Properties

Label 405.4.e.e.271.1
Level $405$
Weight $4$
Character 405.271
Analytic conductor $23.896$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [405,4,Mod(136,405)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(405, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("405.136");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 405 = 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 405.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(23.8957735523\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 135)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 271.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 405.271
Dual form 405.4.e.e.136.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.00000 - 1.73205i) q^{2} +(2.00000 - 3.46410i) q^{4} +(2.50000 - 4.33013i) q^{5} -24.0000 q^{8} -10.0000 q^{10} +(5.00000 + 8.66025i) q^{11} +(40.0000 - 69.2820i) q^{13} +(8.00000 + 13.8564i) q^{16} -7.00000 q^{17} -113.000 q^{19} +(-10.0000 - 17.3205i) q^{20} +(10.0000 - 17.3205i) q^{22} +(-40.5000 + 70.1481i) q^{23} +(-12.5000 - 21.6506i) q^{25} -160.000 q^{26} +(-110.000 - 190.526i) q^{29} +(94.5000 - 163.679i) q^{31} +(-80.0000 + 138.564i) q^{32} +(7.00000 + 12.1244i) q^{34} +170.000 q^{37} +(113.000 + 195.722i) q^{38} +(-60.0000 + 103.923i) q^{40} +(-65.0000 + 112.583i) q^{41} +(-5.00000 - 8.66025i) q^{43} +40.0000 q^{44} +162.000 q^{46} +(80.0000 + 138.564i) q^{47} +(171.500 - 297.047i) q^{49} +(-25.0000 + 43.3013i) q^{50} +(-160.000 - 277.128i) q^{52} -631.000 q^{53} +50.0000 q^{55} +(-220.000 + 381.051i) q^{58} +(-280.000 + 484.974i) q^{59} +(-114.500 - 198.320i) q^{61} -378.000 q^{62} +448.000 q^{64} +(-200.000 - 346.410i) q^{65} +(-375.000 + 649.519i) q^{67} +(-14.0000 + 24.2487i) q^{68} -890.000 q^{71} -890.000 q^{73} +(-170.000 - 294.449i) q^{74} +(-226.000 + 391.443i) q^{76} +(13.5000 + 23.3827i) q^{79} +80.0000 q^{80} +260.000 q^{82} +(214.500 + 371.525i) q^{83} +(-17.5000 + 30.3109i) q^{85} +(-10.0000 + 17.3205i) q^{86} +(-120.000 - 207.846i) q^{88} +750.000 q^{89} +(162.000 + 280.592i) q^{92} +(160.000 - 277.128i) q^{94} +(-282.500 + 489.304i) q^{95} +(740.000 + 1281.72i) q^{97} -686.000 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} + 4 q^{4} + 5 q^{5} - 48 q^{8} - 20 q^{10} + 10 q^{11} + 80 q^{13} + 16 q^{16} - 14 q^{17} - 226 q^{19} - 20 q^{20} + 20 q^{22} - 81 q^{23} - 25 q^{25} - 320 q^{26} - 220 q^{29} + 189 q^{31}+ \cdots - 1372 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/405\mathbb{Z}\right)^\times\).

\(n\) \(82\) \(326\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 1.73205i −0.353553 0.612372i 0.633316 0.773893i \(-0.281693\pi\)
−0.986869 + 0.161521i \(0.948360\pi\)
\(3\) 0 0
\(4\) 2.00000 3.46410i 0.250000 0.433013i
\(5\) 2.50000 4.33013i 0.223607 0.387298i
\(6\) 0 0
\(7\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(8\) −24.0000 −1.06066
\(9\) 0 0
\(10\) −10.0000 −0.316228
\(11\) 5.00000 + 8.66025i 0.137051 + 0.237379i 0.926379 0.376593i \(-0.122904\pi\)
−0.789328 + 0.613971i \(0.789571\pi\)
\(12\) 0 0
\(13\) 40.0000 69.2820i 0.853385 1.47811i −0.0247504 0.999694i \(-0.507879\pi\)
0.878135 0.478412i \(-0.158788\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 8.00000 + 13.8564i 0.125000 + 0.216506i
\(17\) −7.00000 −0.0998676 −0.0499338 0.998753i \(-0.515901\pi\)
−0.0499338 + 0.998753i \(0.515901\pi\)
\(18\) 0 0
\(19\) −113.000 −1.36442 −0.682210 0.731156i \(-0.738981\pi\)
−0.682210 + 0.731156i \(0.738981\pi\)
\(20\) −10.0000 17.3205i −0.111803 0.193649i
\(21\) 0 0
\(22\) 10.0000 17.3205i 0.0969094 0.167852i
\(23\) −40.5000 + 70.1481i −0.367167 + 0.635951i −0.989121 0.147102i \(-0.953005\pi\)
0.621955 + 0.783053i \(0.286339\pi\)
\(24\) 0 0
\(25\) −12.5000 21.6506i −0.100000 0.173205i
\(26\) −160.000 −1.20687
\(27\) 0 0
\(28\) 0 0
\(29\) −110.000 190.526i −0.704362 1.21999i −0.966921 0.255074i \(-0.917900\pi\)
0.262560 0.964916i \(-0.415433\pi\)
\(30\) 0 0
\(31\) 94.5000 163.679i 0.547506 0.948309i −0.450938 0.892555i \(-0.648910\pi\)
0.998445 0.0557538i \(-0.0177562\pi\)
\(32\) −80.0000 + 138.564i −0.441942 + 0.765466i
\(33\) 0 0
\(34\) 7.00000 + 12.1244i 0.0353085 + 0.0611562i
\(35\) 0 0
\(36\) 0 0
\(37\) 170.000 0.755347 0.377673 0.925939i \(-0.376724\pi\)
0.377673 + 0.925939i \(0.376724\pi\)
\(38\) 113.000 + 195.722i 0.482395 + 0.835533i
\(39\) 0 0
\(40\) −60.0000 + 103.923i −0.237171 + 0.410792i
\(41\) −65.0000 + 112.583i −0.247593 + 0.428843i −0.962857 0.270011i \(-0.912973\pi\)
0.715265 + 0.698854i \(0.246306\pi\)
\(42\) 0 0
\(43\) −5.00000 8.66025i −0.0177324 0.0307134i 0.857023 0.515278i \(-0.172311\pi\)
−0.874755 + 0.484565i \(0.838978\pi\)
\(44\) 40.0000 0.137051
\(45\) 0 0
\(46\) 162.000 0.519252
\(47\) 80.0000 + 138.564i 0.248281 + 0.430035i 0.963049 0.269327i \(-0.0868011\pi\)
−0.714768 + 0.699362i \(0.753468\pi\)
\(48\) 0 0
\(49\) 171.500 297.047i 0.500000 0.866025i
\(50\) −25.0000 + 43.3013i −0.0707107 + 0.122474i
\(51\) 0 0
\(52\) −160.000 277.128i −0.426692 0.739053i
\(53\) −631.000 −1.63537 −0.817684 0.575667i \(-0.804742\pi\)
−0.817684 + 0.575667i \(0.804742\pi\)
\(54\) 0 0
\(55\) 50.0000 0.122582
\(56\) 0 0
\(57\) 0 0
\(58\) −220.000 + 381.051i −0.498059 + 0.862663i
\(59\) −280.000 + 484.974i −0.617846 + 1.07014i 0.372032 + 0.928220i \(0.378661\pi\)
−0.989878 + 0.141920i \(0.954672\pi\)
\(60\) 0 0
\(61\) −114.500 198.320i −0.240332 0.416266i 0.720477 0.693479i \(-0.243923\pi\)
−0.960809 + 0.277212i \(0.910589\pi\)
\(62\) −378.000 −0.774291
\(63\) 0 0
\(64\) 448.000 0.875000
\(65\) −200.000 346.410i −0.381645 0.661029i
\(66\) 0 0
