0
\(388\) −389.613 389.613i −1.00416 1.00416i
\(389\) 128.012 + 73.9079i 0.329080 + 0.189995i 0.655433 0.755254i \(-0.272486\pi\)
−0.326352 + 0.945248i \(0.605820\pi\)
\(390\) 0 0
\(391\) −215.986 374.098i −0.552393 0.956772i
\(392\) −19.6993 5.27841i −0.0502533 0.0134653i
\(393\) 0 0
\(394\) 394.513 + 227.772i 1.00130 + 0.578102i
\(395\) 334.884 + 30.4804i 0.847809 + 0.0771656i
\(396\) 0 0
\(397\) 154.690 154.690i 0.389647 0.389647i −0.484915 0.874561i \(-0.661149\pi\)
0.874561 + 0.484915i \(0.161149\pi\)
\(398\) −754.819 + 202.253i −1.89653 + 0.508174i
\(399\) 0 0
\(400\) 143.590 + 403.275i 0.358976 + 1.00819i
\(401\) 354.459 + 613.941i 0.883937 + 1.53102i 0.846927 + 0.531709i \(0.178450\pi\)
0.0370100 + 0.999315i \(0.488217\pi\)
\(402\) 0 0
\(403\) −55.6495 + 14.9112i −0.138088 + 0.0370006i
\(404\) 22.8129i 0.0564675i
\(405\) 0 0
\(406\) 951.793 2.34432
\(407\) 1.07792 + 4.02286i 0.00264845 + 0.00988417i
\(408\) 0 0
\(409\) −145.092 + 83.7690i −0.354749 + 0.204814i −0.666775 0.745259i \(-0.732326\pi\)
0.312026 + 0.950074i \(0.398992\pi\)
\(410\) 203.259 552.423i 0.495753 1.34737i
\(411\) 0 0
\(412\) 18.7078 + 69.8185i 0.0454073 + 0.169462i
\(413\) 428.263 + 428.263i 1.03696 + 1.03696i
\(414\) 0 0
\(415\) 123.417 102.825i 0.297391 0.247772i
\(416\) −83.1258 + 143.978i −0.199822 + 0.346101i
\(417\) 0 0
\(418\) −9.31790 + 34.7749i −0.0222916 + 0.0831935i
\(419\) 122.306 70.6136i 0.291901 0.168529i −0.346898 0.937903i \(-0.612765\pi\)
0.638799 + 0.769374i \(0.279432\pi\)
\(420\) 0 0
\(421\) 288.169 499.124i 0.684488 1.18557i −0.289110 0.957296i \(-0.593359\pi\)
0.973597 0.228272i \(-0.0733075\pi\)
\(422\) −472.467 + 472.467i −1.11959 + 1.11959i
\(423\) 0 0
\(424\) 53.4698i 0.126108i
\(425\) 42.0658 + 522.966i 0.0989784 + 1.23051i
\(426\) 0 0
\(427\) −884.333 236.956i −2.07104 0.554933i
\(428\) 64.7830 241.773i 0.151362 0.564891i
\(429\) 0 0
\(430\) 412.105 + 290.715i 0.958384 + 0.676081i
\(431\) −449.009 −1.04179 −0.520893 0.853622i \(-0.674401\pi\)
−0.520893 + 0.853622i \(0.674401\pi\)
\(432\) 0 0
\(433\) 542.261 + 542.261i 1.25233 + 1.25233i 0.954671 + 0.297663i \(0.0962072\pi\)
0.297663 + 0.954671i \(0.403793\pi\)
\(434\) 314.344 + 181.487i 0.724296 + 0.418173i
\(435\) 0 0
\(436\) 111.335 + 192.838i 0.255356 + 0.442290i
\(437\) 579.230 + 155.204i 1.32547 + 0.355158i
\(438\) 0 0
\(439\) −397.439 229.462i −0.905328 0.522692i −0.0264032 0.999651i \(-0.508405\pi\)
−0.878925 + 0.476960i \(0.841739\pi\)
\(440\) 1.44234 1.20169i 0.00327805 0.00273111i
\(441\) 0 0
\(442\) −155.088 + 155.088i −0.350877 + 0.350877i
\(443\) −228.006 + 61.0941i −0.514687 + 0.137910i −0.506808 0.862059i \(-0.669175\pi\)
−0.00787902 + 0.999969i \(0.502508\pi\)
\(444\) 0 0
\(445\) −220.147 476.455i −0.494713 1.07069i
\(446\) −105.799 183.250i −0.237219 0.410875i
\(447\) 0 0
\(448\) 445.723 119.431i 0.994917 0.266587i
\(449\) 267.125i 0.594933i −0.954732 0.297467i \(-0.903858\pi\)
0.954732 0.297467i \(-0.0961417\pi\)
\(450\) 0 0
\(451\) −18.9031 −0.0419138
\(452\) 76.8679 + 286.875i 0.170062 + 0.634679i
\(453\) 0 0
\(454\) 20.2205 11.6743i 0.0445385 0.0257143i
\(455\) −146.290 + 67.5936i −0.321516 + 0.148557i
\(456\) 0 0
\(457\) −22.5974 84.3345i −0.0494472 0.184539i 0.936785 0.349905i \(-0.113786\pi\)
−0.986232 + 0.165366i \(0.947120\pi\)
\(458\) 424.659 + 424.659i 0.927203 + 0.927203i
\(459\) 0 0
\(460\) 243.496 + 292.259i 0.529339 + 0.635346i
\(461\) −228.251 + 395.342i −0.495121 + 0.857574i −0.999984 0.00562496i \(-0.998210\pi\)
0.504863 + 0.863199i \(0.331543\pi\)
\(462\) 0 0
