Properties

Label 405.4.e.j
Level 405405
Weight 44
Character orbit 405.e
Analytic conductor 23.89623.896
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [405,4,Mod(136,405)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(405, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("405.136");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 405=345 405 = 3^{4} \cdot 5
Weight: k k == 4 4
Character orbit: [χ][\chi] == 405.e (of order 33, degree 22, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 23.895773552323.8957735523
Analytic rank: 00
Dimension: 22
Coefficient field: Q(3)\Q(\sqrt{-3})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2x+1 x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 135)
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ6\zeta_{6}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(2ζ6+2)q2+4ζ6q45ζ6q5+24q810q10+(10ζ610)q11+80ζ6q13+(16ζ6+16)q16+7q17113q19++686q98+O(q100) q + ( - 2 \zeta_{6} + 2) q^{2} + 4 \zeta_{6} q^{4} - 5 \zeta_{6} q^{5} + 24 q^{8} - 10 q^{10} + (10 \zeta_{6} - 10) q^{11} + 80 \zeta_{6} q^{13} + ( - 16 \zeta_{6} + 16) q^{16} + 7 q^{17} - 113 q^{19} + \cdots + 686 q^{98} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+2q2+4q45q5+48q820q1010q11+80q13+16q16+14q17226q19+20q20+20q22+81q2325q25+320q26+220q29+189q31++1372q98+O(q100) 2 q + 2 q^{2} + 4 q^{4} - 5 q^{5} + 48 q^{8} - 20 q^{10} - 10 q^{11} + 80 q^{13} + 16 q^{16} + 14 q^{17} - 226 q^{19} + 20 q^{20} + 20 q^{22} + 81 q^{23} - 25 q^{25} + 320 q^{26} + 220 q^{29} + 189 q^{31}+ \cdots + 1372 q^{98}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/405Z)×\left(\mathbb{Z}/405\mathbb{Z}\right)^\times.

nn 8282 326326
χ(n)\chi(n) 11 ζ6-\zeta_{6}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
136.1
0.500000 + 0.866025i
0.500000 0.866025i
1.00000 1.73205i 0 2.00000 + 3.46410i −2.50000 4.33013i 0 0 24.0000 0 −10.0000
271.1 1.00000 + 1.73205i 0 2.00000 3.46410i −2.50000 + 4.33013i 0 0 24.0000 0 −10.0000
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 405.4.e.j 2
3.b odd 2 1 405.4.e.e 2
9.c even 3 1 135.4.a.a 1
9.c even 3 1 inner 405.4.e.j 2
9.d odd 6 1 135.4.a.d yes 1
9.d odd 6 1 405.4.e.e 2
36.f odd 6 1 2160.4.a.n 1
36.h even 6 1 2160.4.a.d 1
45.h odd 6 1 675.4.a.b 1
45.j even 6 1 675.4.a.i 1
45.k odd 12 2 675.4.b.d 2
45.l even 12 2 675.4.b.c 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
135.4.a.a 1 9.c even 3 1
135.4.a.d yes 1 9.d odd 6 1
405.4.e.e 2 3.b odd 2 1
405.4.e.e 2 9.d odd 6 1
405.4.e.j 2 1.a even 1 1 trivial
405.4.e.j 2 9.c even 3 1 inner
675.4.a.b 1 45.h odd 6 1
675.4.a.i 1 45.j even 6 1
675.4.b.c 2 45.l even 12 2
675.4.b.d 2 45.k odd 12 2
2160.4.a.d 1 36.h even 6 1
2160.4.a.n 1 36.f odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(405,[χ])S_{4}^{\mathrm{new}}(405, [\chi]):

T222T2+4 T_{2}^{2} - 2T_{2} + 4 Copy content Toggle raw display
T7 T_{7} Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T22T+4 T^{2} - 2T + 4 Copy content Toggle raw display
33 T2 T^{2} Copy content Toggle raw display
55 T2+5T+25 T^{2} + 5T + 25 Copy content Toggle raw display
77 T2 T^{2} Copy content Toggle raw display
1111 T2+10T+100 T^{2} + 10T + 100 Copy content Toggle raw display
1313 T280T+6400 T^{2} - 80T + 6400 Copy content Toggle raw display
1717 (T7)2 (T - 7)^{2} Copy content Toggle raw display
1919 (T+113)2 (T + 113)^{2} Copy content Toggle raw display
2323 T281T+6561 T^{2} - 81T + 6561 Copy content Toggle raw display
2929 T2220T+48400 T^{2} - 220T + 48400 Copy content Toggle raw display
3131 T2189T+35721 T^{2} - 189T + 35721 Copy content Toggle raw display
3737 (T170)2 (T - 170)^{2} Copy content Toggle raw display
4141 T2130T+16900 T^{2} - 130T + 16900 Copy content Toggle raw display
4343 T2+10T+100 T^{2} + 10T + 100 Copy content Toggle raw display
4747 T2+160T+25600 T^{2} + 160T + 25600 Copy content Toggle raw display
5353 (T631)2 (T - 631)^{2} Copy content Toggle raw display
5959 T2560T+313600 T^{2} - 560T + 313600 Copy content Toggle raw display
6161 T2+229T+52441 T^{2} + 229T + 52441 Copy content Toggle raw display
6767 T2+750T+562500 T^{2} + 750T + 562500 Copy content Toggle raw display
7171 (T890)2 (T - 890)^{2} Copy content Toggle raw display
7373 (T+890)2 (T + 890)^{2} Copy content Toggle raw display
7979 T227T+729 T^{2} - 27T + 729 Copy content Toggle raw display
8383 T2+429T+184041 T^{2} + 429T + 184041 Copy content Toggle raw display
8989 (T+750)2 (T + 750)^{2} Copy content Toggle raw display
9797 T21480T+2190400 T^{2} - 1480 T + 2190400 Copy content Toggle raw display
show more
show less