Properties

Label 405.3.s.a.118.8
Level $405$
Weight $3$
Character 405.118
Analytic conductor $11.035$
Analytic rank $0$
Dimension $408$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [405,3,Mod(37,405)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(405, base_ring=CyclotomicField(36))
 
chi = DirichletCharacter(H, H._module([28, 9]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("405.37");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 405 = 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 405.s (of order \(36\), degree \(12\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.0354507066\)
Analytic rank: \(0\)
Dimension: \(408\)
Relative dimension: \(34\) over \(\Q(\zeta_{36})\)
Twist minimal: no (minimal twist has level 135)
Sato-Tate group: $\mathrm{SU}(2)[C_{36}]$

Embedding invariants

Embedding label 118.8
Character \(\chi\) \(=\) 405.118
Dual form 405.3.s.a.127.8

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.205868 + 2.35308i) q^{2} +(-1.55539 - 0.274257i) q^{4} +(-4.64198 + 1.85797i) q^{5} +(-2.93406 - 2.05445i) q^{7} +(-1.47984 + 5.52284i) q^{8} +(-3.41632 - 11.3055i) q^{10} +(-3.30286 - 1.20214i) q^{11} +(-1.27699 - 14.5961i) q^{13} +(5.43832 - 6.48114i) q^{14} +(-18.6276 - 6.77989i) q^{16} +(1.65433 + 6.17406i) q^{17} +(1.16951 - 0.675215i) q^{19} +(7.72965 - 1.61677i) q^{20} +(3.50870 - 7.52443i) q^{22} +(4.93199 - 3.45342i) q^{23} +(18.0959 - 17.2493i) q^{25} +34.6088 q^{26} +(4.00016 + 4.00016i) q^{28} +(-36.1603 - 43.0941i) q^{29} +(1.46325 - 8.29852i) q^{31} +(10.1229 - 21.7087i) q^{32} +(-14.8687 + 2.62174i) q^{34} +(17.4369 + 4.08532i) q^{35} +(-5.71940 - 21.3451i) q^{37} +(1.34807 + 2.89095i) q^{38} +(-3.39188 - 28.3864i) q^{40} +(-16.5803 - 13.9125i) q^{41} +(19.5707 + 41.9694i) q^{43} +(4.80755 + 2.77564i) q^{44} +(7.11084 + 12.3163i) q^{46} +(-37.1779 - 26.0322i) q^{47} +(-12.3711 - 33.9892i) q^{49} +(36.8637 + 46.1322i) q^{50} +(-2.01687 + 23.0529i) q^{52} +(51.1073 + 51.1073i) q^{53} +(17.5654 - 0.556295i) q^{55} +(15.6883 - 13.1641i) q^{56} +(108.848 - 76.2164i) q^{58} +(-28.7190 - 78.9047i) q^{59} +(16.5080 + 93.6215i) q^{61} +(19.2259 + 5.15156i) q^{62} +(-19.6708 - 11.3569i) q^{64} +(33.0469 + 65.3822i) q^{65} +(-72.9564 + 6.38285i) q^{67} +(-0.879855 - 10.0568i) q^{68} +(-13.2028 + 40.1895i) q^{70} +(27.8020 - 48.1545i) q^{71} +(-34.7929 + 129.849i) q^{73} +(51.4043 - 9.06396i) q^{74} +(-2.00422 + 0.729477i) q^{76} +(7.22105 + 10.3127i) q^{77} +(-24.0782 - 28.6953i) q^{79} +(99.0658 - 3.13742i) q^{80} +(36.1506 - 36.1506i) q^{82} +(-4.86489 - 0.425622i) q^{83} +(-19.1506 - 25.5861i) q^{85} +(-102.787 + 37.4112i) q^{86} +(11.5270 - 16.4622i) q^{88} +(-79.3775 + 45.8286i) q^{89} +(-26.2402 + 45.4494i) q^{91} +(-8.61830 + 4.01878i) q^{92} +(68.9097 - 82.1234i) q^{94} +(-4.17429 + 5.30724i) q^{95} +(48.9432 - 22.8226i) q^{97} +(82.5262 - 22.1128i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 408 q + 12 q^{2} + 12 q^{5} - 12 q^{7} + 6 q^{8} - 6 q^{10} + 60 q^{11} - 12 q^{13} - 24 q^{16} + 6 q^{17} + 300 q^{20} - 12 q^{22} + 156 q^{23} + 6 q^{25} + 48 q^{26} - 24 q^{28} - 24 q^{31} - 72 q^{32}+ \cdots + 1032 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/405\mathbb{Z}\right)^\times\).

\(n\) \(82\) \(326\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{7}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.205868 + 2.35308i −0.102934 + 1.17654i 0.752486 + 0.658608i \(0.228854\pi\)
−0.855420 + 0.517934i \(0.826701\pi\)
\(3\) 0 0
\(4\) −1.55539 0.274257i −0.388848 0.0685644i
\(5\) −4.64198 + 1.85797i −0.928395 + 0.371594i
\(6\) 0 0
\(7\) −2.93406 2.05445i −0.419151 0.293493i 0.344911 0.938635i \(-0.387909\pi\)
−0.764062 + 0.645143i \(0.776798\pi\)
\(8\) −1.47984 + 5.52284i −0.184980 + 0.690355i
\(9\) 0 0
\(10\) −3.41632 11.3055i −0.341632 1.13055i
\(11\) −3.30286 1.20214i −0.300260 0.109286i 0.187497 0.982265i \(-0.439963\pi\)
−0.487757 + 0.872979i \(0.662185\pi\)
\(12\) 0 0
\(13\) −1.27699 14.5961i −0.0982304 1.12278i −0.872065 0.489390i \(-0.837219\pi\)
0.773834 0.633388i \(-0.218336\pi\)
\(14\) 5.43832 6.48114i 0.388452 0.462938i
\(15\) 0 0
\(16\) −18.6276 6.77989i −1.16423 0.423743i
\(17\) 1.65433 + 6.17406i 0.0973137 + 0.363180i 0.997360 0.0726143i \(-0.0231342\pi\)
−0.900046 + 0.435794i \(0.856468\pi\)
\(18\) 0 0
\(19\) 1.16951 0.675215i 0.0615530 0.0355376i −0.468908 0.883247i \(-0.655352\pi\)
0.530461 + 0.847710i \(0.322019\pi\)
\(20\) 7.72965 1.61677i 0.386483 0.0808387i
\(21\) 0 0
\(22\) 3.50870 7.52443i 0.159486 0.342020i
\(23\) 4.93199 3.45342i 0.214434 0.150149i −0.461425 0.887179i \(-0.652662\pi\)
0.675859 + 0.737031i \(0.263773\pi\)
\(24\) 0 0
\(25\) 18.0959 17.2493i 0.723836 0.689972i
\(26\) 34.6088 1.33111
\(27\) 0 0
\(28\) 4.00016 + 4.00016i 0.142863 + 0.142863i
\(29\) −36.1603 43.0941i −1.24691 1.48600i −0.809925 0.586534i \(-0.800492\pi\)
−0.436981 0.899471i \(-0.643952\pi\)
\(30\) 0 0
\(31\) 1.46325 8.29852i 0.0472017 0.267694i −0.952069 0.305884i \(-0.901048\pi\)
0.999271 + 0.0381899i \(0.0121592\pi\)
\(32\) 10.1229 21.7087i 0.316342 0.678397i
\(33\) 0 0
\(34\) −14.8687 + 2.62174i −0.437313 + 0.0771101i
\(35\) 17.4369 + 4.08532i 0.498198 + 0.116723i
\(36\) 0 0
\(37\) −5.71940 21.3451i −0.154578 0.576895i −0.999141 0.0414379i \(-0.986806\pi\)
0.844563 0.535457i \(-0.179861\pi\)
\(38\) 1.34807 + 2.89095i 0.0354756 + 0.0760777i
\(39\) 0 0
\(40\) −3.39188 28.3864i −0.0847971 0.709660i
\(41\) −16.5803 13.9125i −0.404397 0.339329i 0.417793 0.908542i \(-0.362804\pi\)
−0.822190 + 0.569213i \(0.807248\pi\)
\(42\) 0 0
\(43\) 19.5707 + 41.9694i 0.455132 + 0.976033i 0.991263 + 0.131898i \(0.0421073\pi\)
−0.536132 + 0.844134i \(0.680115\pi\)
\(44\) 4.80755 + 2.77564i 0.109262 + 0.0630827i
\(45\) 0 0
\(46\) 7.11084 + 12.3163i 0.154584 + 0.267746i
\(47\) −37.1779 26.0322i −0.791018 0.553877i 0.106781 0.994283i \(-0.465946\pi\)
−0.897799 + 0.440406i \(0.854835\pi\)
\(48\) 0 0
\(49\) −12.3711 33.9892i −0.252470 0.693657i
\(50\) 36.8637 + 46.1322i 0.737274 + 0.922645i
\(51\) 0 0
\(52\) −2.01687 + 23.0529i −0.0387859 + 0.443325i
\(53\) 51.1073 + 51.1073i 0.964289 + 0.964289i 0.999384 0.0350953i \(-0.0111735\pi\)
−0.0350953 + 0.999384i \(0.511173\pi\)
\(54\) 0 0
\(55\) 17.5654 0.556295i 0.319370 0.0101145i
\(56\) 15.6883 13.1641i 0.280149 0.235073i
\(57\) 0 0
\(58\) 108.848 76.2164i 1.87670 1.31408i
\(59\) −28.7190 78.9047i −0.486762 1.33737i −0.903596 0.428385i \(-0.859083\pi\)