\(463\) −191.397 + 714.304i −0.413385 + 1.54277i 0.374663 + 0.927161i \(0.377758\pi\)
−0.788048 + 0.615613i \(0.788908\pi\)
\(464\) 594.668 343.332i 1.28161 0.739939i
\(465\) 0 0
\(466\) 166.909 289.095i 0.358174 0.620376i
\(467\) 200.076 200.076i 0.428428 0.428428i −0.459664 0.888093i \(-0.652030\pi\)
0.888093 + 0.459664i \(0.152030\pi\)
\(468\) 0 0
\(469\) 1084.39i 2.31214i
\(470\) 599.122 849.291i 1.27473 1.80700i
\(471\) 0 0
\(472\) 57.6372 + 15.4439i 0.122113 + 0.0327200i
\(473\) 4.19179 15.6440i 0.00886214 0.0330739i
\(474\) 0 0
\(475\) −554.639 472.055i −1.16766 0.993799i
\(476\) 663.631 1.39418
\(477\) 0 0
\(478\) 524.025 + 524.025i 1.09629 + 1.09629i
\(479\) −457.227 263.980i −0.954545 0.551107i −0.0600553 0.998195i \(-0.519128\pi\)
−0.894490 + 0.447088i \(0.852461\pi\)
\(480\) 0 0
\(481\) −17.6110 30.5031i −0.0366133 0.0634161i
\(482\) 755.667 + 202.480i 1.56777 + 0.420084i
\(483\) 0 0
\(484\) −386.683 223.251i −0.798931 0.461263i
\(485\) −477.107 572.654i −0.983726 1.18073i
\(486\) 0 0
\(487\) 2.96411 2.96411i 0.00608646 0.00608646i −0.704057 0.710143i \(-0.748630\pi\)
0.710143 + 0.704057i \(0.248630\pi\)
\(488\) −87.1263 + 23.3454i −0.178537 + 0.0478390i
\(489\) 0 0
\(490\) 314.969 + 115.890i 0.642794 + 0.236510i
\(491\) −395.412 684.874i −0.805320 1.39486i −0.916075 0.401008i \(-0.868660\pi\)
0.110754 0.993848i \(-0.464673\pi\)
\(492\) 0 0
\(493\) 812.907 217.818i 1.64890 0.441821i
\(494\) 304.470i 0.616337i
\(495\) 0 0
\(496\) 261.865 0.527953
\(497\) 157.581 + 588.100i 0.317064 + 1.18330i
\(498\) 0 0
\(499\) 509.165 293.967i 1.02037 0.589112i 0.106160 0.994349i \(-0.466144\pi\)
0.914212 + 0.405237i \(0.132811\pi\)
\(500\) −114.886 447.509i −0.229772 0.895018i
\(501\) 0 0
\(502\) −21.4244 79.9569i −0.0426780 0.159277i
\(503\) −282.741 282.741i −0.562109 0.562109i 0.367797 0.929906i \(-0.380112\pi\)
−0.929906 + 0.367797i \(0.880112\pi\)
\(504\) 0 0
\(505\) 2.79726 30.7332i 0.00553913 0.0608577i
\(506\) 12.7182 22.0286i 0.0251348 0.0435348i
\(507\) 0 0
\(508\) −153.603 + 573.256i −0.302369 + 1.12846i
\(509\) 453.850 262.030i 0.891651 0.514795i 0.0171685 0.999853i \(-0.494535\pi\)
0.874482 + 0.485058i \(0.161201\pi\)
\(510\) 0 0
\(511\) −471.294 + 816.305i −0.922297 + 1.59747i
\(512\) 493.507 493.507i 0.963882 0.963882i
\(513\) 0 0
\(514\) 434.377i 0.845092i
\(515\) 16.6419 + 96.3524i 0.0323144 + 0.187092i
\(516\) 0 0
\(517\) −32.2400 8.63869i −0.0623599 0.0167093i
\(518\) −57.4338 + 214.346i −0.110876 + 0.413795i
\(519\) 0 0
\(520\) −9.15211 + 12.9737i −0.0176002 + 0.0249493i
\(521\) 149.033 0.286051 0.143026 0.989719i \(-0.454317\pi\)
0.143026 + 0.989719i \(0.454317\pi\)
\(522\) 0 0
\(523\) −529.426 529.426i −1.01229 1.01229i −0.999924 0.0123638i \(-0.996064\pi\)
−0.0123638 0.999924i \(-0.503936\pi\)
\(524\) −254.147 146.732i −0.485012 0.280022i
\(525\) 0 0
\(526\) −38.7105 67.0486i −0.0735942 0.127469i
\(527\) 310.009 + 83.0665i 0.588252 + 0.157622i
\(528\) 0 0
\(529\) 91.2061 + 52.6578i 0.172412 + 0.0995422i
\(530\) −79.7581 + 876.293i −0.150487 + 1.65338i
\(531\) 0 0
\(532\) −651.425 + 651.425i −1.22448 + 1.22448i
\(533\) 154.419 41.3764i 0.289717 0.0776294i
\(534\) 0 0
\(535\) 116.920 317.770i 0.218543 0.593963i
\(536\) 53.4184 + 92.5233i 0.0996611 + 0.172618i
\(537\) 0 0
\(538\) 270.012 72.3495i 0.501881 0.134479i
\(539\) 10.7778i 0.0199959i
\(540\) 0 0
\(541\) −95.0214 −0.175640 −0.0878202 0.996136i \(-0.527990\pi\)
−0.0878202 + 0.996136i \(0.527990\pi\)
\(542\) −245.739 917.110i −0.453393 1.69208i
\(543\) 0 0
\(544\) 802.063 463.071i 1.47438 0.851234i