\(67\) −375.000 + 649.519i −0.683784 + 1.18435i 0.290033 + 0.957017i \(0.406334\pi\)
−0.973817 + 0.227332i \(0.927000\pi\)
\(68\) −14.0000 + 24.2487i −0.0249669 + 0.0432439i
\(69\) 0 0
\(70\) 0 0
\(71\) −890.000 −1.48766 −0.743828 0.668371i \(-0.766992\pi\)
−0.743828 + 0.668371i \(0.766992\pi\)
\(72\) 0 0
\(73\) −890.000 −1.42694 −0.713470 0.700686i \(-0.752878\pi\)
−0.713470 + 0.700686i \(0.752878\pi\)
\(74\) −170.000 294.449i −0.267055 0.462553i
\(75\) 0 0
\(76\) −226.000 + 391.443i −0.341105 + 0.590811i
\(77\) 0 0
\(78\) 0 0
\(79\) 13.5000 + 23.3827i 0.0192262 + 0.0333007i 0.875478 0.483257i \(-0.160546\pi\)
−0.856252 + 0.516558i \(0.827213\pi\)
\(80\) 80.0000 0.111803
\(81\) 0 0
\(82\) 260.000 0.350149
\(83\) 214.500 + 371.525i 0.283668 + 0.491327i 0.972285 0.233798i \(-0.0751153\pi\)
−0.688617 + 0.725125i \(0.741782\pi\)
\(84\) 0 0
\(85\) −17.5000 + 30.3109i −0.0223311 + 0.0386786i
\(86\) −10.0000 + 17.3205i −0.0125387 + 0.0217177i
\(87\) 0 0
\(88\) −120.000 207.846i −0.145364 0.251778i
\(89\) 750.000 0.893257 0.446628 0.894720i \(-0.352625\pi\)
0.446628 + 0.894720i \(0.352625\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 162.000 + 280.592i 0.183583 + 0.317976i
\(93\) 0 0
\(94\) 160.000 277.128i 0.175561 0.304081i
\(95\) −282.500 + 489.304i −0.305094 + 0.528438i
\(96\) 0 0
\(97\) 740.000 + 1281.72i 0.774594 + 1.34164i 0.935022 + 0.354589i \(0.115379\pi\)
−0.160428 + 0.987047i \(0.551288\pi\)
\(98\) −686.000 −0.707107
\(99\) 0 0
\(100\) −100.000 −0.100000
\(101\) −750.000 1299.04i −0.738889 1.27979i −0.952996 0.302983i \(-0.902017\pi\)
0.214107 0.976810i \(-0.431316\pi\)
\(102\) 0 0
\(103\) 230.000 398.372i 0.220025 0.381094i −0.734790 0.678294i \(-0.762719\pi\)
0.954815 + 0.297200i \(0.0960528\pi\)
\(104\) −960.000 + 1662.77i −0.905151 + 1.56777i
\(105\) 0 0
\(106\) 631.000 + 1092.92i 0.578190 + 1.00145i
\(107\) 420.000 0.379467 0.189733 0.981836i \(-0.439238\pi\)
0.189733 + 0.981836i \(0.439238\pi\)
\(108\) 0 0
\(109\) −607.000 −0.533395 −0.266698 0.963780i \(-0.585932\pi\)
−0.266698 + 0.963780i \(0.585932\pi\)
\(110\) −50.0000 86.6025i −0.0433392 0.0750657i
\(111\) 0 0
\(112\) 0 0
\(113\) 1085.00 1879.28i 0.903259 1.56449i 0.0800206 0.996793i \(-0.474501\pi\)
0.823238 0.567696i \(-0.192165\pi\)
\(114\) 0 0
\(115\) 202.500 + 350.740i 0.164202 + 0.284406i
\(116\) −880.000 −0.704362
\(117\) 0 0
\(118\) 1120.00 0.873766
\(119\) 0 0
\(120\) 0 0
\(121\) 615.500 1066.08i 0.462434 0.800960i
\(122\) −229.000 + 396.640i −0.169940 + 0.294345i
\(123\) 0 0
\(124\) −378.000 654.715i −0.273753 0.474155i
\(125\) −125.000 −0.0894427
\(126\) 0 0
\(127\) −1610.00 −1.12492 −0.562458 0.826826i \(-0.690144\pi\)
−0.562458 + 0.826826i \(0.690144\pi\)
\(128\) 192.000 + 332.554i 0.132583 + 0.229640i
\(129\) 0 0
\(130\) −400.000 + 692.820i −0.269864 + 0.467418i
\(131\) 1185.00 2052.48i 0.790335 1.36890i −0.135424 0.990788i \(-0.543240\pi\)
0.925759 0.378113i \(-0.123427\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 1500.00 0.967017
\(135\) 0 0
\(136\) 168.000 0.105926
\(137\) 898.500 + 1556.25i 0.560321 + 0.970505i 0.997468 + 0.0711150i \(0.0226557\pi\)
−0.437147 + 0.899390i \(0.644011\pi\)
\(138\) 0 0
\(139\) 62.0000 107.387i 0.0378329 0.0655285i −0.846489 0.532406i \(-0.821288\pi\)
0.884322 + 0.466878i \(0.154621\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 890.000 + 1541.53i 0.525966 + 0.910999i
\(143\) 800.000 0.467828
\(144\) 0 0
\(145\) −1100.00 −0.630000
\(146\) 890.000 + 1541.53i 0.504499 + 0.873819i
\(147\) 0 0
\(148\) 340.000 588.897i 0.188837 0.327075i
\(149\) −35.0000 + 60.6218i −0.0192437 + 0.0333311i −0.875487 0.483242i \(-0.839459\pi\)
0.856243 + 0.516573i \(0.172793\pi\)
\(150\) 0 0
\(151\) −1124.00 1946.83i −0.605760 1.04921i −0.991931 0.126780i \(-0.959536\pi\)
0.386170 0.922427i \(-0.373798\pi\)
\(152\) 2712.00 1.44719
\(153\) 0 0
\(154\) 0 0
\(155\) −472.500 818.394i −0.244852 0.424097i
\(156\) 0 0
\(157\) −505.000 + 874.686i −0.256709 + 0.444634i −0.965358 0.260927i \(-0.915972\pi\)
0.708649 + 0.705561i \(0.249305\pi\)
\(158\) 27.0000 46.7654i 0.0135950 0.0235472i
\(159\) 0 0
\(160\) 400.000 + 692.820i 0.197642 + 0.342327i
\(161\) 0 0
\(162\) 0 0
\(163\) 590.000 0.283511 0.141756 0.989902i \(-0.454725\pi\)
0.141756 + 0.989902i \(0.454725\pi\)
\(164\) 260.000 + 450.333i 0.123796 + 0.214421i
\(165\) 0 0
\(166\) 429.000 743.050i 0.200583 0.347421i
\(167\) 1201.50 2081.06i 0.556736 0.964295i −0.441031 0.897492i \(-0.645387\pi\)
0.997766 0.0668024i \(-0.0212797\pi\)
\(168\) 0 0
\(169\) −2101.50 3639.90i −0.956532 1.65676i
\(170\) 70.0000 0.0315809
\(171\) 0 0
\(172\) −40.0000 −0.0177324
\(173\) 400.500 + 693.686i 0.176008 + 0.304855i 0.940510 0.339767i \(-0.110348\pi\)
−0.764501 + 0.644622i \(0.777015\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −80.0000 + 138.564i −0.0342627 + 0.0593447i
\(177\) 0 0
\(178\) −750.000 1299.04i −0.315814 0.547006i
\(179\) 2360.00 0.985445 0.492723 0.870186i \(-0.336002\pi\)
0.492723 + 0.870186i \(0.336002\pi\)
\(180\) 0 0
\(181\) 1241.00 0.509629 0.254814 0.966990i \(-0.417986\pi\)
0.254814 + 0.966990i \(0.417986\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 972.000 1683.55i 0.389439 0.674528i
\(185\) 425.000 736.122i 0.168901 0.292545i
\(186\) 0 0
\(187\) −35.0000 60.6218i −0.0136869 0.0237064i
\(188\) 640.000 0.248281
\(189\) 0 0
\(190\) 1130.00 0.431467
\(191\) −2495.00 4321.47i −0.945193 1.63712i −0.755364 0.655305i \(-0.772540\pi\)
−0.189829 0.981817i \(-0.560793\pi\)
\(192\) 0 0
\(193\) 1130.00 1957.22i 0.421447 0.729967i −0.574635 0.818410i \(-0.694856\pi\)
0.996081 + 0.0884432i \(0.0281892\pi\)
