Properties

Label 405.3.n.a.179.9
Level $405$
Weight $3$
Character 405.179
Analytic conductor $11.035$
Analytic rank $0$
Dimension $204$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [405,3,Mod(44,405)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(405, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([5, 9]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("405.44");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 405 = 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 405.n (of order \(18\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.0354507066\)
Analytic rank: \(0\)
Dimension: \(204\)
Relative dimension: \(34\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 135)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 179.9
Character \(\chi\) \(=\) 405.179
Dual form 405.3.n.a.224.9

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.03789 - 0.741730i) q^{2} +(0.538636 + 0.451970i) q^{4} +(4.62185 + 1.90748i) q^{5} +(-2.32404 - 2.76969i) q^{7} +(3.57490 + 6.19192i) q^{8} +(-8.00397 - 7.31539i) q^{10} +(8.70004 - 1.53405i) q^{11} +(-3.15234 - 8.66099i) q^{13} +(2.68178 + 7.36812i) q^{14} +(-3.18091 - 18.0399i) q^{16} +(-9.89182 + 17.1331i) q^{17} +(12.1652 + 21.0707i) q^{19} +(1.62737 + 3.11638i) q^{20} +(-18.8675 - 3.32686i) q^{22} +(4.74988 + 3.98563i) q^{23} +(17.7230 + 17.6322i) q^{25} +19.9883i q^{26} -2.54225i q^{28} +(5.21445 - 14.3266i) q^{29} +(-9.90161 - 8.30843i) q^{31} +(-1.93215 + 10.9578i) q^{32} +(32.8665 - 27.5783i) q^{34} +(-5.45826 - 17.2342i) q^{35} +(-9.23883 - 5.33404i) q^{37} +(-9.16248 - 51.9630i) q^{38} +(4.71171 + 35.4372i) q^{40} +(23.8792 + 65.6075i) q^{41} +(58.3296 - 10.2851i) q^{43} +(5.37950 + 3.10586i) q^{44} +(-6.72346 - 11.6454i) q^{46} +(12.6408 - 10.6069i) q^{47} +(6.23877 - 35.3818i) q^{49} +(-23.0392 - 49.0781i) q^{50} +(2.21654 - 6.08989i) q^{52} +85.3480 q^{53} +(43.1365 + 9.50501i) q^{55} +(8.84144 - 24.2917i) q^{56} +(-21.2529 + 25.3282i) q^{58} +(60.9628 + 10.7494i) q^{59} +(55.8155 - 46.8348i) q^{61} +(14.0157 + 24.2760i) q^{62} +(-24.5711 + 42.5584i) q^{64} +(1.95102 - 46.0428i) q^{65} +(7.87234 + 21.6291i) q^{67} +(-13.0717 + 4.75773i) q^{68} +(-1.65978 + 39.1698i) q^{70} +(-49.0653 - 28.3279i) q^{71} +(101.360 - 58.5204i) q^{73} +(14.8713 + 17.7229i) q^{74} +(-2.97071 + 16.8478i) q^{76} +(-24.4681 - 20.5312i) q^{77} +(-7.55144 - 2.74850i) q^{79} +(19.7090 - 89.4451i) q^{80} -151.413i q^{82} +(77.8706 + 28.3426i) q^{83} +(-78.3997 + 60.3183i) q^{85} +(-126.498 - 22.3050i) q^{86} +(40.6005 + 48.3858i) q^{88} +(-102.638 + 59.2583i) q^{89} +(-16.6621 + 28.8595i) q^{91} +(0.757079 + 4.29361i) q^{92} +(-33.6278 + 12.2395i) q^{94} +(16.0337 + 120.591i) q^{95} +(30.2613 - 5.33588i) q^{97} +(-38.9576 + 67.4766i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 204 q - 12 q^{4} - 3 q^{5} - 3 q^{10} - 6 q^{11} + 48 q^{14} + 12 q^{16} - 6 q^{19} - 63 q^{20} - 15 q^{25} - 96 q^{29} - 102 q^{31} + 12 q^{34} + 252 q^{35} + 117 q^{40} - 96 q^{41} + 666 q^{44} - 6 q^{46}+ \cdots + 543 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/405\mathbb{Z}\right)^\times\).

\(n\) \(82\) \(326\)
\(\chi(n)\) \(-1\) \(e\left(\frac{11}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.03789 0.741730i −1.01894 0.370865i −0.222082 0.975028i \(-0.571285\pi\)
−0.796861 + 0.604163i \(0.793508\pi\)
\(3\) 0 0
\(4\) 0.538636 + 0.451970i 0.134659 + 0.112992i
\(5\) 4.62185 + 1.90748i 0.924370 + 0.381496i
\(6\) 0 0
\(7\) −2.32404 2.76969i −0.332006 0.395670i 0.574055 0.818817i \(-0.305370\pi\)
−0.906061 + 0.423147i \(0.860925\pi\)
\(8\) 3.57490 + 6.19192i 0.446863 + 0.773990i
\(9\) 0 0
\(10\) −8.00397 7.31539i −0.800397 0.731539i
\(11\) 8.70004 1.53405i 0.790913 0.139459i 0.236423 0.971650i \(-0.424025\pi\)
0.554489 + 0.832191i \(0.312914\pi\)
\(12\) 0 0
\(13\) −3.15234 8.66099i −0.242488 0.666230i −0.999911 0.0133060i \(-0.995764\pi\)
0.757424 0.652924i \(-0.226458\pi\)
\(14\) 2.68178 + 7.36812i 0.191555 + 0.526294i
\(15\) 0 0
\(16\) −3.18091 18.0399i −0.198807 1.12749i
\(17\) −9.89182 + 17.1331i −0.581872 + 1.00783i 0.413386 + 0.910556i \(0.364346\pi\)
−0.995258 + 0.0972754i \(0.968987\pi\)
\(18\) 0 0
\(19\) 12.1652 + 21.0707i 0.640273 + 1.10899i 0.985372 + 0.170419i \(0.0545121\pi\)
−0.345099 + 0.938566i \(0.612155\pi\)
\(20\) 1.62737 + 3.11638i 0.0813687 + 0.155819i
\(21\) 0 0
\(22\) −18.8675 3.32686i −0.857615 0.151221i
\(23\) 4.74988 + 3.98563i 0.206517 + 0.173288i 0.740180 0.672409i \(-0.234740\pi\)
−0.533663 + 0.845697i \(0.679185\pi\)
\(24\) 0 0
\(25\) 17.7230 + 17.6322i 0.708921 + 0.705288i
\(26\) 19.9883i 0.768780i
\(27\) 0 0
\(28\) 2.54225i 0.0907948i
\(29\) 5.21445 14.3266i 0.179808 0.494020i −0.816743 0.577002i \(-0.804222\pi\)
0.996551 + 0.0829826i \(0.0264446\pi\)
\(30\) 0 0
\(31\) −9.90161 8.30843i −0.319407 0.268014i 0.468960 0.883219i \(-0.344629\pi\)
−0.788367 + 0.615205i \(0.789073\pi\)
\(32\) −1.93215 + 10.9578i −0.0603798 + 0.342431i
\(33\) 0 0
\(34\) 32.8665 27.5783i 0.966663 0.811127i
\(35\) −5.45826 17.2342i −0.155950 0.492405i
\(36\) 0 0
\(37\) −9.23883 5.33404i −0.249698 0.144163i 0.369928 0.929060i \(-0.379382\pi\)
−0.619626 + 0.784897i \(0.712716\pi\)
\(38\) −9.16248 51.9630i −0.241118 1.36745i
\(39\) 0 0
\(40\) 4.71171 + 35.4372i 0.117793 + 0.885930i
\(41\) 23.8792 + 65.6075i 0.582419 + 1.60018i 0.784033 + 0.620719i \(0.213159\pi\)
−0.201614 + 0.979465i \(0.564619\pi\)
\(42\) 0 0
\(43\) 58.3296 10.2851i 1.35650 0.239188i 0.552351 0.833612i \(-0.313731\pi\)
0.804152 + 0.594424i \(0.202620\pi\)
\(44\) 5.37950 + 3.10586i 0.122261 + 0.0705877i
\(45\) 0 0
\(46\) −6.72346 11.6454i −0.146162 0.253160i
\(47\) 12.6408 10.6069i 0.268952 0.225678i −0.498330 0.866988i \(-0.666053\pi\)
0.767282 + 0.641310i \(0.221609\pi\)
\(48\) 0 0
\(49\) 6.23877 35.3818i 0.127322 0.722078i
\(50\) −23.0392 49.0781i −0.460784 0.981562i
\(51\) 0 0
\(52\) 2.21654 6.08989i 0.0426257 0.117113i
\(53\) 85.3480 1.61034 0.805169 0.593045i \(-0.202074\pi\)
0.805169 + 0.593045i \(0.202074\pi\)
\(54\) 0 0
\(55\) 43.1365 + 9.50501i 0.784299 + 0.172818i
\(56\) 8.84144 24.2917i 0.157883 0.433780i
\(57\) 0 0
\(58\) −21.2529 + 25.3282i −0.366429 + 0.436693i
\(59\) 60.9628 + 10.7494i 1.03327 + 0.182193i 0.664469 0.747316i \(-0.268658\pi\)
0.368799 + 0.929509i \(0.379769\pi\)
\(60\) 0 0