\(545\) 126.344 + 273.440i 0.231823 + 0.501726i
\(546\) 0 0
\(547\) 160.148 + 597.679i 0.292774 + 1.09265i 0.942969 + 0.332881i \(0.108021\pi\)
−0.650194 + 0.759768i \(0.725313\pi\)
\(548\) 257.945 + 257.945i 0.470703 + 0.470703i
\(549\) 0 0
\(550\) −25.4304 + 17.5425i −0.0462371 + 0.0318954i
\(551\) −584.144 + 1011.77i −1.06015 + 1.83624i
\(552\) 0 0
\(553\) 148.920 555.779i 0.269296 1.00502i
\(554\) 547.194 315.923i 0.987715 0.570257i
\(555\) 0 0
\(556\) 158.585 274.678i 0.285226 0.494025i
\(557\) 591.236 591.236i 1.06147 1.06147i 0.0634822 0.997983i \(-0.479779\pi\)
0.997983 0.0634822i \(-0.0202206\pi\)
\(558\) 0 0
\(559\) 136.970i 0.245027i
\(560\) 721.787 124.666i 1.28891 0.222619i
\(561\) 0 0
\(562\) 1365.74 + 365.949i 2.43014 + 0.651155i
\(563\) 192.769 719.424i 0.342396 1.27784i −0.553228 0.833030i \(-0.686604\pi\)
0.895624 0.444811i \(-0.146729\pi\)
\(564\) 0 0
\(565\) 68.3793 + 395.899i 0.121025 + 0.700706i
\(566\) −1000.29 −1.76730
\(567\) 0 0
\(568\) 42.4156 + 42.4156i 0.0746754 + 0.0746754i
\(569\) −511.784 295.479i −0.899444 0.519294i −0.0224244 0.999749i \(-0.507139\pi\)
−0.877020 + 0.480454i \(0.840472\pi\)
\(570\) 0 0
\(571\) 190.304 + 329.617i 0.333283 + 0.577262i 0.983153 0.182782i \(-0.0585104\pi\)
−0.649871 + 0.760045i \(0.725177\pi\)
\(572\) −5.99122 1.60534i −0.0104742 0.00280654i
\(573\) 0 0
\(574\) −872.258 503.598i −1.51961 0.877349i
\(575\) 292.198 + 423.584i 0.508170 + 0.736667i
\(576\) 0 0
\(577\) −156.284 + 156.284i −0.270856 + 0.270856i −0.829445 0.558589i \(-0.811343\pi\)
0.558589 + 0.829445i \(0.311343\pi\)
\(578\) 405.755 108.722i 0.701999 0.188100i
\(579\) 0 0
\(580\) −672.770 + 310.855i −1.15995 + 0.535956i
\(581\) −137.433 238.042i −0.236546 0.409710i
\(582\) 0 0
\(583\) 27.2945 7.31355i 0.0468174 0.0125447i
\(584\) 92.8656i 0.159017i
\(585\) 0 0
\(586\) 550.137 0.938800
\(587\) 262.569 + 979.920i 0.447306 + 1.66937i 0.709774 + 0.704429i \(0.248797\pi\)
−0.262468 + 0.964941i \(0.584536\pi\)
\(588\) 0 0
\(589\) −385.845 + 222.768i −0.655085 + 0.378214i
\(590\) −921.554 339.077i −1.56196 0.574706i
\(591\) 0 0
\(592\) 41.4352 + 154.638i 0.0699918 + 0.261213i
\(593\) −336.299 336.299i −0.567115 0.567115i 0.364204 0.931319i \(-0.381341\pi\)
−0.931319 + 0.364204i \(0.881341\pi\)
\(594\) 0 0
\(595\) 894.033 + 81.3728i 1.50258 + 0.136761i
\(596\) 250.032 433.069i 0.419517 0.726625i
\(597\) 0 0
\(598\) −55.6770 + 207.789i −0.0931054 + 0.347474i
\(599\) −370.646 + 213.993i −0.618775 + 0.357250i −0.776392 0.630250i \(-0.782952\pi\)
0.157617 + 0.987500i \(0.449619\pi\)
\(600\) 0 0
\(601\) −8.50753 + 14.7355i −0.0141556 + 0.0245183i −0.873016 0.487691i \(-0.837839\pi\)
0.858861 + 0.512209i \(0.171173\pi\)
\(602\) 610.195 610.195i 1.01361 1.01361i
\(603\) 0 0
\(604\) 533.005i 0.882459i
\(605\) −493.558 348.175i −0.815799 0.575496i
\(606\) 0 0
\(607\) −286.306 76.7156i −0.471675 0.126385i 0.0151488 0.999885i \(-0.495178\pi\)
−0.486823 + 0.873500i \(0.661844\pi\)
\(608\) −332.757 + 1241.86i −0.547297 + 2.04254i
\(609\) 0 0
\(610\) 1462.70 252.636i 2.39786 0.414157i
\(611\) 282.277 0.461991
\(612\) 0 0
\(613\) −229.232 229.232i −0.373951 0.373951i 0.494963 0.868914i \(-0.335181\pi\)
−0.868914 + 0.494963i \(0.835181\pi\)
\(614\) 418.268 + 241.487i 0.681219 + 0.393302i
\(615\) 0 0
\(616\) −1.60615 2.78193i −0.00260738 0.00451612i
\(617\) −122.674 32.8703i −0.198823 0.0532744i 0.158033 0.987434i \(-0.449485\pi\)
−0.356856 + 0.934159i \(0.616151\pi\)
\(618\) 0 0
\(619\) −1002.57 578.835i −1.61966 0.935112i −0.987007 0.160679i \(-0.948632\pi\)
