Properties

Label 405.4.a.d.1.2
Level $405$
Weight $4$
Character 405.1
Self dual yes
Analytic conductor $23.896$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [405,4,Mod(1,405)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(405, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("405.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 405 = 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 405.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(23.8957735523\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{33}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 45)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-2.37228\) of defining polynomial
Character \(\chi\) \(=\) 405.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.37228 q^{2} -2.37228 q^{4} +5.00000 q^{5} +7.37228 q^{7} -24.6060 q^{8} +O(q^{10})\) \(q+2.37228 q^{2} -2.37228 q^{4} +5.00000 q^{5} +7.37228 q^{7} -24.6060 q^{8} +11.8614 q^{10} -4.13859 q^{11} -78.9783 q^{13} +17.4891 q^{14} -39.3940 q^{16} -33.3070 q^{17} +89.3070 q^{19} -11.8614 q^{20} -9.81791 q^{22} -199.562 q^{23} +25.0000 q^{25} -187.359 q^{26} -17.4891 q^{28} +50.4810 q^{29} -6.00000 q^{31} +103.394 q^{32} -79.0137 q^{34} +36.8614 q^{35} -290.277 q^{37} +211.861 q^{38} -123.030 q^{40} -53.3369 q^{41} -298.388 q^{43} +9.81791 q^{44} -473.418 q^{46} -418.905 q^{47} -288.649 q^{49} +59.3070 q^{50} +187.359 q^{52} +399.228 q^{53} -20.6930 q^{55} -181.402 q^{56} +119.755 q^{58} +98.2418 q^{59} -683.595 q^{61} -14.2337 q^{62} +560.432 q^{64} -394.891 q^{65} +225.500 q^{67} +79.0137 q^{68} +87.4456 q^{70} +512.951 q^{71} -994.318 q^{73} -688.619 q^{74} -211.861 q^{76} -30.5109 q^{77} -201.707 q^{79} -196.970 q^{80} -126.530 q^{82} +1107.64 q^{83} -166.535 q^{85} -707.861 q^{86} +101.834 q^{88} +372.269 q^{89} -582.250 q^{91} +473.418 q^{92} -993.760 q^{94} +446.535 q^{95} -139.231 q^{97} -684.758 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{2} + q^{4} + 10 q^{5} + 9 q^{7} - 9 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - q^{2} + q^{4} + 10 q^{5} + 9 q^{7} - 9 q^{8} - 5 q^{10} - 37 q^{11} - 112 q^{13} + 12 q^{14} - 119 q^{16} + 77 q^{17} + 35 q^{19} + 5 q^{20} + 101 q^{22} - 267 q^{23} + 50 q^{25} - 76 q^{26} - 12 q^{28} + 325 q^{29} - 12 q^{31} + 247 q^{32} - 451 q^{34} + 45 q^{35} - 638 q^{37} + 395 q^{38} - 45 q^{40} + 238 q^{41} - 97 q^{43} - 101 q^{44} - 246 q^{46} - 901 q^{47} - 629 q^{49} - 25 q^{50} + 76 q^{52} + 224 q^{53} - 185 q^{55} - 156 q^{56} - 806 q^{58} - 85 q^{59} - 247 q^{61} + 6 q^{62} + 713 q^{64} - 560 q^{65} - 606 q^{67} + 451 q^{68} + 60 q^{70} + 394 q^{71} - 811 q^{73} + 484 q^{74} - 395 q^{76} - 84 q^{77} - 840 q^{79} - 595 q^{80} - 1109 q^{82} - 387 q^{83} + 385 q^{85} - 1387 q^{86} - 411 q^{88} - 1065 q^{89} - 636 q^{91} + 246 q^{92} + 632 q^{94} + 175 q^{95} - 1031 q^{97} + 463 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.37228 0.838728 0.419364 0.907818i \(-0.362253\pi\)
0.419364 + 0.907818i \(0.362253\pi\)
\(3\) 0 0
\(4\) −2.37228 −0.296535
\(5\) 5.00000 0.447214
\(6\) 0 0
\(7\) 7.37228 0.398066 0.199033 0.979993i \(-0.436220\pi\)
0.199033 + 0.979993i \(0.436220\pi\)
\(8\) −24.6060 −1.08744
\(9\) 0 0
\(10\) 11.8614 0.375091
\(11\) −4.13859 −0.113439 −0.0567197 0.998390i \(-0.518064\pi\)
−0.0567197 + 0.998390i \(0.518064\pi\)
\(12\) 0 0
\(13\) −78.9783 −1.68497 −0.842486 0.538719i \(-0.818909\pi\)
−0.842486 + 0.538719i \(0.818909\pi\)
\(14\) 17.4891 0.333869
\(15\) 0 0
\(16\) −39.3940 −0.615532
\(17\) −33.3070 −0.475185 −0.237592 0.971365i \(-0.576358\pi\)
−0.237592 + 0.971365i \(0.576358\pi\)
\(18\) 0 0
\(19\) 89.3070 1.07834 0.539169 0.842197i \(-0.318738\pi\)
0.539169 + 0.842197i \(0.318738\pi\)
\(20\) −11.8614 −0.132615
\(21\) 0 0
\(22\) −9.81791 −0.0951448
\(23\) −199.562 −1.80920 −0.904601 0.426259i \(-0.859831\pi\)
−0.904601 + 0.426259i \(0.859831\pi\)
\(24\) 0 0
\(25\) 25.0000 0.200000
\(26\) −187.359 −1.41323
\(27\) 0 0
\(28\) −17.4891 −0.118041
\(29\) 50.4810 0.323245 0.161622 0.986853i \(-0.448327\pi\)
0.161622 + 0.986853i \(0.448327\pi\)
\(30\) 0 0
\(31\) −6.00000 −0.0347623 −0.0173812 0.999849i \(-0.505533\pi\)
−0.0173812 + 0.999849i \(0.505533\pi\)
\(32\) 103.394 0.571177
\(33\) 0 0
\(34\) −79.0137 −0.398551
\(35\) 36.8614 0.178020
\(36\) 0 0
\(37\) −290.277 −1.28976 −0.644882 0.764282i \(-0.723094\pi\)
−0.644882 + 0.764282i \(0.723094\pi\)
\(38\) 211.861 0.904433
\(39\) 0 0
\(40\) −123.030 −0.486318
\(41\) −53.3369 −0.203166 −0.101583 0.994827i \(-0.532391\pi\)
−0.101583 + 0.994827i \(0.532391\pi\)
\(42\) 0 0
\(43\) −298.388 −1.05823 −0.529114 0.848551i \(-0.677476\pi\)
−0.529114 + 0.848551i \(0.677476\pi\)
\(44\) 9.81791 0.0336388
\(45\) 0 0