\(61\) 55.8155 46.8348i 0.915009 0.767784i −0.0580564 0.998313i \(-0.518490\pi\)
0.973065 + 0.230530i \(0.0740459\pi\)
\(62\) 14.0157 + 24.2760i 0.226060 + 0.391548i
\(63\) 0 0
\(64\) −24.5711 + 42.5584i −0.383923 + 0.664974i
\(65\) 1.95102 46.0428i 0.0300157 0.708351i
\(66\) 0 0
\(67\) 7.87234 + 21.6291i 0.117498 + 0.322822i 0.984475 0.175526i \(-0.0561625\pi\)
−0.866977 + 0.498348i \(0.833940\pi\)
\(68\) −13.0717 + 4.75773i −0.192232 + 0.0699666i
\(69\) 0 0
\(70\) −1.65978 + 39.1698i −0.0237111 + 0.559569i
\(71\) −49.0653 28.3279i −0.691060 0.398984i 0.112949 0.993601i \(-0.463970\pi\)
−0.804009 + 0.594617i \(0.797304\pi\)
\(72\) 0 0
\(73\) 101.360 58.5204i 1.38850 0.801650i 0.395352 0.918530i \(-0.370623\pi\)
0.993146 + 0.116880i \(0.0372894\pi\)
\(74\) 14.8713 + 17.7229i 0.200963 + 0.239498i
\(75\) 0 0
\(76\) −2.97071 + 16.8478i −0.0390883 + 0.221681i
\(77\) −24.4681 20.5312i −0.317768 0.266639i
\(78\) 0 0
\(79\) −7.55144 2.74850i −0.0955879 0.0347912i 0.293784 0.955872i \(-0.405086\pi\)
−0.389371 + 0.921081i \(0.627308\pi\)
\(80\) 19.7090 89.4451i 0.246362 1.11806i
\(81\) 0 0
\(82\) 151.413i 1.84649i
\(83\) 77.8706 + 28.3426i 0.938200 + 0.341477i 0.765455 0.643490i \(-0.222514\pi\)
0.172745 + 0.984967i \(0.444736\pi\)
\(84\) 0 0
\(85\) −78.3997 + 60.3183i −0.922349 + 0.709628i
\(86\) −126.498 22.3050i −1.47090 0.259360i
\(87\) 0 0
\(88\) 40.6005 + 48.3858i 0.461370 + 0.549839i
\(89\) −102.638 + 59.2583i −1.15324 + 0.665823i −0.949675 0.313238i \(-0.898586\pi\)
−0.203565 + 0.979061i \(0.565253\pi\)
\(90\) 0 0
\(91\) −16.6621 + 28.8595i −0.183100 + 0.317138i
\(92\) 0.757079 + 4.29361i 0.00822912 + 0.0466696i
\(93\) 0 0
\(94\) −33.6278 + 12.2395i −0.357743 + 0.130208i
\(95\) 16.0337 + 120.591i 0.168776 + 1.26937i
\(96\) 0 0
\(97\) 30.2613 5.33588i 0.311972 0.0550090i −0.0154702 0.999880i \(-0.504925\pi\)
0.327442 + 0.944871i \(0.393813\pi\)
\(98\) −38.9576 + 67.4766i −0.397527 + 0.688537i
\(99\) 0 0
\(100\) 1.57705 + 17.5076i 0.0157705 + 0.175076i
\(101\) −69.5507 82.8873i −0.688621 0.820666i 0.302567 0.953128i \(-0.402156\pi\)
−0.991188 + 0.132462i \(0.957712\pi\)
\(102\) 0 0
\(103\) −32.9784 5.81498i −0.320179 0.0564561i 0.0112492 0.999937i \(-0.496419\pi\)
−0.331428 + 0.943481i \(0.607530\pi\)
\(104\) 42.3588 50.4812i 0.407296 0.485396i
\(105\) 0 0
\(106\) −173.929 63.3051i −1.64084 0.597218i
\(107\) 183.486 1.71482 0.857411 0.514632i \(-0.172072\pi\)
0.857411 + 0.514632i \(0.172072\pi\)
\(108\) 0 0
\(109\) −75.0243 −0.688297 −0.344148 0.938915i \(-0.611832\pi\)
−0.344148 + 0.938915i \(0.611832\pi\)
\(110\) −80.8570 51.3657i −0.735064 0.466961i
\(111\) 0 0
\(112\) −42.5722 + 50.7356i −0.380109 + 0.452996i
\(113\) −31.4551 + 178.391i −0.278364 + 1.57868i 0.449705 + 0.893177i \(0.351529\pi\)
−0.728069 + 0.685504i \(0.759582\pi\)
\(114\) 0 0
\(115\) 14.3508 + 27.4813i 0.124789 + 0.238968i
\(116\) 9.28387 5.36004i 0.0800333 0.0462073i
\(117\) 0 0
\(118\) −116.262 67.1239i −0.985272 0.568847i
\(119\) 70.4425 12.4209i 0.591954 0.104377i
\(120\) 0 0
\(121\) −40.3654 + 14.6918i −0.333599 + 0.121420i
\(122\) −148.484 + 54.0439i −1.21709 + 0.442983i
\(123\) 0 0
\(124\) −1.57821 8.95045i −0.0127275 0.0721811i
\(125\) 48.2801 + 115.300i 0.386241 + 0.922398i
\(126\) 0 0
\(127\) −107.545 + 62.0910i −0.846809 + 0.488905i −0.859573 0.511013i \(-0.829270\pi\)
0.0127639 + 0.999919i \(0.495937\pi\)
\(128\) 115.734 97.1127i 0.904175 0.758693i
\(129\) 0 0
\(130\) −38.1273 + 92.3829i −0.293287 + 0.710638i
\(131\) −79.4604 + 94.6972i −0.606568 + 0.722880i −0.978699 0.205301i \(-0.934183\pi\)
0.372131 + 0.928180i \(0.378627\pi\)
\(132\) 0 0
\(133\) 30.0869 82.6631i 0.226217 0.621527i
\(134\) 49.9167i 0.372513i
\(135\) 0 0
\(136\) −141.449 −1.04007
\(137\) −178.739 65.0558i −1.30467 0.474860i −0.406153 0.913805i \(-0.633130\pi\)
−0.898514 + 0.438946i \(0.855352\pi\)
\(138\) 0 0
\(139\) 183.719 + 154.158i 1.32172 + 1.10905i 0.985938 + 0.167110i \(0.0534436\pi\)
0.335778 + 0.941941i \(0.391001\pi\)
\(140\) 4.84930 11.7499i 0.0346379 0.0839280i
\(141\) 0 0
\(142\) 78.9778 + 94.1221i 0.556182 + 0.662832i
\(143\) −40.7119 70.5151i −0.284699 0.493112i
\(144\) 0 0
\(145\) 51.4281 56.2688i 0.354676 0.388061i
\(146\) −249.967 + 44.0759i −1.71210 + 0.301890i
\(147\) 0 0
\(148\) −2.56555 7.04878i −0.0173348 0.0476269i
\(149\) −86.2208 236.890i −0.578663 1.58986i −0.790435 0.612545i \(-0.790146\pi\)
0.211772 0.977319i \(-0.432077\pi\)
\(150\) 0 0
\(151\) 32.4942 + 184.284i 0.215194 + 1.22042i 0.880570 + 0.473916i \(0.157160\pi\)
−0.665377 + 0.746508i \(0.731729\pi\)
\(152\) −86.9788 + 150.652i −0.572229 + 0.991129i
\(153\) 0 0
\(154\) 34.6346 + 59.9890i 0.224900 + 0.389539i
\(155\) −29.9156 57.2875i −0.193004 0.369597i
\(156\) 0 0
\(157\) −87.5981 15.4459i −0.557949 0.0983815i −0.112440 0.993659i \(-0.535866\pi\)
−0.445510 + 0.895277i \(0.646978\pi\)
\(158\) 13.3503 + 11.2023i 0.0844958 + 0.0709004i
\(159\) 0 0
\(160\) −29.8319 + 46.9598i −0.186450 + 0.293498i
\(161\) 22.4185i 0.139245i
\(162\) 0 0
\(163\) 95.4121i 0.585350i 0.956212 + 0.292675i \(0.0945454\pi\)
−0.956212 + 0.292675i \(0.905455\pi\)
\(164\) −16.7904 + 46.1313i −0.102381 + 0.281288i
\(165\) 0 0
\(166\) −137.669 115.518i −0.829330 0.695891i
\(167\) 16.2091 91.9261i 0.0970602 0.550456i −0.897036 0.441957i \(-0.854284\pi\)
0.994097 0.108499i \(-0.0346045\pi\)
\(168\) 0 0
\(169\) 64.3861 54.0263i 0.380983 0.319682i
\(170\) 204.509 64.7705i 1.20300 0.381003i
\(171\) 0 0
\(172\) 36.0670 + 20.8233i 0.209692 + 0.121066i
\(173\) −9.71927 55.1207i −0.0561808 0.318617i 0.943747 0.330670i \(-0.107275\pi\)
−0.999927 + 0.0120526i \(0.996163\pi\)
\(174\) 0 0
\(175\) 7.64658 90.0653i 0.0436947 0.514659i
\(176\) −55.3482 152.068i −0.314478 0.864022i
\(177\) 0 0
\(178\) 253.119 44.6317i 1.42202 0.250740i
\(179\) 43.6437 + 25.1977i 0.243820 + 0.140769i 0.616931 0.787017i \(-0.288376\pi\)
−0.373111 + 0.927787i \(0.621709\pi\)
\(180\) 0 0
\(181\) −120.436 208.601i −0.665390 1.15249i −0.979179 0.202997i \(-0.934932\pi\)
0.313789 0.949493i \(-0.398402\pi\)
\(182\) 55.3613 46.4537i 0.304183 0.255240i
\(183\) 0 0
\(184\) −7.69828 + 43.6591i −0.0418385 + 0.237278i
\(185\) −32.5259 42.2760i −0.175816 0.228519i
\(186\) 0 0
\(187\) −59.7761 + 164.233i −0.319658 + 0.878254i
\(188\) 11.6027 0.0617167
\(189\) 0 0
\(190\) 56.7708 257.642i 0.298794 1.35601i
