Properties

Label 405.4.e.g
Level $405$
Weight $4$
Character orbit 405.e
Analytic conductor $23.896$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [405,4,Mod(136,405)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(405, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("405.136");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 405 = 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 405.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(23.8957735523\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 15)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\zeta_{6} - 1) q^{2} + 7 \zeta_{6} q^{4} - 5 \zeta_{6} q^{5} + ( - 24 \zeta_{6} + 24) q^{7} - 15 q^{8} +O(q^{10}) \) Copy content Toggle raw display \( q + (\zeta_{6} - 1) q^{2} + 7 \zeta_{6} q^{4} - 5 \zeta_{6} q^{5} + ( - 24 \zeta_{6} + 24) q^{7} - 15 q^{8} + 5 q^{10} + (52 \zeta_{6} - 52) q^{11} - 22 \zeta_{6} q^{13} + 24 \zeta_{6} q^{14} + (41 \zeta_{6} - 41) q^{16} - 14 q^{17} - 20 q^{19} + ( - 35 \zeta_{6} + 35) q^{20} - 52 \zeta_{6} q^{22} + 168 \zeta_{6} q^{23} + (25 \zeta_{6} - 25) q^{25} + 22 q^{26} + 168 q^{28} + (230 \zeta_{6} - 230) q^{29} + 288 \zeta_{6} q^{31} - 161 \zeta_{6} q^{32} + ( - 14 \zeta_{6} + 14) q^{34} - 120 q^{35} - 34 q^{37} + ( - 20 \zeta_{6} + 20) q^{38} + 75 \zeta_{6} q^{40} - 122 \zeta_{6} q^{41} + ( - 188 \zeta_{6} + 188) q^{43} - 364 q^{44} - 168 q^{46} + (256 \zeta_{6} - 256) q^{47} - 233 \zeta_{6} q^{49} - 25 \zeta_{6} q^{50} + ( - 154 \zeta_{6} + 154) q^{52} - 338 q^{53} + 260 q^{55} + (360 \zeta_{6} - 360) q^{56} - 230 \zeta_{6} q^{58} - 100 \zeta_{6} q^{59} + (742 \zeta_{6} - 742) q^{61} - 288 q^{62} - 167 q^{64} + (110 \zeta_{6} - 110) q^{65} + 84 \zeta_{6} q^{67} - 98 \zeta_{6} q^{68} + ( - 120 \zeta_{6} + 120) q^{70} - 328 q^{71} - 38 q^{73} + ( - 34 \zeta_{6} + 34) q^{74} - 140 \zeta_{6} q^{76} + 1248 \zeta_{6} q^{77} + ( - 240 \zeta_{6} + 240) q^{79} + 205 q^{80} + 122 q^{82} + (1212 \zeta_{6} - 1212) q^{83} + 70 \zeta_{6} q^{85} + 188 \zeta_{6} q^{86} + ( - 780 \zeta_{6} + 780) q^{88} + 330 q^{89} - 528 q^{91} + (1176 \zeta_{6} - 1176) q^{92} - 256 \zeta_{6} q^{94} + 100 \zeta_{6} q^{95} + (866 \zeta_{6} - 866) q^{97} + 233 q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{2} + 7 q^{4} - 5 q^{5} + 24 q^{7} - 30 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - q^{2} + 7 q^{4} - 5 q^{5} + 24 q^{7} - 30 q^{8} + 10 q^{10} - 52 q^{11} - 22 q^{13} + 24 q^{14} - 41 q^{16} - 28 q^{17} - 40 q^{19} + 35 q^{20} - 52 q^{22} + 168 q^{23} - 25 q^{25} + 44 q^{26} + 336 q^{28} - 230 q^{29} + 288 q^{31} - 161 q^{32} + 14 q^{34} - 240 q^{35} - 68 q^{37} + 20 q^{38} + 75 q^{40} - 122 q^{41} + 188 q^{43} - 728 q^{44} - 336 q^{46} - 256 q^{47} - 233 q^{49} - 25 q^{50} + 154 q^{52} - 676 q^{53} + 520 q^{55} - 360 q^{56} - 230 q^{58} - 100 q^{59} - 742 q^{61} - 576 q^{62} - 334 q^{64} - 110 q^{65} + 84 q^{67} - 98 q^{68} + 120 q^{70} - 656 q^{71} - 76 q^{73} + 34 q^{74} - 140 q^{76} + 1248 q^{77} + 240 q^{79} + 410 q^{80} + 244 q^{82} - 1212 q^{83} + 70 q^{85} + 188 q^{86} + 780 q^{88} + 660 q^{89} - 1056 q^{91} - 1176 q^{92} - 256 q^{94} + 100 q^{95} - 866 q^{97} + 466 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/405\mathbb{Z}\right)^\times\).