\(46\) −473.418 −1.51743
\(47\) −418.905 −1.30008 −0.650038 0.759902i \(-0.725247\pi\)
−0.650038 + 0.759902i \(0.725247\pi\)
\(48\) 0 0
\(49\) −288.649 −0.841544
\(50\) 59.3070 0.167746
\(51\) 0 0
\(52\) 187.359 0.499653
\(53\) 399.228 1.03468 0.517342 0.855779i \(-0.326922\pi\)
0.517342 + 0.855779i \(0.326922\pi\)
\(54\) 0 0
\(55\) −20.6930 −0.0507316
\(56\) −181.402 −0.432873
\(57\) 0 0
\(58\) 119.755 0.271114
\(59\) 98.2418 0.216780 0.108390 0.994108i \(-0.465431\pi\)
0.108390 + 0.994108i \(0.465431\pi\)
\(60\) 0 0
\(61\) −683.595 −1.43484 −0.717421 0.696640i \(-0.754678\pi\)
−0.717421 + 0.696640i \(0.754678\pi\)
\(62\) −14.2337 −0.0291561
\(63\) 0 0
\(64\) 560.432 1.09459
\(65\) −394.891 −0.753542
\(66\) 0 0
\(67\) 225.500 0.411182 0.205591 0.978638i \(-0.434088\pi\)
0.205591 + 0.978638i \(0.434088\pi\)
\(68\) 79.0137 0.140909
\(69\) 0 0
\(70\) 87.4456 0.149311
\(71\) 512.951 0.857410 0.428705 0.903445i \(-0.358970\pi\)
0.428705 + 0.903445i \(0.358970\pi\)
\(72\) 0 0
\(73\) −994.318 −1.59419 −0.797096 0.603852i \(-0.793632\pi\)
−0.797096 + 0.603852i \(0.793632\pi\)
\(74\) −688.619 −1.08176
\(75\) 0 0
\(76\) −211.861 −0.319765
\(77\) −30.5109 −0.0451563
\(78\) 0 0
\(79\) −201.707 −0.287263 −0.143631 0.989631i \(-0.545878\pi\)
−0.143631 + 0.989631i \(0.545878\pi\)
\(80\) −196.970 −0.275274
\(81\) 0 0
\(82\) −126.530 −0.170401
\(83\) 1107.64 1.46482 0.732408 0.680866i \(-0.238397\pi\)
0.732408 + 0.680866i \(0.238397\pi\)
\(84\) 0 0
\(85\) −166.535 −0.212509
\(86\) −707.861 −0.887566
\(87\) 0 0
\(88\) 101.834 0.123359
\(89\) 372.269 0.443375 0.221688 0.975118i \(-0.428843\pi\)
0.221688 + 0.975118i \(0.428843\pi\)
\(90\) 0 0
\(91\) −582.250 −0.670729
\(92\) 473.418 0.536492
\(93\) 0 0
\(94\) −993.760 −1.09041
\(95\) 446.535 0.482248
\(96\) 0 0
\(97\) −139.231 −0.145740 −0.0728700 0.997341i \(-0.523216\pi\)
−0.0728700 + 0.997341i \(0.523216\pi\)
\(98\) −684.758 −0.705826
\(99\) 0 0
\(100\) −59.3070 −0.0593070
\(101\) 1971.74 1.94253 0.971267 0.237994i \(-0.0764898\pi\)
0.971267 + 0.237994i \(0.0764898\pi\)
\(102\) 0 0
\(103\) 1812.71 1.73409 0.867045 0.498230i \(-0.166017\pi\)
0.867045 + 0.498230i \(0.166017\pi\)
\(104\) 1943.34 1.83231
\(105\) 0 0
\(106\) 947.081 0.867818
\(107\) −259.217 −0.234201 −0.117100 0.993120i \(-0.537360\pi\)
−0.117100 + 0.993120i \(0.537360\pi\)
\(108\) 0 0
\(109\) 775.556 0.681512 0.340756 0.940152i \(-0.389317\pi\)
0.340756 + 0.940152i \(0.389317\pi\)
\(110\) −49.0895 −0.0425500
\(111\) 0 0
\(112\) −290.424 −0.245022
\(113\) −215.255 −0.179199 −0.0895997 0.995978i \(-0.528559\pi\)
−0.0895997 + 0.995978i \(0.528559\pi\)
\(114\) 0 0
\(115\) −997.812 −0.809100
\(116\) −119.755 −0.0958534
\(117\) 0 0
\(118\) 233.057 0.181819
\(119\) −245.549 −0.189155
\(120\) 0 0
\(121\) −1313.87 −0.987132
\(122\) −1621.68 −1.20344
\(123\) 0 0
\(124\) 14.2337 0.0103082
\(125\) 125.000 0.0894427
\(126\) 0 0
\(127\) 2424.76 1.69420 0.847098 0.531436i \(-0.178348\pi\)
0.847098 + 0.531436i \(0.178348\pi\)
\(128\) 502.350 0.346890
\(129\) 0 0
\(130\) −936.793 −0.632017
\(131\) 260.495 0.173737 0.0868684 0.996220i \(-0.472314\pi\)
0.0868684 + 0.996220i \(0.472314\pi\)
\(132\) 0 0
\(133\) 658.397 0.429250
\(134\) 534.949 0.344870
\(135\) 0 0
\(136\) 819.552 0.516735
\(137\) −404.638 −0.252340 −0.126170 0.992009i \(-0.540268\pi\)
−0.126170 + 0.992009i \(0.540268\pi\)
\(138\) 0 0
\(139\) −1767.68 −1.07865 −0.539327 0.842097i \(-0.681321\pi\)
−0.539327 + 0.842097i \(0.681321\pi\)
\(140\) −87.4456 −0.0527893
\(141\) 0 0
\(142\) 1216.86 0.719133
\(143\) 326.859 0.191142
\(144\) 0 0
\(145\) 252.405 0.144559
\(146\) −2358.80 −1.33709
\(147\) 0 0
\(148\) 688.619 0.382460
\(149\) 1920.69 1.05603 0.528016 0.849234i \(-0.322936\pi\)
0.528016 + 0.849234i \(0.322936\pi\)
\(150\) 0 0
\(151\) −2524.56 −1.36057 −0.680284 0.732949i \(-0.738143\pi\)
−0.680284 + 0.732949i \(0.738143\pi\)
\(152\) −2197.49 −1.17263
\(153\) 0 0
\(154\) −72.3804 −0.0378739
\(155\) −30.0000 −0.0155462
\(156\) 0 0
\(157\) 1942.70 0.987544 0.493772 0.869592i \(-0.335618\pi\)
0.493772 + 0.869592i \(0.335618\pi\)
\(158\) −478.505 −0.240935
\(159\) 0 0
\(160\) 516.970 0.255438
\(161\) −1471.23 −0.720181
\(162\) 0 0
\(163\) −1051.21 −0.505134 −0.252567 0.967579i \(-0.581275\pi\)
−0.252567 + 0.967579i \(0.581275\pi\)
\(164\) 126.530 0.0602460
\(165\) 0 0
\(166\) 2627.64 1.22858
\(167\) −2816.44 −1.30505 −0.652524 0.757768i \(-0.726290\pi\)
−0.652524 + 0.757768i \(0.726290\pi\)
\(168\) 0 0
\(169\) 4040.56 1.83913
\(170\) −395.068 −0.178237
\(171\) 0 0
\(172\) 707.861 0.313802
\(173\) −1442.45 −0.633916 −0.316958 0.948440i \(-0.602661\pi\)
−0.316958 + 0.948440i \(0.602661\pi\)
\(174\) 0 0
\(175\) 184.307 0.0796132
\(176\) 163.036 0.0698255