\(191\) −112.920 + 310.246i −0.591206 + 1.62432i 0.177065 + 0.984199i \(0.443340\pi\)
−0.768271 + 0.640125i \(0.778883\pi\)
\(192\) 0 0
\(193\) 55.0909 65.6548i 0.285445 0.340180i −0.604200 0.796833i \(-0.706507\pi\)
0.889645 + 0.456652i \(0.150952\pi\)
\(194\) −65.6268 11.5718i −0.338282 0.0596483i
\(195\) 0 0
\(196\) 19.3519 16.2382i 0.0987344 0.0828480i
\(197\) −81.4582 141.090i −0.413493 0.716191i 0.581776 0.813349i \(-0.302358\pi\)
−0.995269 + 0.0971578i \(0.969025\pi\)
\(198\) 0 0
\(199\) −90.2959 + 156.397i −0.453748 + 0.785915i −0.998615 0.0526075i \(-0.983247\pi\)
0.544867 + 0.838522i \(0.316580\pi\)
\(200\) −45.8189 + 172.773i −0.229095 + 0.863865i
\(201\) 0 0
\(202\) 80.2564 + 220.503i 0.397309 + 1.09160i
\(203\) −51.7988 + 18.8532i −0.255166 + 0.0928729i
\(204\) 0 0
\(205\) −14.7791 + 348.777i −0.0720931 + 1.70135i
\(206\) 62.8930 + 36.3113i 0.305306 + 0.176269i
\(207\) 0 0
\(208\) −146.216 + 84.4176i −0.702960 + 0.405854i
\(209\) 138.161 + 164.654i 0.661058 + 0.787818i
\(210\) 0 0
\(211\) 27.1933 154.221i 0.128878 0.730906i −0.850050 0.526702i \(-0.823428\pi\)
0.978928 0.204204i \(-0.0654605\pi\)
\(212\) 45.9715 + 38.5747i 0.216847 + 0.181956i
\(213\) 0 0
\(214\) −373.923 136.097i −1.74731 0.635967i
\(215\) 289.209 + 63.7265i 1.34516 + 0.296402i
\(216\) 0 0
\(217\) 46.7335i 0.215362i
\(218\) 152.891 + 55.6478i 0.701335 + 0.255265i
\(219\) 0 0
\(220\) 18.9389 + 24.6161i 0.0860859 + 0.111891i
\(221\) 179.572 + 31.6634i 0.812544 + 0.143273i
\(222\) 0 0
\(223\) −7.70503 9.18250i −0.0345517 0.0411771i 0.748492 0.663144i \(-0.230778\pi\)
−0.783044 + 0.621967i \(0.786334\pi\)
\(224\) 34.8401 20.1149i 0.155536 0.0897988i
\(225\) 0 0
\(226\) 196.420 340.209i 0.869114 1.50535i
\(227\) −33.5298 190.157i −0.147709 0.837697i −0.965152 0.261689i \(-0.915721\pi\)
0.817444 0.576008i \(-0.195390\pi\)
\(228\) 0 0
\(229\) 413.128 150.366i 1.80405 0.656622i 0.806163 0.591694i \(-0.201540\pi\)
0.997890 0.0649279i \(-0.0206817\pi\)
\(230\) −8.86150 66.6481i −0.0385283 0.289774i
\(231\) 0 0
\(232\) 107.350 18.9287i 0.462716 0.0815893i
\(233\) −79.8540 + 138.311i −0.342721 + 0.593611i −0.984937 0.172913i \(-0.944682\pi\)
0.642216 + 0.766524i \(0.278015\pi\)
\(234\) 0 0
\(235\) 78.6561 24.9113i 0.334707 0.106005i
\(236\) 27.9784 + 33.3434i 0.118553 + 0.141285i
\(237\) 0 0
\(238\) −152.767 26.9369i −0.641877 0.113180i
\(239\) 44.1733 52.6436i 0.184825 0.220266i −0.665674 0.746243i \(-0.731856\pi\)
0.850499 + 0.525977i \(0.176300\pi\)
\(240\) 0 0
\(241\) −197.027 71.7120i −0.817539 0.297560i −0.100805 0.994906i \(-0.532142\pi\)
−0.716734 + 0.697346i \(0.754364\pi\)
\(242\) 93.1575 0.384948
\(243\) 0 0
\(244\) 51.2322 0.209968
\(245\) 96.3248 151.629i 0.393163 0.618895i
\(246\) 0 0
\(247\) 144.144 171.785i 0.583581 0.695484i
\(248\) 16.0478 91.0118i 0.0647090 0.366983i
\(249\) 0 0
\(250\) −12.8681 270.778i −0.0514725 1.08311i
\(251\) −89.5394 + 51.6956i −0.356731 + 0.205959i −0.667646 0.744479i \(-0.732698\pi\)
0.310915 + 0.950438i \(0.399365\pi\)
\(252\) 0 0
\(253\) 47.4383 + 27.3885i 0.187503 + 0.108255i
\(254\) 265.219 46.7652i 1.04417 0.184115i
\(255\) 0 0
\(256\) −123.171 + 44.8305i −0.481136 + 0.175119i
\(257\) 101.124 36.8062i 0.393480 0.143215i −0.137700 0.990474i \(-0.543971\pi\)
0.531180 + 0.847259i \(0.321749\pi\)
\(258\) 0 0
\(259\) 6.69782 + 37.9852i 0.0258603 + 0.146661i
\(260\) 21.8608 23.9185i 0.0840802 0.0919944i
\(261\) 0 0
\(262\) 232.171 134.044i 0.886149 0.511618i
\(263\) −29.1199 + 24.4345i −0.110722 + 0.0929069i −0.696468 0.717588i \(-0.745246\pi\)
0.585746 + 0.810495i \(0.300802\pi\)
\(264\) 0 0
\(265\) 394.466 + 162.800i 1.48855 + 0.614338i
\(266\) −122.627 + 146.142i −0.461005 + 0.549404i
\(267\) 0 0
\(268\) −5.53535 + 15.2083i −0.0206543 + 0.0567472i
\(269\) 101.363i 0.376814i 0.982091 + 0.188407i \(0.0603323\pi\)
−0.982091 + 0.188407i \(0.939668\pi\)
\(270\) 0 0
\(271\) 198.243 0.731524 0.365762 0.930708i \(-0.380808\pi\)
0.365762 + 0.930708i \(0.380808\pi\)
\(272\) 340.544 + 123.948i 1.25200 + 0.455691i
\(273\) 0 0
\(274\) 315.996 + 265.152i 1.15327 + 0.967710i
\(275\) 181.240 + 126.213i 0.659054 + 0.458955i
\(276\) 0 0
\(277\) −242.799 289.356i −0.876529 1.04461i −0.998642 0.0520907i \(-0.983412\pi\)
0.122113 0.992516i \(-0.461033\pi\)
\(278\) −260.054 450.426i −0.935445 1.62024i
\(279\) 0 0
\(280\) 87.1997 95.4076i 0.311428 0.340741i
\(281\) 56.2501 9.91841i 0.200178 0.0352968i −0.0726599 0.997357i \(-0.523149\pi\)
0.272838 + 0.962060i \(0.412038\pi\)
\(282\) 0 0
\(283\) −173.966 477.966i −0.614719 1.68893i −0.719553 0.694437i \(-0.755653\pi\)
0.104834 0.994490i \(-0.466569\pi\)
\(284\) −13.6250 37.4344i −0.0479754 0.131811i
\(285\) 0 0
\(286\) 30.6631 + 173.899i 0.107213 + 0.608038i
\(287\) 126.216 218.613i 0.439778 0.761717i
\(288\) 0 0
\(289\) −51.1962 88.6744i −0.177149 0.306832i
\(290\) −146.541 + 76.5237i −0.505313 + 0.263875i
\(291\) 0 0
\(292\) 81.0458 + 14.2906i 0.277554 + 0.0489403i
\(293\) 161.315 + 135.359i 0.550562 + 0.461976i 0.875131 0.483886i \(-0.160775\pi\)
−0.324569 + 0.945862i \(0.605219\pi\)
\(294\) 0 0
\(295\) 261.257 + 165.968i 0.885616 + 0.562602i
\(296\) 76.2747i 0.257685i
\(297\) 0 0
\(298\) 546.707i 1.83459i
\(299\) 19.5462 53.7027i 0.0653719 0.179608i
\(300\) 0 0
\(301\) −164.047 137.652i −0.545007 0.457315i
\(302\) 70.4693 399.651i 0.233342 1.32335i
\(303\) 0 0
\(304\) 341.416 286.482i 1.12308 0.942376i
\(305\) 347.308 109.996i 1.13871 0.360644i
\(306\) 0 0
\(307\) 46.5102 + 26.8527i 0.151499 + 0.0874681i 0.573833 0.818972i \(-0.305456\pi\)
−0.422334 + 0.906440i \(0.638789\pi\)
\(308\) −3.89995 22.1177i −0.0126622 0.0718107i
\(309\) 0 0
\(310\) 18.4727 + 138.935i 0.0595893 + 0.448176i
\(311\) 108.295 + 297.537i 0.348215 + 0.956712i 0.982932 + 0.183968i \(0.0588942\pi\)
−0.634718 + 0.772744i \(0.718884\pi\)
\(312\) 0 0
\(313\) −100.283 + 17.6826i −0.320393 + 0.0564939i −0.331532 0.943444i \(-0.607565\pi\)
0.0111389 + 0.999938i \(0.496454\pi\)
\(314\) 167.058 + 96.4511i 0.532032 + 0.307169i
\(315\) 0 0
\(316\) −2.82524 4.89347i −0.00894065 0.0154857i
\(317\) −389.774 + 327.059i −1.22957 + 1.03173i −0.231304 + 0.972881i \(0.574299\pi\)
−0.998267 + 0.0588511i \(0.981256\pi\)
\(318\) 0 0
\(319\) 23.3882 132.641i 0.0733172 0.415802i
\(320\) −194.743 + 149.830i −0.608572 + 0.468217i
\(321\) 0 0
\(322\) −16.6284 + 45.6863i −0.0516411 + 0.141883i
\(323\) −481.343 −1.49023