\(194\) 1480.00 2563.44i 0.547721 0.948680i
\(195\) 0 0
\(196\) −686.000 1188.19i −0.250000 0.433013i
\(197\) 2247.00 0.812650 0.406325 0.913729i \(-0.366810\pi\)
0.406325 + 0.913729i \(0.366810\pi\)
\(198\) 0 0
\(199\) 4564.00 1.62580 0.812898 0.582406i \(-0.197889\pi\)
0.812898 + 0.582406i \(0.197889\pi\)
\(200\) 300.000 + 519.615i 0.106066 + 0.183712i
\(201\) 0 0
\(202\) −1500.00 + 2598.08i −0.522473 + 0.904951i
\(203\) 0 0
\(204\) 0 0
\(205\) 325.000 + 562.917i 0.110727 + 0.191784i
\(206\) −920.000 −0.311162
\(207\) 0 0
\(208\) 1280.00 0.426692
\(209\) −565.000 978.609i −0.186995 0.323884i
\(210\) 0 0
\(211\) −2474.50 + 4285.96i −0.807354 + 1.39838i 0.107337 + 0.994223i \(0.465768\pi\)
−0.914691 + 0.404155i \(0.867566\pi\)
\(212\) −1262.00 + 2185.85i −0.408842 + 0.708135i
\(213\) 0 0
\(214\) −420.000 727.461i −0.134162 0.232375i
\(215\) −50.0000 −0.0158603
\(216\) 0 0
\(217\) 0 0
\(218\) 607.000 + 1051.35i 0.188584 + 0.326636i
\(219\) 0 0
\(220\) 100.000 173.205i 0.0306454 0.0530795i
\(221\) −280.000 + 484.974i −0.0852255 + 0.147615i
\(222\) 0 0
\(223\) −1945.00 3368.84i −0.584067 1.01163i −0.994991 0.0999635i \(-0.968127\pi\)
0.410925 0.911669i \(-0.365206\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −4340.00 −1.27740
\(227\) 1226.50 + 2124.36i 0.358615 + 0.621140i 0.987730 0.156173i \(-0.0499157\pi\)
−0.629114 + 0.777313i \(0.716582\pi\)
\(228\) 0 0
\(229\) 3106.50 5380.62i 0.896434 1.55267i 0.0644134 0.997923i \(-0.479482\pi\)
0.832020 0.554745i \(-0.187184\pi\)
\(230\) 405.000 701.481i 0.116108 0.201105i
\(231\) 0 0
\(232\) 2640.00 + 4572.61i 0.747088 + 1.29399i
\(233\) 3450.00 0.970030 0.485015 0.874506i \(-0.338814\pi\)
0.485015 + 0.874506i \(0.338814\pi\)
\(234\) 0 0
\(235\) 800.000 0.222069
\(236\) 1120.00 + 1939.90i 0.308923 + 0.535070i
\(237\) 0 0
\(238\) 0 0
\(239\) 3245.00 5620.50i 0.878249 1.52117i 0.0249888 0.999688i \(-0.492045\pi\)
0.853261 0.521485i \(-0.174622\pi\)
\(240\) 0 0
\(241\) 1700.50 + 2945.35i 0.454518 + 0.787248i 0.998660 0.0517447i \(-0.0164782\pi\)
−0.544142 + 0.838993i \(0.683145\pi\)
\(242\) −2462.00 −0.653981
\(243\) 0 0
\(244\) −916.000 −0.240332
\(245\) −857.500 1485.23i −0.223607 0.387298i
\(246\) 0 0
\(247\) −4520.00 + 7828.87i −1.16438 + 2.01676i
\(248\) −2268.00 + 3928.29i −0.580718 + 1.00583i
\(249\) 0 0
\(250\) 125.000 + 216.506i 0.0316228 + 0.0547723i
\(251\) 4980.00 1.25233 0.626165 0.779691i \(-0.284624\pi\)
0.626165 + 0.779691i \(0.284624\pi\)
\(252\) 0 0
\(253\) −810.000 −0.201282
\(254\) 1610.00 + 2788.60i 0.397718 + 0.688868i
\(255\) 0 0
\(256\) 2176.00 3768.94i 0.531250 0.920152i
\(257\) 1678.50 2907.25i 0.407401 0.705639i −0.587197 0.809444i \(-0.699769\pi\)
0.994598 + 0.103806i \(0.0331020\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) −1600.00 −0.381645
\(261\) 0 0
\(262\) −4740.00 −1.11770
\(263\) −2270.00 3931.76i −0.532221 0.921834i −0.999292 0.0376145i \(-0.988024\pi\)
0.467071 0.884220i \(-0.345309\pi\)
\(264\) 0 0
\(265\) −1577.50 + 2732.31i −0.365679 + 0.633375i
\(266\) 0 0
\(267\) 0 0
\(268\) 1500.00 + 2598.08i 0.341892 + 0.592174i
\(269\) −8410.00 −1.90620 −0.953098 0.302662i \(-0.902125\pi\)
−0.953098 + 0.302662i \(0.902125\pi\)
\(270\) 0 0
\(271\) 259.000 0.0580558 0.0290279 0.999579i \(-0.490759\pi\)
0.0290279 + 0.999579i \(0.490759\pi\)
\(272\) −56.0000 96.9948i −0.0124835 0.0216220i
\(273\) 0 0
\(274\) 1797.00 3112.50i 0.396207 0.686251i
\(275\) 125.000 216.506i 0.0274101 0.0474757i
\(276\) 0 0
\(277\) 2085.00 + 3611.33i 0.452258 + 0.783334i 0.998526 0.0542765i \(-0.0172852\pi\)
−0.546268 + 0.837611i \(0.683952\pi\)
\(278\) −248.000 −0.0535038
\(279\) 0 0
\(280\) 0 0
\(281\) −870.000 1506.88i −0.184697 0.319905i 0.758777 0.651350i \(-0.225797\pi\)
−0.943474 + 0.331445i \(0.892464\pi\)
\(282\) 0 0
\(283\) 2535.00 4390.75i 0.532474 0.922272i −0.466807 0.884359i \(-0.654596\pi\)
0.999281 0.0379127i \(-0.0120709\pi\)
\(284\) −1780.00 + 3083.05i −0.371914 + 0.644174i
\(285\) 0 0
\(286\) −800.000 1385.64i −0.165402 0.286485i
\(287\) 0 0
\(288\) 0 0
\(289\) −4864.00 −0.990026
\(290\) 1100.00 + 1905.26i 0.222739 + 0.385795i
\(291\) 0 0
\(292\) −1780.00 + 3083.05i −0.356735 + 0.617883i
\(293\) −79.5000 + 137.698i −0.0158513 + 0.0274553i −0.873842 0.486210i \(-0.838379\pi\)
0.857991 + 0.513665i \(0.171713\pi\)
\(294\) 0 0
\(295\) 1400.00 + 2424.87i 0.276309 + 0.478581i
\(296\) −4080.00 −0.801166
\(297\) 0 0
\(298\) 140.000 0.0272147
\(299\) 3240.00 + 5611.84i 0.626669 + 1.08542i
\(300\) 0 0
\(301\) 0 0
\(302\) −2248.00 + 3893.65i −0.428337 + 0.741902i
\(303\) 0 0
\(304\) −904.000 1565.77i −0.170552 0.295406i
\(305\) −1145.00 −0.214959
\(306\) 0 0
\(307\) 6490.00 1.20653 0.603264 0.797542i \(-0.293867\pi\)
0.603264 + 0.797542i \(0.293867\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −945.000 + 1636.79i −0.173137 + 0.299882i
\(311\) −4110.00 + 7118.73i −0.749379 + 1.29796i 0.198742 + 0.980052i \(0.436314\pi\)
−0.948121 + 0.317910i \(0.897019\pi\)
\(312\) 0 0
\(313\) 2330.00 + 4035.68i 0.420765 + 0.728786i 0.996014 0.0891919i \(-0.0284284\pi\)
−0.575250 + 0.817978i \(0.695095\pi\)
\(314\) 2020.00 0.363042
\(315\) 0 0
\(316\) 108.000 0.0192262
\(317\) −3408.50 5903.70i −0.603913 1.04601i −0.992222 0.124479i \(-0.960274\pi\)
0.388309 0.921529i \(-0.373059\pi\)
\(318\) 0 0
\(319\) 1100.00 1905.26i 0.193066 0.334401i
\(320\) 1120.00 1939.90i 0.195656 0.338886i
\(321\) 0 0
\(322\) 0 0
\(323\) 791.000 0.136261
\(324\) 0 0
\(325\) −2000.00 −0.341354
\(326\) −590.000 1021.91i −0.100236 0.173615i
\(327\) 0 0
\(328\) 1560.00 2702.00i 0.262612 0.454857i
\(329\) 0 0
\(330\) 0 0
