Properties

Label 4050.2.a.bl.1.1
Level $4050$
Weight $2$
Character 4050.1
Self dual yes
Analytic conductor $32.339$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4050,2,Mod(1,4050)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4050, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4050.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4050 = 2 \cdot 3^{4} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4050.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(32.3394128186\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{6}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 6 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 450)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-2.44949\) of defining polynomial
Character \(\chi\) \(=\) 4050.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +1.00000 q^{4} -4.44949 q^{7} -1.00000 q^{8} +O(q^{10})\) \(q-1.00000 q^{2} +1.00000 q^{4} -4.44949 q^{7} -1.00000 q^{8} -4.89898 q^{11} -4.44949 q^{13} +4.44949 q^{14} +1.00000 q^{16} -4.89898 q^{17} +2.55051 q^{19} +4.89898 q^{22} +2.44949 q^{23} +4.44949 q^{26} -4.44949 q^{28} -2.44949 q^{29} -0.449490 q^{31} -1.00000 q^{32} +4.89898 q^{34} -3.34847 q^{37} -2.55051 q^{38} -9.00000 q^{41} -7.44949 q^{43} -4.89898 q^{44} -2.44949 q^{46} -1.10102 q^{47} +12.7980 q^{49} -4.44949 q^{52} -8.44949 q^{53} +4.44949 q^{56} +2.44949 q^{58} +0.550510 q^{59} +8.00000 q^{61} +0.449490 q^{62} +1.00000 q^{64} +14.3485 q^{67} -4.89898 q^{68} +1.34847 q^{71} +1.00000 q^{73} +3.34847 q^{74} +2.55051 q^{76} +21.7980 q^{77} -12.6969 q^{79} +9.00000 q^{82} -0.550510 q^{83} +7.44949 q^{86} +4.89898 q^{88} +9.00000 q^{89} +19.7980 q^{91} +2.44949 q^{92} +1.10102 q^{94} +10.7980 q^{97} -12.7980 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} + 2 q^{4} - 4 q^{7} - 2 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 2 q^{2} + 2 q^{4} - 4 q^{7} - 2 q^{8} - 4 q^{13} + 4 q^{14} + 2 q^{16} + 10 q^{19} + 4 q^{26} - 4 q^{28} + 4 q^{31} - 2 q^{32} + 8 q^{37} - 10 q^{38} - 18 q^{41} - 10 q^{43} - 12 q^{47} + 6 q^{49} - 4 q^{52} - 12 q^{53} + 4 q^{56} + 6 q^{59} + 16 q^{61} - 4 q^{62} + 2 q^{64} + 14 q^{67} - 12 q^{71} + 2 q^{73} - 8 q^{74} + 10 q^{76} + 24 q^{77} + 4 q^{79} + 18 q^{82} - 6 q^{83} + 10 q^{86} + 18 q^{89} + 20 q^{91} + 12 q^{94} + 2 q^{97} - 6 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) 0 0
\(6\) 0 0
\(7\) −4.44949 −1.68175 −0.840875 0.541230i \(-0.817959\pi\)
−0.840875 + 0.541230i \(0.817959\pi\)
\(8\) −1.00000 −0.353553
\(9\) 0 0
\(10\) 0 0
\(11\) −4.89898 −1.47710 −0.738549 0.674200i \(-0.764489\pi\)
−0.738549 + 0.674200i \(0.764489\pi\)
\(12\) 0 0
\(13\) −4.44949 −1.23407 −0.617033 0.786937i \(-0.711666\pi\)
−0.617033 + 0.786937i \(0.711666\pi\)
\(14\) 4.44949 1.18918
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −4.89898 −1.18818 −0.594089 0.804400i \(-0.702487\pi\)
−0.594089 + 0.804400i \(0.702487\pi\)
\(18\) 0 0
\(19\) 2.55051 0.585127 0.292564 0.956246i \(-0.405492\pi\)
0.292564 + 0.956246i \(0.405492\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 4.89898 1.04447
\(23\) 2.44949 0.510754 0.255377 0.966842i \(-0.417800\pi\)
0.255377 + 0.966842i \(0.417800\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 4.44949 0.872617
\(27\) 0 0
\(28\) −4.44949 −0.840875
\(29\) −2.44949 −0.454859 −0.227429 0.973795i \(-0.573032\pi\)