\(324\) 0 0
\(325\) 96.8432 209.082i 0.297979 0.643328i
\(326\) 70.7700 194.439i 0.217086 0.596438i
\(327\) 0 0
\(328\) −320.871 + 382.399i −0.978264 + 1.16585i
\(329\) −58.7554 10.3602i −0.178588 0.0314898i
\(330\) 0 0
\(331\) 177.270 148.747i 0.535559 0.449387i −0.334457 0.942411i \(-0.608553\pi\)
0.870016 + 0.493024i \(0.164109\pi\)
\(332\) 29.1340 + 50.4615i 0.0877529 + 0.151992i
\(333\) 0 0
\(334\) −101.217 + 175.312i −0.303044 + 0.524887i
\(335\) −4.87227 + 114.983i −0.0145441 + 0.343232i
\(336\) 0 0
\(337\) 57.8789 + 159.021i 0.171748 + 0.471873i 0.995465 0.0951279i \(-0.0303260\pi\)
−0.823718 + 0.567000i \(0.808104\pi\)
\(338\) −171.284 + 62.3424i −0.506759 + 0.184445i
\(339\) 0 0
\(340\) −69.4910 2.94461i −0.204385 0.00866061i
\(341\) −98.8899 57.0941i −0.290000 0.167431i
\(342\) 0 0
\(343\) −265.923 + 153.531i −0.775287 + 0.447612i
\(344\) 272.207 + 324.404i 0.791300 + 0.943034i
\(345\) 0 0
\(346\) −21.0779 + 119.539i −0.0609188 + 0.345488i
\(347\) −6.55502 5.50032i −0.0188905 0.0158511i 0.633293 0.773912i \(-0.281703\pi\)
−0.652184 + 0.758061i \(0.726147\pi\)
\(348\) 0 0
\(349\) −397.135 144.545i −1.13792 0.414170i −0.296761 0.954952i \(-0.595906\pi\)
−0.841163 + 0.540782i \(0.818129\pi\)
\(350\) −82.3869 + 177.871i −0.235391 + 0.508203i
\(351\) 0 0
\(352\) 98.2973i 0.279254i
\(353\) −349.306 127.137i −0.989535 0.360161i −0.203995 0.978972i \(-0.565393\pi\)
−0.785540 + 0.618811i \(0.787615\pi\)
\(354\) 0 0
\(355\) −172.738 224.518i −0.486585 0.632446i
\(356\) −82.0677 14.4707i −0.230527 0.0406482i
\(357\) 0 0
\(358\) −70.2510 83.7219i −0.196232 0.233860i
\(359\) −615.787 + 355.525i −1.71528 + 0.990320i −0.788239 + 0.615369i \(0.789007\pi\)
−0.927045 + 0.374950i \(0.877660\pi\)
\(360\) 0 0
\(361\) −115.483 + 200.023i −0.319899 + 0.554081i
\(362\) 90.7088 + 514.435i 0.250577 + 1.42109i
\(363\) 0 0
\(364\) −22.0184 + 8.01405i −0.0604902 + 0.0220166i
\(365\) 580.099 77.1297i 1.58931 0.211314i
\(366\) 0 0
\(367\) −597.597 + 105.372i −1.62833 + 0.287118i −0.911860 0.410501i \(-0.865354\pi\)
−0.716469 + 0.697619i \(0.754243\pi\)
\(368\) 56.7912 98.3652i 0.154324 0.267297i
\(369\) 0 0
\(370\) 34.9267 + 110.279i 0.0943965 + 0.298052i
\(371\) −198.352 236.387i −0.534643 0.637162i
\(372\) 0 0
\(373\) −15.9903 2.81952i −0.0428694 0.00755902i 0.152172 0.988354i \(-0.451373\pi\)
−0.195042 + 0.980795i \(0.562484\pi\)
\(374\) 243.634 290.351i 0.651427 0.776340i
\(375\) 0 0
\(376\) 110.866 + 40.3520i 0.294857 + 0.107319i
\(377\) −140.520 −0.372732
\(378\) 0 0
\(379\) −202.525 −0.534367 −0.267184 0.963646i \(-0.586093\pi\)
−0.267184 + 0.963646i \(0.586093\pi\)
\(380\) −45.8670 + 72.2012i −0.120703 + 0.190003i
\(381\) 0 0
\(382\) 460.237 548.489i 1.20481 1.43584i
\(383\) −113.044 + 641.106i −0.295155 + 1.67391i 0.371417 + 0.928466i \(0.378872\pi\)
−0.666572 + 0.745441i \(0.732239\pi\)
\(384\) 0 0
\(385\) −73.9252 141.565i −0.192013 0.367700i
\(386\) −160.967 + 92.9344i −0.417013 + 0.240763i
\(387\) 0 0
\(388\) 18.7115 + 10.8031i 0.0482254 + 0.0278430i
\(389\) 127.502 22.4820i 0.327768 0.0577943i −0.00734304 0.999973i \(-0.502337\pi\)
0.335111 + 0.942179i \(0.391226\pi\)
\(390\) 0 0
\(391\) −115.271 + 41.9553i −0.294811 + 0.107303i
\(392\) 241.384 87.8567i 0.615776 0.224124i
\(393\) 0 0
\(394\) 61.3520 + 347.945i 0.155716 + 0.883108i
\(395\) −29.6589 27.1074i −0.0750859 0.0686263i
\(396\) 0 0
\(397\) 131.369 75.8460i 0.330904 0.191048i −0.325338 0.945598i \(-0.605478\pi\)
0.656243 + 0.754550i \(0.272145\pi\)
\(398\) 300.017 251.744i 0.753812 0.632523i
\(399\) 0 0
\(400\) 261.707 375.807i 0.654267 0.939519i
\(401\) 164.397 195.920i 0.409966 0.488579i −0.521065 0.853517i \(-0.674465\pi\)
0.931032 + 0.364938i \(0.118910\pi\)
\(402\) 0 0
\(403\) −40.7460 + 111.949i −0.101107 + 0.277788i
\(404\) 76.0809i 0.188319i
\(405\) 0 0
\(406\) 119.544 0.294443
\(407\) −88.5609 32.2335i −0.217594 0.0791978i
\(408\) 0 0
\(409\) −475.249 398.781i −1.16198 0.975015i −0.162047 0.986783i \(-0.551809\pi\)
−0.999931 + 0.0117684i \(0.996254\pi\)
\(410\) 288.817 699.806i 0.704431 1.70684i
\(411\) 0 0
\(412\) −15.1352 18.0374i −0.0367358 0.0437801i
\(413\) −111.908 193.830i −0.270963 0.469322i
\(414\) 0 0
\(415\) 305.843 + 279.532i 0.736972 + 0.673571i
\(416\) 100.996 17.8083i 0.242779 0.0428085i
\(417\) 0 0
\(418\) −159.428 438.024i −0.381406 1.04791i
\(419\) −52.8741 145.270i −0.126191 0.346707i 0.860469 0.509504i \(-0.170171\pi\)
−0.986660 + 0.162796i \(0.947949\pi\)
\(420\) 0 0
\(421\) 52.5666 + 298.120i 0.124861 + 0.708124i 0.981390 + 0.192025i \(0.0615053\pi\)
−0.856529 + 0.516099i \(0.827384\pi\)
\(422\) −169.807 + 294.115i −0.402387 + 0.696955i
\(423\) 0 0
\(424\) 305.111 + 528.467i 0.719601 + 1.24639i
\(425\) −477.408 + 129.237i −1.12331 + 0.304086i
\(426\) 0 0
\(427\) −259.436 45.7455i −0.607578 0.107132i
\(428\) 98.8322 + 82.9301i 0.230916 + 0.193762i
\(429\) 0 0
\(430\) −542.108 344.382i −1.26072 0.800889i
\(431\) 194.130i 0.450418i −0.974311 0.225209i \(-0.927694\pi\)
0.974311 0.225209i \(-0.0723064\pi\)
\(432\) 0 0
\(433\) 697.839i 1.61164i 0.592162 + 0.805819i \(0.298275\pi\)
−0.592162 + 0.805819i \(0.701725\pi\)
\(434\) 34.6637 95.2376i 0.0798702 0.219441i
\(435\) 0 0
\(436\) −40.4108 33.9087i −0.0926854 0.0777723i
\(437\) −26.1968 + 148.569i −0.0599469 + 0.339976i
\(438\) 0 0
\(439\) 307.468 257.996i 0.700382 0.587691i −0.221500 0.975160i \(-0.571095\pi\)
0.921882 + 0.387470i \(0.126651\pi\)
\(440\) 95.3546 + 301.077i 0.216715 + 0.684266i
\(441\) 0 0
\(442\) −342.462 197.720i −0.774801 0.447331i
\(443\) 0.222903 + 1.26415i 0.000503168 + 0.00285361i 0.985058 0.172221i \(-0.0550944\pi\)
−0.984555 + 0.175075i \(0.943983\pi\)
\(444\) 0 0
\(445\) −587.413 + 78.1022i −1.32003 + 0.175511i
\(446\) 8.89104 + 24.4279i 0.0199351 + 0.0547711i
\(447\) 0 0
\(448\) 174.978 30.8533i 0.390575 0.0688689i
\(449\) −581.893 335.956i −1.29597 0.748231i −0.316268 0.948670i \(-0.602430\pi\)
−0.979706 + 0.200439i \(0.935763\pi\)
\(450\) 0 0
\(451\) 308.395 + 534.156i 0.683803 + 1.18438i
\(452\) −97.5702 + 81.8711i −0.215863 + 0.181131i
\(453\) 0 0
\(454\) −72.7153 + 412.389i −0.160166 + 0.908345i
\(455\) −132.059 + 101.602i −0.290239 + 0.223301i
\(456\) 0 0
\(457\) 96.5574 265.289i 0.211285 0.580502i −0.788100 0.615547i \(-0.788935\pi\)
0.999386 + 0.0350451i \(0.0111575\pi\)
\(458\) −953.439 −2.08174