−0.632655 0.774433i \(-0.718035\pi\)
\(620\) −281.466 25.6184i −0.453978 0.0413200i
\(621\) 0 0
\(622\) 486.525 486.525i 0.782194 0.782194i
\(623\) −867.474 + 232.439i −1.39241 + 0.373096i
\(624\) 0 0
\(625\) −99.9000 616.964i −0.159840 0.987143i
\(626\) −250.245 433.437i −0.399753 0.692392i
\(627\) 0 0
\(628\) 229.364 61.4579i 0.365229 0.0978628i
\(629\) 196.212i 0.311943i
\(630\) 0 0
\(631\) −1139.80 −1.80634 −0.903169 0.429285i \(-0.858766\pi\)
−0.903169 + 0.429285i \(0.858766\pi\)
\(632\) −14.6720 54.7565i −0.0232151 0.0866400i
\(633\) 0 0
\(634\) −800.062 + 461.916i −1.26193 + 0.728574i
\(635\) −277.223 + 753.447i −0.436572 + 1.18653i
\(636\) 0 0
\(637\) 23.5912 + 88.0434i 0.0370348 + 0.138216i
\(638\) 35.0416 + 35.0416i 0.0549242 + 0.0549242i
\(639\) 0 0
\(640\) 103.316 86.0774i 0.161431 0.134496i
\(641\) 381.384 660.576i 0.594983 1.03054i −0.398566 0.917139i \(-0.630492\pi\)
0.993549 0.113401i \(-0.0361745\pi\)
\(642\) 0 0
\(643\) −117.821 + 439.713i −0.183236 + 0.683846i 0.811765 + 0.583984i \(0.198507\pi\)
−0.995001 + 0.0998621i \(0.968160\pi\)
\(644\) 563.696 325.450i 0.875304 0.505357i
\(645\) 0 0
\(646\) −848.061 + 1468.88i −1.31279 + 2.27381i
\(647\) −19.2194 + 19.2194i −0.0297054 + 0.0297054i −0.721803 0.692098i \(-0.756687\pi\)
0.692098 + 0.721803i \(0.256687\pi\)
\(648\) 0 0
\(649\) 31.5343i 0.0485890i
\(650\) 169.342 198.968i 0.260526 0.306104i
\(651\) 0 0
\(652\) 91.4468 + 24.5031i 0.140256 + 0.0375814i
\(653\) −328.534 + 1226.11i −0.503115 + 1.87765i −0.0243595 + 0.999703i \(0.507755\pi\)
−0.478756 + 0.877948i \(0.658912\pi\)
\(654\) 0 0
\(655\) −324.390 228.837i −0.495253 0.349370i
\(656\) −726.634 −1.10767
\(657\) 0 0
\(658\) −1257.53 1257.53i −1.91114 1.91114i
\(659\) 680.526 + 392.902i 1.03266 + 0.596209i 0.917747 0.397166i \(-0.130006\pi\)
0.114918 + 0.993375i \(0.463339\pi\)
\(660\) 0 0
\(661\) −184.105 318.880i −0.278526 0.482421i 0.692493 0.721425i \(-0.256512\pi\)
−0.971019 + 0.239004i \(0.923179\pi\)
\(662\) −47.5955 12.7532i −0.0718966 0.0192646i
\(663\) 0 0
\(664\) −23.4524 13.5402i −0.0353198 0.0203919i
\(665\) −957.466 + 797.713i −1.43980 + 1.19957i
\(666\) 0 0
\(667\) 583.673 583.673i 0.875072 0.875072i
\(668\) 156.673 41.9805i 0.234541 0.0628450i
\(669\) 0 0
\(670\) −737.437 1596.00i −1.10065 2.38210i
\(671\) −23.8341 41.2819i −0.0355203 0.0615229i
\(672\) 0 0
\(673\) 797.751 213.757i 1.18537 0.317618i 0.388313 0.921528i \(-0.373058\pi\)
0.797053 + 0.603910i \(0.206391\pi\)
\(674\) 767.200i 1.13828i
\(675\) 0 0
\(676\) −572.196 −0.846444
\(677\) 186.692 + 696.745i 0.275764 + 1.02917i 0.955328 + 0.295549i \(0.0955024\pi\)
−0.679564 + 0.733616i \(0.737831\pi\)
\(678\) 0 0
\(679\) −1104.51 + 637.688i −1.62667 + 0.939158i
\(680\) 80.2898 37.0981i 0.118073 0.0545560i
\(681\) 0 0
\(682\) 4.89134 + 18.2547i 0.00717206 + 0.0267665i
\(683\) 264.640 + 264.640i 0.387467 + 0.387467i 0.873783 0.486316i \(-0.161660\pi\)
−0.486316 + 0.873783i \(0.661660\pi\)
\(684\) 0 0
\(685\) 315.871 + 379.128i 0.461126 + 0.553472i
\(686\) −294.362 + 509.851i −0.429100 + 0.743223i
\(687\) 0 0
\(688\) 161.132 601.353i 0.234203 0.874059i
\(689\) −206.960 + 119.488i −0.300377 + 0.173423i
\(690\) 0 0
\(691\) −242.016 + 419.184i −0.350240 + 0.606633i −0.986291 0.165013i \(-0.947233\pi\)
0.636051 + 0.771647i \(0.280567\pi\)
\(692\) −210.776 + 210.776i −0.304590 + 0.304590i
\(693\) 0 0
\(694\) 877.380i 1.26424i
\(695\) 247.324 350.597i 0.355862 0.504456i
\(696\) 0 0
\(697\) −860.227 230.497i −1.23418 0.330699i
\(698\) −485.244 + 1810.96i −0.695193 + 2.59449i
\(699\) 0 0
