Properties

Label 405.3.s.a.118.29
Level $405$
Weight $3$
Character 405.118
Analytic conductor $11.035$
Analytic rank $0$
Dimension $408$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [405,3,Mod(37,405)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(405, base_ring=CyclotomicField(36))
 
chi = DirichletCharacter(H, H._module([28, 9]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("405.37");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 405 = 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 405.s (of order \(36\), degree \(12\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.0354507066\)
Analytic rank: \(0\)
Dimension: \(408\)
Relative dimension: \(34\) over \(\Q(\zeta_{36})\)
Twist minimal: no (minimal twist has level 135)
Sato-Tate group: $\mathrm{SU}(2)[C_{36}]$

Embedding invariants

Embedding label 118.29
Character \(\chi\) \(=\) 405.118
Dual form 405.3.s.a.127.29

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.271751 - 3.10613i) q^{2} +(-5.63494 - 0.993591i) q^{4} +(-0.0355463 - 4.99987i) q^{5} +(-6.87240 - 4.81211i) q^{7} +(-1.38954 + 5.18582i) q^{8} +(-15.5399 - 1.24831i) q^{10} +(-0.0997944 - 0.0363222i) q^{11} +(1.15037 + 13.1488i) q^{13} +(-16.8146 + 20.0388i) q^{14} +(-5.77697 - 2.10265i) q^{16} +(-2.77156 - 10.3436i) q^{17} +(23.9034 - 13.8006i) q^{19} +(-4.76753 + 28.2093i) q^{20} +(-0.139940 + 0.300103i) q^{22} +(-26.9117 + 18.8438i) q^{23} +(-24.9975 + 0.355454i) q^{25} +41.1545 q^{26} +(33.9443 + 33.9443i) q^{28} +(9.56923 + 11.4042i) q^{29} +(3.75387 - 21.2892i) q^{31} +(-17.1767 + 36.8356i) q^{32} +(-32.8817 + 5.79794i) q^{34} +(-23.8156 + 34.5322i) q^{35} +(9.55740 + 35.6687i) q^{37} +(-36.3707 - 77.9973i) q^{38} +(25.9778 + 6.76317i) q^{40} +(-42.1515 - 35.3693i) q^{41} +(22.1297 + 47.4572i) q^{43} +(0.526246 + 0.303828i) q^{44} +(51.2179 + 88.7119i) q^{46} +(30.4241 + 21.3032i) q^{47} +(7.31453 + 20.0965i) q^{49} +(-5.68900 + 77.7419i) q^{50} +(6.58228 - 75.2358i) q^{52} +(-24.3281 - 24.3281i) q^{53} +(-0.178059 + 0.500250i) q^{55} +(34.5042 - 28.9524i) q^{56} +(38.0232 - 26.6241i) q^{58} +(-1.23413 - 3.39074i) q^{59} +(-18.4286 - 104.514i) q^{61} +(-65.1069 - 17.4453i) q^{62} +(88.4518 + 51.0677i) q^{64} +(65.7016 - 6.21911i) q^{65} +(-62.2832 + 5.44908i) q^{67} +(5.34026 + 61.0394i) q^{68} +(100.789 + 83.3585i) q^{70} +(29.5576 - 51.1953i) q^{71} +(29.4612 - 109.951i) q^{73} +(113.389 - 19.9935i) q^{74} +(-148.406 + 54.0155i) q^{76} +(0.511041 + 0.729842i) q^{77} +(-64.0753 - 76.3619i) q^{79} +(-10.3076 + 28.9589i) q^{80} +(-121.316 + 121.316i) q^{82} +(-66.6928 - 5.83486i) q^{83} +(-51.6182 + 14.2251i) q^{85} +(153.422 - 55.8410i) q^{86} +(0.327028 - 0.467045i) q^{88} +(88.4162 - 51.0471i) q^{89} +(55.3678 - 95.8998i) q^{91} +(170.369 - 79.4442i) q^{92} +(74.4380 - 88.7118i) q^{94} +(-69.8511 - 119.023i) q^{95} +(-3.50866 + 1.63611i) q^{97} +(64.4100 - 17.2586i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 408 q + 12 q^{2} + 12 q^{5} - 12 q^{7} + 6 q^{8} - 6 q^{10} + 60 q^{11} - 12 q^{13} - 24 q^{16} + 6 q^{17} + 300 q^{20} - 12 q^{22} + 156 q^{23} + 6 q^{25} + 48 q^{26} - 24 q^{28} - 24 q^{31} - 72 q^{32}+ \cdots + 1032 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/405\mathbb{Z}\right)^\times\).

\(n\) \(82\) \(326\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{7}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.271751 3.10613i 0.135875 1.55306i −0.556084 0.831126i \(-0.687697\pi\)
0.691959 0.721937i \(-0.256748\pi\)
\(3\) 0 0
\(4\) −5.63494 0.993591i −1.40873 0.248398i
\(5\) −0.0355463 4.99987i −0.00710925 0.999975i
\(6\) 0 0
\(7\) −6.87240 4.81211i −0.981772 0.687444i −0.0317070 0.999497i \(-0.510094\pi\)
−0.950065 + 0.312053i \(0.898983\pi\)
\(8\) −1.38954 + 5.18582i −0.173692 + 0.648228i
\(9\) 0 0
\(10\) −15.5399 1.24831i −1.55399 0.124831i
\(11\) −0.0997944 0.0363222i −0.00907222 0.00330202i 0.337480 0.941333i \(-0.390425\pi\)
−0.346552 + 0.938031i \(0.612648\pi\)
\(12\) 0 0
\(13\) 1.15037 + 13.1488i 0.0884903 + 1.01145i 0.902526 + 0.430634i \(0.141710\pi\)
−0.814036 + 0.580814i \(0.802734\pi\)
\(14\) −16.8146 + 20.0388i −1.20104 + 1.43135i
\(15\) 0 0
\(16\) −5.77697 2.10265i −0.361061 0.131415i
\(17\) −2.77156 10.3436i −0.163033 0.608448i −0.998283 0.0585771i \(-0.981344\pi\)
0.835250 0.549871i \(-0.185323\pi\)
\(18\) 0 0
\(19\) 23.9034 13.8006i 1.25807 0.726349i 0.285374 0.958416i \(-0.407882\pi\)
0.972700 + 0.232067i \(0.0745488\pi\)
\(20\) −4.76753 + 28.2093i −0.238377 + 1.41046i
\(21\) 0 0
\(22\) −0.139940 + 0.300103i −0.00636093 + 0.0136411i
\(23\) −26.9117 + 18.8438i −1.17007 + 0.819295i −0.986508 0.163713i \(-0.947653\pi\)
−0.183566 + 0.983007i \(0.558764\pi\)
\(24\) 0 0
\(25\) −24.9975 + 0.355454i −0.999899 + 0.0142181i
\(26\) 41.1545 1.58287
\(27\) 0 0
\(28\) 33.9443 + 33.9443i 1.21230 + 1.21230i
\(29\) 9.56923 + 11.4042i 0.329974 + 0.393247i 0.905367 0.424629i \(-0.139596\pi\)
−0.575394 + 0.817877i \(0.695151\pi\)
\(30\) 0 0
\(31\) 3.75387 21.2892i 0.121092 0.686749i −0.862460 0.506126i \(-0.831077\pi\)
0.983552 0.180624i \(-0.0578116\pi\)
\(32\) −17.1767 + 36.8356i −0.536772 + 1.15111i
\(33\) 0 0
\(34\) −32.8817 + 5.79794i −0.967110 + 0.170528i
\(35\) −23.8156 + 34.5322i −0.680447 + 0.986634i
\(36\) 0 0
\(37\) 9.55740 + 35.6687i 0.258308 + 0.964019i 0.966220 + 0.257718i \(0.0829706\pi\)
−0.707912 + 0.706301i \(0.750363\pi\)
\(38\) −36.3707 77.9973i −0.957125 2.05256i
\(39\) 0 0
\(40\) 25.9778 + 6.76317i 0.649446 + 0.169079i
\(41\) −42.1515 35.3693i −1.02808 0.862666i −0.0374631 0.999298i \(-0.511928\pi\)
−0.990622 + 0.136632i \(0.956372\pi\)
\(42\) 0 0
\(43\) 22.1297 + 47.4572i 0.514643 + 1.10366i 0.976265 + 0.216579i \(0.0694899\pi\)
−0.461622 + 0.887077i \(0.652732\pi\)
\(44\) 0.526246 + 0.303828i 0.0119601 + 0.00690518i
\(45\) 0 0
\(46\) 51.2179 + 88.7119i 1.11343 + 1.92852i
\(47\) 30.4241 + 21.3032i 0.647320 + 0.453259i 0.850565 0.525869i \(-0.176260\pi\)
−0.203245 + 0.979128i \(0.565149\pi\)
\(48\) 0 0
\(49\) 7.31453 + 20.0965i 0.149276 + 0.410133i
\(50\) −5.68900 + 77.7419i −0.113780 + 1.55484i
\(51\) 0 0
\(52\) 6.58228 75.2358i 0.126582 1.44684i
\(53\) −24.3281 24.3281i −0.459020 0.459020i 0.439314 0.898334i \(-0.355222\pi\)
−0.898334 + 0.439314i \(0.855222\pi\)
\(54\) 0 0
\(55\) −0.178059 + 0.500250i −0.00323744 + 0.00909546i
\(56\) 34.5042 28.9524i 0.616146 0.517008i
\(57\) 0 0
\(58\) 38.0232 26.6241i 0.655573 0.459037i