\(459\) 0 0
\(460\) −4.69087 + 21.2885i −0.0101975 + 0.0462794i
\(461\) 97.1395 266.889i 0.210715 0.578934i −0.788640 0.614855i \(-0.789214\pi\)
0.999355 + 0.0359213i \(0.0114366\pi\)
\(462\) 0 0
\(463\) 462.859 551.614i 0.999695 1.19139i 0.0182133 0.999834i \(-0.494202\pi\)
0.981482 0.191556i \(-0.0613534\pi\)
\(464\) −275.036 48.4963i −0.592750 0.104518i
\(465\) 0 0
\(466\) 265.323 222.632i 0.569363 0.477752i
\(467\) 192.068 + 332.672i 0.411281 + 0.712359i 0.995030 0.0995750i \(-0.0317483\pi\)
−0.583750 + 0.811934i \(0.698415\pi\)
\(468\) 0 0
\(469\) 41.6101 72.0708i 0.0887209 0.153669i
\(470\) −178.769 7.57517i −0.380361 0.0161174i
\(471\) 0 0
\(472\) 151.377 + 415.905i 0.320714 + 0.881154i
\(473\) 491.692 178.961i 1.03952 0.378354i
\(474\) 0 0
\(475\) −155.919 + 587.936i −0.328251 + 1.23776i
\(476\) 43.5568 + 25.1475i 0.0915058 + 0.0528309i
\(477\) 0 0
\(478\) −129.067 + 74.5171i −0.270015 + 0.155894i
\(479\) −200.228 238.622i −0.418012 0.498167i 0.515412 0.856943i \(-0.327639\pi\)
−0.933424 + 0.358775i \(0.883194\pi\)
\(480\) 0 0
\(481\) −17.0741 + 96.8321i −0.0354971 + 0.201314i
\(482\) 348.328 + 292.282i 0.722671 + 0.606393i
\(483\) 0 0
\(484\) −28.3826 10.3304i −0.0586416 0.0213438i
\(485\) 150.041 + 33.0612i 0.309363 + 0.0681673i
\(486\) 0 0
\(487\) 144.089i 0.295871i 0.988997 + 0.147936i \(0.0472629\pi\)
−0.988997 + 0.147936i \(0.952737\pi\)
\(488\) 489.532 + 178.175i 1.00314 + 0.365113i
\(489\) 0 0
\(490\) −308.767 + 237.556i −0.630136 + 0.484808i
\(491\) −135.820 23.9487i −0.276618 0.0487753i 0.0336179 0.999435i \(-0.489297\pi\)
−0.310236 + 0.950659i \(0.600408\pi\)
\(492\) 0 0
\(493\) 193.879 + 231.056i 0.393263 + 0.468673i
\(494\) −421.167 + 243.161i −0.852566 + 0.492229i
\(495\) 0 0
\(496\) −118.387 + 205.052i −0.238683 + 0.413411i
\(497\) 35.5706 + 201.731i 0.0715706 + 0.405897i
\(498\) 0 0
\(499\) −449.216 + 163.501i −0.900232 + 0.327658i −0.750346 0.661045i \(-0.770113\pi\)
−0.149886 + 0.988703i \(0.547891\pi\)
\(500\) −26.1065 + 83.9258i −0.0522131 + 0.167852i
\(501\) 0 0
\(502\) 220.815 38.9357i 0.439871 0.0775611i
\(503\) 293.589 508.511i 0.583676 1.01096i −0.411363 0.911472i \(-0.634947\pi\)
0.995039 0.0994853i \(-0.0317196\pi\)
\(504\) 0 0
\(505\) −163.347 515.759i −0.323459 1.02131i
\(506\) −76.3590 91.0011i −0.150907 0.179844i
\(507\) 0 0
\(508\) −85.9908 15.1625i −0.169273 0.0298474i
\(509\) 76.4269 91.0820i 0.150151 0.178943i −0.685726 0.727860i \(-0.740515\pi\)
0.835877 + 0.548917i \(0.184960\pi\)
\(510\) 0 0
\(511\) −397.649 144.733i −0.778179 0.283234i
\(512\) −320.062 −0.625121
\(513\) 0 0
\(514\) −233.380 −0.454047
\(515\) −141.329 89.7816i −0.274426 0.174333i
\(516\) 0 0
\(517\) 93.7036 111.672i 0.181245 0.215999i
\(518\) 14.5254 82.3775i 0.0280413 0.159030i
\(519\) 0 0
\(520\) 292.068 152.518i 0.561669 0.293304i
\(521\) 617.263 356.377i 1.18477 0.684025i 0.227654 0.973742i \(-0.426895\pi\)
0.957112 + 0.289717i \(0.0935613\pi\)
\(522\) 0 0
\(523\) 632.955 + 365.437i 1.21024 + 0.698731i 0.962811 0.270175i \(-0.0870816\pi\)
0.247427 + 0.968906i \(0.420415\pi\)
\(524\) −85.6005 + 15.0937i −0.163360 + 0.0288047i
\(525\) 0 0
\(526\) 77.4668 28.1956i 0.147275 0.0536038i
\(527\) 240.294 87.4600i 0.455967 0.165958i
\(528\) 0 0
\(529\) −85.1837 483.101i −0.161028 0.913234i
\(530\) −683.122 624.354i −1.28891 1.17803i
\(531\) 0 0
\(532\) 53.5671 30.9270i 0.100690 0.0581334i
\(533\) 492.951 413.635i 0.924861 0.776050i
\(534\) 0 0
\(535\) 848.045 + 349.996i 1.58513 + 0.654198i
\(536\) −105.783 + 126.067i −0.197355 + 0.235199i
\(537\) 0 0
\(538\) 75.1838 206.566i 0.139747 0.383951i
\(539\) 317.394i 0.588857i
\(540\) 0 0
\(541\) −163.171 −0.301610 −0.150805 0.988564i \(-0.548187\pi\)
−0.150805 + 0.988564i \(0.548187\pi\)
\(542\) −403.996 147.043i −0.745381 0.271296i
\(543\) 0 0
\(544\) −168.629 141.496i −0.309979 0.260104i
\(545\) −346.751 143.108i −0.636241 0.262583i
\(546\) 0 0
\(547\) −429.435 511.781i −0.785074 0.935615i 0.214077 0.976817i \(-0.431326\pi\)
−0.999151 + 0.0412022i \(0.986881\pi\)
\(548\) −66.8723 115.826i −0.122030 0.211362i
\(549\) 0 0
\(550\) −275.730 391.638i −0.501327 0.712069i
\(551\) 365.306 64.4133i 0.662987 0.116903i
\(552\) 0 0
\(553\) 9.93740 + 27.3028i 0.0179700 + 0.0493721i
\(554\) 280.172 + 769.765i 0.505725 + 1.38947i
\(555\) 0 0
\(556\) 29.2827 + 166.070i 0.0526667 + 0.298688i
\(557\) 429.574 744.043i 0.771227 1.33581i −0.165663 0.986182i \(-0.552976\pi\)
0.936891 0.349623i \(-0.113690\pi\)
\(558\) 0 0
\(559\) −272.954 472.770i −0.488289 0.845742i
\(560\) −293.540 + 153.287i −0.524178 + 0.273726i
\(561\) 0 0
\(562\) −121.988 21.5098i −0.217061 0.0382736i
\(563\) 51.6792 + 43.3640i 0.0917926 + 0.0770232i 0.687529 0.726157i \(-0.258695\pi\)
−0.595737 + 0.803180i \(0.703140\pi\)
\(564\) 0 0
\(565\) −485.658 + 764.496i −0.859572 + 1.35309i
\(566\) 1103.08i 1.94890i
\(567\) 0 0
\(568\) 405.078i 0.713165i
\(569\) −16.2220 + 44.5695i −0.0285096 + 0.0783295i −0.953131 0.302558i \(-0.902159\pi\)
0.924621 + 0.380888i \(0.124382\pi\)
\(570\) 0 0
\(571\) 595.231 + 499.458i 1.04244 + 0.874707i 0.992278 0.124034i \(-0.0395832\pi\)
0.0501575 + 0.998741i \(0.484028\pi\)
\(572\) 9.94176 56.3825i 0.0173807 0.0985708i
\(573\) 0 0
\(574\) −419.366 + 351.890i −0.730602 + 0.613048i
\(575\) 13.9070 + 154.388i 0.0241861 + 0.268501i
\(576\) 0 0
\(577\) 675.220 + 389.839i 1.17023 + 0.675630i 0.953733 0.300654i \(-0.0972050\pi\)
0.216492 + 0.976284i \(0.430538\pi\)
\(578\) 38.5595 + 218.682i 0.0667120 + 0.378342i
\(579\) 0 0
\(580\) 53.1328 7.06452i 0.0916083 0.0121802i
\(581\) −102.475 281.547i −0.176376 0.484590i
\(582\) 0 0
\(583\) 742.531 130.928i 1.27364 0.224577i
\(584\) 724.707 + 418.410i 1.24094 + 0.716455i
\(585\) 0 0
\(586\) −228.341 395.498i −0.389660 0.674912i
\(587\) 80.5262 67.5695i 0.137183 0.115110i −0.571614 0.820522i \(-0.693683\pi\)
0.708797 + 0.705412i \(0.249238\pi\)
\(588\) 0 0
\(589\) 54.6098 309.708i 0.0927161 0.525819i
\(590\) −409.308 532.005i −0.693743 0.901703i
\(591\) 0 0
\(592\) −66.8374 + 183.634i −0.112901 + 0.310193i
\(593\) −56.8607 −0.0958864 −0.0479432 0.998850i \(-0.515267\pi\)
−0.0479432 + 0.998850i \(0.515267\pi\)
\(594\) 0 0
\(595\) 349.267 + 76.9601i 0.587004 + 0.129345i
\(596\) 60.6253 166.567i 0.101720 0.279474i
\(597\) 0 0
\(598\) −79.6658 + 94.9420i −0.133220 + 0.158766i