\(700\) −788.012 + 63.3854i −1.12573 + 0.0905505i
\(701\) −394.513 −0.562787 −0.281393 0.959593i \(-0.590797\pi\)
−0.281393 + 0.959593i \(0.590797\pi\)
\(702\) 0 0
\(703\) −192.603 192.603i −0.273973 0.273973i
\(704\) 20.8069 + 12.0129i 0.0295553 + 0.0170638i
\(705\) 0 0
\(706\) 575.946 + 997.568i 0.815788 + 1.41299i
\(707\) −51.0052 13.6668i −0.0721431 0.0193307i
\(708\) 0 0
\(709\) −97.8826 56.5126i −0.138057 0.0797074i 0.429380 0.903124i \(-0.358732\pi\)
−0.567438 + 0.823416i \(0.692065\pi\)
\(710\) −631.862 758.400i −0.889946 1.06817i
\(711\) 0 0
\(712\) −62.5649 + 62.5649i −0.0878721 + 0.0878721i
\(713\) 304.061 81.4730i 0.426454 0.114268i
\(714\) 0 0
\(715\) −7.87443 2.89732i −0.0110132 0.00405220i
\(716\) −101.904 176.503i −0.142324 0.246513i
\(717\) 0 0
\(718\) −552.306 + 147.990i −0.769229 + 0.206114i
\(719\) 242.271i 0.336955i −0.985705 0.168478i \(-0.946115\pi\)
0.985705 0.168478i \(-0.0538851\pi\)
\(720\) 0 0
\(721\) 167.308 0.232050
\(722\) −350.201 1306.97i −0.485043 1.81021i
\(723\) 0 0
\(724\) 578.374 333.924i 0.798859 0.461221i
\(725\) −944.461 + 336.285i −1.30271 + 0.463842i
\(726\) 0 0
\(727\) 108.815 + 406.101i 0.149676 + 0.558599i 0.999503 + 0.0315363i \(0.0100400\pi\)
−0.849826 + 0.527063i \(0.823293\pi\)
\(728\) 19.2098 + 19.2098i 0.0263871 + 0.0263871i
\(729\) 0 0
\(730\) 138.523 1521.93i 0.189757 2.08484i
\(731\) 381.512 660.799i 0.521905 0.903965i
\(732\) 0 0
\(733\) 37.6903 140.662i 0.0514193 0.191899i −0.935439 0.353489i \(-0.884995\pi\)
0.986858 + 0.161589i \(0.0516620\pi\)
\(734\) 444.434 256.594i 0.605496 0.349583i
\(735\) 0 0
\(736\) 454.188 786.676i 0.617103 1.06885i
\(737\) −39.9235 + 39.9235i −0.0541703 + 0.0541703i
\(738\) 0 0
\(739\) 951.239i 1.28720i −0.765363 0.643599i \(-0.777441\pi\)
0.765363 0.643599i \(-0.222559\pi\)
\(740\) −29.4084 170.267i −0.0397411 0.230091i
\(741\) 0 0
\(742\) 1454.31 + 389.681i 1.95998 + 0.525176i
\(743\) −35.8827 + 133.916i −0.0482943 + 0.180237i −0.985860 0.167572i \(-0.946407\pi\)
0.937566 + 0.347809i \(0.113074\pi\)
\(744\) 0 0
\(745\) 389.942 552.765i 0.523412 0.741967i
\(746\) 675.536 0.905544
\(747\) 0 0
\(748\) 24.4325 + 24.4325i 0.0326638 + 0.0326638i
\(749\) −501.748 289.684i −0.669891 0.386762i
\(750\) 0 0
\(751\) −72.3063 125.238i −0.0962800 0.166762i 0.813862 0.581058i \(-0.197361\pi\)
−0.910142 + 0.414296i \(0.864028\pi\)
\(752\) −1239.30 332.070i −1.64801 0.441583i
\(753\) 0 0
\(754\) −362.955 209.552i −0.481373 0.277921i
\(755\) 65.3558 718.056i 0.0865640 0.951068i
\(756\) 0 0
\(757\) −509.399 + 509.399i −0.672918 + 0.672918i −0.958388 0.285470i \(-0.907850\pi\)
0.285470 + 0.958388i \(0.407850\pi\)
\(758\) −645.204 + 172.882i −0.851193 + 0.228076i
\(759\) 0 0
\(760\) −42.3973 + 115.229i −0.0557859 + 0.151617i
\(761\) −324.207 561.542i −0.426027 0.737900i 0.570489 0.821305i \(-0.306754\pi\)
−0.996516 + 0.0834050i \(0.973420\pi\)
\(762\) 0 0
\(763\) 497.848 133.398i 0.652487 0.174833i
\(764\) 703.340i 0.920601i
\(765\) 0 0
\(766\) −469.889 −0.613433
\(767\) −69.0243 257.602i −0.0899926 0.335857i
\(768\) 0 0
\(769\) 360.970 208.406i 0.469402 0.271009i −0.246587 0.969121i \(-0.579309\pi\)
0.715989 + 0.698111i \(0.245976\pi\)
\(770\) 22.1728 + 47.9876i 0.0287958 + 0.0623215i
\(771\) 0 0
\(772\) 8.71810 + 32.5364i 0.0112929 + 0.0421456i
\(773\) 114.629 + 114.629i 0.148292 + 0.148292i 0.777354 0.629063i \(-0.216561\pi\)
−0.629063 + 0.777354i \(0.716561\pi\)
\(774\) 0 0
\(775\) −376.046 69.0254i −0.485220 0.0890650i
\(776\) −62.8264 + 108.818i −0.0809618 + 0.140230i
\(777\) 0 0