0.416834 0.908983i \(-0.363140\pi\)
\(60\) 0 0
\(61\) 16.5080 + 93.6215i 0.270623 + 1.53478i 0.752531 + 0.658557i \(0.228833\pi\)
−0.481908 + 0.876222i \(0.660056\pi\)
\(62\) 19.2259 + 5.15156i 0.310095 + 0.0830896i
\(63\) 0 0
\(64\) −19.6708 11.3569i −0.307356 0.177452i
\(65\) 33.0469 + 65.3822i 0.508414 + 1.00588i
\(66\) 0 0
\(67\) −72.9564 + 6.38285i −1.08890 + 0.0952665i −0.617438 0.786619i \(-0.711829\pi\)
−0.471463 + 0.881886i \(0.656274\pi\)
\(68\) −0.879855 10.0568i −0.0129390 0.147894i
\(69\) 0 0
\(70\) −13.2028 + 40.1895i −0.188611 + 0.574136i
\(71\) 27.8020 48.1545i 0.391578 0.678232i −0.601080 0.799189i \(-0.705263\pi\)
0.992658 + 0.120956i \(0.0385961\pi\)
\(72\) 0 0
\(73\) −34.7929 + 129.849i −0.476616 + 1.77875i 0.138550 + 0.990355i \(0.455756\pi\)
−0.615165 + 0.788398i \(0.710911\pi\)
\(74\) 51.4043 9.06396i 0.694652 0.122486i
\(75\) 0 0
\(76\) −2.00422 + 0.729477i −0.0263714 + 0.00959839i
\(77\) 7.22105 + 10.3127i 0.0937798 + 0.133931i
\(78\) 0 0
\(79\) −24.0782 28.6953i −0.304788 0.363232i 0.591810 0.806077i \(-0.298414\pi\)
−0.896598 + 0.442845i \(0.853969\pi\)
\(80\) 99.0658 3.13742i 1.23832 0.0392177i
\(81\) 0 0
\(82\) 36.1506 36.1506i 0.440861 0.440861i
\(83\) −4.86489 0.425622i −0.0586131 0.00512798i 0.0578115 0.998328i \(-0.481588\pi\)
−0.116425 + 0.993200i \(0.537143\pi\)
\(84\) 0 0
\(85\) −19.1506 25.5861i −0.225301 0.301013i
\(86\) −102.787 + 37.4112i −1.19519 + 0.435014i
\(87\) 0 0
\(88\) 11.5270 16.4622i 0.130988 0.187070i
\(89\) −79.3775 + 45.8286i −0.891882 + 0.514928i −0.874557 0.484922i \(-0.838848\pi\)
−0.0173241 + 0.999850i \(0.505515\pi\)
\(90\) 0 0
\(91\) −26.2402 + 45.4494i −0.288354 + 0.499444i
\(92\) −8.61830 + 4.01878i −0.0936772 + 0.0436824i
\(93\) 0 0
\(94\) 68.9097 82.1234i 0.733082 0.873654i
\(95\) −4.17429 + 5.30724i −0.0439399 + 0.0558657i
\(96\) 0 0
\(97\) 48.9432 22.8226i 0.504569 0.235284i −0.153630 0.988128i \(-0.549096\pi\)
0.658199 + 0.752844i \(0.271319\pi\)
\(98\) 82.5262 22.1128i 0.842104 0.225641i
\(99\) 0 0
\(100\) −32.8770 + 21.8665i −0.328770 + 0.218665i
\(101\) −15.1212 85.7564i −0.149714 0.849073i −0.963460 0.267852i \(-0.913686\pi\)
0.813746 0.581221i \(-0.197425\pi\)
\(102\) 0 0
\(103\) 61.4201 + 28.6406i 0.596311 + 0.278064i 0.697250 0.716828i \(-0.254407\pi\)
−0.100939 + 0.994893i \(0.532185\pi\)
\(104\) 82.5018 + 14.5473i 0.793286 + 0.139878i
\(105\) 0 0
\(106\) −130.781 + 109.738i −1.23378 + 1.03527i
\(107\) −129.856 + 129.856i −1.21361 + 1.21361i −0.243779 + 0.969831i \(0.578387\pi\)
−0.969831 + 0.243779i \(0.921613\pi\)
\(108\) 0 0
\(109\) 143.122i 1.31304i −0.754308 0.656521i \(-0.772027\pi\)
0.754308 0.656521i \(-0.227973\pi\)
\(110\) −2.30714 + 41.4473i −0.0209740 + 0.376793i
\(111\) 0 0
\(112\) 40.7255 + 58.1621i 0.363621 + 0.519304i
\(113\) −141.780 66.1129i −1.25469 0.585070i −0.322337 0.946625i \(-0.604468\pi\)
−0.932351 + 0.361555i \(0.882246\pi\)
\(114\) 0 0
\(115\) −16.4778 + 25.1942i −0.143286 + 0.219080i
\(116\) 44.4245 + 76.9455i 0.382970 + 0.663323i
\(117\) 0 0
\(118\) 191.582 51.3342i 1.62357 0.435035i
\(119\) 7.83038 21.5138i 0.0658015 0.180788i
\(120\) 0 0
\(121\) −83.2276 69.8363i −0.687832 0.577159i
\(122\) −223.698 + 19.5710i −1.83359 + 0.160418i
\(123\) 0 0
\(124\) −4.55186 + 12.5061i −0.0367085 + 0.100856i
\(125\) −51.9521 + 113.692i −0.415616 + 0.909540i
\(126\) 0 0
\(127\) −21.4186 5.73910i −0.168651 0.0451898i 0.173506 0.984833i \(-0.444491\pi\)
−0.342156 + 0.939643i \(0.611157\pi\)
\(128\) 85.7287 122.433i 0.669755 0.956510i
\(129\) 0 0
\(130\) −160.653 + 64.3021i −1.23579 + 0.494631i
\(131\) −40.7506 + 231.108i −0.311073 + 1.76418i 0.282368 + 0.959306i \(0.408880\pi\)
−0.593441 + 0.804877i \(0.702231\pi\)
\(132\) 0 0
\(133\) −4.81859 0.421572i −0.0362300 0.00316972i
\(134\) 172.986i 1.29094i
\(135\) 0 0
\(136\) −36.5465 −0.268724
\(137\) −2.01043 + 22.9793i −0.0146746 + 0.167732i −0.999996 0.00298038i \(-0.999051\pi\)
0.985321 + 0.170712i \(0.0546069\pi\)
\(138\) 0 0
\(139\) −139.754 24.6424i −1.00543 0.177284i −0.353394 0.935475i \(-0.614972\pi\)
−0.652033 + 0.758191i \(0.726083\pi\)
\(140\) −26.0008 11.1365i −0.185720 0.0795463i
\(141\) 0 0
\(142\) 107.588 + 75.3339i 0.757662 + 0.530521i
\(143\) −13.3289 + 49.7441i −0.0932090 + 0.347861i
\(144\) 0 0
\(145\) 247.923 + 132.857i 1.70981 + 0.916257i
\(146\) −298.383 108.602i −2.04372 0.743853i
\(147\) 0 0
\(148\) 3.04186 + 34.7686i 0.0205531 + 0.234923i
\(149\) −135.284 + 161.225i −0.907946 + 1.08205i 0.0883531 + 0.996089i \(0.471840\pi\)
−0.996299 + 0.0859583i \(0.972605\pi\)
\(150\) 0 0
\(151\) −238.024 86.6336i −1.57632 0.573732i −0.601917 0.798558i \(-0.705596\pi\)
−0.974399 + 0.224826i \(0.927819\pi\)
\(152\) 1.99842 + 7.45821i 0.0131475 + 0.0490672i
\(153\) 0 0
\(154\) −25.7533 + 14.8687i −0.167229 + 0.0965498i
\(155\) 8.62601 + 41.2402i 0.0556517 + 0.266066i
\(156\) 0 0
\(157\) −37.1814 + 79.7357i −0.236824 + 0.507871i −0.988418 0.151755i \(-0.951508\pi\)
0.751594 + 0.659626i \(0.229285\pi\)
\(158\) 72.4795 50.7507i 0.458731 0.321207i
\(159\) 0 0
\(160\) −6.65631 + 119.579i −0.0416020 + 0.747371i
\(161\) −21.5656 −0.133948
\(162\) 0 0
\(163\) 88.1454 + 88.1454i 0.540769 + 0.540769i 0.923754 0.382985i \(-0.125104\pi\)
−0.382985 + 0.923754i \(0.625104\pi\)
\(164\) 21.9732 + 26.1867i 0.133983 + 0.159675i
\(165\) 0 0
\(166\) 2.00305 11.3599i 0.0120666 0.0684329i
\(167\) 103.200 221.312i 0.617962 1.32522i −0.309354 0.950947i \(-0.600113\pi\)
0.927317 0.374278i \(-0.122109\pi\)
\(168\) 0 0
\(169\) −44.9835 + 7.93180i −0.266174 + 0.0469337i
\(170\) 64.1488 39.7956i 0.377346 0.234092i
\(171\) 0 0
\(172\) −18.9296 70.6463i −0.110056 0.410734i
\(173\) −56.9867 122.208i −0.329403 0.706407i 0.669949 0.742407i \(-0.266316\pi\)
−0.999352 + 0.0360004i \(0.988538\pi\)
\(174\) 0 0
\(175\) −88.5322 + 13.4334i −0.505898 + 0.0767620i
\(176\) 53.3740 + 44.7861i 0.303261 + 0.254467i
\(177\) 0 0
\(178\) −91.4973 196.216i −0.514030 1.10234i
\(179\) −241.899 139.661i −1.35139 0.780227i −0.362949 0.931809i \(-0.618230\pi\)
−0.988445 + 0.151582i \(0.951563\pi\)
\(180\) 0 0
\(181\) 54.3285 + 94.0998i 0.300158 + 0.519888i 0.976171 0.217001i \(-0.0696274\pi\)
−0.676014 + 0.736889i \(0.736294\pi\)
\(182\) −101.544 71.1020i −0.557935 0.390670i
\(183\) 0 0
\(184\) 11.7741 + 32.3491i 0.0639897 + 0.175810i
\(185\) 66.2079 + 88.4570i 0.357881 + 0.478146i
\(186\) 0 0
\(187\) 1.95807 22.3808i 0.0104709 0.119683i
\(188\) 50.6866 + 50.6866i 0.269610 + 0.269610i