\(599\) −356.770 62.9081i −0.595609 0.105022i −0.132286 0.991212i \(-0.542232\pi\)
−0.463323 + 0.886190i \(0.653343\pi\)
\(600\) 0 0
\(601\) −189.072 + 158.650i −0.314596 + 0.263977i −0.786389 0.617732i \(-0.788052\pi\)
0.471792 + 0.881710i \(0.343607\pi\)
\(602\) 232.209 + 402.197i 0.385729 + 0.668102i
\(603\) 0 0
\(604\) −65.7882 + 113.948i −0.108921 + 0.188656i
\(605\) −214.587 9.09292i −0.354690 0.0150296i
\(606\) 0 0
\(607\) 237.324 + 652.041i 0.390978 + 1.07420i 0.966556 + 0.256456i \(0.0825549\pi\)
−0.575578 + 0.817747i \(0.695223\pi\)
\(608\) −254.394 + 92.5917i −0.418411 + 0.152289i
\(609\) 0 0
\(610\) −789.361 33.4484i −1.29403 0.0548334i
\(611\) −131.714 76.0450i −0.215571 0.124460i
\(612\) 0 0
\(613\) −820.457 + 473.691i −1.33843 + 0.772742i −0.986574 0.163312i \(-0.947782\pi\)
−0.351855 + 0.936055i \(0.614449\pi\)
\(614\) −74.8651 89.2207i −0.121930 0.145311i
\(615\) 0 0
\(616\) 39.6562 224.902i 0.0643770 0.365100i
\(617\) −752.232 631.198i −1.21918 1.02301i −0.998867 0.0475809i \(-0.984849\pi\)
−0.220310 0.975430i \(-0.570707\pi\)
\(618\) 0 0
\(619\) 25.3213 + 9.21619i 0.0409067 + 0.0148888i 0.362392 0.932026i \(-0.381960\pi\)
−0.321486 + 0.946914i \(0.604182\pi\)
\(620\) 9.77859 44.3781i 0.0157719 0.0715775i
\(621\) 0 0
\(622\) 686.673i 1.10398i
\(623\) 402.663 + 146.557i 0.646329 + 0.235245i
\(624\) 0 0
\(625\) 3.21146 + 624.992i 0.00513834 + 0.999987i
\(626\) 217.481 + 38.3478i 0.347414 + 0.0612584i
\(627\) 0 0
\(628\) −40.2024 47.9114i −0.0640166 0.0762920i
\(629\) 182.778 105.527i 0.290584 0.167769i
\(630\) 0 0
\(631\) −127.491 + 220.821i −0.202046 + 0.349955i −0.949188 0.314711i \(-0.898093\pi\)
0.747141 + 0.664665i \(0.231426\pi\)
\(632\) −9.97721 56.5835i −0.0157867 0.0895309i
\(633\) 0 0
\(634\) 1036.90 377.402i 1.63550 0.595272i
\(635\) −615.493 + 81.8357i −0.969281 + 0.128875i
\(636\) 0 0
\(637\) −326.108 + 57.5017i −0.511944 + 0.0902695i
\(638\) −146.046 + 252.959i −0.228912 + 0.396488i
\(639\) 0 0
\(640\) 720.148 228.079i 1.12523 0.356374i
\(641\) 425.457 + 507.040i 0.663739 + 0.791014i 0.987917 0.154983i \(-0.0495321\pi\)
−0.324178 + 0.945996i \(0.605088\pi\)
\(642\) 0 0
\(643\) −110.331 19.4543i −0.171587 0.0302555i 0.0871943 0.996191i \(-0.472210\pi\)
−0.258782 + 0.965936i \(0.583321\pi\)
\(644\) 10.1325 12.0754i 0.0157336 0.0187506i
\(645\) 0 0
\(646\) 980.922 + 357.027i 1.51846 + 0.552673i
\(647\) −10.7396 −0.0165990 −0.00829952 0.999966i \(-0.502642\pi\)
−0.00829952 + 0.999966i \(0.502642\pi\)
\(648\) 0 0
\(649\) 546.869 0.842633
\(650\) −352.437 + 354.253i −0.542211 + 0.545004i
\(651\) 0 0
\(652\) −43.1234 + 51.3924i −0.0661401 + 0.0788227i
\(653\) −135.331 + 767.498i −0.207244 + 1.17534i 0.686624 + 0.727013i \(0.259092\pi\)
−0.893869 + 0.448329i \(0.852019\pi\)
\(654\) 0 0
\(655\) −547.887 + 286.107i −0.836469 + 0.436805i
\(656\) 1107.59 639.469i 1.68840 0.974801i
\(657\) 0 0
\(658\) 112.052 + 64.6934i 0.170292 + 0.0983182i
\(659\) −735.143 + 129.626i −1.11554 + 0.196700i −0.700883 0.713276i \(-0.747211\pi\)
−0.414660 + 0.909976i \(0.636099\pi\)
\(660\) 0 0
\(661\) 509.948 185.606i 0.771480 0.280796i 0.0738649 0.997268i \(-0.476467\pi\)
0.697615 + 0.716472i \(0.254244\pi\)
\(662\) −471.586 + 171.643i −0.712365 + 0.259280i
\(663\) 0 0
\(664\) 102.885 + 583.490i 0.154947 + 0.878750i
\(665\) 296.735 324.666i 0.446219 0.488220i
\(666\) 0 0
\(667\) 81.8684 47.2667i 0.122741 0.0708647i
\(668\) 50.2786 42.1888i 0.0752674 0.0631568i
\(669\) 0 0
\(670\) 95.2152 230.708i 0.142112 0.344340i
\(671\) 413.750 493.089i 0.616618 0.734856i
\(672\) 0 0
\(673\) 256.931 705.911i 0.381769 1.04890i −0.588842 0.808248i \(-0.700416\pi\)
0.970611 0.240654i \(-0.0773619\pi\)
\(674\) 366.997i 0.544506i
\(675\) 0 0
\(676\) 59.0990 0.0874245
\(677\) −89.4060 32.5411i −0.132062 0.0480667i 0.275144 0.961403i \(-0.411275\pi\)
−0.407206 + 0.913336i \(0.633497\pi\)
\(678\) 0 0
\(679\) −85.1072 71.4135i −0.125342 0.105174i
\(680\) −653.757 269.812i −0.961408 0.396782i
\(681\) 0 0
\(682\) 159.178 + 189.701i 0.233399 + 0.278154i
\(683\) 207.041 + 358.606i 0.303135 + 0.525045i 0.976844 0.213951i \(-0.0686334\pi\)
−0.673709 + 0.738996i \(0.735300\pi\)
\(684\) 0 0
\(685\) −702.014 641.620i −1.02484 0.936672i
\(686\) 655.800 115.635i 0.955977 0.168565i
\(687\) 0 0
\(688\) −371.083 1019.54i −0.539365 1.48189i
\(689\) −269.046 739.197i −0.390487 1.07286i
\(690\) 0 0
\(691\) −36.2485 205.575i −0.0524580 0.297504i 0.947280 0.320408i \(-0.103820\pi\)
−0.999738 + 0.0229038i \(0.992709\pi\)
\(692\) 19.6777 34.0829i 0.0284360 0.0492527i
\(693\) 0 0
\(694\) 9.27863 + 16.0711i 0.0133698 + 0.0231572i
\(695\) 555.066 + 1062.94i 0.798656 + 1.52940i
\(696\) 0 0
\(697\) −1360.27 239.853i −1.95161 0.344121i
\(698\) 702.103 + 589.134i 1.00588 + 0.844032i
\(699\) 0 0
\(700\) 44.8255 45.0564i 0.0640364 0.0643663i
\(701\) 128.633i 0.183499i −0.995782 0.0917494i \(-0.970754\pi\)
0.995782 0.0917494i \(-0.0292459\pi\)
\(702\) 0 0
\(703\) 259.558i 0.369215i
\(704\) −148.483 + 407.953i −0.210913 + 0.579478i
\(705\) 0 0
\(706\) 617.544 + 518.181i 0.874708 + 0.733967i
\(707\) −67.9331 + 385.268i −0.0960864 + 0.544933i
\(708\) 0 0
\(709\) −30.2527 + 25.3851i −0.0426696 + 0.0358040i −0.663873 0.747845i \(-0.731088\pi\)
0.621203 + 0.783649i \(0.286644\pi\)
\(710\) 185.488 + 585.667i 0.261250 + 0.824883i
\(711\) 0 0
\(712\) −733.845 423.685i −1.03068 0.595064i
\(713\) −13.9172 78.9282i −0.0195192 0.110699i
\(714\) 0 0
\(715\) −53.6581 403.567i −0.0750464 0.564430i
\(716\) 12.1195 + 33.2981i 0.0169267 + 0.0465057i
\(717\) 0 0
\(718\) 1518.61 267.771i 2.11505 0.372941i
\(719\) 1187.82 + 685.786i 1.65204 + 0.953806i 0.976232 + 0.216728i \(0.0695386\pi\)
0.675808 + 0.737077i \(0.263795\pi\)
\(720\) 0 0
\(721\) 60.5376 + 104.854i 0.0839633 + 0.145429i
\(722\) 383.705 321.967i 0.531448 0.445937i
\(723\) 0 0
\(724\) 29.4101 166.793i 0.0406217 0.230377i
\(725\) 345.025 161.968i 0.475896 0.223404i
\(726\) 0 0
\(727\) −290.996 + 799.505i −0.400270 + 1.09973i 0.561882 + 0.827217i \(0.310078\pi\)
−0.962152 + 0.272515i \(0.912145\pi\)
\(728\) −238.261 −0.327282
\(729\) 0 0
\(730\) −1239.38 273.095i −1.69779 0.374103i
\(731\) −400.770 + 1101.11i −0.548249 + 1.50630i
\(732\) 0 0
\(733\) −440.220 + 524.633i −0.600573 + 0.715735i −0.977601 0.210467i \(-0.932501\pi\)
0.377028 + 0.926202i \(0.376946\pi\)
\(734\) 1295.99 + 228.518i 1.76566 + 0.311333i