\(59\) −1.23413 3.39074i −0.0209175 0.0574702i 0.928794 0.370595i \(-0.120846\pi\)
−0.949712 + 0.313125i \(0.898624\pi\)
\(60\) 0 0
\(61\) −18.4286 104.514i −0.302109 1.71334i −0.636812 0.771019i \(-0.719747\pi\)
0.334703 0.942324i \(-0.391364\pi\)
\(62\) −65.1069 17.4453i −1.05011 0.281376i
\(63\) 0 0
\(64\) 88.4518 + 51.0677i 1.38206 + 0.797933i
\(65\) 65.7016 6.21911i 1.01079 0.0956787i
\(66\) 0 0
\(67\) −62.2832 + 5.44908i −0.929600 + 0.0813295i −0.541888 0.840451i \(-0.682290\pi\)
−0.387713 + 0.921780i \(0.626735\pi\)
\(68\) 5.34026 + 61.0394i 0.0785332 + 0.897638i
\(69\) 0 0
\(70\) 100.789 + 83.3585i 1.43985 + 1.19084i
\(71\) 29.5576 51.1953i 0.416305 0.721061i −0.579260 0.815143i \(-0.696658\pi\)
0.995564 + 0.0940822i \(0.0299917\pi\)
\(72\) 0 0
\(73\) 29.4612 109.951i 0.403578 1.50617i −0.403086 0.915162i \(-0.632063\pi\)
0.806664 0.591010i \(-0.201271\pi\)
\(74\) 113.389 19.9935i 1.53228 0.270182i
\(75\) 0 0
\(76\) −148.406 + 54.0155i −1.95272 + 0.710730i
\(77\) 0.511041 + 0.729842i 0.00663689 + 0.00947847i
\(78\) 0 0
\(79\) −64.0753 76.3619i −0.811079 0.966606i 0.188802 0.982015i \(-0.439540\pi\)
−0.999881 + 0.0154087i \(0.995095\pi\)
\(80\) −10.3076 + 28.9589i −0.128845 + 0.361986i
\(81\) 0 0
\(82\) −121.316 + 121.316i −1.47947 + 1.47947i
\(83\) −66.6928 5.83486i −0.803527 0.0702995i −0.322010 0.946736i \(-0.604359\pi\)
−0.481517 + 0.876437i \(0.659914\pi\)
\(84\) 0 0
\(85\) −51.6182 + 14.2251i −0.607273 + 0.167355i
\(86\) 153.422 55.8410i 1.78397 0.649314i
\(87\) 0 0
\(88\) 0.327028 0.467045i 0.00371623 0.00530733i
\(89\) 88.4162 51.0471i 0.993440 0.573563i 0.0871392 0.996196i \(-0.472228\pi\)
0.906301 + 0.422633i \(0.138894\pi\)
\(90\) 0 0
\(91\) 55.3678 95.8998i 0.608437 1.05384i
\(92\) 170.369 79.4442i 1.85183 0.863524i
\(93\) 0 0
\(94\) 74.4380 88.7118i 0.791894 0.943742i
\(95\) −69.8511 119.023i −0.735275 1.25288i
\(96\) 0 0
\(97\) −3.50866 + 1.63611i −0.0361717 + 0.0168671i −0.440620 0.897694i \(-0.645241\pi\)
0.404448 + 0.914561i \(0.367464\pi\)
\(98\) 64.4100 17.2586i 0.657245 0.176108i
\(99\) 0 0
\(100\) 141.212 + 22.8343i 1.41212 + 0.228343i
\(101\) 18.6472 + 105.754i 0.184626 + 1.04707i 0.926435 + 0.376455i \(0.122857\pi\)
−0.741809 + 0.670612i \(0.766032\pi\)
\(102\) 0 0
\(103\) 12.8319 + 5.98363i 0.124582 + 0.0580935i 0.483910 0.875118i \(-0.339216\pi\)
−0.359328 + 0.933211i \(0.616994\pi\)
\(104\) −69.7860 12.3051i −0.671019 0.118319i
\(105\) 0 0
\(106\) −82.1772 + 68.9548i −0.775256 + 0.650517i
\(107\) −104.637 + 104.637i −0.977914 + 0.977914i −0.999761 0.0218471i \(-0.993045\pi\)
0.0218471 + 0.999761i \(0.493045\pi\)
\(108\) 0 0
\(109\) 87.0016i 0.798180i −0.916912 0.399090i \(-0.869326\pi\)
0.916912 0.399090i \(-0.130674\pi\)
\(110\) 1.50545 + 0.689017i 0.0136859 + 0.00626379i
\(111\) 0 0
\(112\) 29.5835 + 42.2496i 0.264139 + 0.377229i
\(113\) −31.1829 14.5408i −0.275955 0.128680i 0.279714 0.960083i \(-0.409760\pi\)
−0.555670 + 0.831403i \(0.687538\pi\)
\(114\) 0 0
\(115\) 95.1731 + 133.885i 0.827592 + 1.16422i
\(116\) −42.5909 73.7697i −0.367163 0.635945i
\(117\) 0 0
\(118\) −10.8675 + 2.91192i −0.0920970 + 0.0246773i
\(119\) −30.7273 + 84.4225i −0.258212 + 0.709433i
\(120\) 0 0
\(121\) −92.6827 77.7701i −0.765973 0.642728i
\(122\) −329.641 + 28.8399i −2.70198 + 0.236392i
\(123\) 0 0
\(124\) −42.3056 + 116.234i −0.341174 + 0.937368i
\(125\) 2.66579 + 124.972i 0.0213263 + 0.999773i
\(126\) 0 0
\(127\) −185.536 49.7142i −1.46091 0.391450i −0.561108 0.827743i \(-0.689625\pi\)
−0.899805 + 0.436292i \(0.856291\pi\)
\(128\) 89.4107 127.692i 0.698521 0.997592i
\(129\) 0 0
\(130\) −1.46289 205.767i −0.0112530 1.58283i
\(131\) −12.4544 + 70.6325i −0.0950718 + 0.539179i 0.899653 + 0.436605i \(0.143819\pi\)
−0.994725 + 0.102575i \(0.967292\pi\)
\(132\) 0 0
\(133\) −230.684 20.1822i −1.73447 0.151746i
\(134\) 194.940i 1.45478i
\(135\) 0 0
\(136\) 57.4913 0.422730
\(137\) 18.2824 208.969i 0.133448 1.52532i −0.574176 0.818732i \(-0.694678\pi\)
0.707624 0.706589i \(-0.249767\pi\)
\(138\) 0 0
\(139\) −63.5413 11.2040i −0.457131 0.0806046i −0.0596592 0.998219i \(-0.519001\pi\)
−0.397472 + 0.917614i \(0.630113\pi\)
\(140\) 168.510 170.924i 1.20365 1.22088i
\(141\) 0 0
\(142\) −150.987 105.722i −1.06329 0.744522i
\(143\) 0.362793 1.35396i 0.00253702 0.00946828i
\(144\) 0 0
\(145\) 56.6793 48.2503i 0.390891 0.332761i
\(146\) −333.514 121.389i −2.28434 0.831433i
\(147\) 0 0
\(148\) −18.4152 210.487i −0.124427 1.42221i
\(149\) 42.9391 51.1728i 0.288182 0.343441i −0.602459 0.798150i \(-0.705812\pi\)
0.890640 + 0.454709i \(0.150257\pi\)
\(150\) 0 0
\(151\) −8.90680 3.24181i −0.0589854 0.0214689i 0.312359 0.949964i \(-0.398881\pi\)
−0.371344 + 0.928495i \(0.621103\pi\)
\(152\) 38.3530 + 143.135i 0.252322 + 0.941679i
\(153\) 0 0
\(154\) 2.40586 1.38902i 0.0156224 0.00901962i
\(155\) −106.577 18.0121i −0.687593 0.116207i
\(156\) 0 0
\(157\) 73.1084 156.781i 0.465658 0.998608i −0.523537 0.852003i \(-0.675388\pi\)
0.989195 0.146605i \(-0.0468345\pi\)
\(158\) −254.602 + 178.274i −1.61141 + 1.12832i
\(159\) 0 0
\(160\) 184.784 + 84.5721i 1.15490 + 0.528575i
\(161\) 275.626 1.71196
\(162\) 0 0
\(163\) 42.0886 + 42.0886i 0.258213 + 0.258213i 0.824327 0.566114i \(-0.191554\pi\)
−0.566114 + 0.824327i \(0.691554\pi\)
\(164\) 202.378 + 241.185i 1.23401 + 1.47064i
\(165\) 0 0
\(166\) −36.2476 + 205.570i −0.218359 + 1.23838i
\(167\) 104.004 223.036i 0.622776 1.33555i −0.301370 0.953507i \(-0.597444\pi\)
0.924146 0.382040i \(-0.124778\pi\)
\(168\) 0 0
\(169\) −5.13589 + 0.905596i −0.0303899 + 0.00535856i
\(170\) 30.1578 + 164.198i 0.177399 + 0.965873i
\(171\) 0 0
\(172\) −77.5461 289.406i −0.450850 1.68259i
\(173\) −3.86233 8.28278i −0.0223256 0.0478774i 0.894829 0.446409i \(-0.147298\pi\)
−0.917154 + 0.398532i \(0.869520\pi\)
\(174\) 0 0
\(175\) 173.503 + 117.848i 0.991446 + 0.673415i
\(176\) 0.500137 + 0.419665i 0.00284169 + 0.00238446i
\(177\) 0 0
\(178\) −134.532 288.504i −0.755795 1.62081i
\(179\) 0.701250 + 0.404867i 0.00391760 + 0.00226183i 0.501958 0.864892i \(-0.332613\pi\)
−0.498040 + 0.867154i \(0.665947\pi\)
\(180\) 0 0
\(181\) 114.570 + 198.441i 0.632982 + 1.09636i 0.986939 + 0.161096i \(0.0515028\pi\)
−0.353956 + 0.935262i \(0.615164\pi\)
\(182\) −282.830 198.040i −1.55401 1.08813i
\(183\) 0 0
\(184\) −60.3257 165.743i −0.327857 0.900779i
\(185\) 177.999 49.0537i 0.962158 0.265155i
\(186\) 0 0
\(187\) −0.0991162 + 1.13290i −0.000530033 + 0.00605831i
\(188\) −150.271 150.271i −0.799314 0.799314i