\(189\) 0 0
\(190\) −11.6290 10.9151i −0.0612054 0.0574476i
\(191\) 97.1273 81.4995i 0.508520 0.426699i −0.352088 0.935967i \(-0.614528\pi\)
0.860608 + 0.509268i \(0.170084\pi\)
\(192\) 0 0
\(193\) −74.9327 + 52.4685i −0.388253 + 0.271857i −0.751363 0.659889i \(-0.770603\pi\)
0.363111 + 0.931746i \(0.381715\pi\)
\(194\) 43.6276 + 119.866i 0.224885 + 0.617865i
\(195\) 0 0
\(196\) 9.92004 + 56.2594i 0.0506125 + 0.287038i
\(197\) 68.0511 + 18.2342i 0.345437 + 0.0925596i 0.427366 0.904079i \(-0.359441\pi\)
−0.0819292 + 0.996638i \(0.526108\pi\)
\(198\) 0 0
\(199\) 214.694 + 123.954i 1.07886 + 0.622883i 0.930590 0.366064i \(-0.119295\pi\)
0.148274 + 0.988946i \(0.452628\pi\)
\(200\) 68.4861 + 125.467i 0.342431 + 0.627335i
\(201\) 0 0
\(202\) 204.905 17.9269i 1.01438 0.0887468i
\(203\) 17.5616 + 200.730i 0.0865104 + 0.988818i
\(204\) 0 0
\(205\) 102.814 + 33.7759i 0.501533 + 0.164760i
\(206\) −80.0383 + 138.630i −0.388535 + 0.672963i
\(207\) 0 0
\(208\) −75.1728 + 280.549i −0.361408 + 1.34879i
\(209\) −4.67442 + 0.824227i −0.0223657 + 0.00394367i
\(210\) 0 0
\(211\) 291.396 106.059i 1.38102 0.502651i 0.458535 0.888676i \(-0.348374\pi\)
0.922488 + 0.386025i \(0.126152\pi\)
\(212\) −65.4753 93.5084i −0.308846 0.441077i
\(213\) 0 0
\(214\) −278.829 332.296i −1.30294 1.55279i
\(215\) −168.824 158.459i −0.785230 0.737020i
\(216\) 0 0
\(217\) −21.3421 + 21.3421i −0.0983509 + 0.0983509i
\(218\) 336.777 + 29.4642i 1.54485 + 0.135157i
\(219\) 0 0
\(220\) −27.4736 3.95217i −0.124880 0.0179644i
\(221\) 88.0047 32.0311i 0.398211 0.144937i
\(222\) 0 0
\(223\) 32.0347 45.7503i 0.143653 0.205158i −0.740877 0.671641i \(-0.765590\pi\)
0.884531 + 0.466482i \(0.154479\pi\)
\(224\) −74.3007 + 42.8975i −0.331700 + 0.191507i
\(225\) 0 0
\(226\) 184.757 320.009i 0.817510 1.41597i
\(227\) 237.363 110.684i 1.04565 0.487596i 0.177619 0.984099i \(-0.443161\pi\)
0.868035 + 0.496503i \(0.165383\pi\)
\(228\) 0 0
\(229\) −147.760 + 176.093i −0.645240 + 0.768967i −0.985188 0.171477i \(-0.945146\pi\)
0.339948 + 0.940444i \(0.389590\pi\)
\(230\) −55.8917 43.9604i −0.243008 0.191132i
\(231\) 0 0
\(232\) 291.513 135.935i 1.25652 0.585927i
\(233\) 303.670 81.3682i 1.30331 0.349220i 0.460606 0.887605i \(-0.347632\pi\)
0.842699 + 0.538385i \(0.180965\pi\)
\(234\) 0 0
\(235\) 220.946 + 51.7656i 0.940195 + 0.220279i
\(236\) 23.0290 + 130.604i 0.0975806 + 0.553407i
\(237\) 0 0
\(238\) 49.0117 + 22.8545i 0.205932 + 0.0960275i
\(239\) 205.885 + 36.3030i 0.861443 + 0.151896i 0.586880 0.809674i \(-0.300356\pi\)
0.274562 + 0.961569i \(0.411467\pi\)
\(240\) 0 0
\(241\) 77.9550 65.4120i 0.323465 0.271419i −0.466566 0.884486i \(-0.654509\pi\)
0.790031 + 0.613067i \(0.210065\pi\)
\(242\) 181.465 181.465i 0.749853 0.749853i
\(243\) 0 0
\(244\) 150.146i 0.615351i
\(245\) 120.577 + 134.792i 0.492151 + 0.550171i
\(246\) 0 0
\(247\) −11.3490 16.2080i −0.0459472 0.0656195i
\(248\) 43.6660 + 20.3618i 0.176073 + 0.0821040i
\(249\) 0 0
\(250\) −256.833 145.653i −1.02733 0.582613i
\(251\) 81.4048 + 140.997i 0.324322 + 0.561742i 0.981375 0.192102i \(-0.0615306\pi\)
−0.657053 + 0.753844i \(0.728197\pi\)
\(252\) 0 0
\(253\) −20.4412 + 5.47720i −0.0807952 + 0.0216490i
\(254\) 17.9140 49.2183i 0.0705276 0.193773i
\(255\) 0 0
\(256\) 200.848 + 168.531i 0.784561 + 0.658325i
\(257\) −111.162 + 9.72540i −0.432536 + 0.0378420i −0.301345 0.953515i \(-0.597436\pi\)
−0.131191 + 0.991357i \(0.541880\pi\)
\(258\) 0 0
\(259\) −27.0714 + 74.3780i −0.104523 + 0.287174i
\(260\) −33.4693 110.758i −0.128728 0.425994i
\(261\) 0 0
\(262\) −535.427 143.467i −2.04362 0.547585i
\(263\) 173.306 247.506i 0.658957 0.941088i −0.341043 0.940048i \(-0.610780\pi\)
0.999999 0.00104015i \(-0.000331090\pi\)
\(264\) 0 0
\(265\) −332.195 142.283i −1.25356 0.536917i
\(266\) 1.98399 11.2518i 0.00745861 0.0422999i
\(267\) 0 0
\(268\) 115.226 + 10.0810i 0.429949 + 0.0376156i
\(269\) 119.721i 0.445060i 0.974926 + 0.222530i \(0.0714315\pi\)
−0.974926 + 0.222530i \(0.928568\pi\)
\(270\) 0 0
\(271\) −141.433 −0.521894 −0.260947 0.965353i \(-0.584035\pi\)
−0.260947 + 0.965353i \(0.584035\pi\)
\(272\) 11.0432 126.224i 0.0405999 0.464059i
\(273\) 0 0
\(274\) −53.6583 9.46140i −0.195833 0.0345307i
\(275\) −80.5044 + 35.2182i −0.292743 + 0.128066i
\(276\) 0 0
\(277\) −25.4895 17.8479i −0.0920198 0.0644329i 0.526661 0.850075i \(-0.323444\pi\)
−0.618681 + 0.785642i \(0.712333\pi\)
\(278\) 86.7567 323.780i 0.312074 1.16468i
\(279\) 0 0
\(280\) −48.3664 + 90.2558i −0.172737 + 0.322342i
\(281\) 193.860 + 70.5593i 0.689894 + 0.251101i 0.663090 0.748540i \(-0.269245\pi\)
0.0268039 + 0.999641i \(0.491467\pi\)
\(282\) 0 0
\(283\) 2.87663 + 32.8800i 0.0101648 + 0.116184i 0.999582 0.0289155i \(-0.00920537\pi\)
−0.989417 + 0.145099i \(0.953650\pi\)
\(284\) −56.4497 + 67.2742i −0.198767 + 0.236881i
\(285\) 0 0
\(286\) −114.308 41.6047i −0.399679 0.145471i
\(287\) 20.0650 + 74.8834i 0.0699127 + 0.260918i
\(288\) 0 0
\(289\) 214.899 124.072i 0.743596 0.429315i
\(290\) −363.664 + 556.032i −1.25401 + 1.91735i
\(291\) 0 0
\(292\) 89.7287 192.424i 0.307290 0.658986i
\(293\) −106.365 + 74.4778i −0.363022 + 0.254190i −0.740829 0.671694i \(-0.765567\pi\)
0.377807 + 0.925884i \(0.376678\pi\)
\(294\) 0 0
\(295\) 279.915 + 312.915i 0.948865 + 1.06073i
\(296\) 126.349 0.426856
\(297\) 0 0
\(298\) −351.525 351.525i −1.17962 1.17962i
\(299\) −56.7046 67.5779i −0.189648 0.226013i
\(300\) 0 0
\(301\) 28.8026 163.348i 0.0956897 0.542683i
\(302\) 252.858 542.255i 0.837277 1.79555i
\(303\) 0 0
\(304\) −26.3630 + 4.64851i −0.0867203 + 0.0152911i
\(305\) −250.576 403.917i −0.821560 1.32432i
\(306\) 0 0
\(307\) −109.109 407.200i −0.355404 1.32639i −0.879975 0.475019i \(-0.842441\pi\)
0.524571 0.851366i \(-0.324226\pi\)
\(308\) −8.40321 18.0207i −0.0272832 0.0585089i
\(309\) 0 0
\(310\) −98.8175 + 11.8077i −0.318766 + 0.0380893i
\(311\) 331.968 + 278.554i 1.06742 + 0.895672i 0.994816 0.101689i \(-0.0324247\pi\)
0.0726038 + 0.997361i \(0.476869\pi\)
\(312\) 0 0
\(313\) 228.281 + 489.550i 0.729332 + 1.56406i 0.822732 + 0.568429i \(0.192449\pi\)
−0.0934003 + 0.995629i \(0.529774\pi\)
\(314\) −179.970 103.906i −0.573154 0.330911i
\(315\) 0 0
\(316\) 29.5812 + 51.2361i 0.0936113 + 0.162140i
\(317\) 271.226 + 189.915i 0.855603 + 0.599100i 0.916944 0.399017i \(-0.130649\pi\)
−0.0613401 + 0.998117i \(0.519537\pi\)
\(318\) 0 0
\(319\) 67.6271 + 185.804i 0.211997 + 0.582457i
\(320\) 112.412 + 16.1709i 0.351288 + 0.0505340i