\(735\) 0 0
\(736\) −52.8512 + 44.3474i −0.0718087 + 0.0602546i
\(737\) 101.670 + 176.097i 0.137951 + 0.238938i
\(738\) 0 0
\(739\) 439.434 761.121i 0.594633 1.02993i −0.398966 0.916966i \(-0.630631\pi\)
0.993599 0.112968i \(-0.0360359\pi\)
\(740\) 1.58784 37.4721i 0.00214573 0.0506380i
\(741\) 0 0
\(742\) 228.884 + 628.854i 0.308469 + 0.847512i
\(743\) −403.184 + 146.747i −0.542643 + 0.197506i −0.598775 0.800918i \(-0.704346\pi\)
0.0561318 + 0.998423i \(0.482123\pi\)
\(744\) 0 0
\(745\) 53.3630 1259.33i 0.0716282 1.69038i
\(746\) 30.4950 + 17.6063i 0.0408780 + 0.0236009i
\(747\) 0 0
\(748\) −106.426 + 61.4452i −0.142281 + 0.0821459i
\(749\) −426.430 508.199i −0.569332 0.678503i
\(750\) 0 0
\(751\) −75.6930 + 429.277i −0.100790 + 0.571607i 0.892029 + 0.451978i \(0.149281\pi\)
−0.992819 + 0.119629i \(0.961830\pi\)
\(752\) −231.555 194.298i −0.307919 0.258375i
\(753\) 0 0
\(754\) 286.364 + 104.228i 0.379793 + 0.138233i
\(755\) −201.335 + 913.715i −0.266668 + 1.21022i
\(756\) 0 0
\(757\) 387.406i 0.511765i −0.966708 0.255883i \(-0.917634\pi\)
0.966708 0.255883i \(-0.0823660\pi\)
\(758\) 412.723 + 150.219i 0.544490 + 0.198178i
\(759\) 0 0
\(760\) −689.368 + 530.379i −0.907063 + 0.697867i
\(761\) 819.711 + 144.537i 1.07715 + 0.189931i 0.683955 0.729524i \(-0.260259\pi\)
0.393195 + 0.919455i \(0.371370\pi\)
\(762\) 0 0
\(763\) 174.360 + 207.794i 0.228519 + 0.272338i
\(764\) −201.045 + 116.073i −0.263148 + 0.151928i
\(765\) 0 0
\(766\) 705.899 1222.65i 0.921539 1.59615i
\(767\) −99.0753 561.884i −0.129172 0.732573i
\(768\) 0 0
\(769\) −527.601 + 192.031i −0.686087 + 0.249715i −0.661459 0.749981i \(-0.730062\pi\)
−0.0246284 + 0.999697i \(0.507840\pi\)
\(770\) 45.6484 + 343.325i 0.0592836 + 0.445877i
\(771\) 0 0
\(772\) 59.3480 10.4646i 0.0768756 0.0135552i
\(773\) 189.771 328.693i 0.245499 0.425217i −0.716773 0.697307i \(-0.754382\pi\)
0.962272 + 0.272090i \(0.0877148\pi\)
\(774\) 0 0
\(775\) −28.9905 321.838i −0.0374071 0.415274i
\(776\) 141.220 + 168.300i 0.181985 + 0.216881i
\(777\) 0 0
\(778\) −276.509 48.7560i −0.355410 0.0626684i
\(779\) −1091.90 + 1301.28i −1.40167 + 1.67045i
\(780\) 0 0
\(781\) −470.326 171.185i −0.602210 0.219187i
\(782\) 266.029 0.340191
\(783\) 0 0
\(784\) −658.128 −0.839449
\(785\) −375.403 238.480i −0.478220 0.303797i
\(786\) 0 0
\(787\) 646.804 770.831i 0.821860 0.979455i −0.178130 0.984007i \(-0.557005\pi\)
0.999990 + 0.00455231i \(0.00144905\pi\)
\(788\) 19.8919 112.813i 0.0252436 0.143163i
\(789\) 0 0
\(790\) 40.3352 + 77.2407i 0.0510572 + 0.0977730i
\(791\) 567.190 327.468i 0.717055 0.413992i
\(792\) 0 0
\(793\) −581.585 335.778i −0.733399 0.423428i
\(794\) −323.972 + 57.1251i −0.408026 + 0.0719459i
\(795\) 0 0
\(796\) −119.323 + 43.4302i −0.149904 + 0.0545605i
\(797\) −11.4218 + 4.15721i −0.0143310 + 0.00521607i −0.349176 0.937057i \(-0.613538\pi\)
0.334845 + 0.942273i \(0.391316\pi\)
\(798\) 0 0
\(799\) 56.6886 + 321.497i 0.0709494 + 0.402374i
\(800\) −227.454 + 160.137i −0.284317 + 0.200171i
\(801\) 0 0
\(802\) −480.341 + 277.325i −0.598929 + 0.345792i
\(803\) 792.066 664.622i 0.986383 0.827674i
\(804\) 0 0
\(805\) 42.7628 103.615i 0.0531215 0.128714i
\(806\) 166.071 197.916i 0.206044 0.245553i
\(807\) 0 0
\(808\) 264.594 726.966i 0.327468 0.899711i
\(809\) 1078.95i 1.33368i −0.745199 0.666842i \(-0.767646\pi\)
0.745199 0.666842i \(-0.232354\pi\)
\(810\) 0 0
\(811\) 1043.57 1.28677 0.643386 0.765542i \(-0.277529\pi\)
0.643386 + 0.765542i \(0.277529\pi\)
\(812\) −36.4218 13.2564i −0.0448544 0.0163257i
\(813\) 0 0
\(814\) 156.568 + 131.376i 0.192344 + 0.161396i
\(815\) −181.997 + 440.981i −0.223309 + 0.541080i
\(816\) 0 0
\(817\) 926.304 + 1103.93i 1.13379 + 1.35120i
\(818\) 672.715 + 1165.18i 0.822390 + 1.42442i
\(819\) 0 0
\(820\) −165.597 + 181.185i −0.201948 + 0.220957i
\(821\) −381.096 + 67.1976i −0.464186 + 0.0818484i −0.400850 0.916144i \(-0.631285\pi\)
−0.0633359 + 0.997992i \(0.520174\pi\)
\(822\) 0 0
\(823\) −338.120 928.977i −0.410838 1.12877i −0.956746 0.290924i \(-0.906037\pi\)
0.545908 0.837845i \(-0.316185\pi\)
\(824\) −81.8887 224.987i −0.0993795 0.273043i
\(825\) 0 0
\(826\) 84.2859 + 478.009i 0.102041 + 0.578703i
\(827\) 24.4367 42.3257i 0.0295486 0.0511798i −0.850873 0.525372i \(-0.823926\pi\)
0.880422 + 0.474192i \(0.157260\pi\)
\(828\) 0 0
\(829\) −546.065 945.813i −0.658704 1.14091i −0.980952 0.194253i \(-0.937772\pi\)
0.322248 0.946655i \(-0.395562\pi\)
\(830\) −415.937 796.507i −0.501129 0.959647i
\(831\) 0 0
\(832\) 446.054 + 78.6513i 0.536122 + 0.0945328i
\(833\) 544.489 + 456.880i 0.653648 + 0.548476i
\(834\) 0 0
\(835\) 250.263 393.951i 0.299717 0.471797i
\(836\) 151.133i 0.180781i
\(837\) 0 0
\(838\) 335.263i 0.400075i
\(839\) −34.5885 + 95.0311i −0.0412259 + 0.113267i −0.958597 0.284765i \(-0.908084\pi\)
0.917372 + 0.398032i \(0.130307\pi\)
\(840\) 0 0
\(841\) 466.183 + 391.174i 0.554320 + 0.465130i
\(842\) 114.000 646.525i 0.135392 0.767844i
\(843\) 0 0
\(844\) 84.3506 70.7785i 0.0999414 0.0838608i
\(845\) 400.637 126.886i 0.474127 0.150161i
\(846\) 0 0
\(847\) 134.503 + 77.6553i 0.158799 + 0.0916827i
\(848\) −271.485 1539.67i −0.320147 1.81564i
\(849\) 0 0
\(850\) 1068.76 + 90.7382i 1.25737 + 0.106751i
\(851\) −22.6239 62.1586i −0.0265850 0.0730418i
\(852\) 0 0
\(853\) −490.805 + 86.5422i −0.575387 + 0.101456i −0.453767 0.891120i \(-0.649920\pi\)
−0.121620 + 0.992577i \(0.538809\pi\)
\(854\) 494.769 + 285.655i 0.579355 + 0.334491i
\(855\) 0 0
\(856\) 655.945 + 1136.13i 0.766291 + 1.32725i
\(857\) −599.546 + 503.079i −0.699587 + 0.587024i −0.921656 0.388007i \(-0.873163\pi\)
0.222069 + 0.975031i \(0.428719\pi\)
\(858\) 0 0
\(859\) −105.854 + 600.327i −0.123229 + 0.698867i 0.859115 + 0.511783i \(0.171015\pi\)
−0.982344 + 0.187084i \(0.940096\pi\)
\(860\) 126.976 + 165.039i 0.147647 + 0.191906i
\(861\) 0 0
\(862\) −143.992 + 395.615i −0.167044 + 0.458950i
\(863\) 72.8410 0.0844044 0.0422022 0.999109i \(-0.486563\pi\)
0.0422022 + 0.999109i \(0.486563\pi\)
\(864\) 0 0
\(865\) 60.2207 273.299i 0.0696194 0.315953i
\(866\) 517.608 1422.12i 0.597700 1.64217i
\(867\) 0 0
\(868\) −21.1221 + 25.1724i −0.0243343 + 0.0290004i
\(869\) −69.9142 12.3278i −0.0804536 0.0141861i
\(870\) 0 0
\(871\) 162.513 136.364i 0.186582 0.156561i
\(872\) −268.205 464.544i −0.307574 0.532734i
\(873\) 0 0