\(189\) 0 0
\(190\) −388.684 + 184.622i −2.04570 + 0.971693i
\(191\) −138.037 + 115.827i −0.722708 + 0.606424i −0.928133 0.372249i \(-0.878587\pi\)
0.205425 + 0.978673i \(0.434142\pi\)
\(192\) 0 0
\(193\) 230.730 161.559i 1.19549 0.837092i 0.205560 0.978644i \(-0.434098\pi\)
0.989931 + 0.141553i \(0.0452095\pi\)
\(194\) 4.12849 + 11.3429i 0.0212809 + 0.0584688i
\(195\) 0 0
\(196\) −21.2492 120.510i −0.108414 0.614848i
\(197\) 109.014 + 29.2102i 0.553370 + 0.148275i 0.524659 0.851313i \(-0.324193\pi\)
0.0287113 + 0.999588i \(0.490860\pi\)
\(198\) 0 0
\(199\) −170.998 98.7260i −0.859289 0.496111i 0.00448527 0.999990i \(-0.498572\pi\)
−0.863774 + 0.503879i \(0.831906\pi\)
\(200\) 32.8916 130.126i 0.164458 0.650632i
\(201\) 0 0
\(202\) 333.552 29.1820i 1.65125 0.144465i
\(203\) −10.8855 124.422i −0.0536233 0.612917i
\(204\) 0 0
\(205\) −175.344 + 212.009i −0.855335 + 1.03419i
\(206\) 22.0730 38.2315i 0.107150 0.185590i
\(207\) 0 0
\(208\) 21.0017 78.3793i 0.100970 0.376823i
\(209\) −2.88670 + 0.509002i −0.0138119 + 0.00243542i
\(210\) 0 0
\(211\) 338.142 123.074i 1.60257 0.583288i 0.622619 0.782525i \(-0.286069\pi\)
0.979951 + 0.199237i \(0.0638464\pi\)
\(212\) 112.915 + 161.259i 0.532617 + 0.760656i
\(213\) 0 0
\(214\) 296.580 + 353.450i 1.38589 + 1.65164i
\(215\) 236.493 112.332i 1.09997 0.522476i
\(216\) 0 0
\(217\) −128.244 + 128.244i −0.590987 + 0.590987i
\(218\) −270.238 23.6428i −1.23962 0.108453i
\(219\) 0 0
\(220\) 1.50040 2.64196i 0.00681998 0.0120089i
\(221\) 132.818 48.3418i 0.600987 0.218741i
\(222\) 0 0
\(223\) −238.774 + 341.005i −1.07074 + 1.52917i −0.241395 + 0.970427i \(0.577605\pi\)
−0.829341 + 0.558743i \(0.811284\pi\)
\(224\) 295.302 170.493i 1.31831 0.761128i
\(225\) 0 0
\(226\) −53.6397 + 92.9067i −0.237344 + 0.411091i
\(227\) −1.98656 + 0.926349i −0.00875138 + 0.00408083i −0.426989 0.904257i \(-0.640426\pi\)
0.418238 + 0.908338i \(0.362648\pi\)
\(228\) 0 0
\(229\) −105.993 + 126.317i −0.462850 + 0.551603i −0.946098 0.323881i \(-0.895012\pi\)
0.483248 + 0.875483i \(0.339457\pi\)
\(230\) 441.728 259.236i 1.92056 1.12711i
\(231\) 0 0
\(232\) −72.4368 + 33.7778i −0.312227 + 0.145594i
\(233\) 349.671 93.6941i 1.50073 0.402120i 0.587388 0.809305i \(-0.300156\pi\)
0.913346 + 0.407185i \(0.133490\pi\)
\(234\) 0 0
\(235\) 105.432 152.874i 0.448645 0.650526i
\(236\) 3.58523 + 20.3328i 0.0151916 + 0.0861561i
\(237\) 0 0
\(238\) 253.877 + 118.385i 1.06671 + 0.497415i
\(239\) −186.473 32.8803i −0.780223 0.137574i −0.230668 0.973032i \(-0.574091\pi\)
−0.549554 + 0.835458i \(0.685202\pi\)
\(240\) 0 0
\(241\) −91.8704 + 77.0884i −0.381205 + 0.319869i −0.813175 0.582019i \(-0.802263\pi\)
0.431970 + 0.901888i \(0.357819\pi\)
\(242\) −266.750 + 266.750i −1.10227 + 1.10227i
\(243\) 0 0
\(244\) 607.240i 2.48869i
\(245\) 100.220 37.2861i 0.409061 0.152188i
\(246\) 0 0
\(247\) 208.960 + 298.426i 0.845992 + 1.20820i
\(248\) 105.186 + 49.0490i 0.424137 + 0.197778i
\(249\) 0 0
\(250\) 388.902 + 25.6808i 1.55561 + 0.102723i
\(251\) −5.89620 10.2125i −0.0234908 0.0406873i 0.854041 0.520206i \(-0.174145\pi\)
−0.877532 + 0.479518i \(0.840811\pi\)
\(252\) 0 0
\(253\) 3.37008 0.903011i 0.0133205 0.00356921i
\(254\) −204.838 + 562.788i −0.806449 + 2.21570i
\(255\) 0 0
\(256\) −59.3682 49.8158i −0.231907 0.194593i
\(257\) −172.770 + 15.1154i −0.672257 + 0.0588149i −0.418173 0.908367i \(-0.637330\pi\)
−0.254084 + 0.967182i \(0.581774\pi\)
\(258\) 0 0
\(259\) 105.959 291.121i 0.409109 1.12402i
\(260\) −376.404 30.2362i −1.44771 0.116293i
\(261\) 0 0
\(262\) 216.009 + 57.8794i 0.824461 + 0.220914i
\(263\) 124.314 177.539i 0.472678 0.675054i −0.510043 0.860149i \(-0.670370\pi\)
0.982721 + 0.185095i \(0.0592593\pi\)
\(264\) 0 0
\(265\) −120.772 + 122.502i −0.455745 + 0.462272i
\(266\) −125.377 + 711.049i −0.471342 + 2.67312i
\(267\) 0 0
\(268\) 356.376 + 31.1789i 1.32976 + 0.116339i
\(269\) 50.1821i 0.186551i −0.995640 0.0932753i \(-0.970266\pi\)
0.995640 0.0932753i \(-0.0297337\pi\)
\(270\) 0 0
\(271\) 358.828 1.32409 0.662044 0.749465i \(-0.269689\pi\)
0.662044 + 0.749465i \(0.269689\pi\)
\(272\) −5.73771 + 65.5824i −0.0210945 + 0.241112i
\(273\) 0 0
\(274\) −644.115 113.575i −2.35079 0.414507i
\(275\) 2.50752 + 0.872491i 0.00911825 + 0.00317269i
\(276\) 0 0
\(277\) 138.833 + 97.2121i 0.501203 + 0.350946i 0.796678 0.604404i \(-0.206589\pi\)
−0.295475 + 0.955351i \(0.595478\pi\)
\(278\) −52.0685 + 194.322i −0.187297 + 0.699002i
\(279\) 0 0
\(280\) −145.985 171.487i −0.521375 0.612455i
\(281\) 486.132 + 176.938i 1.73001 + 0.629671i 0.998631 0.0523024i \(-0.0166560\pi\)
0.731377 + 0.681974i \(0.238878\pi\)
\(282\) 0 0
\(283\) −0.596924 6.82287i −0.00210927 0.0241091i 0.995067 0.0992039i \(-0.0316296\pi\)
−0.997176 + 0.0750948i \(0.976074\pi\)
\(284\) −217.423 + 259.114i −0.765572 + 0.912374i
\(285\) 0 0
\(286\) −4.10699 1.49482i −0.0143601 0.00522665i
\(287\) 119.481 + 445.909i 0.416310 + 1.55369i
\(288\) 0 0
\(289\) 150.973 87.1641i 0.522396 0.301606i
\(290\) −134.469 189.165i −0.463686 0.652293i
\(291\) 0 0
\(292\) −275.258 + 590.292i −0.942663 + 2.02155i
\(293\) 159.446 111.646i 0.544186 0.381043i −0.268917 0.963163i \(-0.586666\pi\)
0.813103 + 0.582120i \(0.197777\pi\)
\(294\) 0 0
\(295\) −16.9094 + 6.29102i −0.0573201 + 0.0213255i
\(296\) −198.252 −0.669770
\(297\) 0 0
\(298\) −147.280 147.280i −0.494229 0.494229i
\(299\) −278.732 332.180i −0.932215 1.11097i
\(300\) 0 0
\(301\) 76.2853 432.635i 0.253439 1.43733i
\(302\) −12.4899 + 26.7847i −0.0413573 + 0.0886910i
\(303\) 0 0
\(304\) −167.107 + 29.4655i −0.549695 + 0.0969260i
\(305\) −521.901 + 95.8559i −1.71115 + 0.314281i
\(306\) 0 0
\(307\) −55.5523 207.324i −0.180952 0.675322i −0.995461 0.0951712i \(-0.969660\pi\)
0.814509 0.580151i \(-0.197007\pi\)
\(308\) −2.15452 4.62038i −0.00699519 0.0150012i
\(309\) 0 0
\(310\) −84.9102 + 326.146i −0.273904 + 1.05209i
\(311\) 40.1648 + 33.7022i 0.129147 + 0.108367i 0.705073 0.709134i \(-0.250914\pi\)
−0.575926 + 0.817502i \(0.695358\pi\)
\(312\) 0 0
\(313\) −28.6939 61.5344i −0.0916739 0.196595i 0.855124 0.518423i \(-0.173481\pi\)
−0.946798 + 0.321827i \(0.895703\pi\)
\(314\) −467.115 269.689i −1.48763 0.858883i
\(315\) 0 0
\(316\) 285.187 + 493.959i 0.902492 + 1.56316i
\(317\) 322.569 + 225.865i 1.01757 + 0.712509i 0.958309 0.285733i \(-0.0922371\pi\)
0.0592596 + 0.998243i \(0.481126\pi\)
\(318\) 0 0
\(319\) −0.540731 1.48565i −0.00169508 0.00465720i