\(321\) 0 0
\(322\) 4.43967 50.7457i 0.0137878 0.157595i
\(323\) 6.10357 + 6.10357i 0.0188965 + 0.0188965i
\(324\) 0 0
\(325\) −274.881 242.103i −0.845789 0.744931i
\(326\) −225.560 + 189.267i −0.691901 + 0.580574i
\(327\) 0 0
\(328\) 101.373 70.9819i 0.309063 0.216408i
\(329\) 55.6001 + 152.760i 0.168997 + 0.464316i
\(330\) 0 0
\(331\) −38.9001 220.613i −0.117523 0.666505i −0.985470 0.169849i \(-0.945672\pi\)
0.867947 0.496656i \(-0.165439\pi\)
\(332\) 7.45007 + 1.99624i 0.0224400 + 0.00601277i
\(333\) 0 0
\(334\) 499.521 + 288.399i 1.49557 + 0.863469i
\(335\) 326.803 165.180i 0.975530 0.493074i
\(336\) 0 0
\(337\) −154.344 + 13.5034i −0.457996 + 0.0400694i −0.313820 0.949483i \(-0.601609\pi\)
−0.144176 + 0.989552i \(0.546053\pi\)
\(338\) −9.40353 107.483i −0.0278211 0.317996i
\(339\) 0 0
\(340\) 22.7695 + 45.0486i 0.0669691 + 0.132496i
\(341\) −14.8089 + 25.6498i −0.0434279 + 0.0752194i
\(342\) 0 0
\(343\) −78.9568 + 294.671i −0.230195 + 0.859099i
\(344\) −260.752 + 45.9776i −0.757999 + 0.133656i
\(345\) 0 0
\(346\) 299.298 108.936i 0.865024 0.314843i
\(347\) −155.096 221.500i −0.446962 0.638328i 0.530935 0.847412i \(-0.321841\pi\)
−0.977898 + 0.209084i \(0.932952\pi\)
\(348\) 0 0
\(349\) 84.5706 + 100.787i 0.242323 + 0.288789i 0.873474 0.486871i \(-0.161862\pi\)
−0.631151 + 0.775660i \(0.717417\pi\)
\(350\) −13.3838 211.089i −0.0382395 0.603112i
\(351\) 0 0
\(352\) −59.5316 + 59.5316i −0.169124 + 0.169124i
\(353\) −560.875 49.0702i −1.58888 0.139009i −0.741855 0.670561i \(-0.766054\pi\)
−0.847026 + 0.531552i \(0.821609\pi\)
\(354\) 0 0
\(355\) −39.5867 + 275.187i −0.111512 + 0.775176i
\(356\) 136.032 49.5116i 0.382112 0.139077i
\(357\) 0 0
\(358\) 378.433 540.458i 1.05707 1.50966i
\(359\) −8.33750 + 4.81366i −0.0232242 + 0.0134085i −0.511567 0.859243i \(-0.670935\pi\)
0.488343 + 0.872652i \(0.337602\pi\)
\(360\) 0 0
\(361\) −179.588 + 311.056i −0.497474 + 0.861651i
\(362\) −232.609 + 108.467i −0.642567 + 0.299634i
\(363\) 0 0
\(364\) 53.2786 63.4950i 0.146370 0.174437i
\(365\) −79.7475 667.400i −0.218486 1.82849i
\(366\) 0 0
\(367\) 374.566 174.663i 1.02062 0.475921i 0.161051 0.986946i \(-0.448512\pi\)
0.859566 + 0.511025i \(0.170734\pi\)
\(368\) −115.285 + 30.8905i −0.313274 + 0.0839416i
\(369\) 0 0
\(370\) −221.777 + 137.582i −0.599397 + 0.371844i
\(371\) −44.9544 254.949i −0.121171 0.687194i
\(372\) 0 0
\(373\) −86.4264 40.3013i −0.231706 0.108046i 0.303298 0.952896i \(-0.401912\pi\)
−0.535004 + 0.844849i \(0.679690\pi\)
\(374\) 52.2608 + 9.21499i 0.139735 + 0.0246390i
\(375\) 0 0
\(376\) 198.789 166.804i 0.528694 0.443627i
\(377\) −582.831 + 582.831i −1.54597 + 1.54597i
\(378\) 0 0
\(379\) 597.153i 1.57560i −0.615931 0.787800i \(-0.711220\pi\)
0.615931 0.787800i \(-0.288780\pi\)
\(380\) 7.94821 7.11000i 0.0209163 0.0187105i
\(381\) 0 0
\(382\) 171.780 + 245.327i 0.449685 + 0.642217i
\(383\) −248.482 115.869i −0.648778 0.302530i 0.0702309 0.997531i \(-0.477626\pi\)
−0.719009 + 0.695000i \(0.755404\pi\)
\(384\) 0 0
\(385\) −52.6807 34.4549i −0.136833 0.0894933i
\(386\) −108.036 187.125i −0.279887 0.484779i
\(387\) 0 0
\(388\) −82.3851 + 22.0750i −0.212333 + 0.0568944i
\(389\) −51.2144 + 140.710i −0.131657 + 0.361724i −0.987952 0.154764i \(-0.950538\pi\)
0.856295 + 0.516487i \(0.172761\pi\)
\(390\) 0 0
\(391\) 29.4808 + 24.7373i 0.0753984 + 0.0632667i
\(392\) 206.024 18.0248i 0.525572 0.0459816i
\(393\) 0 0
\(394\) −56.9162 + 156.376i −0.144457 + 0.396894i
\(395\) 165.086 + 88.4664i 0.417938 + 0.223966i
\(396\) 0 0
\(397\) −408.658 109.500i −1.02937 0.275818i −0.295666 0.955291i \(-0.595542\pi\)
−0.733700 + 0.679473i \(0.762208\pi\)
\(398\) −335.872 + 479.675i −0.843899 + 1.20521i
\(399\) 0 0
\(400\) −454.032 + 198.625i −1.13508 + 0.496562i
\(401\) 99.4097 563.780i 0.247904 1.40594i −0.565745 0.824580i \(-0.691411\pi\)
0.813650 0.581356i \(-0.197477\pi\)
\(402\) 0 0
\(403\) −122.995 10.7606i −0.305198 0.0267013i
\(404\) 137.532i 0.340425i
\(405\) 0 0
\(406\) −475.950 −1.17229
\(407\) −6.76948 + 77.3755i −0.0166326 + 0.190112i
\(408\) 0 0
\(409\) 198.382 + 34.9800i 0.485041 + 0.0855257i 0.410821 0.911716i \(-0.365242\pi\)
0.0742199 + 0.997242i \(0.476353\pi\)
\(410\) −100.644 + 234.977i −0.245472 + 0.573115i
\(411\) 0 0
\(412\) −87.6773 61.3923i −0.212809 0.149010i
\(413\) −77.8426 + 290.513i −0.188481 + 0.703420i
\(414\) 0 0
\(415\) 23.3735 7.06308i 0.0563216 0.0170195i
\(416\) −329.790 120.034i −0.792764 0.288542i
\(417\) 0 0
\(418\) −0.977160 11.1690i −0.00233770 0.0267201i
\(419\) 139.993 166.838i 0.334113 0.398180i −0.572664 0.819790i \(-0.694090\pi\)
0.906778 + 0.421609i \(0.138535\pi\)
\(420\) 0 0
\(421\) −398.010 144.864i −0.945392 0.344094i −0.177099 0.984193i \(-0.556671\pi\)
−0.768293 + 0.640099i \(0.778893\pi\)
\(422\) 189.578 + 707.513i 0.449236 + 1.67657i
\(423\) 0 0
\(424\) −357.888 + 206.627i −0.844076 + 0.487327i
\(425\) 136.435 + 83.1890i 0.321023 + 0.195739i
\(426\) 0 0
\(427\) 143.905 308.606i 0.337015 0.722730i
\(428\) 237.591 166.363i 0.555120 0.388699i
\(429\) 0 0
\(430\) 407.624 364.636i 0.947962 0.847991i
\(431\) 222.552 0.516362 0.258181 0.966097i \(-0.416877\pi\)
0.258181 + 0.966097i \(0.416877\pi\)
\(432\) 0 0
\(433\) −280.953 280.953i −0.648851 0.648851i 0.303864 0.952715i \(-0.401723\pi\)
−0.952715 + 0.303864i \(0.901723\pi\)
\(434\) −45.8262 54.6135i −0.105590 0.125838i
\(435\) 0 0
\(436\) −39.2522 + 222.610i −0.0900279 + 0.510573i
\(437\) 3.43620 7.36895i 0.00786315 0.0168626i
\(438\) 0 0
\(439\) −89.7832 + 15.8312i −0.204518 + 0.0360620i −0.274968 0.961453i \(-0.588667\pi\)
0.0704507 + 0.997515i \(0.477556\pi\)
\(440\) −22.9216 + 97.8339i −0.0520945 + 0.222350i
\(441\) 0 0
\(442\) 57.2545 + 213.677i 0.129535 + 0.483431i
\(443\) 208.641 + 447.431i 0.470972 + 1.01000i 0.988060 + 0.154070i \(0.0492382\pi\)
−0.517088 + 0.855932i \(0.672984\pi\)
\(444\) 0 0
\(445\) 283.320 360.216i 0.636675 0.809475i
\(446\) 101.059 + 84.7989i 0.226590 + 0.190132i
\(447\) 0 0
\(448\) 34.3830 + 73.7345i 0.0767477 + 0.164586i
\(449\) −221.384 127.816i −0.493061 0.284669i 0.232783 0.972529i \(-0.425217\pi\)
−0.725843 + 0.687860i \(0.758550\pi\)
\(450\) 0 0
\(451\) 38.0375 + 65.8829i 0.0843404 + 0.146082i
\(452\) 202.391 + 141.716i 0.447768 + 0.313530i
\(453\) 0 0
\(454\) 211.584 + 581.322i 0.466044 + 1.28045i
\(455\) 37.3629 259.728i 0.0821162 0.570832i
\(456\) 0 0
\(457\) −44.4391 + 507.942i −0.0972410 + 1.11147i 0.778158 + 0.628069i \(0.216154\pi\)