\(177\) 0 0
\(178\) 883.126 0.371871
\(179\) 1534.89 0.640912 0.320456 0.947263i \(-0.396164\pi\)
0.320456 + 0.947263i \(0.396164\pi\)
\(180\) 0 0
\(181\) −3650.43 −1.49908 −0.749542 0.661956i \(-0.769726\pi\)
−0.749542 + 0.661956i \(0.769726\pi\)
\(182\) −1381.26 −0.562560
\(183\) 0 0
\(184\) 4910.43 1.96740
\(185\) −1451.39 −0.576800
\(186\) 0 0
\(187\) 137.844 0.0539047
\(188\) 993.760 0.385518
\(189\) 0 0
\(190\) 1059.31 0.404475
\(191\) 1357.29 0.514188 0.257094 0.966386i \(-0.417235\pi\)
0.257094 + 0.966386i \(0.417235\pi\)
\(192\) 0 0
\(193\) −1803.04 −0.672465 −0.336232 0.941779i \(-0.609153\pi\)
−0.336232 + 0.941779i \(0.609153\pi\)
\(194\) −330.295 −0.122236
\(195\) 0 0
\(196\) 684.758 0.249547
\(197\) −263.403 −0.0952624 −0.0476312 0.998865i \(-0.515167\pi\)
−0.0476312 + 0.998865i \(0.515167\pi\)
\(198\) 0 0
\(199\) 492.853 0.175565 0.0877824 0.996140i \(-0.472022\pi\)
0.0877824 + 0.996140i \(0.472022\pi\)
\(200\) −615.149 −0.217488
\(201\) 0 0
\(202\) 4677.53 1.62926
\(203\) 372.160 0.128673
\(204\) 0 0
\(205\) −266.684 −0.0908588
\(206\) 4300.25 1.45443
\(207\) 0 0
\(208\) 3111.27 1.03715
\(209\) −369.605 −0.122326
\(210\) 0 0
\(211\) −1001.54 −0.326773 −0.163387 0.986562i \(-0.552242\pi\)
−0.163387 + 0.986562i \(0.552242\pi\)
\(212\) −947.081 −0.306820
\(213\) 0 0
\(214\) −614.937 −0.196431
\(215\) −1491.94 −0.473254
\(216\) 0 0
\(217\) −44.2337 −0.0138377
\(218\) 1839.84 0.571603
\(219\) 0 0
\(220\) 49.0895 0.0150437
\(221\) 2630.53 0.800673
\(222\) 0 0
\(223\) 561.149 0.168508 0.0842540 0.996444i \(-0.473149\pi\)
0.0842540 + 0.996444i \(0.473149\pi\)
\(224\) 762.250 0.227366
\(225\) 0 0
\(226\) −510.646 −0.150300
\(227\) −3906.46 −1.14221 −0.571103 0.820878i \(-0.693484\pi\)
−0.571103 + 0.820878i \(0.693484\pi\)
\(228\) 0 0
\(229\) 2996.91 0.864809 0.432405 0.901680i \(-0.357665\pi\)
0.432405 + 0.901680i \(0.357665\pi\)
\(230\) −2367.09 −0.678615
\(231\) 0 0
\(232\) −1242.13 −0.351509
\(233\) 4194.30 1.17930 0.589651 0.807658i \(-0.299265\pi\)
0.589651 + 0.807658i \(0.299265\pi\)
\(234\) 0 0
\(235\) −2094.52 −0.581412
\(236\) −233.057 −0.0642827
\(237\) 0 0
\(238\) −582.511 −0.158649
\(239\) −166.472 −0.0450553 −0.0225276 0.999746i \(-0.507171\pi\)
−0.0225276 + 0.999746i \(0.507171\pi\)
\(240\) 0 0
\(241\) 614.544 0.164258 0.0821291 0.996622i \(-0.473828\pi\)
0.0821291 + 0.996622i \(0.473828\pi\)
\(242\) −3116.87 −0.827935
\(243\) 0 0
\(244\) 1621.68 0.425481
\(245\) −1443.25 −0.376350
\(246\) 0 0
\(247\) −7053.31 −1.81697
\(248\) 147.636 0.0378020
\(249\) 0 0
\(250\) 296.535 0.0750181
\(251\) −6136.16 −1.54307 −0.771536 0.636185i \(-0.780511\pi\)
−0.771536 + 0.636185i \(0.780511\pi\)
\(252\) 0 0
\(253\) 825.908 0.205235
\(254\) 5752.22 1.42097
\(255\) 0 0
\(256\) −3291.74 −0.803647
\(257\) 5450.40 1.32291 0.661453 0.749987i \(-0.269940\pi\)
0.661453 + 0.749987i \(0.269940\pi\)
\(258\) 0 0
\(259\) −2140.01 −0.513411
\(260\) 936.793 0.223452
\(261\) 0 0
\(262\) 617.967 0.145718
\(263\) −783.239 −0.183637 −0.0918186 0.995776i \(-0.529268\pi\)
−0.0918186 + 0.995776i \(0.529268\pi\)
\(264\) 0 0
\(265\) 1996.14 0.462724
\(266\) 1561.90 0.360024
\(267\) 0 0
\(268\) −534.949 −0.121930
\(269\) 141.019 0.0319632 0.0159816 0.999872i \(-0.494913\pi\)
0.0159816 + 0.999872i \(0.494913\pi\)
\(270\) 0 0
\(271\) 6375.83 1.42917 0.714583 0.699551i \(-0.246616\pi\)
0.714583 + 0.699551i \(0.246616\pi\)
\(272\) 1312.10 0.292491
\(273\) 0 0
\(274\) −959.916 −0.211645
\(275\) −103.465 −0.0226879
\(276\) 0 0
\(277\) 6823.17 1.48002 0.740008 0.672598i \(-0.234821\pi\)
0.740008 + 0.672598i \(0.234821\pi\)
\(278\) −4193.44 −0.904697
\(279\) 0 0
\(280\) −907.011 −0.193587
\(281\) 589.693 0.125189 0.0625945 0.998039i \(-0.480063\pi\)
0.0625945 + 0.998039i \(0.480063\pi\)
\(282\) 0 0
\(283\) −5976.03 −1.25526 −0.627629 0.778513i \(-0.715974\pi\)
−0.627629 + 0.778513i \(0.715974\pi\)
\(284\) −1216.86 −0.254252
\(285\) 0 0
\(286\) 775.401 0.160316
\(287\) −393.214 −0.0808736
\(288\) 0 0
\(289\) −3803.64 −0.774199
\(290\) 598.776 0.121246
\(291\) 0 0
\(292\) 2358.80 0.472734
\(293\) 8057.49 1.60656 0.803282 0.595599i \(-0.203085\pi\)
0.803282 + 0.595599i \(0.203085\pi\)
\(294\) 0 0
\(295\) 491.209 0.0969467
\(296\) 7142.55 1.40254
\(297\) 0 0
\(298\) 4556.41 0.885724
\(299\) 15761.1 3.04845
\(300\) 0 0
\(301\) −2199.80 −0.421244
\(302\) −5988.96 −1.14115
\(303\) 0 0
\(304\) −3518.16 −0.663752
\(305\) −3417.97 −0.641681
\(306\) 0 0
\(307\) −4546.58 −0.845235 −0.422618 0.906308i \(-0.638889\pi\)
−0.422618 + 0.906308i \(0.638889\pi\)
\(308\) 72.3804 0.0133904
\(309\) 0 0
\(310\) −71.1684 −0.0130390
\(311\) −4202.79 −0.766298 −0.383149 0.923687i \(-0.625160\pi\)
−0.383149 + 0.923687i \(0.625160\pi\)