\(320\) 252.188 444.063i 0.788087 1.38770i
\(321\) 0 0
\(322\) 74.9017 856.130i 0.232614 2.65879i
\(323\) −208.998 208.998i −0.647053 0.647053i
\(324\) 0 0
\(325\) −33.4302 328.279i −0.102862 1.01009i
\(326\) 142.170 119.295i 0.436105 0.365936i
\(327\) 0 0
\(328\) 241.990 169.443i 0.737774 0.516595i
\(329\) −106.573 292.808i −0.323931 0.889993i
\(330\) 0 0
\(331\) 53.2977 + 302.266i 0.161020 + 0.913191i 0.953073 + 0.302739i \(0.0979011\pi\)
−0.792053 + 0.610452i \(0.790988\pi\)
\(332\) 370.012 + 99.1444i 1.11449 + 0.298628i
\(333\) 0 0
\(334\) −664.516 383.659i −1.98957 1.14868i
\(335\) 29.4586 + 311.215i 0.0879362 + 0.928999i
\(336\) 0 0
\(337\) −268.651 + 23.5039i −0.797184 + 0.0697446i −0.478467 0.878105i \(-0.658807\pi\)
−0.318717 + 0.947850i \(0.603252\pi\)
\(338\) 1.41721 + 16.1988i 0.00419294 + 0.0479255i
\(339\) 0 0
\(340\) 304.999 28.8703i 0.897057 0.0849127i
\(341\) −1.14789 + 1.98820i −0.00336624 + 0.00583049i
\(342\) 0 0
\(343\) −59.9605 + 223.776i −0.174812 + 0.652407i
\(344\) −276.855 + 48.8169i −0.804810 + 0.141910i
\(345\) 0 0
\(346\) −26.7770 + 9.74601i −0.0773900 + 0.0281677i
\(347\) 99.2947 + 141.808i 0.286152 + 0.408667i 0.936334 0.351111i \(-0.114196\pi\)
−0.650182 + 0.759779i \(0.725307\pi\)
\(348\) 0 0
\(349\) 193.473 + 230.572i 0.554364 + 0.660665i 0.968344 0.249621i \(-0.0803061\pi\)
−0.413980 + 0.910286i \(0.635862\pi\)
\(350\) 413.199 506.897i 1.18057 1.44828i
\(351\) 0 0
\(352\) 3.05209 3.05209i 0.00867071 0.00867071i
\(353\) −407.959 35.6918i −1.15569 0.101110i −0.506851 0.862034i \(-0.669191\pi\)
−0.648841 + 0.760924i \(0.724746\pi\)
\(354\) 0 0
\(355\) −257.021 145.965i −0.724002 0.411168i
\(356\) −548.939 + 199.798i −1.54196 + 0.561229i
\(357\) 0 0
\(358\) 1.44813 2.06815i 0.00404506 0.00577695i
\(359\) −498.362 + 287.729i −1.38819 + 0.801474i −0.993112 0.117171i \(-0.962617\pi\)
−0.395082 + 0.918646i \(0.629284\pi\)
\(360\) 0 0
\(361\) 200.415 347.129i 0.555167 0.961577i
\(362\) 647.516 301.942i 1.78872 0.834093i
\(363\) 0 0
\(364\) −407.279 + 485.376i −1.11890 + 1.33345i
\(365\) −550.786 143.394i −1.50900 0.392860i
\(366\) 0 0
\(367\) 75.8768 35.3819i 0.206749 0.0964085i −0.316486 0.948597i \(-0.602503\pi\)
0.523234 + 0.852189i \(0.324725\pi\)
\(368\) 195.090 52.2742i 0.530136 0.142049i
\(369\) 0 0
\(370\) −103.995 566.218i −0.281069 1.53032i
\(371\) 50.1229 + 284.261i 0.135102 + 0.766203i
\(372\) 0 0
\(373\) −396.530 184.905i −1.06308 0.495724i −0.189240 0.981931i \(-0.560603\pi\)
−0.873844 + 0.486206i \(0.838380\pi\)
\(374\) 3.49201 + 0.615735i 0.00933692 + 0.00164635i
\(375\) 0 0
\(376\) −152.750 + 128.172i −0.406249 + 0.340883i
\(377\) −138.943 + 138.943i −0.368550 + 0.368550i
\(378\) 0 0
\(379\) 218.630i 0.576860i 0.957501 + 0.288430i \(0.0931333\pi\)
−0.957501 + 0.288430i \(0.906867\pi\)
\(380\) 275.346 + 740.093i 0.724595 + 1.94761i
\(381\) 0 0
\(382\) 322.261 + 460.237i 0.843616 + 1.20481i
\(383\) 444.131 + 207.102i 1.15961 + 0.540736i 0.904625 0.426209i \(-0.140151\pi\)
0.254986 + 0.966945i \(0.417929\pi\)
\(384\) 0 0
\(385\) 3.63095 2.58108i 0.00943104 0.00670411i
\(386\) −439.121 760.579i −1.13762 1.97041i
\(387\) 0 0
\(388\) 21.3967 5.73322i 0.0551461 0.0147764i
\(389\) −84.6803 + 232.657i −0.217687 + 0.598090i −0.999683 0.0251937i \(-0.991980\pi\)
0.781996 + 0.623284i \(0.214202\pi\)
\(390\) 0 0
\(391\) 269.500 + 226.138i 0.689259 + 0.578357i
\(392\) −114.381 + 10.0070i −0.291788 + 0.0255281i
\(393\) 0 0
\(394\) 120.355 330.673i 0.305470 0.839271i
\(395\) −379.522 + 323.083i −0.960816 + 0.817930i
\(396\) 0 0
\(397\) 379.584 + 101.709i 0.956130 + 0.256194i 0.702961 0.711228i \(-0.251861\pi\)
0.253169 + 0.967422i \(0.418527\pi\)
\(398\) −353.124 + 504.314i −0.887247 + 1.26712i
\(399\) 0 0
\(400\) 145.157 + 50.5074i 0.362893 + 0.126268i
\(401\) 97.2501 551.533i 0.242519 1.37539i −0.583666 0.811994i \(-0.698382\pi\)
0.826185 0.563399i \(-0.190507\pi\)
\(402\) 0 0
\(403\) 284.247 + 24.8684i 0.705327 + 0.0617081i
\(404\) 614.443i 1.52090i
\(405\) 0 0
\(406\) −389.429 −0.959185
\(407\) 0.341790 3.90668i 0.000839780 0.00959873i
\(408\) 0 0
\(409\) −232.405 40.9793i −0.568228 0.100194i −0.117849 0.993032i \(-0.537600\pi\)
−0.450379 + 0.892838i \(0.648711\pi\)
\(410\) 610.878 + 602.253i 1.48995 + 1.46891i
\(411\) 0 0
\(412\) −66.3619 46.4671i −0.161072 0.112784i
\(413\) −7.83519 + 29.2413i −0.0189714 + 0.0708022i
\(414\) 0 0
\(415\) −26.8029 + 333.663i −0.0645853 + 0.804007i
\(416\) −504.105 183.479i −1.21179 0.441055i
\(417\) 0 0
\(418\) 0.796563 + 9.10476i 0.00190565 + 0.0217817i
\(419\) 330.898 394.349i 0.789734 0.941168i −0.209596 0.977788i \(-0.567215\pi\)
0.999329 + 0.0366202i \(0.0116592\pi\)
\(420\) 0 0
\(421\) 264.298 + 96.1964i 0.627785 + 0.228495i 0.636267 0.771469i \(-0.280478\pi\)
−0.00848188 + 0.999964i \(0.502700\pi\)
\(422\) −290.392 1083.76i −0.688133 2.56815i
\(423\) 0 0
\(424\) 159.966 92.3562i 0.377277 0.217821i
\(425\) 72.9587 + 257.579i 0.171668 + 0.606068i
\(426\) 0 0
\(427\) −376.283 + 806.942i −0.881225 + 1.88979i
\(428\) 693.588 485.656i 1.62053 1.13471i
\(429\) 0 0
\(430\) −284.651 765.105i −0.661980 1.77931i
\(431\) −90.6464 −0.210316 −0.105158 0.994456i \(-0.533535\pi\)
−0.105158 + 0.994456i \(0.533535\pi\)
\(432\) 0 0
\(433\) −227.619 227.619i −0.525680 0.525680i 0.393601 0.919281i \(-0.371229\pi\)
−0.919281 + 0.393601i \(0.871229\pi\)
\(434\) 363.492 + 433.193i 0.837539 + 0.998140i
\(435\) 0 0
\(436\) −86.4441 + 490.249i −0.198266 + 1.12442i
\(437\) −383.225 + 821.829i −0.876946 + 1.88062i
\(438\) 0 0
\(439\) 277.715 48.9686i 0.632607 0.111546i 0.151856 0.988403i \(-0.451475\pi\)
0.480751 + 0.876857i \(0.340364\pi\)
\(440\) −2.34679 1.61850i −0.00533361 0.00367841i
\(441\) 0 0
\(442\) −114.062 425.687i −0.258060 0.963092i
\(443\) −82.3044 176.502i −0.185789 0.398425i 0.791248 0.611495i \(-0.209432\pi\)
−0.977037 + 0.213070i \(0.931654\pi\)
\(444\) 0 0
\(445\) −258.372 440.255i −0.580611 0.989337i
\(446\) 994.317 + 834.331i 2.22941 + 1.87070i
\(447\) 0 0
\(448\) −362.133 776.597i −0.808333 1.73348i
\(449\) −330.750 190.959i −0.736638 0.425298i 0.0842077 0.996448i \(-0.473164\pi\)
−0.820846 + 0.571150i \(0.806497\pi\)
\(450\) 0 0
\(451\) 2.92179 + 5.06069i 0.00647847 + 0.0112210i
\(452\) 161.266 + 112.920i 0.356784 + 0.249823i
\(453\) 0 0
\(454\) 2.33751 + 6.42225i 0.00514869 + 0.0141459i
\(455\) −481.455 273.423i −1.05814 0.600929i
\(456\) 0 0
\(457\) 10.3315 118.089i 0.0226072 0.258401i −0.976477 0.215620i \(-0.930823\pi\)