−0.875399 + 0.483401i \(0.839401\pi\)
\(458\) −383.943 383.943i −0.838304 0.838304i
\(459\) 0 0
\(460\) 32.5392 34.6676i 0.0707374 0.0753644i
\(461\) −180.017 + 151.052i −0.390492 + 0.327661i −0.816805 0.576914i \(-0.804257\pi\)
0.426313 + 0.904576i \(0.359812\pi\)
\(462\) 0 0
\(463\) −110.063 + 77.0668i −0.237717 + 0.166451i −0.686365 0.727258i \(-0.740795\pi\)
0.448648 + 0.893709i \(0.351906\pi\)
\(464\) 381.406 + 1047.90i 0.821995 + 2.25841i
\(465\) 0 0
\(466\) 128.950 + 731.312i 0.276717 + 1.56934i
\(467\) −26.9991 7.23439i −0.0578140 0.0154912i 0.229796 0.973239i \(-0.426194\pi\)
−0.287610 + 0.957748i \(0.592861\pi\)
\(468\) 0 0
\(469\) 227.171 + 131.157i 0.484374 + 0.279654i
\(470\) −167.295 + 509.247i −0.355946 + 1.08350i
\(471\) 0 0
\(472\) 478.278 41.8439i 1.01330 0.0886523i
\(473\) −14.1859 162.146i −0.0299914 0.342803i
\(474\) 0 0
\(475\) 9.51628 32.3918i 0.0200343 0.0681932i
\(476\) −18.0796 + 31.3148i −0.0379824 + 0.0657874i
\(477\) 0 0
\(478\) −127.809 + 476.991i −0.267383 + 0.997888i
\(479\) 397.592 70.1063i 0.830047 0.146360i 0.257548 0.966265i \(-0.417085\pi\)
0.572499 + 0.819906i \(0.305974\pi\)
\(480\) 0 0
\(481\) −304.252 + 110.739i −0.632541 + 0.230226i
\(482\) 137.872 + 196.901i 0.286040 + 0.408508i
\(483\) 0 0
\(484\) 110.298 + 131.449i 0.227889 + 0.271588i
\(485\) −184.790 + 196.877i −0.381009 + 0.405932i
\(486\) 0 0
\(487\) 198.013 198.013i 0.406597 0.406597i −0.473953 0.880550i \(-0.657173\pi\)
0.880550 + 0.473953i \(0.157173\pi\)
\(488\) −541.486 47.3739i −1.10960 0.0970776i
\(489\) 0 0
\(490\) −342.000 + 255.979i −0.697959 + 0.522405i
\(491\) 508.696 185.150i 1.03604 0.377088i 0.232663 0.972557i \(-0.425256\pi\)
0.803378 + 0.595470i \(0.203034\pi\)
\(492\) 0 0
\(493\) 206.244 294.548i 0.418346 0.597460i
\(494\) 40.4752 23.3684i 0.0819336 0.0473044i
\(495\) 0 0
\(496\) −83.5199 + 144.661i −0.168387 + 0.291655i
\(497\) −180.504 + 84.1702i −0.363186 + 0.169357i
\(498\) 0 0
\(499\) −183.346 + 218.504i −0.367427 + 0.437883i −0.917804 0.397033i \(-0.870040\pi\)
0.550377 + 0.834916i \(0.314484\pi\)
\(500\) 111.987 162.588i 0.223974 0.325176i
\(501\) 0 0
\(502\) −348.537 + 162.525i −0.694297 + 0.323756i
\(503\) 793.904 212.726i 1.57834 0.422914i 0.639927 0.768435i \(-0.278964\pi\)
0.938411 + 0.345521i \(0.112298\pi\)
\(504\) 0 0
\(505\) 229.525 + 369.984i 0.454505 + 0.732642i
\(506\) −8.68012 49.2274i −0.0171544 0.0972874i
\(507\) 0 0
\(508\) 31.7404 + 14.8008i 0.0624810 + 0.0291354i
\(509\) −460.147 81.1364i −0.904022 0.159403i −0.297734 0.954649i \(-0.596231\pi\)
−0.606288 + 0.795245i \(0.707342\pi\)
\(510\) 0 0
\(511\) 368.853 309.504i 0.721825 0.605683i
\(512\) −15.1697 + 15.1697i −0.0296284 + 0.0296284i
\(513\) 0 0
\(514\) 263.575i 0.512792i
\(515\) −338.324 18.8326i −0.656940 0.0365682i
\(516\) 0 0
\(517\) 91.4989 + 130.674i 0.176980 + 0.252754i
\(518\) −169.445 79.0133i −0.327113 0.152535i
\(519\) 0 0
\(520\) −410.000 + 85.7576i −0.788461 + 0.164919i
\(521\) −113.109 195.911i −0.217100 0.376029i 0.736820 0.676089i \(-0.236327\pi\)
−0.953920 + 0.300060i \(0.902993\pi\)
\(522\) 0 0
\(523\) −1.77194 + 0.474790i −0.00338803 + 0.000907820i −0.260513 0.965470i \(-0.583892\pi\)
0.257125 + 0.966378i \(0.417225\pi\)
\(524\) 126.766 348.287i 0.241920 0.664671i
\(525\) 0 0
\(526\) 546.725 + 458.756i 1.03940 + 0.872161i
\(527\) 53.6562 4.69431i 0.101814 0.00890761i
\(528\) 0 0
\(529\) −168.530 + 463.033i −0.318583 + 0.875299i
\(530\) 403.192 752.391i 0.760740 1.41960i
\(531\) 0 0
\(532\) 7.37918 + 1.97725i 0.0138706 + 0.00371663i
\(533\) −181.896 + 259.774i −0.341268 + 0.487381i
\(534\) 0 0
\(535\) 361.521 844.059i 0.675740 1.57768i
\(536\) 72.7123 412.372i 0.135657 0.769351i
\(537\) 0 0
\(538\) −281.714 24.6468i −0.523632 0.0458118i
\(539\) 127.133i 0.235869i
\(540\) 0 0
\(541\) −234.130 −0.432773 −0.216386 0.976308i \(-0.569427\pi\)
−0.216386 + 0.976308i \(0.569427\pi\)
\(542\) 29.1166 332.804i 0.0537207 0.614030i
\(543\) 0 0
\(544\) 150.777 + 26.5861i 0.277164 + 0.0488716i
\(545\) 265.915 + 664.367i 0.487918 + 1.21902i
\(546\) 0 0
\(547\) 264.852 + 185.452i 0.484191 + 0.339034i 0.790050 0.613043i \(-0.210055\pi\)
−0.305859 + 0.952077i \(0.598944\pi\)
\(548\) 9.42924 35.1904i 0.0172066 0.0642160i
\(549\) 0 0
\(550\) −66.2981 196.684i −0.120542 0.357607i
\(551\) −71.3874 25.9829i −0.129560 0.0471559i
\(552\) 0 0
\(553\) 11.6938 + 133.661i 0.0211462 + 0.241702i
\(554\) 47.2451 56.3045i 0.0852800 0.101633i
\(555\) 0 0
\(556\) 210.614 + 76.6573i 0.378803 + 0.137873i
\(557\) 1.77258 + 6.61538i 0.00318238 + 0.0118768i 0.967499 0.252876i \(-0.0813764\pi\)
−0.964316 + 0.264753i \(0.914710\pi\)
\(558\) 0 0
\(559\) 587.599 339.250i 1.05116 0.606888i
\(560\) −297.110 194.320i −0.530554 0.347000i
\(561\) 0 0
\(562\) −205.942 + 441.643i −0.366444 + 0.785842i
\(563\) −517.684 + 362.486i −0.919510 + 0.643847i −0.934470 0.356041i \(-0.884126\pi\)
0.0149610 + 0.999888i \(0.495238\pi\)
\(564\) 0 0
\(565\) 780.974 + 43.4724i 1.38225 + 0.0769424i
\(566\) −77.9617 −0.137742
\(567\) 0 0
\(568\) 224.807 + 224.807i 0.395787 + 0.395787i
\(569\) 76.5081 + 91.1789i 0.134461 + 0.160244i 0.829073 0.559140i \(-0.188869\pi\)
−0.694613 + 0.719384i \(0.744424\pi\)
\(570\) 0 0
\(571\) 0.263528 1.49454i 0.000461520 0.00261741i −0.984576 0.174957i \(-0.944021\pi\)
0.985038 + 0.172339i \(0.0551326\pi\)
\(572\) 34.3743 73.7160i 0.0600950 0.128874i
\(573\) 0 0
\(574\) −180.338 + 31.7984i −0.314177 + 0.0553979i
\(575\) 29.6798 147.566i 0.0516170 0.256637i
\(576\) 0 0
\(577\) 108.806 + 406.071i 0.188573 + 0.703763i 0.993837 + 0.110847i \(0.0353565\pi\)
−0.805265 + 0.592915i \(0.797977\pi\)
\(578\) 247.711 + 531.218i 0.428566 + 0.919063i
\(579\) 0 0
\(580\) −349.180 274.640i −0.602034 0.473517i
\(581\) 13.3994 + 11.2435i 0.0230627 + 0.0193519i
\(582\) 0 0
\(583\) −107.362 230.239i −0.184154 0.394921i
\(584\) −665.647 384.312i −1.13981 0.658068i
\(585\) 0 0
\(586\) −153.355 265.619i −0.261698 0.453275i
\(587\) −246.684 172.730i −0.420246 0.294259i 0.344262 0.938874i \(-0.388129\pi\)
−0.764508 + 0.644614i \(0.777018\pi\)
\(588\) 0 0
\(589\) −3.89200 10.6932i −0.00660781 0.0181548i
\(590\) −793.941 + 594.245i −1.34566 + 1.00720i
\(591\) 0 0
\(592\) −38.1788 + 436.385i −0.0644911 + 0.737137i
\(593\) 31.7465 + 31.7465i 0.0535355 + 0.0535355i 0.733368 0.679832i \(-0.237947\pi\)
−0.679832 + 0.733368i \(0.737947\pi\)
\(594\) 0 0
\(595\) 3.62353 + 114.415i 0.00608997 + 0.192294i
\(596\) 254.637 213.665i 0.427243 0.358499i