\(312\) 0 0
\(313\) −6973.28 −1.25927 −0.629637 0.776889i \(-0.716797\pi\)
−0.629637 + 0.776889i \(0.716797\pi\)
\(314\) 4608.63 0.828281
\(315\) 0 0
\(316\) 478.505 0.0851835
\(317\) −7360.03 −1.30404 −0.652020 0.758202i \(-0.726078\pi\)
−0.652020 + 0.758202i \(0.726078\pi\)
\(318\) 0 0
\(319\) −208.920 −0.0366687
\(320\) 2802.16 0.489517
\(321\) 0 0
\(322\) −3490.17 −0.604036
\(323\) −2974.55 −0.512410
\(324\) 0 0
\(325\) −1974.46 −0.336994
\(326\) −2493.76 −0.423670
\(327\) 0 0
\(328\) 1312.41 0.220931
\(329\) −3088.28 −0.517516
\(330\) 0 0
\(331\) −6834.12 −1.13486 −0.567428 0.823423i \(-0.692062\pi\)
−0.567428 + 0.823423i \(0.692062\pi\)
\(332\) −2627.64 −0.434369
\(333\) 0 0
\(334\) −6681.39 −1.09458
\(335\) 1127.50 0.183886
\(336\) 0 0
\(337\) −6928.48 −1.11994 −0.559968 0.828514i \(-0.689186\pi\)
−0.559968 + 0.828514i \(0.689186\pi\)
\(338\) 9585.35 1.54253
\(339\) 0 0
\(340\) 395.068 0.0630164
\(341\) 24.8316 0.00394341
\(342\) 0 0
\(343\) −4656.70 −0.733055
\(344\) 7342.14 1.15076
\(345\) 0 0
\(346\) −3421.90 −0.531683
\(347\) −7540.60 −1.16657 −0.583286 0.812267i \(-0.698233\pi\)
−0.583286 + 0.812267i \(0.698233\pi\)
\(348\) 0 0
\(349\) −1844.17 −0.282854 −0.141427 0.989949i \(-0.545169\pi\)
−0.141427 + 0.989949i \(0.545169\pi\)
\(350\) 437.228 0.0667738
\(351\) 0 0
\(352\) −427.906 −0.0647939
\(353\) −7097.49 −1.07015 −0.535073 0.844806i \(-0.679716\pi\)
−0.535073 + 0.844806i \(0.679716\pi\)
\(354\) 0 0
\(355\) 2564.75 0.383445
\(356\) −883.126 −0.131476
\(357\) 0 0
\(358\) 3641.19 0.537550
\(359\) 7709.65 1.13342 0.566712 0.823916i \(-0.308215\pi\)
0.566712 + 0.823916i \(0.308215\pi\)
\(360\) 0 0
\(361\) 1116.75 0.162815
\(362\) −8659.85 −1.25732
\(363\) 0 0
\(364\) 1381.26 0.198895
\(365\) −4971.59 −0.712945
\(366\) 0 0
\(367\) −5256.39 −0.747633 −0.373816 0.927503i \(-0.621951\pi\)
−0.373816 + 0.927503i \(0.621951\pi\)
\(368\) 7861.57 1.11362
\(369\) 0 0
\(370\) −3443.10 −0.483778
\(371\) 2943.22 0.411872
\(372\) 0 0
\(373\) 996.454 0.138323 0.0691615 0.997605i \(-0.477968\pi\)
0.0691615 + 0.997605i \(0.477968\pi\)
\(374\) 327.005 0.0452114
\(375\) 0 0
\(376\) 10307.6 1.41376
\(377\) −3986.90 −0.544658
\(378\) 0 0
\(379\) −2735.20 −0.370707 −0.185354 0.982672i \(-0.559343\pi\)
−0.185354 + 0.982672i \(0.559343\pi\)
\(380\) −1059.31 −0.143003
\(381\) 0 0
\(382\) 3219.87 0.431264
\(383\) −8939.46 −1.19265 −0.596325 0.802743i \(-0.703373\pi\)
−0.596325 + 0.802743i \(0.703373\pi\)
\(384\) 0 0
\(385\) −152.554 −0.0201945
\(386\) −4277.32 −0.564015
\(387\) 0 0
\(388\) 330.295 0.0432170
\(389\) −11133.9 −1.45118 −0.725590 0.688127i \(-0.758433\pi\)
−0.725590 + 0.688127i \(0.758433\pi\)
\(390\) 0 0
\(391\) 6646.83 0.859705
\(392\) 7102.50 0.915129
\(393\) 0 0
\(394\) −624.866 −0.0798992
\(395\) −1008.53 −0.128468
\(396\) 0 0
\(397\) −9479.40 −1.19838 −0.599191 0.800606i \(-0.704511\pi\)
−0.599191 + 0.800606i \(0.704511\pi\)
\(398\) 1169.19 0.147251
\(399\) 0 0
\(400\) −984.851 −0.123106
\(401\) 9427.60 1.17404 0.587022 0.809571i \(-0.300300\pi\)
0.587022 + 0.809571i \(0.300300\pi\)
\(402\) 0 0
\(403\) 473.870 0.0585735
\(404\) −4677.53 −0.576029
\(405\) 0 0
\(406\) 882.869 0.107921
\(407\) 1201.34 0.146310
\(408\) 0 0
\(409\) 408.186 0.0493484 0.0246742 0.999696i \(-0.492145\pi\)
0.0246742 + 0.999696i \(0.492145\pi\)
\(410\) −632.650 −0.0762058
\(411\) 0 0
\(412\) −4300.25 −0.514219
\(413\) 724.266 0.0862925
\(414\) 0 0
\(415\) 5538.22 0.655085
\(416\) −8165.88 −0.962416
\(417\) 0 0
\(418\) −876.808 −0.102598
\(419\) 8813.88 1.02765 0.513826 0.857894i \(-0.328228\pi\)
0.513826 + 0.857894i \(0.328228\pi\)
\(420\) 0 0
\(421\) −2349.37 −0.271974 −0.135987 0.990711i \(-0.543421\pi\)
−0.135987 + 0.990711i \(0.543421\pi\)
\(422\) −2375.94 −0.274074
\(423\) 0 0
\(424\) −9823.40 −1.12516
\(425\) −832.676 −0.0950370
\(426\) 0 0
\(427\) −5039.65 −0.571161
\(428\) 614.937 0.0694488
\(429\) 0 0
\(430\) −3539.31 −0.396931
\(431\) 4481.16 0.500812 0.250406 0.968141i \(-0.419436\pi\)
0.250406 + 0.968141i \(0.419436\pi\)
\(432\) 0 0
\(433\) 3422.69 0.379871 0.189935 0.981797i \(-0.439172\pi\)
0.189935 + 0.981797i \(0.439172\pi\)
\(434\) −104.935 −0.0116061
\(435\) 0 0
\(436\) −1839.84 −0.202092
\(437\) −17822.3 −1.95093
\(438\) 0 0
\(439\) −8129.18 −0.883792 −0.441896 0.897066i \(-0.645694\pi\)
−0.441896 + 0.897066i \(0.645694\pi\)
\(440\) 509.171 0.0551676
\(441\) 0 0
\(442\) 6240.36 0.671547
\(443\) 2350.78 0.252119 0.126060 0.992023i \(-0.459767\pi\)
0.126060 + 0.992023i \(0.459767\pi\)
\(444\) 0 0
\(445\) 1861.34 0.198283
\(446\) 1331.20 0.141332
\(447\) 0 0
\(448\) 4131.66 0.435720
\(449\) 4760.99 0.500412 0.250206 0.968193i \(-0.419502\pi\)
0.250206 + 0.968193i \(0.419502\pi\)