0.999084 0.0427810i \(-0.0136218\pi\)
\(458\) 363.553 + 363.553i 0.793784 + 0.793784i
\(459\) 0 0
\(460\) −403.267 848.998i −0.876668 1.84565i
\(461\) 560.161 470.031i 1.21510 1.01959i 0.216033 0.976386i \(-0.430688\pi\)
0.999066 0.0432029i \(-0.0137562\pi\)
\(462\) 0 0
\(463\) 318.630 223.107i 0.688185 0.481872i −0.176426 0.984314i \(-0.556454\pi\)
0.864611 + 0.502442i \(0.167565\pi\)
\(464\) −31.3023 86.0023i −0.0674618 0.185350i
\(465\) 0 0
\(466\) −196.002 1111.58i −0.420605 2.38537i
\(467\) 476.342 + 127.635i 1.02000 + 0.273309i 0.729804 0.683657i \(-0.239611\pi\)
0.290200 + 0.956966i \(0.406278\pi\)
\(468\) 0 0
\(469\) 454.257 + 262.265i 0.968565 + 0.559201i
\(470\) −446.194 369.027i −0.949348 0.785165i
\(471\) 0 0
\(472\) 19.2987 1.68841i 0.0408870 0.00357715i
\(473\) −0.484666 5.53976i −0.00102466 0.0117120i
\(474\) 0 0
\(475\) −592.619 + 353.478i −1.24762 + 0.744163i
\(476\) 257.028 445.185i 0.539974 0.935263i
\(477\) 0 0
\(478\) −152.804 + 570.274i −0.319675 + 1.19304i
\(479\) 71.8112 12.6622i 0.149919 0.0264347i −0.0981850 0.995168i \(-0.531304\pi\)
0.248104 + 0.968733i \(0.420193\pi\)
\(480\) 0 0
\(481\) −458.007 + 166.701i −0.952198 + 0.346572i
\(482\) 214.481 + 306.310i 0.444980 + 0.635498i
\(483\) 0 0
\(484\) 444.990 + 530.318i 0.919400 + 1.09570i
\(485\) 8.30508 + 17.4847i 0.0171239 + 0.0360509i
\(486\) 0 0
\(487\) −187.024 + 187.024i −0.384032 + 0.384032i −0.872553 0.488520i \(-0.837537\pi\)
0.488520 + 0.872553i \(0.337537\pi\)
\(488\) 567.598 + 49.6584i 1.16311 + 0.101759i
\(489\) 0 0
\(490\) −88.5804 321.429i −0.180776 0.655977i
\(491\) −722.057 + 262.807i −1.47058 + 0.535249i −0.948259 0.317498i \(-0.897157\pi\)
−0.522325 + 0.852747i \(0.674935\pi\)
\(492\) 0 0
\(493\) 91.4386 130.588i 0.185474 0.264884i
\(494\) 983.734 567.959i 1.99136 1.14971i
\(495\) 0 0
\(496\) −66.4497 + 115.094i −0.133971 + 0.232045i
\(497\) −449.489 + 209.600i −0.904405 + 0.421731i
\(498\) 0 0
\(499\) 173.477 206.742i 0.347649 0.414312i −0.563678 0.825995i \(-0.690614\pi\)
0.911328 + 0.411682i \(0.135059\pi\)
\(500\) 109.149 706.856i 0.218298 1.41371i
\(501\) 0 0
\(502\) −33.3237 + 15.5391i −0.0663818 + 0.0309543i
\(503\) 66.6029 17.8462i 0.132411 0.0354795i −0.192005 0.981394i \(-0.561499\pi\)
0.324416 + 0.945914i \(0.394832\pi\)
\(504\) 0 0
\(505\) 528.093 96.9930i 1.04573 0.192065i
\(506\) −1.88904 10.7133i −0.00373329 0.0211725i
\(507\) 0 0
\(508\) 996.088 + 464.483i 1.96080 + 0.914337i
\(509\) 622.428 + 109.751i 1.22284 + 0.215621i 0.747550 0.664206i \(-0.231230\pi\)
0.475295 + 0.879826i \(0.342341\pi\)
\(510\) 0 0
\(511\) −731.563 + 613.854i −1.43163 + 1.20128i
\(512\) 270.036 270.036i 0.527413 0.527413i
\(513\) 0 0
\(514\) 540.753i 1.05205i
\(515\) 29.4613 64.3707i 0.0572063 0.124992i
\(516\) 0 0
\(517\) −2.26237 3.23100i −0.00437596 0.00624952i
\(518\) −875.463 408.235i −1.69008 0.788099i
\(519\) 0 0
\(520\) −59.0436 + 349.358i −0.113545 + 0.671843i
\(521\) −132.812 230.037i −0.254917 0.441529i 0.709956 0.704246i \(-0.248715\pi\)
−0.964873 + 0.262717i \(0.915381\pi\)
\(522\) 0 0
\(523\) −53.2090 + 14.2573i −0.101738 + 0.0272606i −0.309329 0.950955i \(-0.600104\pi\)
0.207591 + 0.978216i \(0.433438\pi\)
\(524\) 140.360 385.635i 0.267862 0.735944i
\(525\) 0 0
\(526\) −517.676 434.382i −0.984176 0.825822i
\(527\) −230.612 + 20.1759i −0.437593 + 0.0382844i
\(528\) 0 0
\(529\) 188.223 517.139i 0.355809 0.977578i
\(530\) 347.686 + 408.424i 0.656012 + 0.770612i
\(531\) 0 0
\(532\) 1279.84 + 342.931i 2.40571 + 0.644607i
\(533\) 416.575 594.931i 0.781566 1.11619i
\(534\) 0 0
\(535\) 526.890 + 519.451i 0.984842 + 0.970937i
\(536\) 58.2869 330.561i 0.108744 0.616719i
\(537\) 0 0
\(538\) −155.872 13.6370i −0.289725 0.0253476i
\(539\) 2.27120i 0.00421373i
\(540\) 0 0
\(541\) −57.5913 −0.106453 −0.0532267 0.998582i \(-0.516951\pi\)
−0.0532267 + 0.998582i \(0.516951\pi\)
\(542\) 97.5118 1114.56i 0.179911 2.05639i
\(543\) 0 0
\(544\) 428.619 + 75.5772i 0.787903 + 0.138929i
\(545\) −434.997 + 3.09258i −0.798160 + 0.00567446i
\(546\) 0 0
\(547\) −202.802 142.004i −0.370754 0.259605i 0.373319 0.927703i \(-0.378220\pi\)
−0.744073 + 0.668098i \(0.767109\pi\)
\(548\) −310.650 + 1159.36i −0.566879 + 2.11562i
\(549\) 0 0
\(550\) 3.39149 7.55157i 0.00616634 0.0137301i
\(551\) 386.122 + 140.537i 0.700766 + 0.255058i
\(552\) 0 0
\(553\) 72.8891 + 833.127i 0.131807 + 1.50656i
\(554\) 339.681 404.816i 0.613143 0.730715i
\(555\) 0 0
\(556\) 346.919 + 126.268i 0.623955 + 0.227101i
\(557\) −138.066 515.268i −0.247874 0.925077i −0.971917 0.235323i \(-0.924385\pi\)
0.724044 0.689754i \(-0.242281\pi\)
\(558\) 0 0
\(559\) −598.549 + 345.573i −1.07075 + 0.618198i
\(560\) 210.191 149.416i 0.375342 0.266814i
\(561\) 0 0
\(562\) 681.697 1461.90i 1.21298 2.60125i
\(563\) 168.110 117.712i 0.298597 0.209080i −0.414671 0.909972i \(-0.636103\pi\)
0.713268 + 0.700892i \(0.247214\pi\)
\(564\) 0 0
\(565\) −71.5940 + 156.428i −0.126715 + 0.276863i
\(566\) −21.3549 −0.0377295
\(567\) 0 0
\(568\) 224.418 + 224.418i 0.395103 + 0.395103i
\(569\) 308.278 + 367.391i 0.541788 + 0.645678i 0.965588 0.260078i \(-0.0837483\pi\)
−0.423799 + 0.905756i \(0.639304\pi\)
\(570\) 0 0
\(571\) 141.141 800.451i 0.247182 1.40184i −0.568187 0.822899i \(-0.692355\pi\)
0.815370 0.578941i \(-0.196534\pi\)
\(572\) −3.38960 + 7.26903i −0.00592588 + 0.0127081i
\(573\) 0 0
\(574\) 1417.52 249.947i 2.46955 0.435448i
\(575\) 666.026 480.613i 1.15831 0.835848i
\(576\) 0 0
\(577\) −127.523 475.922i −0.221010 0.824822i −0.983964 0.178368i \(-0.942918\pi\)
0.762953 0.646453i \(-0.223749\pi\)
\(578\) −229.716 492.627i −0.397432 0.852295i
\(579\) 0 0
\(580\) −367.325 + 215.572i −0.633319 + 0.371675i
\(581\) 430.262 + 361.032i 0.740553 + 0.621398i
\(582\) 0 0
\(583\) 1.54416 + 3.31145i 0.00264864 + 0.00568002i
\(584\) 529.247 + 305.561i 0.906244 + 0.523220i
\(585\) 0 0
\(586\) −303.456 525.600i −0.517842 0.896929i
\(587\) 124.213 + 86.9750i 0.211607 + 0.148169i 0.674575 0.738206i \(-0.264327\pi\)
−0.462969 + 0.886375i \(0.653216\pi\)
\(588\) 0 0
\(589\) −204.075 560.691i −0.346477 0.951937i
\(590\) 14.9456 + 54.2324i 0.0253314 + 0.0919193i
\(591\) 0 0
\(592\) 19.7858 226.153i 0.0334220 0.382015i
\(593\) −295.509 295.509i −0.498330 0.498330i 0.412588 0.910918i \(-0.364625\pi\)
−0.910918 + 0.412588i \(0.864625\pi\)
\(594\) 0 0
\(595\) 423.194 + 150.632i 0.711251 + 0.253162i
\(596\) −292.804 + 245.691i −0.491281 + 0.412234i
\(597\) 0 0