\(597\) 0 0
\(598\) 170.690 119.519i 0.285435 0.199864i
\(599\) 16.1057 + 44.2501i 0.0268877 + 0.0738734i 0.952410 0.304819i \(-0.0985960\pi\)
−0.925523 + 0.378693i \(0.876374\pi\)
\(600\) 0 0
\(601\) 160.281 + 908.998i 0.266690 + 1.51248i 0.764179 + 0.645005i \(0.223145\pi\)
−0.497489 + 0.867471i \(0.665744\pi\)
\(602\) 378.441 + 101.403i 0.628640 + 0.168443i
\(603\) 0 0
\(604\) 346.460 + 200.029i 0.573610 + 0.331174i
\(605\) 516.094 + 169.544i 0.853049 + 0.280238i
\(606\) 0 0
\(607\) −134.360 + 11.7550i −0.221351 + 0.0193657i −0.197291 0.980345i \(-0.563215\pi\)
−0.0240591 + 0.999711i \(0.507659\pi\)
\(608\) −2.81920 32.2236i −0.00463684 0.0529994i
\(609\) 0 0
\(610\) 1002.04 506.472i 1.64268 0.830282i
\(611\) −332.493 + 575.896i −0.544179 + 0.942546i
\(612\) 0 0
\(613\) 193.130 720.773i 0.315058 1.17581i −0.608878 0.793264i \(-0.708380\pi\)
0.923936 0.382548i \(-0.124953\pi\)
\(614\) 980.639 172.913i 1.59713 0.281617i
\(615\) 0 0
\(616\) −67.6415 + 24.6195i −0.109808 + 0.0399667i
\(617\) −277.352 396.100i −0.449518 0.641978i 0.528883 0.848695i \(-0.322611\pi\)
−0.978401 + 0.206717i \(0.933722\pi\)
\(618\) 0 0
\(619\) −710.594 846.852i −1.14797 1.36810i −0.918806 0.394710i \(-0.870845\pi\)
−0.229164 0.973388i \(-0.573599\pi\)
\(620\) −2.10639 66.5104i −0.00339740 0.107275i
\(621\) 0 0
\(622\) −723.802 + 723.802i −1.16367 + 1.16367i
\(623\) 327.051 + 28.6132i 0.524961 + 0.0459281i
\(624\) 0 0
\(625\) 29.9230 624.283i 0.0478768 0.998853i
\(626\) −1198.95 + 436.381i −1.91525 + 0.697095i
\(627\) 0 0
\(628\) 79.6997 113.823i 0.126910 0.181247i
\(629\) 122.324 70.6239i 0.194474 0.112280i
\(630\) 0 0
\(631\) 468.867 812.101i 0.743054 1.28701i −0.208045 0.978119i \(-0.566710\pi\)
0.951099 0.308887i \(-0.0999566\pi\)
\(632\) 194.112 90.5158i 0.307139 0.143221i
\(633\) 0 0
\(634\) −502.722 + 599.121i −0.792937 + 0.944986i
\(635\) 110.088 13.1544i 0.173367 0.0207155i
\(636\) 0 0
\(637\) −480.313 + 223.973i −0.754023 + 0.351607i
\(638\) −451.134 + 120.881i −0.707107 + 0.189469i
\(639\) 0 0
\(640\) −170.473 + 727.613i −0.266364 + 1.13690i
\(641\) −144.211 817.859i −0.224977 1.27591i −0.862728 0.505668i \(-0.831246\pi\)
0.637751 0.770243i \(-0.279865\pi\)
\(642\) 0 0
\(643\) −492.087 229.464i −0.765299 0.356865i 0.000453650 1.00000i \(-0.499856\pi\)
−0.765753 + 0.643135i \(0.777633\pi\)
\(644\) 33.5430 + 5.91453i 0.0520854 + 0.00918406i
\(645\) 0 0
\(646\) −15.6187 + 13.1057i −0.0241776 + 0.0202874i
\(647\) 396.580 396.580i 0.612952 0.612952i −0.330762 0.943714i \(-0.607306\pi\)
0.943714 + 0.330762i \(0.107306\pi\)
\(648\) 0 0
\(649\) 295.136i 0.454755i
\(650\) 626.277 596.978i 0.963503 0.918427i
\(651\) 0 0
\(652\) −112.926 161.275i −0.173199 0.247355i
\(653\) −190.492 88.8280i −0.291719 0.136031i 0.271250 0.962509i \(-0.412563\pi\)
−0.562969 + 0.826478i \(0.690341\pi\)
\(654\) 0 0
\(655\) −240.228 1148.51i −0.366761 1.75345i
\(656\) 214.526 + 371.569i 0.327021 + 0.566416i
\(657\) 0 0
\(658\) −370.904 + 99.3833i −0.563683 + 0.151038i
\(659\) 280.075 769.498i 0.424999 1.16768i −0.523812 0.851834i \(-0.675491\pi\)
0.948812 0.315842i \(-0.102287\pi\)
\(660\) 0 0
\(661\) −160.592 134.752i −0.242952 0.203861i 0.513178 0.858282i \(-0.328468\pi\)
−0.756130 + 0.654421i \(0.772912\pi\)
\(662\) 527.130 46.1179i 0.796269 0.0696645i
\(663\) 0 0
\(664\) 9.54990 26.2381i 0.0143824 0.0395153i
\(665\) 23.1511 6.99587i 0.0348136 0.0105201i
\(666\) 0 0
\(667\) −327.164 87.6634i −0.490501 0.131429i
\(668\) −221.213 + 315.924i −0.331156 + 0.472940i
\(669\) 0 0
\(670\) 321.404 + 802.999i 0.479707 + 1.19851i
\(671\) 58.0228 329.064i 0.0864722 0.490408i
\(672\) 0 0
\(673\) −1158.65 101.369i −1.72162 0.150622i −0.816943 0.576719i \(-0.804333\pi\)
−0.904678 + 0.426097i \(0.859888\pi\)
\(674\) 365.965i 0.542975i
\(675\) 0 0
\(676\) 72.1423 0.106719
\(677\) −97.9291 + 1119.33i −0.144652 + 1.65337i 0.483545 + 0.875320i \(0.339349\pi\)
−0.628196 + 0.778055i \(0.716206\pi\)
\(678\) 0 0
\(679\) −190.490 33.5885i −0.280545 0.0494676i
\(680\) 169.648 67.9023i 0.249482 0.0998563i
\(681\) 0 0
\(682\) −57.3075 40.1271i −0.0840286 0.0588374i
\(683\) −22.5930 + 84.3181i −0.0330790 + 0.123453i −0.980491 0.196564i \(-0.937022\pi\)
0.947412 + 0.320016i \(0.103688\pi\)
\(684\) 0 0
\(685\) −33.3624 110.405i −0.0487043 0.161175i
\(686\) −677.131 246.455i −0.987071 0.359265i
\(687\) 0 0
\(688\) −80.0063 914.477i −0.116288 1.32918i
\(689\) 680.704 811.232i 0.987960 1.17740i
\(690\) 0 0
\(691\) −890.562 324.138i −1.28880 0.469086i −0.395469 0.918479i \(-0.629418\pi\)
−0.893334 + 0.449394i \(0.851640\pi\)
\(692\) 55.1201 + 205.711i 0.0796533 + 0.297270i
\(693\) 0 0
\(694\) 553.137 319.354i 0.797028 0.460164i
\(695\) 694.521 145.269i 0.999311 0.209021i
\(696\) 0 0
\(697\) 58.4673 125.383i 0.0838842 0.179890i
\(698\) −254.571 + 178.253i −0.364716 + 0.255377i
\(699\) 0 0
\(700\) 141.386 + 3.38651i 0.201981 + 0.00483787i
\(701\) −312.401 −0.445651 −0.222825 0.974858i \(-0.571528\pi\)
−0.222825 + 0.974858i \(0.571528\pi\)
\(702\) 0 0
\(703\) −21.1014 21.1014i −0.0300162 0.0300162i
\(704\) 51.3172 + 61.1575i 0.0728938 + 0.0868714i
\(705\) 0 0
\(706\) 230.933 1309.68i 0.327100 1.85508i
\(707\) −131.816 + 282.680i −0.186444 + 0.399830i
\(708\) 0 0
\(709\) 837.243 147.629i 1.18088 0.208221i 0.451462 0.892290i \(-0.350903\pi\)
0.729417 + 0.684069i \(0.239791\pi\)
\(710\) −639.389 149.803i −0.900548 0.210990i
\(711\) 0 0
\(712\) −135.638 506.208i −0.190503 0.710966i
\(713\) −21.4415 45.9814i −0.0300722 0.0644901i
\(714\) 0 0
\(715\) −30.5506 255.676i −0.0427282 0.357588i
\(716\) 337.945 + 283.570i 0.471991 + 0.396047i
\(717\) 0 0
\(718\) −9.61051 20.6098i −0.0133851 0.0287045i
\(719\) 228.610 + 131.988i 0.317956 + 0.183572i 0.650481 0.759522i \(-0.274567\pi\)
−0.332525 + 0.943094i \(0.607901\pi\)
\(720\) 0 0
\(721\) −121.369 210.218i −0.168335 0.291564i
\(722\) −694.969 486.623i −0.962561 0.673992i
\(723\) 0 0
\(724\) −58.6946 161.262i −0.0810698 0.222738i
\(725\) −1397.70 156.087i −1.92786 0.215293i
\(726\) 0 0
\(727\) −50.9264 + 582.092i −0.0700501 + 0.800676i 0.877188 + 0.480146i \(0.159416\pi\)
−0.947238 + 0.320530i \(0.896139\pi\)
\(728\) −212.178 212.178i −0.291454 0.291454i
\(729\) 0 0
\(730\) 1586.87 50.2561i 2.17379 0.0688440i
\(731\) −226.745 + 190.262i −0.310185 + 0.260276i
\(732\) 0 0
\(733\) −787.798 + 551.622i −1.07476 + 0.752554i −0.970283 0.241973i \(-0.922205\pi\)
−0.104476 + 0.994527i \(0.533317\pi\)