\(450\) 0 0
\(451\) 220.740 0.0230471
\(452\) 510.646 0.0531389
\(453\) 0 0
\(454\) −9267.22 −0.958000
\(455\) −2911.25 −0.299959
\(456\) 0 0
\(457\) 2229.08 0.228167 0.114083 0.993471i \(-0.463607\pi\)
0.114083 + 0.993471i \(0.463607\pi\)
\(458\) 7109.51 0.725340
\(459\) 0 0
\(460\) 2367.09 0.239927
\(461\) 5736.62 0.579569 0.289784 0.957092i \(-0.406416\pi\)
0.289784 + 0.957092i \(0.406416\pi\)
\(462\) 0 0
\(463\) −3603.98 −0.361752 −0.180876 0.983506i \(-0.557893\pi\)
−0.180876 + 0.983506i \(0.557893\pi\)
\(464\) −1988.65 −0.198967
\(465\) 0 0
\(466\) 9950.05 0.989114
\(467\) −3780.37 −0.374593 −0.187296 0.982303i \(-0.559972\pi\)
−0.187296 + 0.982303i \(0.559972\pi\)
\(468\) 0 0
\(469\) 1662.45 0.163677
\(470\) −4968.80 −0.487646
\(471\) 0 0
\(472\) −2417.33 −0.235735
\(473\) 1234.91 0.120045
\(474\) 0 0
\(475\) 2232.68 0.215668
\(476\) 582.511 0.0560911
\(477\) 0 0
\(478\) −394.920 −0.0377891
\(479\) −14461.2 −1.37943 −0.689715 0.724081i \(-0.742264\pi\)
−0.689715 + 0.724081i \(0.742264\pi\)
\(480\) 0 0
\(481\) 22925.6 2.17322
\(482\) 1457.87 0.137768
\(483\) 0 0
\(484\) 3116.87 0.292719
\(485\) −696.156 −0.0651769
\(486\) 0 0
\(487\) 3581.74 0.333273 0.166636 0.986018i \(-0.446709\pi\)
0.166636 + 0.986018i \(0.446709\pi\)
\(488\) 16820.5 1.56031
\(489\) 0 0
\(490\) −3423.79 −0.315655
\(491\) −7015.39 −0.644807 −0.322403 0.946602i \(-0.604491\pi\)
−0.322403 + 0.946602i \(0.604491\pi\)
\(492\) 0 0
\(493\) −1681.37 −0.153601
\(494\) −16732.4 −1.52394
\(495\) 0 0
\(496\) 236.364 0.0213973
\(497\) 3781.62 0.341305
\(498\) 0 0
\(499\) 2519.79 0.226055 0.113028 0.993592i \(-0.463945\pi\)
0.113028 + 0.993592i \(0.463945\pi\)
\(500\) −296.535 −0.0265229
\(501\) 0 0
\(502\) −14556.7 −1.29422
\(503\) −4989.32 −0.442272 −0.221136 0.975243i \(-0.570976\pi\)
−0.221136 + 0.975243i \(0.570976\pi\)
\(504\) 0 0
\(505\) 9858.72 0.868727
\(506\) 1959.29 0.172136
\(507\) 0 0
\(508\) −5752.22 −0.502389
\(509\) 4719.52 0.410980 0.205490 0.978659i \(-0.434121\pi\)
0.205490 + 0.978659i \(0.434121\pi\)
\(510\) 0 0
\(511\) −7330.39 −0.634594
\(512\) −11827.7 −1.02093
\(513\) 0 0
\(514\) 12929.9 1.10956
\(515\) 9063.53 0.775509
\(516\) 0 0
\(517\) 1733.68 0.147480
\(518\) −5076.69 −0.430612
\(519\) 0 0
\(520\) 9716.68 0.819432
\(521\) −10711.0 −0.900682 −0.450341 0.892857i \(-0.648698\pi\)
−0.450341 + 0.892857i \(0.648698\pi\)
\(522\) 0 0
\(523\) −10566.4 −0.883433 −0.441717 0.897155i \(-0.645630\pi\)
−0.441717 + 0.897155i \(0.645630\pi\)
\(524\) −617.967 −0.0515191
\(525\) 0 0
\(526\) −1858.06 −0.154022
\(527\) 199.842 0.0165185
\(528\) 0 0
\(529\) 27658.2 2.27321
\(530\) 4735.41 0.388100
\(531\) 0 0
\(532\) −1561.90 −0.127288
\(533\) 4212.45 0.342329
\(534\) 0 0
\(535\) −1296.09 −0.104738
\(536\) −5548.64 −0.447136
\(537\) 0 0
\(538\) 334.537 0.0268084
\(539\) 1194.60 0.0954642
\(540\) 0 0
\(541\) −6595.81 −0.524170 −0.262085 0.965045i \(-0.584410\pi\)
−0.262085 + 0.965045i \(0.584410\pi\)
\(542\) 15125.3 1.19868
\(543\) 0 0
\(544\) −3443.75 −0.271415
\(545\) 3877.78 0.304782
\(546\) 0 0
\(547\) −6388.78 −0.499387 −0.249693 0.968325i \(-0.580330\pi\)
−0.249693 + 0.968325i \(0.580330\pi\)
\(548\) 959.916 0.0748277
\(549\) 0 0
\(550\) −245.448 −0.0190290
\(551\) 4508.31 0.348567
\(552\) 0 0
\(553\) −1487.04 −0.114350
\(554\) 16186.5 1.24133
\(555\) 0 0
\(556\) 4193.44 0.319859
\(557\) 15992.4 1.21655 0.608276 0.793726i \(-0.291862\pi\)
0.608276 + 0.793726i \(0.291862\pi\)
\(558\) 0 0
\(559\) 23566.2 1.78308
\(560\) −1452.12 −0.109577
\(561\) 0 0
\(562\) 1398.92 0.105000
\(563\) −6351.12 −0.475431 −0.237716 0.971335i \(-0.576399\pi\)
−0.237716 + 0.971335i \(0.576399\pi\)
\(564\) 0 0
\(565\) −1076.28 −0.0801404
\(566\) −14176.8 −1.05282
\(567\) 0 0
\(568\) −12621.7 −0.932382
\(569\) 9620.42 0.708803 0.354402 0.935093i \(-0.384685\pi\)
0.354402 + 0.935093i \(0.384685\pi\)
\(570\) 0 0
\(571\) −5064.60 −0.371186 −0.185593 0.982627i \(-0.559421\pi\)
−0.185593 + 0.982627i \(0.559421\pi\)
\(572\) −775.401 −0.0566803
\(573\) 0 0
\(574\) −932.815 −0.0678309
\(575\) −4989.06 −0.361840
\(576\) 0 0
\(577\) 11355.1 0.819273 0.409637 0.912249i \(-0.365655\pi\)
0.409637 + 0.912249i \(0.365655\pi\)
\(578\) −9023.31 −0.649343
\(579\) 0 0
\(580\) −598.776 −0.0428669
\(581\) 8165.86 0.583093
\(582\) 0 0
\(583\) −1652.24 −0.117374
\(584\) 24466.2 1.73359
\(585\) 0 0
\(586\) 19114.6 1.34747
\(587\) −10032.0 −0.705391 −0.352696 0.935738i \(-0.614735\pi\)
−0.352696 + 0.935738i \(0.614735\pi\)
\(588\) 0 0
\(589\) −535.842 −0.0374856
\(590\) 1165.29 0.0813120
\(591\) 0 0
\(592\) 11435.2 0.793891
\(593\) −1325.12 −0.0917643 −0.0458821 0.998947i \(-0.514610\pi\)
−0.0458821 + 0.998947i \(0.514610\pi\)
\(594\) 0 0