−0.227429 + 0.973795i \(0.573032\pi\)
\(30\) 0 0
\(31\) −0.449490 −0.0807307 −0.0403654 0.999185i \(-0.512852\pi\)
−0.0403654 + 0.999185i \(0.512852\pi\)
\(32\) −1.00000 −0.176777
\(33\) 0 0
\(34\) 4.89898 0.840168
\(35\) 0 0
\(36\) 0 0
\(37\) −3.34847 −0.550485 −0.275242 0.961375i \(-0.588758\pi\)
−0.275242 + 0.961375i \(0.588758\pi\)
\(38\) −2.55051 −0.413747
\(39\) 0 0
\(40\) 0 0
\(41\) −9.00000 −1.40556 −0.702782 0.711405i \(-0.748059\pi\)
−0.702782 + 0.711405i \(0.748059\pi\)
\(42\) 0 0
\(43\) −7.44949 −1.13604 −0.568018 0.823016i \(-0.692290\pi\)
−0.568018 + 0.823016i \(0.692290\pi\)
\(44\) −4.89898 −0.738549
\(45\) 0 0
\(46\) −2.44949 −0.361158
\(47\) −1.10102 −0.160600 −0.0803002 0.996771i \(-0.525588\pi\)
−0.0803002 + 0.996771i \(0.525588\pi\)
\(48\) 0 0
\(49\) 12.7980 1.82828
\(50\) 0 0
\(51\) 0 0
\(52\) −4.44949 −0.617033
\(53\) −8.44949 −1.16063 −0.580313 0.814393i \(-0.697070\pi\)
−0.580313 + 0.814393i \(0.697070\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 4.44949 0.594588
\(57\) 0 0
\(58\) 2.44949 0.321634
\(59\) 0.550510 0.0716703 0.0358352 0.999358i \(-0.488591\pi\)
0.0358352 + 0.999358i \(0.488591\pi\)
\(60\) 0 0
\(61\) 8.00000 1.02430 0.512148 0.858898i \(-0.328850\pi\)
0.512148 + 0.858898i \(0.328850\pi\)
\(62\) 0.449490 0.0570853
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) 0 0
\(67\) 14.3485 1.75294 0.876472 0.481452i \(-0.159891\pi\)
0.876472 + 0.481452i \(0.159891\pi\)
\(68\) −4.89898 −0.594089
\(69\) 0 0
\(70\) 0 0
\(71\) 1.34847 0.160034 0.0800169 0.996794i \(-0.474503\pi\)
0.0800169 + 0.996794i \(0.474503\pi\)
\(72\) 0 0
\(73\) 1.00000 0.117041 0.0585206 0.998286i \(-0.481362\pi\)
0.0585206 + 0.998286i \(0.481362\pi\)
\(74\) 3.34847 0.389252
\(75\) 0 0
\(76\) 2.55051 0.292564
\(77\) 21.7980 2.48411
\(78\) 0 0
\(79\) −12.6969 −1.42852 −0.714259 0.699882i \(-0.753236\pi\)
−0.714259 + 0.699882i \(0.753236\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 9.00000 0.993884
\(83\) −0.550510 −0.0604264 −0.0302132 0.999543i \(-0.509619\pi\)
−0.0302132 + 0.999543i \(0.509619\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 7.44949 0.803299
\(87\) 0 0
\(88\) 4.89898 0.522233
\(89\) 9.00000 0.953998 0.476999 0.878904i \(-0.341725\pi\)
0.476999 + 0.878904i \(0.341725\pi\)
\(90\) 0 0
\(91\) 19.7980 2.07539
\(92\) 2.44949 0.255377
\(93\) 0 0
\(94\) 1.10102 0.113562
\(95\) 0 0
\(96\) 0 0
\(97\) 10.7980 1.09637 0.548183 0.836358i \(-0.315320\pi\)
0.548183 + 0.836358i \(0.315320\pi\)
\(98\) −12.7980 −1.29279
\(99\) 0 0
\(100\) 0 0
\(101\) −3.55051 −0.353289 −0.176644 0.984275i \(-0.556524\pi\)
−0.176644 + 0.984275i \(0.556524\pi\)
\(102\) 0 0
\(103\) 12.6969 1.25107 0.625533 0.780198i \(-0.284881\pi\)
0.625533 + 0.780198i \(0.284881\pi\)
\(104\) 4.44949 0.436308
\(105\) 0 0
\(106\) 8.44949 0.820687
\(107\) −15.2474 −1.47403 −0.737013 0.675878i \(-0.763764\pi\)
−0.737013 + 0.675878i \(0.763764\pi\)
\(108\) 0 0
\(109\) 10.4495 1.00088 0.500440 0.865771i \(-0.333172\pi\)
0.500440 + 0.865771i \(0.333172\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −4.44949 −0.420437
\(113\) −13.8990 −1.30751 −0.653753 0.756708i \(-0.726806\pi\)
−0.653753 + 0.756708i \(0.726806\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −2.44949 −0.227429
\(117\) 0 0
\(118\) −0.550510 −0.0506786
\(119\) 21.7980 1.99822
\(120\) 0 0
\(121\) 13.0000 1.18182
\(122\) −8.00000 −0.724286