\(778\) −106.134 + 396.097i −0.136419 + 0.509122i
\(779\) 1070.66 618.147i 1.37441 0.793513i
\(780\) 0 0
\(781\) −15.8502 + 27.4533i −0.0202947 + 0.0351515i
\(782\) 847.377 847.377i 1.08360 1.08360i
\(783\) 0 0
\(784\) 414.297i 0.528440i
\(785\) 316.531 54.6711i 0.403225 0.0696447i
\(786\) 0 0
\(787\) 917.219 + 245.768i 1.16546 + 0.312285i 0.789146 0.614206i \(-0.210524\pi\)
0.376317 + 0.926491i \(0.377190\pi\)
\(788\) −157.087 + 586.257i −0.199349 + 0.743981i
\(789\) 0 0
\(790\) 158.775 + 919.265i 0.200981 + 1.16363i
\(791\) 687.447 0.869085
\(792\) 0 0
\(793\) 285.060 + 285.060i 0.359471 + 0.359471i
\(794\) 525.587 + 303.448i 0.661948 + 0.382176i
\(795\) 0 0
\(796\) −520.575 901.662i −0.653988 1.13274i
\(797\) −265.785 71.2169i −0.333482 0.0893563i 0.0881926 0.996103i \(-0.471891\pi\)
−0.421675 + 0.906747i \(0.638558\pi\)
\(798\) 0 0
\(799\) −1361.81 786.243i −1.70440 0.984034i
\(800\) −908.160 + 626.469i −1.13520 + 0.783087i
\(801\) 0 0
\(802\) −1390.65 + 1390.65i −1.73398 + 1.73398i
\(803\) −47.4048 + 12.7021i −0.0590346 + 0.0158183i
\(804\) 0 0
\(805\) 799.308 369.322i 0.992930 0.458785i
\(806\) −79.9144 138.416i −0.0991494 0.171732i
\(807\) 0 0
\(808\) −5.02513 + 1.34648i −0.00621922 + 0.00166644i
\(809\) 724.904i 0.896049i −0.894021 0.448025i \(-0.852128\pi\)
0.894021 0.448025i \(-0.147872\pi\)
\(810\) 0 0
\(811\) 331.996 0.409366 0.204683 0.978828i \(-0.434384\pi\)
0.204683 + 0.978828i \(0.434384\pi\)
\(812\) 328.211 + 1224.90i 0.404200 + 1.50850i
\(813\) 0 0
\(814\) −10.0060 + 5.77694i −0.0122923 + 0.00709698i
\(815\) 120.191 + 44.2232i 0.147474 + 0.0542616i
\(816\) 0 0
\(817\) 274.149 + 1023.14i 0.335556 + 1.25231i
\(818\) −328.652 328.652i −0.401775 0.401775i
\(819\) 0 0
\(820\) 781.026 + 71.0871i 0.952470 + 0.0866916i
\(821\) 359.807 623.204i 0.438254 0.759079i −0.559301 0.828965i \(-0.688930\pi\)
0.997555 + 0.0698862i \(0.0222636\pi\)
\(822\) 0 0
\(823\) 106.313 396.767i 0.129178 0.482099i −0.870776 0.491680i \(-0.836383\pi\)
0.999954 + 0.00958090i \(0.00304974\pi\)
\(824\) 14.2752 8.24177i 0.0173242 0.0100022i
\(825\) 0 0
\(826\) −840.104 + 1455.10i −1.01708 + 1.76163i
\(827\) −185.364 + 185.364i −0.224140 + 0.224140i −0.810239 0.586099i \(-0.800663\pi\)
0.586099 + 0.810239i \(0.300663\pi\)
\(828\) 0 0
\(829\) 601.887i 0.726040i −0.931781 0.363020i \(-0.881746\pi\)
0.931781 0.363020i \(-0.118254\pi\)
\(830\) 364.153 + 256.887i 0.438738 + 0.309503i
\(831\) 0 0
\(832\) −196.266 52.5892i −0.235896 0.0632082i
\(833\) 131.420 490.466i 0.157767 0.588795i
\(834\) 0 0
\(835\) 216.215 37.3445i 0.258940 0.0447240i
\(836\) −47.9663 −0.0573759
\(837\) 0 0
\(838\) 277.039 + 277.039i 0.330595 + 0.330595i
\(839\) 145.550 + 84.0331i 0.173480 + 0.100159i 0.584226 0.811591i \(-0.301398\pi\)
−0.410746 + 0.911750i \(0.634732\pi\)
\(840\) 0 0
\(841\) 383.576 + 664.374i 0.456095 + 0.789980i
\(842\) 1544.40 + 413.820i 1.83420 + 0.491472i
\(843\) 0 0
\(844\) −770.960 445.114i −0.913459 0.527386i
\(845\) −770.854 70.1613i −0.912253 0.0830311i
\(846\) 0 0
\(847\) −730.801 + 730.801i −0.862811 + 0.862811i
\(848\) 1049.20 281.132i 1.23726 0.331524i
\(849\) 0 0
\(850\) −1371.17 + 488.219i −1.61314 + 0.574376i
\(851\) 96.2240 + 166.665i 0.113072 + 0.195846i
\(852\) 0 0
\(853\) −435.758 + 116.761i −0.510854 + 0.136883i −0.505033 0.863100i \(-0.668520\pi\)
−0.00582116 + 0.999983i \(0.501853\pi\)
\(854\) 2539.86i 2.97407i
\(855\) 0 0
\(856\) −57.0806 −0.0666830
\(857\) 249.230 + 930.139i 0.290817 + 1.08534i 0.944483 + 0.328560i \(0.106563\pi\)
−0.653667 + 0.756783i \(0.726770\pi\)
\(858\) 0 0