\(595\) −1227.74 −0.0845926
\(596\) −4556.41 −0.313151
\(597\) 0 0
\(598\) 37389.8 2.55682
\(599\) 16571.6 1.13038 0.565188 0.824962i \(-0.308804\pi\)
0.565188 + 0.824962i \(0.308804\pi\)
\(600\) 0 0
\(601\) 17209.0 1.16800 0.584001 0.811753i \(-0.301486\pi\)
0.584001 + 0.811753i \(0.301486\pi\)
\(602\) −5218.55 −0.353310
\(603\) 0 0
\(604\) 5988.96 0.403456
\(605\) −6569.36 −0.441459
\(606\) 0 0
\(607\) 4177.98 0.279373 0.139686 0.990196i \(-0.455391\pi\)
0.139686 + 0.990196i \(0.455391\pi\)
\(608\) 9233.81 0.615922
\(609\) 0 0
\(610\) −8108.40 −0.538196
\(611\) 33084.4 2.19059
\(612\) 0 0
\(613\) 14944.2 0.984649 0.492324 0.870412i \(-0.336147\pi\)
0.492324 + 0.870412i \(0.336147\pi\)
\(614\) −10785.8 −0.708922
\(615\) 0 0
\(616\) 750.750 0.0491048
\(617\) 20502.9 1.33779 0.668893 0.743358i \(-0.266768\pi\)
0.668893 + 0.743358i \(0.266768\pi\)
\(618\) 0 0
\(619\) 2728.53 0.177171 0.0885854 0.996069i \(-0.471765\pi\)
0.0885854 + 0.996069i \(0.471765\pi\)
\(620\) 71.1684 0.00460999
\(621\) 0 0
\(622\) −9970.21 −0.642715
\(623\) 2744.47 0.176493
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) −16542.6 −1.05619
\(627\) 0 0
\(628\) −4608.63 −0.292841
\(629\) 9668.27 0.612876
\(630\) 0 0
\(631\) −3393.08 −0.214067 −0.107034 0.994255i \(-0.534135\pi\)
−0.107034 + 0.994255i \(0.534135\pi\)
\(632\) 4963.19 0.312381
\(633\) 0 0
\(634\) −17460.1 −1.09373
\(635\) 12123.8 0.757668
\(636\) 0 0
\(637\) 22797.0 1.41798
\(638\) −495.618 −0.0307550
\(639\) 0 0
\(640\) 2511.75 0.155134
\(641\) 13561.8 0.835659 0.417830 0.908525i \(-0.362791\pi\)
0.417830 + 0.908525i \(0.362791\pi\)
\(642\) 0 0
\(643\) 12966.9 0.795279 0.397639 0.917542i \(-0.369830\pi\)
0.397639 + 0.917542i \(0.369830\pi\)
\(644\) 3490.17 0.213559
\(645\) 0 0
\(646\) −7056.47 −0.429773
\(647\) 25837.9 1.57000 0.785001 0.619495i \(-0.212663\pi\)
0.785001 + 0.619495i \(0.212663\pi\)
\(648\) 0 0
\(649\) −406.583 −0.0245913
\(650\) −4683.97 −0.282647
\(651\) 0 0
\(652\) 2493.76 0.149790
\(653\) −28266.9 −1.69398 −0.846989 0.531611i \(-0.821587\pi\)
−0.846989 + 0.531611i \(0.821587\pi\)
\(654\) 0 0
\(655\) 1302.47 0.0776975
\(656\) 2101.15 0.125055
\(657\) 0 0
\(658\) −7326.28 −0.434055
\(659\) −15957.8 −0.943292 −0.471646 0.881788i \(-0.656340\pi\)
−0.471646 + 0.881788i \(0.656340\pi\)
\(660\) 0 0
\(661\) 24057.8 1.41564 0.707821 0.706392i \(-0.249678\pi\)
0.707821 + 0.706392i \(0.249678\pi\)
\(662\) −16212.5 −0.951836
\(663\) 0 0
\(664\) −27254.6 −1.59290
\(665\) 3291.98 0.191966
\(666\) 0 0
\(667\) −10074.1 −0.584815
\(668\) 6681.39 0.386992
\(669\) 0 0
\(670\) 2674.74 0.154230
\(671\) 2829.12 0.162768
\(672\) 0 0
\(673\) 1253.04 0.0717698 0.0358849 0.999356i \(-0.488575\pi\)
0.0358849 + 0.999356i \(0.488575\pi\)
\(674\) −16436.3 −0.939321
\(675\) 0 0
\(676\) −9585.35 −0.545366
\(677\) 880.728 0.0499987 0.0249994 0.999687i \(-0.492042\pi\)
0.0249994 + 0.999687i \(0.492042\pi\)
\(678\) 0 0
\(679\) −1026.45 −0.0580141
\(680\) 4097.76 0.231091
\(681\) 0 0
\(682\) 58.9074 0.00330745
\(683\) −26686.4 −1.49506 −0.747531 0.664227i \(-0.768761\pi\)
−0.747531 + 0.664227i \(0.768761\pi\)
\(684\) 0 0
\(685\) −2023.19 −0.112850
\(686\) −11047.0 −0.614834
\(687\) 0 0
\(688\) 11754.7 0.651373
\(689\) −31530.3 −1.74341
\(690\) 0 0
\(691\) −171.412 −0.00943678 −0.00471839 0.999989i \(-0.501502\pi\)
−0.00471839 + 0.999989i \(0.501502\pi\)
\(692\) 3421.90 0.187978
\(693\) 0 0
\(694\) −17888.4 −0.978437
\(695\) −8838.41 −0.482388
\(696\) 0 0
\(697\) 1776.49 0.0965416
\(698\) −4374.88 −0.237238
\(699\) 0 0
\(700\) −437.228 −0.0236081
\(701\) −14229.6 −0.766684 −0.383342 0.923607i \(-0.625227\pi\)
−0.383342 + 0.923607i \(0.625227\pi\)
\(702\) 0 0
\(703\) −25923.8 −1.39080
\(704\) −2319.40 −0.124170
\(705\) 0 0
\(706\) −16837.2 −0.897561
\(707\) 14536.3 0.773256
\(708\) 0 0
\(709\) −7774.08 −0.411794 −0.205897 0.978574i \(-0.566011\pi\)
−0.205897 + 0.978574i \(0.566011\pi\)
\(710\) 6084.32 0.321606
\(711\) 0 0
\(712\) −9160.03 −0.482144
\(713\) 1197.37 0.0628921
\(714\) 0 0
\(715\) 1634.29 0.0854813
\(716\) −3641.19 −0.190053
\(717\) 0 0
\(718\) 18289.4 0.950635
\(719\) −22091.8 −1.14588 −0.572939 0.819598i \(-0.694197\pi\)
−0.572939 + 0.819598i \(0.694197\pi\)
\(720\) 0 0
\(721\) 13363.8 0.690282
\(722\) 2649.24 0.136557
\(723\) 0 0
\(724\) 8659.85 0.444531
\(725\) 1262.03 0.0646489
\(726\) 0 0
\(727\) 6643.48 0.338918 0.169459 0.985537i \(-0.445798\pi\)
0.169459 + 0.985537i \(0.445798\pi\)
\(728\) 14326.8 0.729378
\(729\) 0 0
\(730\) −11794.0 −0.597967
\(731\) 9938.43 0.502854
\(732\) 0 0
\(733\) −3122.81 −0.157358 −0.0786791 0.996900i \(-0.525070\pi\)
−0.0786791 + 0.996900i \(0.525070\pi\)
\(734\) −12469.6 −0.627061
\(735\) 0 0
\(736\) −20633.6 −1.03337