\(598\) −1107.54 + 775.507i −1.85207 + 1.29683i
\(599\) 89.8977 + 246.992i 0.150080 + 0.412340i 0.991836 0.127517i \(-0.0407006\pi\)
−0.841757 + 0.539857i \(0.818478\pi\)
\(600\) 0 0
\(601\) −118.138 669.994i −0.196569 1.11480i −0.910167 0.414242i \(-0.864047\pi\)
0.713598 0.700556i \(-0.247065\pi\)
\(602\) −1323.09 354.521i −2.19782 0.588905i
\(603\) 0 0
\(604\) 46.9682 + 27.1171i 0.0777619 + 0.0448959i
\(605\) −385.546 + 466.166i −0.637266 + 0.770523i
\(606\) 0 0
\(607\) −214.256 + 18.7450i −0.352976 + 0.0308814i −0.262265 0.964996i \(-0.584469\pi\)
−0.0907107 + 0.995877i \(0.528914\pi\)
\(608\) 97.7726 + 1117.55i 0.160810 + 1.83807i
\(609\) 0 0
\(610\) 155.913 + 1647.14i 0.255595 + 2.70023i
\(611\) −245.113 + 424.547i −0.401166 + 0.694840i
\(612\) 0 0
\(613\) 59.8833 223.487i 0.0976888 0.364580i −0.899725 0.436458i \(-0.856233\pi\)
0.997413 + 0.0718784i \(0.0228994\pi\)
\(614\) −659.071 + 116.212i −1.07340 + 0.189270i
\(615\) 0 0
\(616\) −4.49494 + 1.63602i −0.00729698 + 0.00265588i
\(617\) −278.604 397.888i −0.451546 0.644874i 0.527250 0.849710i \(-0.323223\pi\)
−0.978796 + 0.204835i \(0.934334\pi\)
\(618\) 0 0
\(619\) −283.757 338.169i −0.458412 0.546314i 0.486482 0.873691i \(-0.338280\pi\)
−0.944894 + 0.327376i \(0.893836\pi\)
\(620\) 582.657 + 207.391i 0.939770 + 0.334501i
\(621\) 0 0
\(622\) 115.598 115.598i 0.185849 0.185849i
\(623\) −853.275 74.6519i −1.36962 0.119827i
\(624\) 0 0
\(625\) 624.747 17.7709i 0.999596 0.0284334i
\(626\) −198.931 + 72.4050i −0.317781 + 0.115663i
\(627\) 0 0
\(628\) −567.738 + 810.813i −0.904041 + 1.29110i
\(629\) 342.454 197.716i 0.544442 0.314334i
\(630\) 0 0
\(631\) −90.3423 + 156.477i −0.143173 + 0.247983i −0.928690 0.370857i \(-0.879064\pi\)
0.785517 + 0.618840i \(0.212397\pi\)
\(632\) 485.034 226.175i 0.767459 0.357872i
\(633\) 0 0
\(634\) 789.225 940.562i 1.24483 1.48354i
\(635\) −241.970 + 929.423i −0.381055 + 1.46366i
\(636\) 0 0
\(637\) −255.831 + 119.296i −0.401619 + 0.187278i
\(638\) −4.76155 + 1.27585i −0.00746325 + 0.00199977i
\(639\) 0 0
\(640\) −641.621 442.503i −1.00253 0.691411i
\(641\) −204.816 1161.57i −0.319525 1.81212i −0.545642 0.838018i \(-0.683714\pi\)
0.226116 0.974100i \(-0.427397\pi\)
\(642\) 0 0
\(643\) −1103.31 514.484i −1.71588 0.800130i −0.994156 0.107955i \(-0.965570\pi\)
−0.721729 0.692176i \(-0.756652\pi\)
\(644\) −1553.14 273.860i −2.41170 0.425248i
\(645\) 0 0
\(646\) −705.970 + 592.379i −1.09283 + 0.916996i
\(647\) −806.671 + 806.671i −1.24679 + 1.24679i −0.289656 + 0.957131i \(0.593541\pi\)
−0.957131 + 0.289656i \(0.906459\pi\)
\(648\) 0 0
\(649\) 0.383203i 0.000590452i
\(650\) −1028.76 + 14.6285i −1.58271 + 0.0225054i
\(651\) 0 0
\(652\) −195.348 278.986i −0.299613 0.427892i
\(653\) 17.7512 + 8.27751i 0.0271840 + 0.0126761i 0.436163 0.899868i \(-0.356337\pi\)
−0.408979 + 0.912544i \(0.634115\pi\)
\(654\) 0 0
\(655\) 353.596 + 59.7598i 0.539841 + 0.0912363i
\(656\) 169.139 + 292.957i 0.257834 + 0.446581i
\(657\) 0 0
\(658\) −938.459 + 251.459i −1.42623 + 0.382157i
\(659\) −249.462 + 685.391i −0.378546 + 1.04005i 0.593413 + 0.804898i \(0.297780\pi\)
−0.971959 + 0.235149i \(0.924442\pi\)
\(660\) 0 0
\(661\) 63.2227 + 53.0501i 0.0956470 + 0.0802574i 0.689357 0.724422i \(-0.257893\pi\)
−0.593710 + 0.804679i \(0.702337\pi\)
\(662\) 953.361 83.4083i 1.44012 0.125994i
\(663\) 0 0
\(664\) 122.931 337.749i 0.185136 0.508658i
\(665\) −92.7086 + 1154.11i −0.139411 + 1.73550i
\(666\) 0 0
\(667\) −472.422 126.585i −0.708279 0.189783i
\(668\) −807.661 + 1153.46i −1.20907 + 1.72674i
\(669\) 0 0
\(670\) 974.677 6.92940i 1.45474 0.0103424i
\(671\) −1.95710 + 11.0993i −0.00291669 + 0.0165414i
\(672\) 0 0
\(673\) 714.542 + 62.5143i 1.06173 + 0.0928890i 0.604613 0.796519i \(-0.293328\pi\)
0.457113 + 0.889408i \(0.348883\pi\)
\(674\) 840.851i 1.24755i
\(675\) 0 0
\(676\) 29.8402 0.0441423
\(677\) −28.8457 + 329.707i −0.0426081 + 0.487012i 0.944671 + 0.328018i \(0.106381\pi\)
−0.987279 + 0.158994i \(0.949175\pi\)
\(678\) 0 0
\(679\) 31.9860 + 5.64000i 0.0471076 + 0.00830634i
\(680\) −2.04360 287.449i −0.00300530 0.422719i
\(681\) 0 0
\(682\) 5.86365 + 4.10577i 0.00859773 + 0.00602019i
\(683\) −70.0105 + 261.283i −0.102504 + 0.382551i −0.998050 0.0624180i \(-0.980119\pi\)
0.895546 + 0.444969i \(0.146785\pi\)
\(684\) 0 0
\(685\) −1045.47 83.9817i −1.52623 0.122601i
\(686\) 678.781 + 247.056i 0.989477 + 0.360140i
\(687\) 0 0
\(688\) −28.0567 320.690i −0.0407801 0.466119i
\(689\) 291.899 347.872i 0.423656 0.504894i
\(690\) 0 0
\(691\) 842.590 + 306.678i 1.21938 + 0.443817i 0.869947 0.493145i \(-0.164153\pi\)
0.349430 + 0.936962i \(0.386375\pi\)
\(692\) 13.5343 + 50.5105i 0.0195582 + 0.0729921i
\(693\) 0 0
\(694\) 467.455 269.886i 0.673567 0.388884i
\(695\) −53.7601 + 318.097i −0.0773527 + 0.457693i
\(696\) 0 0
\(697\) −249.021 + 534.027i −0.357275 + 0.766179i
\(698\) 768.762 538.293i 1.10138 0.771193i
\(699\) 0 0
\(700\) −860.587 836.455i −1.22941 1.19494i
\(701\) −948.002 −1.35236 −0.676179 0.736738i \(-0.736365\pi\)
−0.676179 + 0.736738i \(0.736365\pi\)
\(702\) 0 0
\(703\) 720.705 + 720.705i 1.02519 + 1.02519i
\(704\) −6.97211 8.30903i −0.00990356 0.0118026i
\(705\) 0 0
\(706\) −221.727 + 1257.47i −0.314060 + 1.78112i
\(707\) 380.747 816.515i 0.538539 1.15490i
\(708\) 0 0
\(709\) −350.604 + 61.8209i −0.494505 + 0.0871945i −0.415339 0.909667i \(-0.636337\pi\)
−0.0791661 + 0.996861i \(0.525226\pi\)
\(710\) −523.230 + 758.673i −0.736944 + 1.06855i
\(711\) 0 0
\(712\) 141.864 + 529.442i 0.199247 + 0.743599i
\(713\) 300.147 + 643.666i 0.420963 + 0.902758i
\(714\) 0 0
\(715\) −6.78254 1.76579i −0.00948607 0.00246964i
\(716\) −3.54923 2.97815i −0.00495702 0.00415943i
\(717\) 0 0
\(718\) 758.293 + 1626.16i 1.05612 + 2.26485i
\(719\) 223.764 + 129.190i 0.311215 + 0.179680i 0.647470 0.762091i \(-0.275827\pi\)
−0.336255 + 0.941771i \(0.609160\pi\)
\(720\) 0 0
\(721\) −59.3923 102.871i −0.0823749 0.142678i
\(722\) −1023.76 716.848i −1.41796 0.992864i
\(723\) 0 0
\(724\) −448.425 1232.04i −0.619371 1.70171i
\(725\) −243.260 281.674i −0.335531 0.388516i
\(726\) 0 0
\(727\) −43.2271 + 494.088i −0.0594596 + 0.679626i 0.906716 + 0.421741i \(0.138581\pi\)
−0.966176 + 0.257885i \(0.916975\pi\)
\(728\) 420.383 + 420.383i 0.577450 + 0.577450i
\(729\) 0 0
\(730\) −595.076 + 1671.84i −0.815172 + 2.29020i
\(731\) 429.545 360.431i 0.587613 0.493066i
\(732\) 0 0
\(733\) −757.994 + 530.753i −1.03410 + 0.724084i −0.961926 0.273309i \(-0.911882\pi\)