\(331\) −96.0000 166.277i −0.0159415 0.0276115i 0.857945 0.513742i \(-0.171741\pi\)
−0.873886 + 0.486131i \(0.838408\pi\)
\(332\) 1716.00 0.283668
\(333\) 0 0
\(334\) −4806.00 −0.787343
\(335\) 1875.00 + 3247.60i 0.305798 + 0.529657i
\(336\) 0 0
\(337\) −2420.00 + 4191.56i −0.391174 + 0.677534i −0.992605 0.121391i \(-0.961264\pi\)
0.601430 + 0.798925i \(0.294598\pi\)
\(338\) −4203.00 + 7279.81i −0.676370 + 1.17151i
\(339\) 0 0
\(340\) 70.0000 + 121.244i 0.0111655 + 0.0193393i
\(341\) 1890.00 0.300144
\(342\) 0 0
\(343\) 0 0
\(344\) 120.000 + 207.846i 0.0188080 + 0.0325765i
\(345\) 0 0
\(346\) 801.000 1387.37i 0.124457 0.215565i
\(347\) −430.000 + 744.782i −0.0665234 + 0.115222i −0.897369 0.441282i \(-0.854524\pi\)
0.830845 + 0.556503i \(0.187857\pi\)
\(348\) 0 0
\(349\) −2688.50 4656.62i −0.412356 0.714221i 0.582791 0.812622i \(-0.301961\pi\)
−0.995147 + 0.0984011i \(0.968627\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −1600.00 −0.242274
\(353\) −4005.00 6936.86i −0.603866 1.04593i −0.992230 0.124420i \(-0.960293\pi\)
0.388364 0.921506i \(-0.373040\pi\)
\(354\) 0 0
\(355\) −2225.00 + 3853.81i −0.332650 + 0.576167i
\(356\) 1500.00 2598.08i 0.223314 0.386791i
\(357\) 0 0
\(358\) −2360.00 4087.64i −0.348407 0.603459i
\(359\) −12930.0 −1.90089 −0.950445 0.310894i \(-0.899372\pi\)
−0.950445 + 0.310894i \(0.899372\pi\)
\(360\) 0 0
\(361\) 5910.00 0.861642
\(362\) −1241.00 2149.48i −0.180181 0.312083i
\(363\) 0 0
\(364\) 0 0
\(365\) −2225.00 + 3853.81i −0.319073 + 0.552651i
\(366\) 0 0
\(367\) 3000.00 + 5196.15i 0.426700 + 0.739065i 0.996577 0.0826641i \(-0.0263429\pi\)
−0.569878 + 0.821729i \(0.693010\pi\)
\(368\) −1296.00 −0.183583
\(369\) 0 0
\(370\) −1700.00 −0.238862
\(371\) 0 0
\(372\) 0 0
\(373\) 70.0000 121.244i 0.00971706 0.0168304i −0.861126 0.508392i \(-0.830240\pi\)
0.870843 + 0.491561i \(0.163574\pi\)
\(374\) −70.0000 + 121.244i −0.00967811 + 0.0167630i
\(375\) 0 0
\(376\) −1920.00 3325.54i −0.263342 0.456121i
\(377\) −17600.0 −2.40437
\(378\) 0 0
\(379\) 6217.00 0.842601 0.421301 0.906921i \(-0.361574\pi\)
0.421301 + 0.906921i \(0.361574\pi\)
\(380\) 1130.00 + 1957.22i 0.152547 + 0.264219i
\(381\) 0 0
\(382\) −4990.00 + 8642.93i −0.668352 + 1.15762i
\(383\) 2275.50 3941.28i 0.303584 0.525823i −0.673361 0.739314i \(-0.735150\pi\)
0.976945 + 0.213491i \(0.0684834\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −4520.00 −0.596015
\(387\) 0 0
\(388\) 5920.00 0.774594
\(389\) −1155.00 2000.52i −0.150542 0.260746i 0.780885 0.624675i \(-0.214769\pi\)
−0.931427 + 0.363929i \(0.881435\pi\)
\(390\) 0 0
\(391\) 283.500 491.036i 0.0366681 0.0635109i
\(392\) −4116.00 + 7129.12i −0.530330 + 0.918559i
\(393\) 0 0
\(394\) −2247.00 3891.92i −0.287315 0.497645i
\(395\) 135.000 0.0171964
\(396\) 0 0
\(397\) −2900.00 −0.366617 −0.183308 0.983055i \(-0.558681\pi\)
−0.183308 + 0.983055i \(0.558681\pi\)
\(398\) −4564.00 7905.08i −0.574806 0.995593i
\(399\) 0 0
\(400\) 200.000 346.410i 0.0250000 0.0433013i
\(401\) 1125.00 1948.56i 0.140099 0.242659i −0.787435 0.616398i \(-0.788591\pi\)
0.927534 + 0.373739i \(0.121924\pi\)
\(402\) 0 0
\(403\) −7560.00 13094.3i −0.934468 1.61855i
\(404\) −6000.00 −0.738889
\(405\) 0 0
\(406\) 0 0
\(407\) 850.000 + 1472.24i 0.103521 + 0.179303i
\(408\) 0 0
\(409\) 5631.50 9754.04i 0.680831 1.17923i −0.293897 0.955837i \(-0.594952\pi\)
0.974728 0.223396i \(-0.0717144\pi\)
\(410\) 650.000 1125.83i 0.0782956 0.135612i
\(411\) 0 0
\(412\) −920.000 1593.49i −0.110012 0.190547i
\(413\) 0 0
\(414\) 0 0
\(415\) 2145.00 0.253720
\(416\) 6400.00 + 11085.1i 0.754293 + 1.30647i
\(417\) 0 0
\(418\) −1130.00 + 1957.22i −0.132225 + 0.229021i
\(419\) −3455.00 + 5984.24i −0.402835 + 0.697730i −0.994067 0.108771i \(-0.965308\pi\)
0.591232 + 0.806502i \(0.298642\pi\)
\(420\) 0 0
\(421\) 2624.50 + 4545.77i 0.303825 + 0.526240i 0.976999 0.213244i \(-0.0684029\pi\)
−0.673174 + 0.739484i \(0.735070\pi\)
\(422\) 9898.00 1.14177
\(423\) 0 0
\(424\) 15144.0 1.73457
\(425\) 87.5000 + 151.554i 0.00998676 + 0.0172976i
\(426\) 0 0
\(427\) 0 0
\(428\) 840.000 1454.92i 0.0948667 0.164314i
\(429\) 0 0
\(430\) 50.0000 + 86.6025i 0.00560747 + 0.00971243i
\(431\) 11880.0 1.32770 0.663851 0.747865i \(-0.268921\pi\)
0.663851 + 0.747865i \(0.268921\pi\)
\(432\) 0 0
\(433\) −4280.00 −0.475020 −0.237510 0.971385i \(-0.576331\pi\)
−0.237510 + 0.971385i \(0.576331\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −1214.00 + 2102.71i −0.133349 + 0.230967i
\(437\) 4576.50 7926.73i 0.500970 0.867705i
\(438\) 0 0
\(439\) −3231.50 5597.12i −0.351324 0.608510i 0.635158 0.772382i \(-0.280935\pi\)
−0.986482 + 0.163872i \(0.947602\pi\)
\(440\) −1200.00 −0.130018
\(441\) 0 0
\(442\) 1120.00 0.120527
\(443\) 5860.50 + 10150.7i 0.628534 + 1.08865i 0.987846 + 0.155436i \(0.0496782\pi\)
−0.359312 + 0.933218i \(0.616988\pi\)
\(444\) 0 0
\(445\) 1875.00 3247.60i 0.199738 0.345957i
\(446\) −3890.00 + 6737.68i −0.412997 + 0.715332i
\(447\) 0 0
\(448\) 0 0
\(449\) 2180.00 0.229133 0.114566 0.993416i \(-0.463452\pi\)
0.114566 + 0.993416i \(0.463452\pi\)
\(450\) 0 0
\(451\) −1300.00 −0.135731
\(452\) −4340.00 7517.10i −0.451629 0.782245i
\(453\) 0 0
\(454\) 2453.00 4248.72i 0.253579 0.439212i
\(455\) 0 0
\(456\) 0 0
\(457\) 8920.00 + 15449.9i 0.913042 + 1.58143i 0.809744 + 0.586784i \(0.199606\pi\)
0.103298 + 0.994650i \(0.467060\pi\)
\(458\) −12426.0 −1.26775
\(459\) 0 0
\(460\) 1620.00 0.164202
\(461\) −1125.00 1948.56i −0.113658 0.196862i 0.803584 0.595191i \(-0.202924\pi\)
−0.917243 + 0.398329i \(0.869590\pi\)
\(462\) 0 0
\(463\) −615.000 + 1065.21i −0.0617310 + 0.106921i −0.895239 0.445586i \(-0.852995\pi\)