\(737\) −933.252 −0.0466442
\(738\) 0 0
\(739\) 19549.5 0.973127 0.486563 0.873645i \(-0.338250\pi\)
0.486563 + 0.873645i \(0.338250\pi\)
\(740\) 3443.10 0.171042
\(741\) 0 0
\(742\) 6982.15 0.345449
\(743\) 9391.85 0.463733 0.231866 0.972748i \(-0.425517\pi\)
0.231866 + 0.972748i \(0.425517\pi\)
\(744\) 0 0
\(745\) 9603.44 0.472272
\(746\) 2363.87 0.116015
\(747\) 0 0
\(748\) −327.005 −0.0159846
\(749\) −1911.02 −0.0932274
\(750\) 0 0
\(751\) −18272.0 −0.887824 −0.443912 0.896070i \(-0.646410\pi\)
−0.443912 + 0.896070i \(0.646410\pi\)
\(752\) 16502.4 0.800238
\(753\) 0 0
\(754\) −9458.06 −0.456820
\(755\) −12622.8 −0.608464
\(756\) 0 0
\(757\) 2016.30 0.0968082 0.0484041 0.998828i \(-0.484586\pi\)
0.0484041 + 0.998828i \(0.484586\pi\)
\(758\) −6488.68 −0.310923
\(759\) 0 0
\(760\) −10987.4 −0.524416
\(761\) −17692.8 −0.842789 −0.421395 0.906877i \(-0.638459\pi\)
−0.421395 + 0.906877i \(0.638459\pi\)
\(762\) 0 0
\(763\) 5717.62 0.271287
\(764\) −3219.87 −0.152475
\(765\) 0 0
\(766\) −21206.9 −1.00031
\(767\) −7758.96 −0.365267
\(768\) 0 0
\(769\) −9759.72 −0.457665 −0.228833 0.973466i \(-0.573491\pi\)
−0.228833 + 0.973466i \(0.573491\pi\)
\(770\) −361.902 −0.0169377
\(771\) 0 0
\(772\) 4277.32 0.199409
\(773\) −10338.3 −0.481038 −0.240519 0.970644i \(-0.577318\pi\)
−0.240519 + 0.970644i \(0.577318\pi\)
\(774\) 0 0
\(775\) −150.000 −0.00695246
\(776\) 3425.92 0.158484
\(777\) 0 0
\(778\) −26412.7 −1.21715
\(779\) −4763.36 −0.219082
\(780\) 0 0
\(781\) −2122.90 −0.0972640
\(782\) 15768.2 0.721059
\(783\) 0 0
\(784\) 11371.1 0.517997
\(785\) 9713.50 0.441643
\(786\) 0 0
\(787\) 4727.29 0.214116 0.107058 0.994253i \(-0.465857\pi\)
0.107058 + 0.994253i \(0.465857\pi\)
\(788\) 624.866 0.0282487
\(789\) 0 0
\(790\) −2392.52 −0.107750
\(791\) −1586.92 −0.0713331
\(792\) 0 0
\(793\) 53989.1 2.41767
\(794\) −22487.8 −1.00512
\(795\) 0 0
\(796\) −1169.19 −0.0520612
\(797\) 28198.9 1.25327 0.626634 0.779313i \(-0.284432\pi\)
0.626634 + 0.779313i \(0.284432\pi\)
\(798\) 0 0
\(799\) 13952.5 0.617776
\(800\) 2584.85 0.114235
\(801\) 0 0
\(802\) 22364.9 0.984704
\(803\) 4115.08 0.180844
\(804\) 0 0
\(805\) −7356.15 −0.322075
\(806\) 1124.15 0.0491272
\(807\) 0 0
\(808\) −48516.7 −2.11239
\(809\) −27310.5 −1.18688 −0.593439 0.804879i \(-0.702230\pi\)
−0.593439 + 0.804879i \(0.702230\pi\)
\(810\) 0 0
\(811\) −18045.0 −0.781312 −0.390656 0.920537i \(-0.627752\pi\)
−0.390656 + 0.920537i \(0.627752\pi\)
\(812\) −882.869 −0.0381559
\(813\) 0 0
\(814\) 2849.91 0.122714
\(815\) −5256.03 −0.225903
\(816\) 0 0
\(817\) −26648.2 −1.14113
\(818\) 968.333 0.0413899
\(819\) 0 0
\(820\) 632.650 0.0269428
\(821\) −12577.7 −0.534671 −0.267335 0.963604i \(-0.586143\pi\)
−0.267335 + 0.963604i \(0.586143\pi\)
\(822\) 0 0
\(823\) −34968.5 −1.48107 −0.740537 0.672015i \(-0.765429\pi\)
−0.740537 + 0.672015i \(0.765429\pi\)
\(824\) −44603.4 −1.88572
\(825\) 0 0
\(826\) 1718.16 0.0723759
\(827\) −6735.01 −0.283191 −0.141596 0.989925i \(-0.545223\pi\)
−0.141596 + 0.989925i \(0.545223\pi\)
\(828\) 0 0
\(829\) −2867.97 −0.120155 −0.0600777 0.998194i \(-0.519135\pi\)
−0.0600777 + 0.998194i \(0.519135\pi\)
\(830\) 13138.2 0.549438
\(831\) 0 0
\(832\) −44261.9 −1.84436
\(833\) 9614.06 0.399889
\(834\) 0 0
\(835\) −14082.2 −0.583635
\(836\) 876.808 0.0362740
\(837\) 0 0
\(838\) 20909.0 0.861921
\(839\) 27855.8 1.14623 0.573116 0.819474i \(-0.305734\pi\)
0.573116 + 0.819474i \(0.305734\pi\)
\(840\) 0 0
\(841\) −21840.7 −0.895513
\(842\) −5573.36 −0.228113
\(843\) 0 0
\(844\) 2375.94 0.0968997
\(845\) 20202.8 0.822483
\(846\) 0 0
\(847\) −9686.23 −0.392943
\(848\) −15727.2 −0.636880
\(849\) 0 0
\(850\) −1975.34 −0.0797102
\(851\) 57928.4 2.33344
\(852\) 0 0
\(853\) 10926.1 0.438573 0.219287 0.975661i \(-0.429627\pi\)
0.219287 + 0.975661i \(0.429627\pi\)
\(854\) −11955.5 −0.479049
\(855\) 0 0
\(856\) 6378.30 0.254680
\(857\) 45169.3 1.80041 0.900206 0.435464i \(-0.143416\pi\)
0.900206 + 0.435464i \(0.143416\pi\)
\(858\) 0 0
\(859\) −7051.90 −0.280102 −0.140051 0.990144i \(-0.544727\pi\)
−0.140051 + 0.990144i \(0.544727\pi\)
\(860\) 3539.31 0.140336
\(861\) 0 0
\(862\) 10630.6 0.420045
\(863\) 6882.52 0.271476 0.135738 0.990745i \(-0.456659\pi\)
0.135738 + 0.990745i \(0.456659\pi\)
\(864\) 0 0
\(865\) −7212.25 −0.283496
\(866\) 8119.59 0.318608
\(867\) 0 0
\(868\) 104.935 0.00410336
\(869\) 834.782 0.0325869
\(870\) 0 0
\(871\) −17809.6 −0.692829
\(872\) −19083.3 −0.741104
\(873\) 0 0
\(874\) −42279.6 −1.63630
\(875\) 921.535 0.0356041
\(876\) 0 0
\(877\) 37368.7 1.43883 0.719413 0.694583i \(-0.244411\pi\)
0.719413 + 0.694583i \(0.244411\pi\)
\(878\) −19284.7 −0.741261
\(879\) 0 0
\(880\) 815.179 0.0312269