\(734\) 333.886 + 917.344i 0.454885 + 1.24979i
\(735\) 0 0
\(736\) −25.0430 142.026i −0.0340258 0.192970i
\(737\) 248.638 + 66.6223i 0.337365 + 0.0903967i
\(738\) 0 0
\(739\) −625.369 361.057i −0.846236 0.488575i 0.0131429 0.999914i \(-0.495816\pi\)
−0.859379 + 0.511339i \(0.829150\pi\)
\(740\) −78.7192 155.743i −0.106377 0.210464i
\(741\) 0 0
\(742\) 609.171 53.2956i 0.820986 0.0718269i
\(743\) 100.027 + 1143.31i 0.134626 + 1.53878i 0.700120 + 0.714025i \(0.253130\pi\)
−0.565494 + 0.824752i \(0.691315\pi\)
\(744\) 0 0
\(745\) 328.433 999.756i 0.440850 1.34195i
\(746\) 112.625 195.072i 0.150972 0.261491i
\(747\) 0 0
\(748\) −9.18367 + 34.2739i −0.0122776 + 0.0458207i
\(749\) 647.789 114.223i 0.864872 0.152500i
\(750\) 0 0
\(751\) 1206.84 439.255i 1.60698 0.584894i 0.626142 0.779709i \(-0.284633\pi\)
0.980840 + 0.194815i \(0.0624106\pi\)
\(752\) 516.039 + 736.980i 0.686222 + 0.980026i
\(753\) 0 0
\(754\) −1251.46 1491.44i −1.65977 1.97803i
\(755\) 1265.86 40.0899i 1.67664 0.0530992i
\(756\) 0 0
\(757\) 337.827 337.827i 0.446271 0.446271i −0.447842 0.894113i \(-0.647807\pi\)
0.894113 + 0.447842i \(0.147807\pi\)
\(758\) 1405.15 + 122.935i 1.85376 + 0.162183i
\(759\) 0 0
\(760\) −23.1337 30.9078i −0.0304391 0.0406682i
\(761\) 684.518 249.144i 0.899497 0.327390i 0.149446 0.988770i \(-0.452251\pi\)
0.750051 + 0.661380i \(0.230029\pi\)
\(762\) 0 0
\(763\) −294.036 + 419.927i −0.385368 + 0.550363i
\(764\) −173.423 + 100.126i −0.226993 + 0.131055i
\(765\) 0 0
\(766\) 323.804 560.846i 0.422721 0.732174i
\(767\) −1115.03 + 519.946i −1.45375 + 0.677896i
\(768\) 0 0
\(769\) −699.977 + 834.200i −0.910243 + 1.08479i 0.0858349 + 0.996309i \(0.472644\pi\)
−0.996078 + 0.0884764i \(0.971800\pi\)
\(770\) 91.9206 116.869i 0.119377 0.151778i
\(771\) 0 0
\(772\) 130.940 61.0581i 0.169611 0.0790909i
\(773\) −668.219 + 179.049i −0.864449 + 0.231628i −0.663686 0.748011i \(-0.731009\pi\)
−0.200763 + 0.979640i \(0.564342\pi\)
\(774\) 0 0
\(775\) −116.665 175.409i −0.150535 0.226334i
\(776\) 53.6174 + 304.079i 0.0690946 + 0.391855i
\(777\) 0 0
\(778\) −320.560 149.480i −0.412031 0.192133i
\(779\) −28.7847 5.07551i −0.0369508 0.00651542i
\(780\) 0 0
\(781\) −149.715 + 125.626i −0.191696 + 0.160852i
\(782\) −64.2781 + 64.2781i −0.0821970 + 0.0821970i
\(783\) 0 0
\(784\) 717.012i 0.914556i
\(785\) 24.4485 439.213i 0.0311446 0.559507i
\(786\) 0 0
\(787\) −656.999 938.292i −0.834815 1.19224i −0.979236 0.202723i \(-0.935021\pi\)
0.144421 0.989516i \(-0.453868\pi\)
\(788\) −100.845 47.0249i −0.127976 0.0596763i
\(789\) 0 0
\(790\) −242.155 + 370.248i −0.306525 + 0.468668i
\(791\) 280.164 + 485.258i 0.354190 + 0.613475i
\(792\) 0 0
\(793\) 1345.43 360.507i 1.69663 0.454611i
\(794\) 341.792 939.065i 0.430468 1.18270i
\(795\) 0 0
\(796\) −299.938 251.678i −0.376807 0.316178i
\(797\) −760.933 + 66.5730i −0.954746 + 0.0835295i −0.553870 0.832603i \(-0.686850\pi\)
−0.400876 + 0.916132i \(0.631294\pi\)
\(798\) 0 0
\(799\) 99.2198 272.604i 0.124180 0.341182i
\(800\) −191.276 567.452i −0.239095 0.709315i
\(801\) 0 0
\(802\) 1306.16 + 349.984i 1.62862 + 0.436389i
\(803\) 271.013 387.047i 0.337501 0.482002i
\(804\) 0 0
\(805\) 100.107 40.0683i 0.124357 0.0497742i
\(806\) 50.6414 287.202i 0.0628305 0.356329i
\(807\) 0 0
\(808\) 495.996 + 43.3940i 0.613856 + 0.0537054i
\(809\) 983.045i 1.21514i −0.794267 0.607568i \(-0.792145\pi\)
0.794267 0.607568i \(-0.207855\pi\)
\(810\) 0 0
\(811\) 1259.96 1.55358 0.776792 0.629757i \(-0.216845\pi\)
0.776792 + 0.629757i \(0.216845\pi\)
\(812\) 27.7366 317.030i 0.0341583 0.390431i
\(813\) 0 0
\(814\) −180.677 31.8583i −0.221962 0.0391380i
\(815\) −572.940 245.397i −0.702994 0.301101i
\(816\) 0 0
\(817\) 51.2264 + 35.8691i 0.0627006 + 0.0439034i
\(818\) −123.151 + 459.607i −0.150552 + 0.561867i
\(819\) 0 0
\(820\) −150.653 80.7323i −0.183723 0.0984540i
\(821\) 837.346 + 304.769i 1.01991 + 0.371217i 0.797230 0.603675i \(-0.206298\pi\)
0.222679 + 0.974892i \(0.428520\pi\)
\(822\) 0 0
\(823\) −47.6180 544.277i −0.0578591 0.661333i −0.968644 0.248452i \(-0.920078\pi\)
0.910785 0.412881i \(-0.135477\pi\)
\(824\) −249.070 + 296.830i −0.302269 + 0.360230i
\(825\) 0 0
\(826\) −667.575 242.978i −0.808203 0.294162i
\(827\) −99.0791 369.768i −0.119805 0.447120i 0.879796 0.475351i \(-0.157679\pi\)
−0.999601 + 0.0282316i \(0.991012\pi\)
\(828\) 0 0
\(829\) −272.496 + 157.326i −0.328705 + 0.189778i −0.655266 0.755398i \(-0.727443\pi\)
0.326561 + 0.945176i \(0.394110\pi\)
\(830\) 11.8082 + 56.4538i 0.0142267 + 0.0680167i
\(831\) 0 0
\(832\) −140.648 + 301.620i −0.169048 + 0.362524i
\(833\) 189.385 132.609i 0.227353 0.159195i
\(834\) 0 0
\(835\) −67.8588 + 1219.07i −0.0812680 + 1.45996i
\(836\) 7.49661 0.00896724
\(837\) 0 0
\(838\) 363.763 + 363.763i 0.434084 + 0.434084i
\(839\) 156.428 + 186.423i 0.186446 + 0.222197i 0.851168 0.524893i \(-0.175895\pi\)
−0.664723 + 0.747090i \(0.731450\pi\)
\(840\) 0 0
\(841\) −403.501 + 2288.37i −0.479787 + 2.72101i
\(842\) 422.814 906.728i 0.502155 1.07687i
\(843\) 0 0
\(844\) −482.322 + 85.0465i −0.571472 + 0.100766i
\(845\) 194.075 120.397i 0.229675 0.142482i
\(846\) 0 0
\(847\) 100.720 + 375.891i 0.118913 + 0.443791i
\(848\) −605.505 1298.51i −0.714038 1.53126i
\(849\) 0 0
\(850\) −223.838 + 303.917i −0.263339 + 0.357549i
\(851\) −101.922 85.5224i −0.119767 0.100496i
\(852\) 0 0
\(853\) 543.503 + 1165.55i 0.637167 + 1.36641i 0.914088 + 0.405516i \(0.132908\pi\)
−0.276921 + 0.960893i \(0.589314\pi\)
\(854\) 696.550 + 402.153i 0.815632 + 0.470905i
\(855\) 0 0
\(856\) −525.009 909.342i −0.613328 1.06232i
\(857\) −778.374 545.023i −0.908254 0.635967i 0.0232370 0.999730i \(-0.492603\pi\)
−0.931491 + 0.363763i \(0.881492\pi\)
\(858\) 0 0
\(859\) 162.636 + 446.840i 0.189332 + 0.520186i 0.997647 0.0685649i \(-0.0218420\pi\)
−0.808314 + 0.588751i \(0.799620\pi\)
\(860\) 219.129 + 292.768i 0.254802 + 0.340428i
\(861\) 0 0
\(862\) −45.8164 + 523.684i −0.0531513 + 0.607522i
\(863\) 1127.92 + 1127.92i 1.30698 + 1.30698i 0.923583 + 0.383398i \(0.125246\pi\)
0.383398 + 0.923583i \(0.374754\pi\)
\(864\) 0 0
\(865\) 491.590 + 461.409i 0.568313 + 0.533421i
\(866\) 718.944 603.266i 0.830189 0.696612i
\(867\) 0 0
\(868\) 39.0486 27.3422i 0.0449869 0.0315002i
\(869\) 45.0312 + 123.722i 0.0518196 + 0.142373i
\(870\) 0 0
\(871\) 186.330 + 1056.73i 0.213926 + 1.21324i
\(872\) 790.437 + 211.797i 0.906465 + 0.242887i
\(873\) 0 0
\(874\) 16.6323 + 9.60269i 0.0190301 + 0.0109871i