0.833508 + 0.552507i \(0.186329\pi\)
\(464\) 1760.00 3048.41i 0.176090 0.304998i
\(465\) 0 0
\(466\) −3450.00 5975.58i −0.342957 0.594020i
\(467\) −5813.00 −0.576003 −0.288002 0.957630i \(-0.592991\pi\)
−0.288002 + 0.957630i \(0.592991\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −800.000 1385.64i −0.0785133 0.135989i
\(471\) 0 0
\(472\) 6720.00 11639.4i 0.655324 1.13505i
\(473\) 50.0000 86.6025i 0.00486047 0.00841858i
\(474\) 0 0
\(475\) 1412.50 + 2446.52i 0.136442 + 0.236324i
\(476\) 0 0
\(477\) 0 0
\(478\) −12980.0 −1.24203
\(479\) −3375.00 5845.67i −0.321937 0.557611i 0.658951 0.752186i \(-0.271000\pi\)
−0.980888 + 0.194575i \(0.937667\pi\)
\(480\) 0 0
\(481\) 6800.00 11777.9i 0.644601 1.11648i
\(482\) 3401.00 5890.70i 0.321393 0.556669i
\(483\) 0 0
\(484\) −2462.00 4264.31i −0.231217 0.400480i
\(485\) 7400.00 0.692818
\(486\) 0 0
\(487\) −6610.00 −0.615047 −0.307523 0.951541i \(-0.599500\pi\)
−0.307523 + 0.951541i \(0.599500\pi\)
\(488\) 2748.00 + 4759.68i 0.254910 + 0.441517i
\(489\) 0 0
\(490\) −1715.00 + 2970.47i −0.158114 + 0.273861i
\(491\) −2495.00 + 4321.47i −0.229323 + 0.397200i −0.957608 0.288075i \(-0.906985\pi\)
0.728284 + 0.685275i \(0.240318\pi\)
\(492\) 0 0
\(493\) 770.000 + 1333.68i 0.0703429 + 0.121837i
\(494\) 18080.0 1.64668
\(495\) 0 0
\(496\) 3024.00 0.273753
\(497\) 0 0
\(498\) 0 0
\(499\) −741.500 + 1284.32i −0.0665212 + 0.115218i −0.897368 0.441283i \(-0.854523\pi\)
0.830847 + 0.556502i \(0.187857\pi\)
\(500\) −250.000 + 433.013i −0.0223607 + 0.0387298i
\(501\) 0 0
\(502\) −4980.00 8625.61i −0.442765 0.766892i
\(503\) 11641.0 1.03190 0.515951 0.856618i \(-0.327439\pi\)
0.515951 + 0.856618i \(0.327439\pi\)
\(504\) 0 0
\(505\) −7500.00 −0.660882
\(506\) 810.000 + 1402.96i 0.0711638 + 0.123259i
\(507\) 0 0
\(508\) −3220.00 + 5577.20i −0.281229 + 0.487103i
\(509\) 1310.00 2268.99i 0.114076 0.197586i −0.803334 0.595529i \(-0.796943\pi\)
0.917410 + 0.397943i \(0.130276\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −5632.00 −0.486136
\(513\) 0 0
\(514\) −6714.00 −0.576151
\(515\) −1150.00 1991.86i −0.0983982 0.170431i
\(516\) 0 0
\(517\) −800.000 + 1385.64i −0.0680541 + 0.117873i
\(518\) 0 0
\(519\) 0 0
\(520\) 4800.00 + 8313.84i 0.404796 + 0.701127i
\(521\) 13690.0 1.15119 0.575595 0.817735i \(-0.304771\pi\)
0.575595 + 0.817735i \(0.304771\pi\)
\(522\) 0 0
\(523\) −10220.0 −0.854473 −0.427237 0.904140i \(-0.640513\pi\)
−0.427237 + 0.904140i \(0.640513\pi\)
\(524\) −4740.00 8209.92i −0.395168 0.684450i
\(525\) 0 0
\(526\) −4540.00 + 7863.51i −0.376337 + 0.651835i
\(527\) −661.500 + 1145.75i −0.0546782 + 0.0947054i
\(528\) 0 0
\(529\) 2803.00 + 4854.94i 0.230377 + 0.399025i
\(530\) 6310.00 0.517149
\(531\) 0 0
\(532\) 0 0
\(533\) 5200.00 + 9006.66i 0.422583 + 0.731936i
\(534\) 0 0
\(535\) 1050.00 1818.65i 0.0848513 0.146967i
\(536\) 9000.00 15588.5i 0.725263 1.25619i
\(537\) 0 0
\(538\) 8410.00 + 14566.5i 0.673942 + 1.16730i
\(539\) 3430.00 0.274101
\(540\) 0 0
\(541\) −2778.00 −0.220768 −0.110384 0.993889i \(-0.535208\pi\)
−0.110384 + 0.993889i \(0.535208\pi\)
\(542\) −259.000 448.601i −0.0205258 0.0355518i
\(543\) 0 0
\(544\) 560.000 969.948i 0.0441357 0.0764452i
\(545\) −1517.50 + 2628.39i −0.119271 + 0.206583i
\(546\) 0 0
\(547\) 6415.00 + 11111.1i 0.501436 + 0.868513i 0.999999 + 0.00165916i \(0.000528127\pi\)
−0.498562 + 0.866854i \(0.666139\pi\)
\(548\) 7188.00 0.560321
\(549\) 0 0
\(550\) −500.000 −0.0387638
\(551\) 12430.0 + 21529.4i 0.961045 + 1.66458i
\(552\) 0 0
\(553\) 0 0
\(554\) 4170.00 7222.65i 0.319795 0.553901i
\(555\) 0 0
\(556\) −248.000 429.549i −0.0189164 0.0327642i
\(557\) 4950.00 0.376550 0.188275 0.982116i \(-0.439710\pi\)
0.188275 + 0.982116i \(0.439710\pi\)
\(558\) 0 0
\(559\) −800.000 −0.0605302
\(560\) 0 0
\(561\) 0 0
\(562\) −1740.00 + 3013.77i −0.130600 + 0.226207i
\(563\) 3270.00 5663.81i 0.244785 0.423980i −0.717286 0.696779i \(-0.754616\pi\)
0.962071 + 0.272798i \(0.0879492\pi\)
\(564\) 0 0
\(565\) −5425.00 9396.38i −0.403949 0.699661i
\(566\) −10140.0 −0.753032
\(567\) 0 0
\(568\) 21360.0 1.57790
\(569\) −7620.00 13198.2i −0.561418 0.972405i −0.997373 0.0724364i \(-0.976923\pi\)
0.435955 0.899969i \(-0.356411\pi\)
\(570\) 0 0
\(571\) 2640.50 4573.48i 0.193523 0.335191i −0.752893 0.658144i \(-0.771342\pi\)
0.946415 + 0.322952i \(0.104675\pi\)
\(572\) 1600.00 2771.28i 0.116957 0.202575i
\(573\) 0 0
\(574\) 0 0
\(575\) 2025.00 0.146867
\(576\) 0 0
\(577\) −10510.0 −0.758296 −0.379148 0.925336i \(-0.623783\pi\)
−0.379148 + 0.925336i \(0.623783\pi\)
\(578\) 4864.00 + 8424.70i 0.350027 + 0.606265i
\(579\) 0 0
\(580\) −2200.00 + 3810.51i −0.157500 + 0.272798i
\(581\) 0 0
\(582\) 0 0
\(583\) −3155.00 5464.62i −0.224128 0.388201i
\(584\) 21360.0 1.51350
\(585\) 0 0
\(586\) 318.000 0.0224172
\(587\) 2053.50 + 3556.77i 0.144390 + 0.250091i 0.929145 0.369715i \(-0.120545\pi\)
−0.784755 + 0.619806i \(0.787211\pi\)
\(588\) 0 0
\(589\) −10678.5 + 18495.7i −0.747029 + 1.29389i
\(590\) 2800.00 4849.74i 0.195380 0.338408i
\(591\) 0 0
\(592\) 1360.00 + 2355.59i 0.0944183 + 0.163537i
\(593\) −26129.0 −1.80943 −0.904713 0.426022i \(-0.859915\pi\)
−0.904713 + 0.426022i \(0.859915\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 140.000 + 242.487i 0.00962185 + 0.0166655i
\(597\) 0 0
\(598\) 6480.00 11223.7i 0.443122 0.767510i
\(599\) −2180.00 + 3775.87i −0.148702 + 0.257559i −0.930748 0.365661i \(-0.880843\pi\)
0.782046 + 0.623221i \(0.214176\pi\)
\(600\) 0 0
\(601\) 8319.50 + 14409.8i 0.564658 + 0.978016i 0.997081 + 0.0763457i \(0.0243253\pi\)
−0.432423 + 0.901671i \(0.642341\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −8992.00 −0.605760
