Properties

Label 405.4.a.i
Level $405$
Weight $4$
Character orbit 405.a
Self dual yes
Analytic conductor $23.896$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [405,4,Mod(1,405)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(405, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("405.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 405 = 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 405.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(23.8957735523\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.7032.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 14x + 18 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} + (\beta_{2} - \beta_1 + 2) q^{4} - 5 q^{5} + (3 \beta_{2} + 5 \beta_1 - 10) q^{7} + (\beta_{2} - 3 \beta_1 - 8) q^{8} - 5 \beta_1 q^{10} + (5 \beta_{2} + 7 \beta_1 + 17) q^{11} + ( - 13 \beta_{2} + 13 \beta_1 - 20) q^{13}+ \cdots + (3 \beta_{2} + 326 \beta_1 - 96) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + q^{2} + 5 q^{4} - 15 q^{5} - 25 q^{7} - 27 q^{8} - 5 q^{10} + 58 q^{11} - 47 q^{13} + 159 q^{14} - 127 q^{16} + 34 q^{17} - 5 q^{19} - 25 q^{20} + 260 q^{22} - 51 q^{23} + 75 q^{25} + 253 q^{26}+ \cdots + 38 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 14x + 18 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} + \nu - 10 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} - \beta _1 + 10 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−3.85028
1.32681
3.52348
−3.85028 0 6.82469 −5.00000 0 −26.3282 4.52526 0 19.2514
1.2 1.32681 0 −6.23958 −5.00000 0 −24.1043 −18.8932 0 −6.63404
1.3 3.52348 0 4.41489 −5.00000 0 25.4325 −12.6321 0 −17.6174
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(5\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 405.4.a.i yes 3
3.b odd 2 1 405.4.a.g 3
5.b even 2 1 2025.4.a.p 3
9.c even 3 2 405.4.e.s 6
9.d odd 6 2 405.4.e.u 6
15.d odd 2 1 2025.4.a.r 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
405.4.a.g 3 3.b odd 2 1
405.4.a.i yes 3 1.a even 1 1 trivial
405.4.e.s 6 9.c even 3 2
405.4.e.u 6 9.d odd 6 2
2025.4.a.p 3 5.b even 2 1
2025.4.a.r 3 15.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{3} - T_{2}^{2} - 14T_{2} + 18 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(405))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} - T^{2} + \cdots + 18 \) Copy content Toggle raw display
$3$ \( T^{3} \) Copy content Toggle raw display
$5$ \( (T + 5)^{3} \) Copy content Toggle raw display
$7$ \( T^{3} + 25 T^{2} + \cdots - 16140 \) Copy content Toggle raw display
$11$ \( T^{3} - 58 T^{2} + \cdots - 3000 \) Copy content Toggle raw display
$13$ \( T^{3} + 47 T^{2} + \cdots - 370352 \) Copy content Toggle raw display
$17$ \( T^{3} - 34 T^{2} + \cdots + 90984 \) Copy content Toggle raw display
$19$ \( T^{3} + 5 T^{2} + \cdots - 299645 \) Copy content Toggle raw display
$23$ \( T^{3} + 51 T^{2} + \cdots - 1041156 \) Copy content Toggle raw display
$29$ \( T^{3} - 350 T^{2} + \cdots + 11237760 \) Copy content Toggle raw display
$31$ \( T^{3} - 638 T^{2} + \cdots - 9539064 \) Copy content Toggle raw display
$37$ \( T^{3} + 414 T^{2} + \cdots - 577760 \) Copy content Toggle raw display
$41$ \( T^{3} - 179 T^{2} + \cdots + 17799627 \) Copy content Toggle raw display
$43$ \( T^{3} + 836 T^{2} + \cdots + 18692992 \) Copy content Toggle raw display
$47$ \( T^{3} - 235 T^{2} + \cdots + 9005376 \) Copy content Toggle raw display
$53$ \( T^{3} - 505 T^{2} + \cdots + 1500684 \) Copy content Toggle raw display
$59$ \( T^{3} - 535 T^{2} + \cdots - 22317657 \) Copy content Toggle raw display
$61$ \( T^{3} + 104 T^{2} + \cdots - 23542832 \) Copy content Toggle raw display
$67$ \( T^{3} + 40 T^{2} + \cdots - 15716208 \) Copy content Toggle raw display
$71$ \( T^{3} - 452 T^{2} + \cdots + 116183454 \) Copy content Toggle raw display
$73$ \( T^{3} + 710 T^{2} + \cdots + 8707528 \) Copy content Toggle raw display
$79$ \( T^{3} + 634 T^{2} + \cdots + 5053056 \) Copy content Toggle raw display
$83$ \( T^{3} - 1734 T^{2} + \cdots + 222334848 \) Copy content Toggle raw display
$89$ \( T^{3} + 852 T^{2} + \cdots + 17926434 \) Copy content Toggle raw display
$97$ \( T^{3} - 1575168 T - 703275008 \) Copy content Toggle raw display
show more
show less