\(874\) 163.584 283.336i 0.187167 0.324184i
\(875\) 207.139 401.683i 0.236731 0.459066i
\(876\) 0 0
\(877\) 544.678 + 1496.49i 0.621070 + 1.70638i 0.704353 + 0.709849i \(0.251237\pi\)
−0.0832836 + 0.996526i \(0.526541\pi\)
\(878\) −817.948 + 297.709i −0.931603 + 0.339076i
\(879\) 0 0
\(880\) 34.2556 808.410i 0.0389268 0.918648i
\(881\) −597.963 345.234i −0.678732 0.391866i 0.120645 0.992696i \(-0.461504\pi\)
−0.799377 + 0.600830i \(0.794837\pi\)
\(882\) 0 0
\(883\) 858.918 495.896i 0.972727 0.561604i 0.0726604 0.997357i \(-0.476851\pi\)
0.900066 + 0.435753i \(0.143518\pi\)
\(884\) 82.4132 + 98.2163i 0.0932276 + 0.111104i
\(885\) 0 0
\(886\) 0.483404 2.74152i 0.000545603 0.00309427i
\(887\) −861.700 723.052i −0.971477 0.815166i 0.0113051 0.999936i \(-0.496401\pi\)
−0.982782 + 0.184770i \(0.940846\pi\)
\(888\) 0 0
\(889\) 421.912 + 153.563i 0.474591 + 0.172737i
\(890\) 1255.01 + 276.538i 1.41013 + 0.310717i
\(891\) 0 0
\(892\) 8.42847i 0.00944895i
\(893\) 377.271 + 137.315i 0.422476 + 0.153769i
\(894\) 0 0
\(895\) 153.651 + 199.710i 0.171677 + 0.223139i
\(896\) −537.944 94.8540i −0.600384 0.105864i
\(897\) 0 0
\(898\) 936.642 + 1116.25i 1.04303 + 1.24304i
\(899\) −170.663 + 98.5322i −0.189836 + 0.109602i
\(900\) 0 0
\(901\) −844.247 + 1462.28i −0.937011 + 1.62295i
\(902\) −232.275 1317.30i −0.257511 1.46042i
\(903\) 0 0
\(904\) −1217.03 + 442.963i −1.34627 + 0.490003i
\(905\) −158.734 1193.85i −0.175396 1.31917i
\(906\) 0 0
\(907\) 784.120 138.261i 0.864520 0.152438i 0.276233 0.961091i \(-0.410914\pi\)
0.588287 + 0.808652i \(0.299803\pi\)
\(908\) 67.8849 117.580i 0.0747631 0.129493i
\(909\) 0 0
\(910\) 344.481 109.101i 0.378551 0.119891i
\(911\) 254.988 + 303.883i 0.279899 + 0.333571i 0.887617 0.460582i \(-0.152359\pi\)
−0.607718 + 0.794153i \(0.707915\pi\)
\(912\) 0 0
\(913\) 720.956 + 127.124i 0.789656 + 0.139238i
\(914\) −393.546 + 469.010i −0.430575 + 0.513140i
\(915\) 0 0
\(916\) 290.487 + 105.729i 0.317125 + 0.115424i
\(917\) 446.951 0.487406
\(918\) 0 0
\(919\) 1270.39 1.38236 0.691179 0.722684i \(-0.257092\pi\)
0.691179 + 0.722684i \(0.257092\pi\)
\(920\) −118.859 + 187.102i −0.129195 + 0.203371i
\(921\) 0 0
\(922\) −395.918 + 471.837i −0.429413 + 0.511754i
\(923\) −90.6767 + 514.253i −0.0982412 + 0.557154i
\(924\) 0 0
\(925\) −69.6892 257.436i −0.0753397 0.278309i
\(926\) −1352.40 + 780.809i −1.46048 + 0.843207i
\(927\) 0 0
\(928\) 146.913 + 84.8200i 0.158311 + 0.0914008i
\(929\) −482.079 + 85.0036i −0.518923 + 0.0915001i −0.426974 0.904264i \(-0.640421\pi\)
−0.0919483 + 0.995764i \(0.529309\pi\)
\(930\) 0 0
\(931\) 821.416 298.971i 0.882294 0.321129i
\(932\) −105.525 + 38.4079i −0.113224 + 0.0412102i
\(933\) 0 0
\(934\) −144.660 820.409i −0.154882 0.878382i
\(935\) −589.549 + 645.041i −0.630533 + 0.689883i
\(936\) 0 0
\(937\) 417.683 241.149i 0.445766 0.257363i −0.260274 0.965535i \(-0.583813\pi\)
0.706040 + 0.708172i \(0.250480\pi\)
\(938\) −138.254 + 116.009i −0.147392 + 0.123677i
\(939\) 0 0
\(940\) 53.6262 + 22.1320i 0.0570491 + 0.0235447i
\(941\) 167.759 199.928i 0.178278 0.212463i −0.669504 0.742809i \(-0.733493\pi\)
0.847782 + 0.530345i \(0.177938\pi\)
\(942\) 0 0
\(943\) −148.064 + 406.802i −0.157014 + 0.431391i
\(944\) 1133.95i 1.20122i
\(945\) 0 0
\(946\) −1134.75 −1.19953
\(947\) −161.848 58.9078i −0.170906 0.0622046i 0.255150 0.966901i \(-0.417875\pi\)
−0.426056 + 0.904697i \(0.640097\pi\)
\(948\) 0 0
\(949\) −826.367 693.404i −0.870776 0.730668i
\(950\) 753.835 1082.50i 0.793510 1.13947i
\(951\) 0 0
\(952\) 328.734 + 391.770i 0.345309 + 0.411524i
\(953\) −825.741 1430.23i −0.866465 1.50076i −0.865585 0.500761i \(-0.833053\pi\)
−0.000879492 1.00000i \(-0.500280\pi\)
\(954\) 0 0
\(955\) −1113.69 + 1218.52i −1.16617 + 1.27593i
\(956\) 47.5867 8.39081i 0.0497768 0.00877700i
\(957\) 0 0
\(958\) 231.048 + 634.800i 0.241178 + 0.662630i
\(959\) 235.214 + 646.245i 0.245270 + 0.673874i
\(960\) 0 0
\(961\) −137.864 781.867i −0.143459 0.813597i
\(962\) 106.618 184.668i 0.110830 0.191963i
\(963\) 0 0
\(964\) −73.7143 127.677i −0.0764671 0.132445i
\(965\) 379.857 198.362i 0.393635 0.205556i
\(966\) 0 0
\(967\) −1336.23 235.614i −1.38183 0.243654i −0.567175 0.823597i \(-0.691964\pi\)
−0.814657 + 0.579943i \(0.803075\pi\)
\(968\) −235.273 197.418i −0.243051 0.203944i
\(969\) 0 0
\(970\) −281.244 178.665i −0.289942 0.184191i
\(971\) 563.556i 0.580387i −0.956968 0.290194i \(-0.906280\pi\)
0.956968 0.290194i \(-0.0937197\pi\)
\(972\) 0 0
\(973\) 867.114i 0.891175i
\(974\) 106.875 293.638i 0.109728 0.301476i
\(975\) 0 0
\(976\) −1022.44 857.927i −1.04758 0.879024i
\(977\) 28.6746 162.622i 0.0293497 0.166450i −0.966610 0.256252i \(-0.917512\pi\)
0.995960 + 0.0898018i \(0.0286234\pi\)
\(978\) 0 0
\(979\) −802.052 + 673.002i −0.819257 + 0.687438i
\(980\) 120.416 38.1371i 0.122873 0.0389154i
\(981\) 0 0
\(982\) 259.021 + 149.546i 0.263769 + 0.152287i
\(983\) −72.9652 413.806i −0.0742271 0.420963i −0.999165 0.0408456i \(-0.986995\pi\)
0.924938 0.380117i \(-0.124116\pi\)
\(984\) 0 0
\(985\) −107.362 807.476i −0.108997 0.819772i
\(986\) −223.722 614.671i −0.226898 0.623398i
\(987\) 0 0
\(988\) 155.283 27.3806i 0.157169 0.0277131i
\(989\) 318.051 + 183.627i 0.321589 + 0.185669i
\(990\) 0 0
\(991\) −402.904 697.851i −0.406564 0.704189i 0.587939 0.808906i \(-0.299940\pi\)
−0.994502 + 0.104717i \(0.966606\pi\)
\(992\) 110.174 92.4466i 0.111062 0.0931921i
\(993\) 0 0
\(994\) 77.1409 437.488i 0.0776066 0.440129i
\(995\) −715.659 + 550.606i −0.719255 + 0.553373i
\(996\) 0 0
\(997\) 667.318 1833.44i 0.669326 1.83896i 0.140804 0.990037i \(-0.455031\pi\)
0.528522 0.848920i \(-0.322747\pi\)
\(998\) 1036.72 1.03880
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 405.3.n.a.179.9 204
3.2 odd 2 135.3.n.a.104.26 yes 204
5.4 even 2 inner 405.3.n.a.179.26 204
15.14 odd 2 135.3.n.a.104.9 yes 204
27.7 even 9 135.3.n.a.74.9 204
27.20 odd 18 inner 405.3.n.a.224.26 204
135.34 even 18 135.3.n.a.74.26 yes 204
135.74 odd 18 inner 405.3.n.a.224.9 204
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
135.3.n.a.74.9 204 27.7 even 9
135.3.n.a.74.26 yes 204 135.34 even 18
135.3.n.a.104.9 yes 204 15.14 odd 2
135.3.n.a.104.26 yes 204 3.2 odd 2
405.3.n.a.179.9 204 1.1 even 1 trivial
405.3.n.a.179.26 204 5.4 even 2 inner
405.3.n.a.224.9 204 135.74 odd 18 inner
405.3.n.a.224.26 204 27.20 odd 18 inner