\(859\) 285.314 164.726i 0.332147 0.191765i −0.324647 0.945835i \(-0.605246\pi\)
0.656794 + 0.754070i \(0.271912\pi\)
\(860\) −232.024 + 630.603i −0.269795 + 0.733259i
\(861\) 0 0
\(862\) −322.395 1203.20i −0.374009 1.39582i
\(863\) 271.802 + 271.802i 0.314950 + 0.314950i 0.846824 0.531874i \(-0.178512\pi\)
−0.531874 + 0.846824i \(0.678512\pi\)
\(864\) 0 0
\(865\) −309.799 + 258.110i −0.358150 + 0.298393i
\(866\) −1063.73 + 1842.43i −1.22832 + 2.12752i
\(867\) 0 0
\(868\) −125.166 + 467.125i −0.144200 + 0.538162i
\(869\) 25.9445 14.9791i 0.0298556 0.0172371i
\(870\) 0 0
\(871\) 238.746 413.521i 0.274106 0.474766i
\(872\) 35.9064 35.9064i 0.0411770 0.0411770i
\(873\) 0 0
\(874\) 1663.58i 1.90341i
\(875\) −1069.37 11.2323i −1.22214 0.0128369i
\(876\) 0 0
\(877\) 703.795 + 188.581i 0.802503 + 0.215030i 0.636682 0.771126i \(-0.280306\pi\)
0.165820 + 0.986156i \(0.446973\pi\)
\(878\) 329.514 1229.76i 0.375300 1.40064i
\(879\) 0 0
\(880\) 31.1634 + 21.9838i 0.0354130 + 0.0249816i
\(881\) 1330.41 1.51011 0.755055 0.655661i \(-0.227610\pi\)
0.755055 + 0.655661i \(0.227610\pi\)
\(882\) 0 0
\(883\) −678.846 678.846i −0.768795 0.768795i 0.209099 0.977894i \(-0.432947\pi\)
−0.977894 + 0.209099i \(0.932947\pi\)
\(884\) −253.068 146.109i −0.286276 0.165281i
\(885\) 0 0
\(886\) −327.424 567.115i −0.369553 0.640084i
\(887\) 1097.46 + 294.062i 1.23727 + 0.331525i 0.817405 0.576063i \(-0.195412\pi\)
0.419862 + 0.907588i \(0.362079\pi\)
\(888\) 0 0
\(889\) 1189.67 + 686.855i 1.33821 + 0.772615i
\(890\) 1118.67 932.024i 1.25694 1.04722i
\(891\) 0 0
\(892\) 199.348 199.348i 0.223485 0.223485i
\(893\) 2108.55 564.984i 2.36120 0.632681i
\(894\) 0 0
\(895\) −115.641 250.278i −0.129208 0.279640i
\(896\) −115.049 199.270i −0.128403 0.222400i
\(897\) 0 0
\(898\) 715.806 191.800i 0.797112 0.213585i
\(899\) 613.282i 0.682182i
\(900\) 0 0
\(901\) 1331.27 1.47755
\(902\) −13.5727 50.6541i −0.0150474 0.0561576i
\(903\) 0 0
\(904\) 58.6547 33.8643i 0.0648836 0.0374605i
\(905\) 820.122 378.939i 0.906212 0.418717i
\(906\) 0 0
\(907\) −395.159 1474.75i −0.435677 1.62597i −0.739442 0.673220i \(-0.764911\pi\)
0.303765 0.952747i \(-0.401756\pi\)
\(908\) 21.9968 + 21.9968i 0.0242256 + 0.0242256i
\(909\) 0 0
\(910\) −286.167 343.475i −0.314469 0.377445i
\(911\) 896.264 1552.38i 0.983825 1.70403i 0.336778 0.941584i \(-0.390663\pi\)
0.647047 0.762451i \(-0.276004\pi\)
\(912\) 0 0
\(913\) 3.70404 13.8237i 0.00405700 0.0151409i
\(914\) 209.763 121.107i 0.229500 0.132502i
\(915\) 0 0
\(916\) −400.073 + 692.947i −0.436761 + 0.756493i
\(917\) −480.318 + 480.318i −0.523793 + 0.523793i
\(918\) 0 0
\(919\) 1164.78i 1.26744i 0.773563 + 0.633719i \(0.218473\pi\)
−0.773563 + 0.633719i \(0.781527\pi\)
\(920\) 50.0059 70.8863i 0.0543542 0.0770503i
\(921\) 0 0
\(922\) −1223.27 327.775i −1.32676 0.355504i
\(923\) 69.3879 258.959i 0.0751765 0.280562i
\(924\) 0 0
\(925\) −18.7408 232.987i −0.0202603 0.251878i
\(926\) −2051.52 −2.21547
\(927\) 0 0
\(928\) 1251.39 + 1251.39i 1.34848 + 1.34848i
\(929\) −712.499 411.361i −0.766952 0.442800i 0.0648339 0.997896i \(-0.479348\pi\)
−0.831786 + 0.555096i \(0.812682\pi\)
\(930\) 0 0
\(931\) 352.442 + 610.447i 0.378563 + 0.655690i
\(932\) 429.604 + 115.112i 0.460948 + 0.123511i
\(933\) 0 0
\(934\) 679.795 + 392.480i 0.727832 + 0.420214i
\(935\) 29.9193 + 35.9110i 0.0319992 + 0.0384075i
\(936\) 0 0
\(937\) 857.665 857.665i 0.915331 0.915331i −0.0813546 0.996685i \(-0.525925\pi\)
0.996685 + 0.0813546i \(0.0259246\pi\)
\(938\) −2905.82 + 778.611i −3.09788 + 0.830076i
\(939\) 0 0