\(n\) \(82\) \(326\)
\(\chi(n)\) \(1\) \(-\zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
136.1
0.500000 + 0.866025i
0.500000 0.866025i
−0.500000 + 0.866025i 0 3.50000 + 6.06218i −2.50000 4.33013i 0 12.0000 20.7846i −15.0000 0 5.00000
271.1 −0.500000 0.866025i 0 3.50000 6.06218i −2.50000 + 4.33013i 0 12.0000 + 20.7846i −15.0000 0 5.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 405.4.e.g 2
3.b odd 2 1 405.4.e.i 2
9.c even 3 1 15.4.a.a 1
9.c even 3 1 inner 405.4.e.g 2
9.d odd 6 1 45.4.a.c 1
9.d odd 6 1 405.4.e.i 2
36.f odd 6 1 240.4.a.e 1
36.h even 6 1 720.4.a.n 1
45.h odd 6 1 225.4.a.f 1
45.j even 6 1 75.4.a.b 1
45.k odd 12 2 75.4.b.b 2
45.l even 12 2 225.4.b.e 2
63.l odd 6 1 735.4.a.e 1
63.o even 6 1 2205.4.a.l 1
72.n even 6 1 960.4.a.b 1
72.p odd 6 1 960.4.a.ba 1
99.h odd 6 1 1815.4.a.e 1
180.p odd 6 1 1200.4.a.t 1
180.x even 12 2 1200.4.f.b 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
15.4.a.a 1 9.c even 3 1
45.4.a.c 1 9.d odd 6 1
75.4.a.b 1 45.j even 6 1
75.4.b.b 2 45.k odd 12 2
225.4.a.f 1 45.h odd 6 1
225.4.b.e 2 45.l even 12 2
240.4.a.e 1 36.f odd 6 1
405.4.e.g 2 1.a even 1 1 trivial
405.4.e.g 2 9.c even 3 1 inner
405.4.e.i 2 3.b odd 2 1
405.4.e.i 2 9.d odd 6 1
720.4.a.n 1 36.h even 6 1
735.4.a.e 1 63.l odd 6 1
960.4.a.b 1 72.n even 6 1
960.4.a.ba 1 72.p odd 6 1
1200.4.a.t 1 180.p odd 6 1
1200.4.f.b 2 180.x even 12 2
1815.4.a.e 1 99.h odd 6 1
2205.4.a.l 1 63.o even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(405, [\chi])\):

\( T_{2}^{2} + T_{2} + 1 \) Copy content Toggle raw display
\( T_{7}^{2} - 24T_{7} + 576 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + T + 1 \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + 5T + 25 \) Copy content Toggle raw display
$7$ \( T^{2} - 24T + 576 \) Copy content Toggle raw display
$11$ \( T^{2} + 52T + 2704 \) Copy content Toggle raw display
$13$ \( T^{2} + 22T + 484 \) Copy content Toggle raw display
$17$ \( (T + 14)^{2} \) Copy content Toggle raw display
$19$ \( (T + 20)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} - 168T + 28224 \) Copy content Toggle raw display
$29$ \( T^{2} + 230T + 52900 \) Copy content Toggle raw display
$31$ \( T^{2} - 288T + 82944 \) Copy content Toggle raw display
$37$ \( (T + 34)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} + 122T + 14884 \) Copy content Toggle raw display
$43$ \( T^{2} - 188T + 35344 \) Copy content Toggle raw display
$47$ \( T^{2} + 256T + 65536 \) Copy content Toggle raw display
$53$ \( (T + 338)^{2} \) Copy content Toggle raw display
$59$ \( T^{2} + 100T + 10000 \) Copy content Toggle raw display
$61$ \( T^{2} + 742T + 550564 \) Copy content Toggle raw display
$67$ \( T^{2} - 84T + 7056 \) Copy content Toggle raw display
$71$ \( (T + 328)^{2} \) Copy content Toggle raw display
$73$ \( (T + 38)^{2} \) Copy content Toggle raw display
$79$ \( T^{2} - 240T + 57600 \) Copy content Toggle raw display
$83$ \( T^{2} + 1212 T + 1468944 \) Copy content Toggle raw display
$89$ \( (T - 330)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} + 866T + 749956 \) Copy content Toggle raw display
show more
show less