−0.0721722 + 0.997392i \(0.522993\pi\)
\(734\) −89.2811 245.298i −0.121636 0.334193i
\(735\) 0 0
\(736\) −231.867 1314.98i −0.315037 1.78666i
\(737\) 6.41344 + 1.71848i 0.00870209 + 0.00233172i
\(738\) 0 0
\(739\) −162.414 93.7697i −0.219775 0.126887i 0.386071 0.922469i \(-0.373832\pi\)
−0.605846 + 0.795582i \(0.707165\pi\)
\(740\) −1051.75 + 99.5558i −1.42129 + 0.134535i
\(741\) 0 0
\(742\) 896.572 78.4399i 1.20832 0.105714i
\(743\) 110.170 + 1259.24i 0.148277 + 1.69481i 0.597882 + 0.801584i \(0.296009\pi\)
−0.449606 + 0.893227i \(0.648435\pi\)
\(744\) 0 0
\(745\) −257.384 212.871i −0.345482 0.285733i
\(746\) −682.096 + 1181.43i −0.914338 + 1.58368i
\(747\) 0 0
\(748\) 1.68416 6.28536i 0.00225155 0.00840289i
\(749\) 1222.63 215.583i 1.63235 0.287827i
\(750\) 0 0
\(751\) 9.41271 3.42595i 0.0125336 0.00456185i −0.335746 0.941953i \(-0.608988\pi\)
0.348279 + 0.937391i \(0.386766\pi\)
\(752\) −130.966 187.039i −0.174157 0.248722i
\(753\) 0 0
\(754\) 393.817 + 469.333i 0.522304 + 0.622458i
\(755\) −15.8920 + 44.6481i −0.0210491 + 0.0591366i
\(756\) 0 0
\(757\) 50.7114 50.7114i 0.0669900 0.0669900i −0.672818 0.739808i \(-0.734916\pi\)
0.739808 + 0.672818i \(0.234916\pi\)
\(758\) 679.092 + 59.4129i 0.895900 + 0.0783811i
\(759\) 0 0
\(760\) 714.295 196.848i 0.939862 0.259010i
\(761\) −249.620 + 90.8541i −0.328015 + 0.119388i −0.500778 0.865576i \(-0.666953\pi\)
0.172763 + 0.984963i \(0.444731\pi\)
\(762\) 0 0
\(763\) −418.661 + 597.910i −0.548704 + 0.783631i
\(764\) 892.915 515.525i 1.16874 0.674771i
\(765\) 0 0
\(766\) 763.977 1323.25i 0.997359 1.72748i
\(767\) 43.1646 20.1280i 0.0562772 0.0262425i
\(768\) 0 0
\(769\) 222.398 265.044i 0.289205 0.344661i −0.601807 0.798642i \(-0.705552\pi\)
0.891011 + 0.453981i \(0.149997\pi\)
\(770\) −7.03045 11.9796i −0.00913046 0.0155579i
\(771\) 0 0
\(772\) −1460.67 + 681.122i −1.89206 + 0.882282i
\(773\) 116.008 31.0841i 0.150075 0.0402124i −0.183000 0.983113i \(-0.558581\pi\)
0.333074 + 0.942901i \(0.391914\pi\)
\(774\) 0 0
\(775\) −86.2698 + 533.511i −0.111316 + 0.688402i
\(776\) −3.60918 20.4687i −0.00465101 0.0263772i
\(777\) 0 0
\(778\) 699.650 + 326.252i 0.899293 + 0.419347i
\(779\) −1495.68 263.729i −1.92000 0.338548i
\(780\) 0 0
\(781\) −4.80921 + 4.03541i −0.00615776 + 0.00516697i
\(782\) 775.648 775.648i 0.991878 0.991878i
\(783\) 0 0
\(784\) 131.477i 0.167700i
\(785\) −786.486 359.960i −1.00189 0.458547i
\(786\) 0 0
\(787\) 248.426 + 354.789i 0.315662 + 0.450812i 0.945360 0.326028i \(-0.105710\pi\)
−0.629698 + 0.776840i \(0.716821\pi\)
\(788\) −585.263 272.913i −0.742720 0.346336i
\(789\) 0 0
\(790\) 900.399 + 1266.64i 1.13975 + 1.60334i
\(791\) 144.330 + 249.986i 0.182465 + 0.316038i
\(792\) 0 0
\(793\) 1353.04 362.545i 1.70622 0.457181i
\(794\) 419.073 1151.39i 0.527800 1.45012i
\(795\) 0 0
\(796\) 865.472 + 726.217i 1.08728 + 0.912333i
\(797\) 1097.56 96.0243i 1.37712 0.120482i 0.625574 0.780165i \(-0.284865\pi\)
0.751544 + 0.659683i \(0.229309\pi\)
\(798\) 0 0
\(799\) 136.029 373.738i 0.170250 0.467757i
\(800\) 416.281 926.902i 0.520351 1.15863i
\(801\) 0 0
\(802\) −1686.70 451.950i −2.10312 0.563529i
\(803\) −6.93370 + 9.90236i −0.00863475 + 0.0123317i
\(804\) 0 0
\(805\) −9.79748 1378.10i −0.0121708 1.71192i
\(806\) 154.489 876.148i 0.191673 1.08703i
\(807\) 0 0
\(808\) −574.331 50.2474i −0.710806 0.0621874i
\(809\) 95.9737i 0.118632i −0.998239 0.0593162i \(-0.981108\pi\)
0.998239 0.0593162i \(-0.0188920\pi\)
\(810\) 0 0
\(811\) 574.147 0.707949 0.353975 0.935255i \(-0.384830\pi\)
0.353975 + 0.935255i \(0.384830\pi\)
\(812\) −62.2855 + 711.927i −0.0767063 + 0.876757i
\(813\) 0 0
\(814\) −12.0418 2.12329i −0.0147933 0.00260846i
\(815\) 208.942 211.934i 0.256370 0.260042i
\(816\) 0 0
\(817\) 1183.91 + 828.985i 1.44910 + 1.01467i
\(818\) −190.443 + 710.743i −0.232816 + 0.868879i
\(819\) 0 0
\(820\) 1198.70 1020.44i 1.46183 1.24444i
\(821\) −113.306 41.2401i −0.138010 0.0502316i 0.272092 0.962271i \(-0.412285\pi\)
−0.410102 + 0.912040i \(0.634507\pi\)
\(822\) 0 0
\(823\) −57.8337 661.043i −0.0702719 0.803211i −0.946792 0.321846i \(-0.895697\pi\)
0.876520 0.481365i \(-0.159859\pi\)
\(824\) −48.8605 + 58.2296i −0.0592967 + 0.0706670i
\(825\) 0 0
\(826\) 88.6980 + 32.2834i 0.107383 + 0.0390840i
\(827\) −130.092 485.512i −0.157306 0.587076i −0.998897 0.0469594i \(-0.985047\pi\)
0.841590 0.540116i \(-0.181620\pi\)
\(828\) 0 0
\(829\) −1003.54 + 579.396i −1.21055 + 0.698910i −0.962879 0.269935i \(-0.912998\pi\)
−0.247669 + 0.968845i \(0.579665\pi\)
\(830\) 1029.11 + 173.926i 1.23990 + 0.209550i
\(831\) 0 0
\(832\) −569.728 + 1221.79i −0.684769 + 1.46849i
\(833\) 187.598 131.357i 0.225208 0.157692i
\(834\) 0 0
\(835\) −1118.85 512.077i −1.33994 0.613266i
\(836\) 16.7721 0.0200623
\(837\) 0 0
\(838\) −1134.98 1134.98i −1.35439 1.35439i
\(839\) −362.266 431.732i −0.431783 0.514579i 0.505653 0.862737i \(-0.331252\pi\)
−0.937436 + 0.348158i \(0.886807\pi\)
\(840\) 0 0
\(841\) 107.553 609.965i 0.127887 0.725285i
\(842\) 370.621 794.800i 0.440168 0.943943i
\(843\) 0 0
\(844\) −2027.70 + 357.537i −2.40248 + 0.423623i
\(845\) 4.71043 + 25.6466i 0.00557447 + 0.0303510i
\(846\) 0 0
\(847\) 262.715 + 980.466i 0.310171 + 1.15758i
\(848\) 89.3892 + 191.696i 0.105412 + 0.226056i
\(849\) 0 0
\(850\) 819.899 156.622i 0.964587 0.184261i
\(851\) −929.339 779.808i −1.09206 0.916343i
\(852\) 0 0
\(853\) −0.0740019 0.158698i −8.67549e−5 0.000186046i 0.906264 0.422711i \(-0.138922\pi\)
−0.906351 + 0.422525i \(0.861144\pi\)
\(854\) 2404.21 + 1388.07i 2.81523 + 1.62537i
\(855\) 0 0
\(856\) −397.231 688.024i −0.464055 0.803767i
\(857\) 786.659 + 550.825i 0.917922 + 0.642736i 0.934053 0.357134i \(-0.116246\pi\)
−0.0161313 + 0.999870i \(0.505135\pi\)
\(858\) 0 0
\(859\) −277.643 762.818i −0.323217 0.888031i −0.989783 0.142585i \(-0.954459\pi\)
0.666566 0.745446i \(-0.267764\pi\)
\(860\) −1444.24 + 398.008i −1.67935 + 0.462800i
\(861\) 0 0
\(862\) −24.6332 + 281.559i −0.0285768 + 0.326635i
\(863\) 359.023 + 359.023i 0.416018 + 0.416018i 0.883829 0.467811i \(-0.154957\pi\)
−0.467811 + 0.883829i \(0.654957\pi\)
\(864\) 0 0
\(865\) −41.2756 + 19.6056i −0.0477174 + 0.0226654i
\(866\) −768.870 + 645.159i −0.887841 + 0.744987i
\(867\) 0 0
\(868\) 850.070 595.225i 0.979343 0.685743i
\(869\) 3.62072 + 9.94784i 0.00416654 + 0.0114475i
\(870\) 0 0
\(871\) −143.298 812.683i −0.164521 0.933046i
\(872\) 451.175 + 120.892i 0.517402 + 0.138638i
\(873\) 0 0