\(605\) −3077.50 5330.39i −0.206807 0.358200i
\(606\) 0 0
\(607\) −245.000 + 424.352i −0.0163826 + 0.0283755i −0.874100 0.485745i \(-0.838548\pi\)
0.857718 + 0.514121i \(0.171882\pi\)
\(608\) 9040.00 15657.7i 0.602994 1.04442i
\(609\) 0 0
\(610\) 1145.00 + 1983.20i 0.0759995 + 0.131635i
\(611\) 12800.0 0.847516
\(612\) 0 0
\(613\) 18400.0 1.21235 0.606174 0.795332i \(-0.292704\pi\)
0.606174 + 0.795332i \(0.292704\pi\)
\(614\) −6490.00 11241.0i −0.426572 0.738844i
\(615\) 0 0
\(616\) 0 0
\(617\) 3913.50 6778.38i 0.255351 0.442281i −0.709640 0.704565i \(-0.751142\pi\)
0.964991 + 0.262284i \(0.0844756\pi\)
\(618\) 0 0
\(619\) 9878.00 + 17109.2i 0.641406 + 1.11095i 0.985119 + 0.171873i \(0.0549819\pi\)
−0.343713 + 0.939075i \(0.611685\pi\)
\(620\) −3780.00 −0.244852
\(621\) 0 0
\(622\) 16440.0 1.05978
\(623\) 0 0
\(624\) 0 0
\(625\) −312.500 + 541.266i −0.0200000 + 0.0346410i
\(626\) 4660.00 8071.36i 0.297526 0.515330i
\(627\) 0 0
\(628\) 2020.00 + 3498.74i 0.128355 + 0.222317i
\(629\) −1190.00 −0.0754347
\(630\) 0 0
\(631\) 9829.00 0.620105 0.310053 0.950719i \(-0.399653\pi\)
0.310053 + 0.950719i \(0.399653\pi\)
\(632\) −324.000 561.184i −0.0203924 0.0353208i
\(633\) 0 0
\(634\) −6817.00 + 11807.4i −0.427031 + 0.739639i
\(635\) −4025.00 + 6971.50i −0.251539 + 0.435678i
\(636\) 0 0
\(637\) −13720.0 23763.7i −0.853385 1.47811i
\(638\) −4400.00 −0.273037
\(639\) 0 0
\(640\) 1920.00 0.118585
\(641\) −3000.00 5196.15i −0.184856 0.320180i 0.758672 0.651473i \(-0.225849\pi\)
−0.943528 + 0.331293i \(0.892515\pi\)
\(642\) 0 0
\(643\) −4140.00 + 7170.69i −0.253912 + 0.439789i −0.964600 0.263719i \(-0.915051\pi\)
0.710687 + 0.703508i \(0.248384\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −791.000 1370.05i −0.0481757 0.0834427i
\(647\) 16637.0 1.01092 0.505462 0.862849i \(-0.331322\pi\)
0.505462 + 0.862849i \(0.331322\pi\)
\(648\) 0 0
\(649\) −5600.00 −0.338705
\(650\) 2000.00 + 3464.10i 0.120687 + 0.209036i
\(651\) 0 0
\(652\) 1180.00 2043.82i 0.0708779 0.122764i
\(653\) 9875.50 17104.9i 0.591820 1.02506i −0.402168 0.915566i \(-0.631743\pi\)
0.993987 0.109496i \(-0.0349235\pi\)
\(654\) 0 0
\(655\) −5925.00 10262.4i −0.353449 0.612191i
\(656\) −2080.00 −0.123796
\(657\) 0 0
\(658\) 0 0
\(659\) 7130.00 + 12349.5i 0.421465 + 0.729999i 0.996083 0.0884231i \(-0.0281827\pi\)
−0.574618 + 0.818422i \(0.694849\pi\)
\(660\) 0 0
\(661\) −11159.0 + 19328.0i −0.656634 + 1.13732i 0.324848 + 0.945766i \(0.394687\pi\)
−0.981482 + 0.191556i \(0.938646\pi\)
\(662\) −192.000 + 332.554i −0.0112723 + 0.0195243i
\(663\) 0 0
\(664\) −5148.00 8916.60i −0.300875 0.521131i
\(665\) 0 0
\(666\) 0 0
\(667\) 17820.0 1.03447
\(668\) −4806.00 8324.24i −0.278368 0.482147i
\(669\) 0 0
\(670\) 3750.00 6495.19i 0.216232 0.374524i
\(671\) 1145.00 1983.20i 0.0658752 0.114099i
\(672\) 0 0
\(673\) −10020.0 17355.1i −0.573912 0.994044i −0.996159 0.0875636i \(-0.972092\pi\)
0.422247 0.906481i \(-0.361241\pi\)
\(674\) 9680.00 0.553204
\(675\) 0 0
\(676\) −16812.0 −0.956532
\(677\) −1155.00 2000.52i −0.0655691 0.113569i 0.831377 0.555708i \(-0.187553\pi\)
−0.896946 + 0.442140i \(0.854220\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 420.000 727.461i 0.0236857 0.0410248i
\(681\) 0 0
\(682\) −1890.00 3273.58i −0.106117 0.183800i
\(683\) 26739.0 1.49801 0.749004 0.662566i \(-0.230532\pi\)
0.749004 + 0.662566i \(0.230532\pi\)
\(684\) 0 0
\(685\) 8985.00 0.501167
\(686\) 0 0
\(687\) 0 0
\(688\) 80.0000 138.564i 0.00443310 0.00767835i
\(689\) −25240.0 + 43717.0i −1.39560 + 2.41725i
\(690\) 0 0
\(691\) −2550.50 4417.60i −0.140413 0.243203i 0.787239 0.616648i \(-0.211510\pi\)
−0.927652 + 0.373445i \(0.878176\pi\)
\(692\) 3204.00 0.176008
\(693\) 0 0
\(694\) 1720.00 0.0940783
\(695\) −310.000 536.936i −0.0169194 0.0293052i
\(696\) 0 0
\(697\) 455.000 788.083i 0.0247265 0.0428275i
\(698\) −5377.00 + 9313.24i −0.291579 + 0.505030i
\(699\) 0 0
\(700\) 0 0
\(701\) −26030.0 −1.40248 −0.701241 0.712925i \(-0.747370\pi\)
−0.701241 + 0.712925i \(0.747370\pi\)
\(702\) 0 0
\(703\) −19210.0 −1.03061
\(704\) 2240.00 + 3879.79i 0.119919 + 0.207706i
\(705\) 0 0
\(706\) −8010.00 + 13873.7i −0.426998 + 0.739582i
\(707\) 0 0
\(708\) 0 0
\(709\) 1927.00 + 3337.66i 0.102073 + 0.176796i 0.912539 0.408990i \(-0.134119\pi\)
−0.810465 + 0.585787i \(0.800786\pi\)
\(710\) 8900.00 0.470438
\(711\) 0 0
\(712\) −18000.0 −0.947442
\(713\) 7654.50 + 13258.0i 0.402052 + 0.696375i
\(714\) 0 0
\(715\) 2000.00 3464.10i 0.104609 0.181189i
\(716\) 4720.00 8175.28i 0.246361 0.426710i
\(717\) 0 0
\(718\) 12930.0 + 22395.4i 0.672066 + 1.16405i
\(719\) 870.000 0.0451259 0.0225630 0.999745i \(-0.492817\pi\)
0.0225630 + 0.999745i \(0.492817\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −5910.00 10236.4i −0.304636 0.527646i
\(723\) 0 0
\(724\) 2482.00 4298.95i 0.127407 0.220676i
\(725\) −2750.00 + 4763.14i −0.140872 + 0.243998i
\(726\) 0 0
\(727\) −17890.0 30986.4i −0.912659 1.58077i −0.810292 0.586026i \(-0.800692\pi\)
−0.102367 0.994747i \(-0.532642\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 8900.00 0.451238
\(731\) 35.0000 + 60.6218i 0.00177089 + 0.00306727i
\(732\) 0 0
\(733\) 1700.00 2944.49i 0.0856629 0.148373i −0.820011 0.572348i \(-0.806033\pi\)
0.905674 + 0.423976i \(0.139366\pi\)
\(734\) 6000.00 10392.3i 0.301722 0.522598i
\(735\) 0 0
\(736\) −6480.00 11223.7i −0.324533 0.562107i
\(737\) −7500.00 −0.374852
\(738\) 0 0
\(739\) −683.000 −0.0339981 −0.0169990 0.999856i \(-0.505411\pi\)
−0.0169990 + 0.999856i \(0.505411\pi\)
\(740\) −1700.00 2944.49i −0.0844503 0.146272i
\(741\) 0 0
\(742\) 0 0