\(940\) 1299.58 + 478.169i 1.38254 + 0.508690i
\(941\) −84.0785 145.628i −0.0893501 0.154759i 0.817886 0.575380i \(-0.195146\pi\)
−0.907237 + 0.420621i \(0.861812\pi\)
\(942\) 0 0
\(943\) −843.724 + 226.075i −0.894723 + 0.239740i
\(944\) 1212.17i 1.28408i
\(945\) 0 0
\(946\) 44.9304 0.0474952
\(947\) 207.131 + 773.022i 0.218723 + 0.816285i 0.984823 + 0.173564i \(0.0555282\pi\)
−0.766100 + 0.642722i \(0.777805\pi\)
\(948\) 0 0
\(949\) 359.445 207.525i 0.378762 0.218678i
\(950\) 866.711 1825.19i 0.912327 1.92125i
\(951\) 0 0
\(952\) −39.1694 146.182i −0.0411443 0.153553i
\(953\) 387.854 + 387.854i 0.406982 + 0.406982i 0.880685 0.473703i \(-0.157083\pi\)
−0.473703 + 0.880685i \(0.657083\pi\)
\(954\) 0 0
\(955\) −86.2418 + 947.528i −0.0903055 + 0.992176i
\(956\) −493.686 + 855.089i −0.516408 + 0.894445i
\(957\) 0 0
\(958\) 379.083 1414.76i 0.395703 1.47678i
\(959\) 731.246 422.185i 0.762509 0.440235i
\(960\) 0 0
\(961\) 363.560 629.705i 0.378314 0.655260i
\(962\) 69.0933 69.0933i 0.0718225 0.0718225i
\(963\) 0 0
\(964\) 1042.32i 1.08124i
\(965\) 7.75536 + 44.9015i 0.00803664 + 0.0465301i
\(966\) 0 0
\(967\) 1290.63 + 345.824i 1.33468 + 0.357626i 0.854457 0.519522i \(-0.173890\pi\)
0.480220 + 0.877148i \(0.340557\pi\)
\(968\) −26.3538 + 98.3539i −0.0272250 + 0.101605i
\(969\) 0 0
\(970\) 1191.95 1689.66i 1.22882 1.74192i
\(971\) 1177.49 1.21266 0.606328 0.795215i \(-0.292642\pi\)
0.606328 + 0.795215i \(0.292642\pi\)
\(972\) 0 0
\(973\) −519.121 519.121i −0.533526 0.533526i
\(974\) 10.0711 + 5.81455i 0.0103399 + 0.00596976i
\(975\) 0 0
\(976\) −916.180 1586.87i −0.938709 1.62589i
\(977\) 349.893 + 93.7536i 0.358130 + 0.0959607i 0.433398 0.901203i \(-0.357314\pi\)
−0.0752677 + 0.997163i \(0.523981\pi\)
\(978\) 0 0
\(979\) −40.4949 23.3797i −0.0413635 0.0238812i
\(980\) −40.5310 + 445.309i −0.0413581 + 0.454397i
\(981\) 0 0
\(982\) 1551.32 1551.32i 1.57976 1.57976i
\(983\) 656.940 176.027i 0.668301 0.179071i 0.0913119 0.995822i \(-0.470894\pi\)
0.576990 + 0.816751i \(0.304227\pi\)
\(984\) 0 0
\(985\) −283.511 + 770.535i −0.287828 + 0.782269i
\(986\) 1167.36 + 2021.92i 1.18393 + 2.05063i
\(987\) 0 0
\(988\) 391.835 104.992i 0.396594 0.106267i
\(989\) 748.387i 0.756711i
\(990\) 0 0
\(991\) 809.023 0.816370 0.408185 0.912899i \(-0.366162\pi\)
0.408185 + 0.912899i \(0.366162\pi\)
\(992\) 174.677 + 651.905i 0.176086 + 0.657162i
\(993\) 0 0
\(994\) −1462.77 + 844.529i −1.47160 + 0.849627i
\(995\) −590.751 1278.54i −0.593719 1.28496i
\(996\) 0 0
\(997\) 27.6300 + 103.117i 0.0277131 + 0.103427i 0.978397 0.206734i \(-0.0662836\pi\)
−0.950684 + 0.310161i \(0.899617\pi\)
\(998\) 1153.32 + 1153.32i 1.15563 + 1.15563i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 405.3.l.j.298.4 16
3.2 odd 2 405.3.l.m.298.1 16
5.2 odd 4 405.3.l.m.217.1 16
9.2 odd 6 405.3.g.f.163.2 yes 16
9.4 even 3 405.3.l.m.28.1 16
9.5 odd 6 inner 405.3.l.j.28.4 16
9.7 even 3 405.3.g.f.163.7 yes 16
15.2 even 4 inner 405.3.l.j.217.4 16
45.2 even 12 405.3.g.f.82.2 16
45.7 odd 12 405.3.g.f.82.7 yes 16
45.22 odd 12 inner 405.3.l.j.352.4 16
45.32 even 12 405.3.l.m.352.1 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
405.3.g.f.82.2 16 45.2 even 12
405.3.g.f.82.7 yes 16 45.7 odd 12
405.3.g.f.163.2 yes 16 9.2 odd 6
405.3.g.f.163.7 yes 16 9.7 even 3
405.3.l.j.28.4 16 9.5 odd 6 inner
405.3.l.j.217.4 16 15.2 even 4 inner
405.3.l.j.298.4 16 1.1 even 1 trivial
405.3.l.j.352.4 16 45.22 odd 12 inner
405.3.l.m.28.1 16 9.4 even 3
405.3.l.m.217.1 16 5.2 odd 4
405.3.l.m.298.1 16 3.2 odd 2
405.3.l.m.352.1 16 45.32 even 12