\(874\) 2448.56 + 1413.68i 2.80156 + 1.61748i
\(875\) 583.056 871.683i 0.666350 0.996209i
\(876\) 0 0
\(877\) −619.123 + 54.1662i −0.705955 + 0.0617631i −0.434479 0.900682i \(-0.643067\pi\)
−0.271476 + 0.962445i \(0.587512\pi\)
\(878\) −76.6334 875.924i −0.0872818 0.997635i
\(879\) 0 0
\(880\) 2.08049 2.51554i 0.00236420 0.00285857i
\(881\) 211.398 366.153i 0.239953 0.415611i −0.720748 0.693198i \(-0.756201\pi\)
0.960701 + 0.277587i \(0.0895347\pi\)
\(882\) 0 0
\(883\) 130.466 486.907i 0.147754 0.551424i −0.851864 0.523763i \(-0.824528\pi\)
0.999617 0.0276605i \(-0.00880573\pi\)
\(884\) −796.453 + 140.436i −0.900965 + 0.158865i
\(885\) 0 0
\(886\) −570.605 + 207.683i −0.644023 + 0.234405i
\(887\) 815.794 + 1165.07i 0.919722 + 1.31350i 0.949442 + 0.313942i \(0.101650\pi\)
−0.0297198 + 0.999558i \(0.509462\pi\)
\(888\) 0 0
\(889\) 1035.85 + 1234.47i 1.16518 + 1.38861i
\(890\) −1437.70 + 682.896i −1.61539 + 0.767299i
\(891\) 0 0
\(892\) 1684.30 1684.30i 1.88822 1.88822i
\(893\) 1021.24 + 89.3465i 1.14360 + 0.100052i
\(894\) 0 0
\(895\) 1.99936 3.52055i 0.00223392 0.00393358i
\(896\) −1228.93 + 447.295i −1.37158 + 0.499213i
\(897\) 0 0
\(898\) −683.024 + 975.459i −0.760606 + 1.08626i
\(899\) 278.708 160.912i 0.310020 0.178990i
\(900\) 0 0
\(901\) −184.213 + 319.067i −0.204454 + 0.354125i
\(902\) 16.5131 7.70020i 0.0183073 0.00853681i
\(903\) 0 0
\(904\) 118.736 141.504i 0.131345 0.156531i
\(905\) 988.106 579.888i 1.09183 0.640761i
\(906\) 0 0
\(907\) −636.372 + 296.745i −0.701623 + 0.327172i −0.740486 0.672072i \(-0.765404\pi\)
0.0388622 + 0.999245i \(0.487627\pi\)
\(908\) 12.1146 3.24609i 0.0133420 0.00357499i
\(909\) 0 0
\(910\) −980.122 + 1421.16i −1.07706 + 1.56171i
\(911\) −37.4638 212.468i −0.0411238 0.233224i 0.957317 0.289039i \(-0.0933356\pi\)
−0.998441 + 0.0558143i \(0.982225\pi\)
\(912\) 0 0
\(913\) 6.44363 + 3.00471i 0.00705765 + 0.00329103i
\(914\) −363.993 64.1818i −0.398242 0.0702207i
\(915\) 0 0
\(916\) 722.769 606.475i 0.789049 0.662091i
\(917\) 425.483 425.483i 0.463994 0.463994i
\(918\) 0 0
\(919\) 443.470i 0.482557i −0.970456 0.241279i \(-0.922433\pi\)
0.970456 0.241279i \(-0.0775668\pi\)
\(920\) −826.552 + 307.512i −0.898426 + 0.334252i
\(921\) 0 0
\(922\) −1307.75 1867.66i −1.41838 2.02566i
\(923\) 707.161 + 329.755i 0.766155 + 0.357264i
\(924\) 0 0
\(925\) −251.589 888.230i −0.271989 0.960249i
\(926\) −606.410 1050.33i −0.654871 1.13427i
\(927\) 0 0
\(928\) −584.447 + 156.602i −0.629792 + 0.168752i
\(929\) −27.4836 + 75.5106i −0.0295841 + 0.0812816i −0.953605 0.301059i \(-0.902660\pi\)
0.924021 + 0.382341i \(0.124882\pi\)
\(930\) 0 0
\(931\) 452.187 + 379.430i 0.485700 + 0.407551i
\(932\) −2063.47 + 180.530i −2.21402 + 0.193702i
\(933\) 0 0
\(934\) 525.898 1444.89i 0.563060 1.54699i
\(935\) 5.66790 + 0.455298i 0.00606192 + 0.000486950i
\(936\) 0 0
\(937\) 1562.85 + 418.765i 1.66793 + 0.446921i 0.964552 0.263892i \(-0.0850062\pi\)
0.703381 + 0.710813i \(0.251673\pi\)
\(938\) 938.074 1339.71i 1.00008 1.42826i
\(939\) 0 0
\(940\) −745.994 + 756.678i −0.793611 + 0.804976i
\(941\) 151.665 860.133i 0.161174 0.914063i −0.791748 0.610848i \(-0.790829\pi\)
0.952922 0.303215i \(-0.0980601\pi\)
\(942\) 0 0
\(943\) 1800.86 + 157.555i 1.90971 + 0.167078i
\(944\) 22.1832i 0.0234991i
\(945\) 0 0
\(946\) −17.3389 −0.0183286
\(947\) 74.8506 855.546i 0.0790397 0.903428i −0.848376 0.529395i \(-0.822419\pi\)
0.927415 0.374033i \(-0.122025\pi\)
\(948\) 0 0
\(949\) 1479.61 + 260.896i 1.55913 + 0.274916i
\(950\) 936.901 + 1936.81i 0.986212 + 2.03874i
\(951\) 0 0
\(952\) −395.103 276.654i −0.415024 0.290603i
\(953\) 134.463 501.824i 0.141095 0.526573i −0.858804 0.512305i \(-0.828792\pi\)
0.999898 0.0142675i \(-0.00454163\pi\)
\(954\) 0 0
\(955\) 584.027 + 686.051i 0.611546 + 0.718378i
\(956\) 1018.09 + 370.556i 1.06495 + 0.387611i
\(957\) 0 0
\(958\) −19.8158 226.495i −0.0206845 0.236425i
\(959\) −1131.22 + 1348.14i −1.17959 + 1.40578i
\(960\) 0 0
\(961\) 463.905 + 168.848i 0.482731 + 0.175700i
\(962\) 393.330 + 1467.93i 0.408867 + 1.52591i
\(963\) 0 0
\(964\) 594.278 343.107i 0.616471 0.355920i
\(965\) −815.975 1147.88i −0.845570 1.18951i
\(966\) 0 0
\(967\) 210.575 451.579i 0.217761 0.466989i −0.766833 0.641847i \(-0.778169\pi\)
0.984594 + 0.174857i \(0.0559464\pi\)
\(968\) 532.088 372.572i 0.549677 0.384888i
\(969\) 0 0
\(970\) 56.5665 21.0451i 0.0583160 0.0216960i
\(971\) 331.692 0.341598 0.170799 0.985306i \(-0.445365\pi\)
0.170799 + 0.985306i \(0.445365\pi\)
\(972\) 0 0
\(973\) 382.766 + 382.766i 0.393388 + 0.393388i
\(974\) 530.095 + 631.743i 0.544246 + 0.648607i
\(975\) 0 0
\(976\) −113.294 + 642.523i −0.116080 + 0.658323i
\(977\) 612.766 1314.08i 0.627192 1.34502i −0.293962 0.955817i \(-0.594974\pi\)
0.921153 0.389200i \(-0.127248\pi\)
\(978\) 0 0
\(979\) −10.6776 + 1.88275i −0.0109066 + 0.00192313i
\(980\) −601.781 + 110.527i −0.614062 + 0.112783i
\(981\) 0 0
\(982\) 620.092 + 2314.22i 0.631459 + 2.35664i
\(983\) −593.979 1273.79i −0.604251 1.29582i −0.935850 0.352400i \(-0.885366\pi\)
0.331599 0.943420i \(-0.392412\pi\)
\(984\) 0 0
\(985\) 142.172 546.094i 0.144337 0.554410i
\(986\) −380.774 319.507i −0.386180 0.324044i
\(987\) 0 0
\(988\) −880.963 1889.23i −0.891663 1.91218i
\(989\) −1489.82 860.148i −1.50639 0.869715i
\(990\) 0 0
\(991\) 556.051 + 963.109i 0.561101 + 0.971855i 0.997401 + 0.0720540i \(0.0229554\pi\)
−0.436300 + 0.899801i \(0.643711\pi\)
\(992\) 719.722 + 503.955i 0.725526 + 0.508019i
\(993\) 0 0
\(994\) 528.896 + 1453.13i 0.532088 + 1.46190i
\(995\) −487.539 + 858.480i −0.489989 + 0.862794i
\(996\) 0 0
\(997\) −11.5767 + 132.322i −0.0116115 + 0.132721i −0.999788 0.0206019i \(-0.993442\pi\)
0.988176 + 0.153322i \(0.0489973\pi\)
\(998\) −595.024 595.024i −0.596216 0.596216i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 405.3.s.a.118.29 408
3.2 odd 2 135.3.r.a.103.6 yes 408
5.2 odd 4 inner 405.3.s.a.37.29 408
15.2 even 4 135.3.r.a.22.6 408
27.11 odd 18 135.3.r.a.43.6 yes 408
27.16 even 9 inner 405.3.s.a.208.29 408
135.92 even 36 135.3.r.a.97.6 yes 408
135.97 odd 36 inner 405.3.s.a.127.29 408
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
135.3.r.a.22.6 408 15.2 even 4
135.3.r.a.43.6 yes 408 27.11 odd 18
135.3.r.a.97.6 yes 408 135.92 even 36
135.3.r.a.103.6 yes 408 3.2 odd 2
405.3.s.a.37.29 408 5.2 odd 4 inner
405.3.s.a.118.29 408 1.1 even 1 trivial
405.3.s.a.127.29 408 135.97 odd 36 inner
405.3.s.a.208.29 408 27.16 even 9 inner