\(875\) 386.006 226.848i 0.441150 0.259254i
\(876\) 0 0
\(877\) −308.611 + 27.0000i −0.351894 + 0.0307868i −0.261733 0.965140i \(-0.584294\pi\)
−0.0901616 + 0.995927i \(0.528738\pi\)
\(878\) −18.7686 214.527i −0.0213766 0.244336i
\(879\) 0 0
\(880\) −330.972 108.729i −0.376105 0.123555i
\(881\) −253.650 + 439.334i −0.287911 + 0.498677i −0.973311 0.229490i \(-0.926294\pi\)
0.685400 + 0.728167i \(0.259627\pi\)
\(882\) 0 0
\(883\) −164.139 + 612.574i −0.185888 + 0.693742i 0.808551 + 0.588426i \(0.200252\pi\)
−0.994439 + 0.105316i \(0.966415\pi\)
\(884\) −145.667 + 25.6849i −0.164781 + 0.0290554i
\(885\) 0 0
\(886\) −1095.80 + 398.837i −1.23679 + 0.450154i
\(887\) 978.326 + 1397.19i 1.10296 + 1.57519i 0.776654 + 0.629928i \(0.216915\pi\)
0.326307 + 0.945264i \(0.394196\pi\)
\(888\) 0 0
\(889\) 51.0528 + 60.8424i 0.0574272 + 0.0684391i
\(890\) 789.292 + 740.833i 0.886845 + 0.832397i
\(891\) 0 0
\(892\) −62.3739 + 62.3739i −0.0699259 + 0.0699259i
\(893\) −61.0571 5.34180i −0.0683730 0.00598186i
\(894\) 0 0
\(895\) 1382.38 + 198.860i 1.54456 + 0.222190i
\(896\) −503.066 + 183.101i −0.561457 + 0.204354i
\(897\) 0 0
\(898\) 346.338 494.622i 0.385677 0.550804i
\(899\) −410.529 + 237.019i −0.456651 + 0.263647i
\(900\) 0 0
\(901\) −230.991 + 400.088i −0.256372 + 0.444049i
\(902\) −162.859 + 75.9423i −0.180553 + 0.0841933i
\(903\) 0 0
\(904\) 574.943 685.190i 0.635998 0.757953i
\(905\) −427.026 335.868i −0.471852 0.371125i
\(906\) 0 0
\(907\) −476.312 + 222.108i −0.525151 + 0.244882i −0.667068 0.744997i \(-0.732451\pi\)
0.141917 + 0.989879i \(0.454673\pi\)
\(908\) −399.549 + 107.059i −0.440032 + 0.117906i
\(909\) 0 0
\(910\) 603.471 + 141.388i 0.663155 + 0.155371i
\(911\) −22.4735 127.454i −0.0246691 0.139905i 0.969986 0.243162i \(-0.0781847\pi\)
−0.994655 + 0.103257i \(0.967074\pi\)
\(912\) 0 0
\(913\) 15.5564 + 7.25406i 0.0170388 + 0.00794530i
\(914\) −1186.08 209.138i −1.29768 0.228816i
\(915\) 0 0
\(916\) 278.119 233.370i 0.303624 0.254771i
\(917\) 594.364 594.364i 0.648162 0.648162i
\(918\) 0 0
\(919\) 63.5001i 0.0690970i 0.999403 + 0.0345485i \(0.0109993\pi\)
−0.999403 + 0.0345485i \(0.989001\pi\)
\(920\) −114.759 128.288i −0.124738 0.139443i
\(921\) 0 0
\(922\) −318.378 454.691i −0.345312 0.493157i
\(923\) −738.372 344.308i −0.799969 0.373032i
\(924\) 0 0
\(925\) −471.686 287.603i −0.509931 0.310922i
\(926\) −158.686 274.853i −0.171368 0.296817i
\(927\) 0 0
\(928\) −1301.57 + 348.753i −1.40255 + 0.375812i
\(929\) −159.618 + 438.546i −0.171817 + 0.472062i −0.995475 0.0950242i \(-0.969707\pi\)
0.823658 + 0.567086i \(0.191929\pi\)
\(930\) 0 0
\(931\) −37.4180 31.3975i −0.0401912 0.0337244i
\(932\) −494.642 + 43.2756i −0.530732 + 0.0464330i
\(933\) 0 0
\(934\) 22.5814 62.0419i 0.0241771 0.0664260i
\(935\) 32.4936 + 107.529i 0.0347525 + 0.115005i
\(936\) 0 0
\(937\) −702.528 188.242i −0.749763 0.200898i −0.136350 0.990661i \(-0.543537\pi\)
−0.613413 + 0.789762i \(0.710204\pi\)
\(938\) −355.392 + 507.552i −0.378883 + 0.541101i
\(939\) 0 0
\(940\) −329.460 141.112i −0.350490 0.150119i
\(941\) 117.348 665.516i 0.124706 0.707243i −0.856776 0.515689i \(-0.827536\pi\)
0.981482 0.191554i \(-0.0613528\pi\)
\(942\) 0 0
\(943\) −129.819 11.3577i −0.137666 0.0120443i
\(944\) 1664.52i 1.76326i
\(945\) 0 0
\(946\) 384.463 0.406410
\(947\) −20.6901 + 236.489i −0.0218481 + 0.249725i 0.977415 + 0.211331i \(0.0677797\pi\)
−0.999263 + 0.0383939i \(0.987776\pi\)
\(948\) 0 0
\(949\) 1939.72 + 342.025i 2.04396 + 0.360406i
\(950\) 74.2615 + 29.0610i 0.0781700 + 0.0305906i
\(951\) 0 0
\(952\) 107.230 + 75.0829i 0.112636 + 0.0788686i
\(953\) 23.5901 88.0396i 0.0247535 0.0923815i −0.952444 0.304714i \(-0.901439\pi\)
0.977198 + 0.212332i \(0.0681059\pi\)
\(954\) 0 0
\(955\) −299.439 + 558.778i −0.313549 + 0.585108i
\(956\) −310.275 112.931i −0.324556 0.118129i
\(957\) 0 0
\(958\) 83.1143 + 950.001i 0.0867582 + 0.991650i
\(959\) 53.1085 63.2922i 0.0553790 0.0659981i
\(960\) 0 0
\(961\) 836.320 + 304.396i 0.870261 + 0.316749i
\(962\) −197.942 738.728i −0.205761 0.767909i
\(963\) 0 0
\(964\) −139.190 + 80.3615i −0.144388 + 0.0833626i
\(965\) 250.351 382.780i 0.259431 0.396663i
\(966\) 0 0
\(967\) 535.715 1148.84i 0.553997 1.18805i −0.407492 0.913209i \(-0.633597\pi\)
0.961489 0.274842i \(-0.0886255\pi\)
\(968\) 508.858 356.306i 0.525680 0.368085i
\(969\) 0 0
\(970\) −425.226 475.356i −0.438377 0.490058i
\(971\) −515.541 −0.530938 −0.265469 0.964119i \(-0.585527\pi\)
−0.265469 + 0.964119i \(0.585527\pi\)
\(972\) 0 0
\(973\) 359.420 + 359.420i 0.369394 + 0.369394i
\(974\) 425.176 + 506.705i 0.436525 + 0.520231i
\(975\) 0 0
\(976\) 327.239 1855.87i 0.335286 1.90150i
\(977\) −197.554 + 423.655i −0.202204 + 0.433628i −0.981094 0.193533i \(-0.938005\pi\)
0.778890 + 0.627161i \(0.215783\pi\)
\(978\) 0 0
\(979\) 317.265 55.9425i 0.324071 0.0571424i
\(980\) −150.577 242.723i −0.153650 0.247677i
\(981\) 0 0
\(982\) 330.950 + 1235.12i 0.337016 + 1.25776i
\(983\) −126.088 270.396i −0.128268 0.275072i 0.831677 0.555260i \(-0.187381\pi\)
−0.959945 + 0.280188i \(0.909603\pi\)
\(984\) 0 0
\(985\) −349.770 + 41.7940i −0.355097 + 0.0424304i
\(986\) 650.636 + 545.949i 0.659874 + 0.553700i
\(987\) 0 0
\(988\) 13.2069 + 28.3223i 0.0133673 + 0.0286663i
\(989\) 241.460 + 139.407i 0.244146 + 0.140958i
\(990\) 0 0
\(991\) 412.360 + 714.229i 0.416105 + 0.720716i 0.995544 0.0943004i \(-0.0300614\pi\)
−0.579438 + 0.815016i \(0.696728\pi\)
\(992\) −165.338 115.771i −0.166671 0.116704i
\(993\) 0 0
\(994\) −160.900 442.068i −0.161871 0.444737i
\(995\) −1226.91 176.495i −1.23307 0.177382i
\(996\) 0 0
\(997\) −111.406 + 1273.37i −0.111741 + 1.27720i 0.708716 + 0.705494i \(0.249275\pi\)
−0.820456 + 0.571709i \(0.806281\pi\)
\(998\) −476.412 476.412i −0.477367 0.477367i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 405.3.s.a.118.8 408
3.2 odd 2 135.3.r.a.103.27 yes 408
5.2 odd 4 inner 405.3.s.a.37.8 408
15.2 even 4 135.3.r.a.22.27 408
27.11 odd 18 135.3.r.a.43.27 yes 408
27.16 even 9 inner 405.3.s.a.208.8 408
135.92 even 36 135.3.r.a.97.27 yes 408
135.97 odd 36 inner 405.3.s.a.127.8 408
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
135.3.r.a.22.27 408 15.2 even 4
135.3.r.a.43.27 yes 408 27.11 odd 18
135.3.r.a.97.27 yes 408 135.92 even 36
135.3.r.a.103.27 yes 408 3.2 odd 2
405.3.s.a.37.8 408 5.2 odd 4 inner
405.3.s.a.118.8 408 1.1 even 1 trivial
405.3.s.a.127.8 408 135.97 odd 36 inner
405.3.s.a.208.8 408 27.16 even 9 inner