\(743\) −6700.00 + 11604.7i −0.330820 + 0.572997i −0.982673 0.185349i \(-0.940659\pi\)
0.651853 + 0.758345i \(0.273992\pi\)
\(744\) 0 0
\(745\) 175.000 + 303.109i 0.00860605 + 0.0149061i
\(746\) −280.000 −0.0137420
\(747\) 0 0
\(748\) −280.000 −0.0136869
\(749\) 0 0
\(750\) 0 0
\(751\) 11609.5 20108.2i 0.564097 0.977044i −0.433036 0.901376i \(-0.642558\pi\)
0.997133 0.0756678i \(-0.0241088\pi\)
\(752\) −1280.00 + 2217.03i −0.0620702 + 0.107509i
\(753\) 0 0
\(754\) 17600.0 + 30484.1i 0.850072 + 1.47237i
\(755\) −11240.0 −0.541809
\(756\) 0 0
\(757\) 19630.0 0.942489 0.471245 0.882003i \(-0.343805\pi\)
0.471245 + 0.882003i \(0.343805\pi\)
\(758\) −6217.00 10768.2i −0.297904 0.515986i
\(759\) 0 0
\(760\) 6780.00 11743.3i 0.323601 0.560493i
\(761\) 1470.00 2546.11i 0.0700229 0.121283i −0.828888 0.559414i \(-0.811026\pi\)
0.898911 + 0.438131i \(0.144359\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −19960.0 −0.945193
\(765\) 0 0
\(766\) −9102.00 −0.429332
\(767\) 22400.0 + 38797.9i 1.05452 + 1.82648i
\(768\) 0 0
\(769\) 6993.50 12113.1i 0.327948 0.568023i −0.654156 0.756359i \(-0.726976\pi\)
0.982105 + 0.188337i \(0.0603096\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −4520.00 7828.87i −0.210723 0.364983i
\(773\) −19839.0 −0.923104 −0.461552 0.887113i \(-0.652707\pi\)
−0.461552 + 0.887113i \(0.652707\pi\)
\(774\) 0 0
\(775\) −4725.00 −0.219003
\(776\) −17760.0 30761.2i −0.821581 1.42302i
\(777\) 0 0
\(778\) −2310.00 + 4001.04i −0.106449 + 0.184376i
\(779\) 7345.00 12721.9i 0.337820 0.585122i
\(780\) 0 0
\(781\) −4450.00 7707.63i −0.203884 0.353138i
\(782\) −1134.00 −0.0518565
\(783\) 0 0
\(784\) 5488.00 0.250000
\(785\) 2525.00 + 4373.43i 0.114804 + 0.198846i
\(786\) 0 0
\(787\) 19195.0 33246.7i 0.869413 1.50587i 0.00681497 0.999977i \(-0.497831\pi\)
0.862598 0.505890i \(-0.168836\pi\)
\(788\) 4494.00 7783.84i 0.203163 0.351888i
\(789\) 0 0
\(790\) −135.000 233.827i −0.00607985 0.0105306i
\(791\) 0 0
\(792\) 0 0
\(793\) −18320.0 −0.820381
\(794\) 2900.00 + 5022.95i 0.129619 + 0.224506i
\(795\) 0 0
\(796\) 9128.00 15810.2i 0.406449 0.703990i
\(797\) −14013.5 + 24272.1i −0.622815 + 1.07875i 0.366144 + 0.930558i \(0.380678\pi\)
−0.988959 + 0.148189i \(0.952656\pi\)
\(798\) 0 0
\(799\) −560.000 969.948i −0.0247952 0.0429466i
\(800\) 4000.00 0.176777
\(801\) 0 0
\(802\) −4500.00 −0.198130
\(803\) −4450.00 7707.63i −0.195563 0.338725i
\(804\) 0 0
\(805\) 0 0
\(806\) −15120.0 + 26188.6i −0.660768 + 1.14448i
\(807\) 0 0
\(808\) 18000.0 + 31176.9i 0.783710 + 1.35743i
\(809\) −8630.00 −0.375049 −0.187525 0.982260i \(-0.560046\pi\)
−0.187525 + 0.982260i \(0.560046\pi\)
\(810\) 0 0
\(811\) −1932.00 −0.0836519 −0.0418260 0.999125i \(-0.513317\pi\)
−0.0418260 + 0.999125i \(0.513317\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 1700.00 2944.49i 0.0732002 0.126786i
\(815\) 1475.00 2554.77i 0.0633951 0.109804i
\(816\) 0 0
\(817\) 565.000 + 978.609i 0.0241944 + 0.0419060i
\(818\) −22526.0 −0.962840
\(819\) 0 0
\(820\) 2600.00 0.110727
\(821\) −9045.00 15666.4i −0.384498 0.665970i 0.607202 0.794548i \(-0.292292\pi\)
−0.991699 + 0.128578i \(0.958959\pi\)
\(822\) 0 0
\(823\) −6445.00 + 11163.1i −0.272975 + 0.472807i −0.969622 0.244607i \(-0.921341\pi\)
0.696647 + 0.717414i \(0.254674\pi\)
\(824\) −5520.00 + 9560.92i −0.233372 + 0.404212i
\(825\) 0 0
\(826\) 0 0
\(827\) −14887.0 −0.625963 −0.312982 0.949759i \(-0.601328\pi\)
−0.312982 + 0.949759i \(0.601328\pi\)
\(828\) 0 0
\(829\) 12666.0 0.530649 0.265325 0.964159i \(-0.414521\pi\)
0.265325 + 0.964159i \(0.414521\pi\)
\(830\) −2145.00 3715.25i −0.0897037 0.155371i
\(831\) 0 0
\(832\) 17920.0 31038.4i 0.746712 1.29334i
\(833\) −1200.50 + 2079.33i −0.0499338 + 0.0864879i
\(834\) 0 0
\(835\) −6007.50 10405.3i −0.248980 0.431246i
\(836\) −4520.00 −0.186995
\(837\) 0 0
\(838\) 13820.0 0.569694
\(839\) 21910.0 + 37949.2i 0.901570 + 1.56156i 0.825456 + 0.564466i \(0.190918\pi\)
0.0761135 + 0.997099i \(0.475749\pi\)
\(840\) 0 0
\(841\) −12005.5 + 20794.1i −0.492251 + 0.852603i
\(842\) 5249.00 9091.53i 0.214837 0.372108i
\(843\) 0 0
\(844\) 9898.00 + 17143.8i 0.403677 + 0.699189i
\(845\) −21015.0 −0.855548
\(846\) 0 0
\(847\) 0 0
\(848\) −5048.00 8743.39i −0.204421 0.354068i
\(849\) 0 0
\(850\) 175.000 303.109i 0.00706171 0.0122312i
\(851\) −6885.00 + 11925.2i −0.277338 + 0.480364i
\(852\) 0 0
\(853\) −9660.00 16731.6i −0.387752 0.671605i 0.604395 0.796685i \(-0.293415\pi\)
−0.992147 + 0.125079i \(0.960081\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −10080.0 −0.402485
\(857\) −1826.50 3163.59i −0.0728029 0.126098i 0.827326 0.561722i \(-0.189861\pi\)
−0.900129 + 0.435624i \(0.856528\pi\)
\(858\) 0 0
\(859\) −12186.5 + 21107.6i −0.484049 + 0.838397i −0.999832 0.0183218i \(-0.994168\pi\)
0.515783 + 0.856719i \(0.327501\pi\)
\(860\) −100.000 + 173.205i −0.00396508 + 0.00686773i
\(861\) 0 0
\(862\) −11880.0 20576.8i −0.469413 0.813048i
\(863\) 17629.0 0.695363 0.347681 0.937613i \(-0.386969\pi\)
0.347681 + 0.937613i \(0.386969\pi\)
\(864\) 0 0
\(865\) 4005.00 0.157427
\(866\) 4280.00 + 7413.18i 0.167945 + 0.290889i
\(867\) 0 0
\(868\) 0 0
\(869\) −135.000 + 233.827i −0.00526992 + 0.00912777i
\(870\) 0 0
\(871\) 30000.0 + 51961.5i 1.16706 + 2.02141i
\(872\) 14568.0 0.565751
\(873\) 0 0
\(874\) −18306.0 −0.708478
\(875\) 0 0
\(876\) 0 0
\(877\) 10605.0 18368.4i 0.408330 0.707248i −0.586373 0.810041i \(-0.699445\pi\)
0.994703 + 0.102793i \(0.0327779\pi\)
\(878\) −6463.00 + 11194.2i −0.248423 + 0.430282i
\(879\) 0 0
\(880\) 400.000 + 692.820i 0.0153227 + 0.0265397i
\(881\) −39340.0 −1.50442 −0.752212 0.658921i \(-0.771013\pi\)