\(881\) −23880.5 −0.913229 −0.456614 0.889665i \(-0.650938\pi\)
−0.456614 + 0.889665i \(0.650938\pi\)
\(882\) 0 0
\(883\) −33107.0 −1.26177 −0.630883 0.775878i \(-0.717307\pi\)
−0.630883 + 0.775878i \(0.717307\pi\)
\(884\) −6240.36 −0.237428
\(885\) 0 0
\(886\) 5576.71 0.211460
\(887\) 11302.1 0.427834 0.213917 0.976852i \(-0.431378\pi\)
0.213917 + 0.976852i \(0.431378\pi\)
\(888\) 0 0
\(889\) 17876.0 0.674402
\(890\) 4415.63 0.166306
\(891\) 0 0
\(892\) −1331.20 −0.0499686
\(893\) −37411.2 −1.40192
\(894\) 0 0
\(895\) 7674.46 0.286624
\(896\) 3703.47 0.138085
\(897\) 0 0
\(898\) 11294.4 0.419710
\(899\) −302.886 −0.0112367
\(900\) 0 0
\(901\) −13297.1 −0.491666
\(902\) 523.657 0.0193302
\(903\) 0 0
\(904\) 5296.57 0.194869
\(905\) −18252.2 −0.670411
\(906\) 0 0
\(907\) 3962.24 0.145054 0.0725270 0.997366i \(-0.476894\pi\)
0.0725270 + 0.997366i \(0.476894\pi\)
\(908\) 9267.22 0.338704
\(909\) 0 0
\(910\) −6906.30 −0.251584
\(911\) −34046.2 −1.23820 −0.619100 0.785313i \(-0.712502\pi\)
−0.619100 + 0.785313i \(0.712502\pi\)
\(912\) 0 0
\(913\) −4584.09 −0.166168
\(914\) 5288.02 0.191370
\(915\) 0 0
\(916\) −7109.51 −0.256446
\(917\) 1920.44 0.0691587
\(918\) 0 0
\(919\) −35121.5 −1.26066 −0.630332 0.776326i \(-0.717081\pi\)
−0.630332 + 0.776326i \(0.717081\pi\)
\(920\) 24552.1 0.879848
\(921\) 0 0
\(922\) 13608.9 0.486101
\(923\) −40512.0 −1.44471
\(924\) 0 0
\(925\) −7256.93 −0.257953
\(926\) −8549.64 −0.303411
\(927\) 0 0
\(928\) 5219.44 0.184630
\(929\) 24457.8 0.863761 0.431881 0.901931i \(-0.357850\pi\)
0.431881 + 0.901931i \(0.357850\pi\)
\(930\) 0 0
\(931\) −25778.4 −0.907469
\(932\) −9950.05 −0.349705
\(933\) 0 0
\(934\) −8968.11 −0.314181
\(935\) 689.221 0.0241069
\(936\) 0 0
\(937\) 41877.5 1.46006 0.730032 0.683413i \(-0.239505\pi\)
0.730032 + 0.683413i \(0.239505\pi\)
\(938\) 3943.79 0.137281
\(939\) 0 0
\(940\) 4968.80 0.172409
\(941\) −9198.97 −0.318680 −0.159340 0.987224i \(-0.550937\pi\)
−0.159340 + 0.987224i \(0.550937\pi\)
\(942\) 0 0
\(943\) 10644.0 0.367569
\(944\) −3870.14 −0.133435
\(945\) 0 0
\(946\) 2929.55 0.100685
\(947\) 20963.6 0.719351 0.359675 0.933078i \(-0.382887\pi\)
0.359675 + 0.933078i \(0.382887\pi\)
\(948\) 0 0
\(949\) 78529.5 2.68617
\(950\) 5296.54 0.180887
\(951\) 0 0
\(952\) 6041.97 0.205695
\(953\) −27943.7 −0.949828 −0.474914 0.880032i \(-0.657521\pi\)
−0.474914 + 0.880032i \(0.657521\pi\)
\(954\) 0 0
\(955\) 6786.44 0.229952
\(956\) 394.920 0.0133605
\(957\) 0 0
\(958\) −34305.9 −1.15697
\(959\) −2983.11 −0.100448
\(960\) 0 0
\(961\) −29755.0 −0.998792
\(962\) 54385.9 1.82274
\(963\) 0 0
\(964\) −1457.87 −0.0487084
\(965\) −9015.20 −0.300735
\(966\) 0 0
\(967\) 2243.52 0.0746089 0.0373045 0.999304i \(-0.488123\pi\)
0.0373045 + 0.999304i \(0.488123\pi\)
\(968\) 32329.1 1.07345
\(969\) 0 0
\(970\) −1651.48 −0.0546657
\(971\) 57345.0 1.89525 0.947626 0.319381i \(-0.103475\pi\)
0.947626 + 0.319381i \(0.103475\pi\)
\(972\) 0 0
\(973\) −13031.8 −0.429375
\(974\) 8496.88 0.279525
\(975\) 0 0
\(976\) 26929.6 0.883191
\(977\) 18790.9 0.615326 0.307663 0.951495i \(-0.400453\pi\)
0.307663 + 0.951495i \(0.400453\pi\)
\(978\) 0 0
\(979\) −1540.67 −0.0502962
\(980\) 3423.79 0.111601
\(981\) 0 0
\(982\) −16642.5 −0.540817
\(983\) −34597.7 −1.12258 −0.561289 0.827620i \(-0.689694\pi\)
−0.561289 + 0.827620i \(0.689694\pi\)
\(984\) 0 0
\(985\) −1317.02 −0.0426026
\(986\) −3988.69 −0.128829
\(987\) 0 0
\(988\) 16732.4 0.538795
\(989\) 59547.1 1.91455
\(990\) 0 0
\(991\) −45026.3 −1.44330 −0.721649 0.692259i \(-0.756616\pi\)
−0.721649 + 0.692259i \(0.756616\pi\)
\(992\) −620.364 −0.0198554
\(993\) 0 0
\(994\) 8971.06 0.286262
\(995\) 2464.26 0.0785150
\(996\) 0 0
\(997\) −11972.1 −0.380301 −0.190150 0.981755i \(-0.560898\pi\)
−0.190150 + 0.981755i \(0.560898\pi\)
\(998\) 5977.66 0.189599
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 405.4.a.d.1.2 2
3.2 odd 2 405.4.a.e.1.1 2
5.4 even 2 2025.4.a.l.1.1 2
9.2 odd 6 135.4.e.a.91.2 4
9.4 even 3 45.4.e.a.16.1 4
9.5 odd 6 135.4.e.a.46.2 4
9.7 even 3 45.4.e.a.31.1 yes 4
15.14 odd 2 2025.4.a.j.1.2 2
45.4 even 6 225.4.e.a.151.2 4
45.7 odd 12 225.4.k.a.49.3 8
45.13 odd 12 225.4.k.a.124.3 8
45.22 odd 12 225.4.k.a.124.2 8
45.34 even 6 225.4.e.a.76.2 4
45.43 odd 12 225.4.k.a.49.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
45.4.e.a.16.1 4 9.4 even 3
45.4.e.a.31.1 yes 4 9.7 even 3
135.4.e.a.46.2 4 9.5 odd 6
135.4.e.a.91.2 4 9.2 odd 6
225.4.e.a.76.2 4 45.34 even 6
225.4.e.a.151.2 4 45.4 even 6
225.4.k.a.49.2 8 45.43 odd 12
225.4.k.a.49.3 8 45.7 odd 12
225.4.k.a.124.2 8 45.22 odd 12
225.4.k.a.124.3 8 45.13 odd 12
405.4.a.d.1.2 2 1.1 even 1 trivial
405.4.a.e.1.1 2 3.2 odd 2
2025.4.a.j.1.2 2 15.14 odd 2
2025.4.a.l.1.1 2 5.4 even 2