−0.752212 + 0.658921i \(0.771013\pi\)
\(882\) 0 0
\(883\) −4240.00 −0.161594 −0.0807969 0.996731i \(-0.525747\pi\)
−0.0807969 + 0.996731i \(0.525747\pi\)
\(884\) 1120.00 + 1939.90i 0.0426128 + 0.0738075i
\(885\) 0 0
\(886\) 11721.0 20301.4i 0.444441 0.769794i
\(887\) −7966.50 + 13798.4i −0.301566 + 0.522327i −0.976491 0.215559i \(-0.930843\pi\)
0.674925 + 0.737886i \(0.264176\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) −7500.00 −0.282473
\(891\) 0 0
\(892\) −15560.0 −0.584067
\(893\) −9040.00 15657.7i −0.338759 0.586748i
\(894\) 0 0
\(895\) 5900.00 10219.1i 0.220352 0.381661i
\(896\) 0 0
\(897\) 0 0
\(898\) −2180.00 3775.87i −0.0810106 0.140315i
\(899\) −41580.0 −1.54257
\(900\) 0 0
\(901\) 4417.00 0.163320
\(902\) 1300.00 + 2251.67i 0.0479881 + 0.0831178i
\(903\) 0 0
\(904\) −26040.0 + 45102.6i −0.958050 + 1.65939i
\(905\) 3102.50 5373.69i 0.113956 0.197378i
\(906\) 0 0
\(907\) 3390.00 + 5871.65i 0.124105 + 0.214956i 0.921383 0.388657i \(-0.127061\pi\)
−0.797278 + 0.603613i \(0.793727\pi\)
\(908\) 9812.00 0.358615
\(909\) 0 0
\(910\) 0 0
\(911\) −12370.0 21425.5i −0.449875 0.779207i 0.548502 0.836149i \(-0.315198\pi\)
−0.998377 + 0.0569423i \(0.981865\pi\)
\(912\) 0 0
\(913\) −2145.00 + 3715.25i −0.0777537 + 0.134673i
\(914\) 17840.0 30899.8i 0.645618 1.11824i
\(915\) 0 0
\(916\) −12426.0 21522.5i −0.448217 0.776334i
\(917\) 0 0
\(918\) 0 0
\(919\) −48344.0 −1.73528 −0.867640 0.497194i \(-0.834364\pi\)
−0.867640 + 0.497194i \(0.834364\pi\)
\(920\) −4860.00 8417.77i −0.174162 0.301658i
\(921\) 0 0
\(922\) −2250.00 + 3897.11i −0.0803686 + 0.139202i
\(923\) −35600.0 + 61661.0i −1.26954 + 2.19891i
\(924\) 0 0
\(925\) −2125.00 3680.61i −0.0755347 0.130830i
\(926\) 2460.00 0.0873009
\(927\) 0 0
\(928\) 35200.0 1.24515
\(929\) −14825.0 25677.7i −0.523566 0.906842i −0.999624 0.0274285i \(-0.991268\pi\)
0.476058 0.879414i \(-0.342065\pi\)
\(930\) 0 0
\(931\) −19379.5 + 33566.3i −0.682210 + 1.18162i
\(932\) 6900.00 11951.2i 0.242508 0.420035i
\(933\) 0 0
\(934\) 5813.00 + 10068.4i 0.203648 + 0.352729i
\(935\) −350.000 −0.0122420
\(936\) 0 0
\(937\) 10260.0 0.357716 0.178858 0.983875i \(-0.442760\pi\)
0.178858 + 0.983875i \(0.442760\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 1600.00 2771.28i 0.0555173 0.0961588i
\(941\) −8135.00 + 14090.2i −0.281821 + 0.488128i −0.971833 0.235670i \(-0.924272\pi\)
0.690012 + 0.723798i \(0.257605\pi\)
\(942\) 0 0
\(943\) −5265.00 9119.25i −0.181815 0.314914i
\(944\) −8960.00 −0.308923
\(945\) 0 0
\(946\) −200.000 −0.00687374
\(947\) −11551.5 20007.8i −0.396382 0.686553i 0.596895 0.802319i \(-0.296401\pi\)
−0.993276 + 0.115766i \(0.963068\pi\)
\(948\) 0 0
\(949\) −35600.0 + 61661.0i −1.21773 + 2.10917i
\(950\) 2825.00 4893.04i 0.0964791 0.167107i
\(951\) 0 0
\(952\) 0 0
\(953\) 32090.0 1.09076 0.545381 0.838188i \(-0.316385\pi\)
0.545381 + 0.838188i \(0.316385\pi\)
\(954\) 0 0
\(955\) −24950.0 −0.845406
\(956\) −12980.0 22482.0i −0.439125 0.760586i
\(957\) 0 0
\(958\) −6750.00 + 11691.3i −0.227644 + 0.394290i
\(959\) 0 0
\(960\) 0 0
\(961\) −2965.00 5135.53i −0.0995267 0.172385i
\(962\) −27200.0 −0.911604
\(963\) 0 0
\(964\) 13604.0 0.454518
\(965\) −5650.00 9786.09i −0.188477 0.326451i
\(966\) 0 0
\(967\) 21005.0 36381.7i 0.698527 1.20988i −0.270451 0.962734i \(-0.587173\pi\)
0.968977 0.247150i \(-0.0794940\pi\)
\(968\) −14772.0 + 25585.9i −0.490486 + 0.849546i
\(969\) 0 0
\(970\) −7400.00 12817.2i −0.244948 0.424263i
\(971\) −17490.0 −0.578044 −0.289022 0.957322i \(-0.593330\pi\)
−0.289022 + 0.957322i \(0.593330\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 6610.00 + 11448.9i 0.217452 + 0.376638i
\(975\) 0 0
\(976\) 1832.00 3173.12i 0.0600829 0.104067i
\(977\) −11065.0 + 19165.1i −0.362334 + 0.627582i −0.988345 0.152233i \(-0.951353\pi\)
0.626010 + 0.779815i \(0.284687\pi\)
\(978\) 0 0
\(979\) 3750.00 + 6495.19i 0.122421 + 0.212040i
\(980\) −6860.00 −0.223607
\(981\) 0 0
\(982\) 9980.00 0.324312
\(983\) 20479.5 + 35471.5i 0.664491 + 1.15093i 0.979423 + 0.201818i \(0.0646849\pi\)
−0.314932 + 0.949114i \(0.601982\pi\)
\(984\) 0 0
\(985\) 5617.50 9729.80i 0.181714 0.314738i
\(986\) 1540.00 2667.36i 0.0497400 0.0861521i
\(987\) 0 0
\(988\) 18080.0 + 31315.5i 0.582188 + 1.00838i
\(989\) 810.000 0.0260430
\(990\) 0 0
\(991\) 61169.0 1.96074 0.980372 0.197157i \(-0.0631707\pi\)
0.980372 + 0.197157i \(0.0631707\pi\)
\(992\) 15120.0 + 26188.6i 0.483932 + 0.838195i
\(993\) 0 0
\(994\) 0 0
\(995\) 11410.0 19762.7i 0.363539 0.629668i
\(996\) 0 0
\(997\) −13095.0 22681.2i −0.415971 0.720482i 0.579559 0.814930i \(-0.303225\pi\)
−0.995530 + 0.0944478i \(0.969891\pi\)
\(998\) 2966.00 0.0940752
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 405.4.e.e.271.1 2
3.2 odd 2 405.4.e.j.271.1 2
9.2 odd 6 405.4.e.j.136.1 2
9.4 even 3 135.4.a.d.1.1 yes 1
9.5 odd 6 135.4.a.a.1.1 1
9.7 even 3 inner 405.4.e.e.136.1 2
36.23 even 6 2160.4.a.n.1.1 1
36.31 odd 6 2160.4.a.d.1.1 1
45.4 even 6 675.4.a.b.1.1 1
45.13 odd 12 675.4.b.c.649.1 2
45.14 odd 6 675.4.a.i.1.1 1
45.22 odd 12 675.4.b.c.649.2 2
45.23 even 12 675.4.b.d.649.2 2
45.32 even 12 675.4.b.d.649.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
135.4.a.a.1.1 1 9.5 odd 6
135.4.a.d.1.1 yes 1 9.4 even 3
405.4.e.e.136.1 2 9.7 even 3 inner
405.4.e.e.271.1 2 1.1 even 1 trivial
405.4.e.j.136.1 2 9.2 odd 6
405.4.e.j.271.1 2 3.2 odd 2
675.4.a.b.1.1 1 45.4 even 6
675.4.a.i.1.1 1 45.14 odd 6
675.4.b.c.649.1 2 45.13 odd 12
675.4.b.c.649.2 2 45.22 odd 12
675.4.b.d.649.1 2 45.32 even 12
675.4.b.d.649.2 2 45.23 even 12
2160.4.a.d.1.1 1 36.31 odd 6
2160.4.a.n.1.1 1 36.23 even 6