\(123\) 0 0
\(124\) −0.449490 −0.0403654
\(125\) 0 0
\(126\) 0 0
\(127\) 11.3485 1.00701 0.503507 0.863991i \(-0.332043\pi\)
0.503507 + 0.863991i \(0.332043\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 0 0
\(130\) 0 0
\(131\) −15.7980 −1.38027 −0.690137 0.723679i \(-0.742450\pi\)
−0.690137 + 0.723679i \(0.742450\pi\)
\(132\) 0 0
\(133\) −11.3485 −0.984037
\(134\) −14.3485 −1.23952
\(135\) 0 0
\(136\) 4.89898 0.420084
\(137\) 3.00000 0.256307 0.128154 0.991754i \(-0.459095\pi\)
0.128154 + 0.991754i \(0.459095\pi\)
\(138\) 0 0
\(139\) −4.00000 −0.339276 −0.169638 0.985506i \(-0.554260\pi\)
−0.169638 + 0.985506i \(0.554260\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −1.34847 −0.113161
\(143\) 21.7980 1.82284
\(144\) 0 0
\(145\) 0 0
\(146\) −1.00000 −0.0827606
\(147\) 0 0
\(148\) −3.34847 −0.275242
\(149\) 6.00000 0.491539 0.245770 0.969328i \(-0.420959\pi\)
0.245770 + 0.969328i \(0.420959\pi\)
\(150\) 0 0
\(151\) 20.0000 1.62758 0.813788 0.581161i \(-0.197401\pi\)
0.813788 + 0.581161i \(0.197401\pi\)
\(152\) −2.55051 −0.206874
\(153\) 0 0
\(154\) −21.7980 −1.75653
\(155\) 0 0
\(156\) 0 0
\(157\) 0.202041 0.0161246 0.00806231 0.999967i \(-0.497434\pi\)
0.00806231 + 0.999967i \(0.497434\pi\)
\(158\) 12.6969 1.01011
\(159\) 0 0
\(160\) 0 0
\(161\) −10.8990 −0.858960
\(162\) 0 0
\(163\) −2.55051 −0.199771 −0.0998857 0.994999i \(-0.531848\pi\)
−0.0998857 + 0.994999i \(0.531848\pi\)
\(164\) −9.00000 −0.702782
\(165\) 0 0
\(166\) 0.550510 0.0427279
\(167\) −19.5959 −1.51638 −0.758189 0.652035i \(-0.773915\pi\)
−0.758189 + 0.652035i \(0.773915\pi\)
\(168\) 0 0
\(169\) 6.79796 0.522920
\(170\) 0 0
\(171\) 0 0
\(172\) −7.44949 −0.568018
\(173\) −9.79796 −0.744925 −0.372463 0.928047i \(-0.621486\pi\)
−0.372463 + 0.928047i \(0.621486\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −4.89898 −0.369274
\(177\) 0 0
\(178\) −9.00000 −0.674579
\(179\) 15.2474 1.13965 0.569824 0.821767i \(-0.307011\pi\)
0.569824 + 0.821767i \(0.307011\pi\)
\(180\) 0 0
\(181\) −1.79796 −0.133641 −0.0668206 0.997765i \(-0.521286\pi\)
−0.0668206 + 0.997765i \(0.521286\pi\)
\(182\) −19.7980 −1.46752
\(183\) 0 0
\(184\) −2.44949 −0.180579
\(185\) 0 0
\(186\) 0 0
\(187\) 24.0000 1.75505
\(188\) −1.10102 −0.0803002
\(189\) 0 0
\(190\) 0 0
\(191\) 10.8990 0.788622 0.394311 0.918977i \(-0.370983\pi\)
0.394311 + 0.918977i \(0.370983\pi\)
\(192\) 0 0
\(193\) −20.0000 −1.43963 −0.719816 0.694165i \(-0.755774\pi\)
−0.719816 + 0.694165i \(0.755774\pi\)
\(194\) −10.7980 −0.775248
\(195\) 0 0
\(196\) 12.7980 0.914140
\(197\) 24.2474 1.72756 0.863780 0.503870i \(-0.168091\pi\)
0.863780 + 0.503870i \(0.168091\pi\)
\(198\) 0 0
\(199\) 5.79796 0.411006 0.205503 0.978656i \(-0.434117\pi\)
0.205503 + 0.978656i \(0.434117\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 3.55051 0.249813
\(203\) 10.8990 0.764958
\(204\) 0 0
\(205\) 0 0
\(206\) −12.6969 −0.884638
\(207\) 0 0
\(208\) −4.44949 −0.308517
\(209\) −12.4949 −0.864290
\(210\) 0 0
\(211\) 1.44949 0.0997870 0.0498935 0.998755i \(-0.484112\pi\)
0.0498935 + 0.998755i \(0.484112\pi\)
\(212\) −8.44949 −0.580313
\(213\) 0 0
\(214\) 15.2474 1.04229
\(215\) 0 0
\(216\) 0 0
\(217\) 2.00000 0.135769
\(218\) −10.4495 −0.707729
\(219\) 0 0
\(220\) 0 0
\(221\) 21.7980 1.46629
\(222\) 0 0
\(223\) 1.79796 0.120400 0.0602001 0.998186i \(-0.480826\pi\)
0.0602001 + 0.998186i \(0.480826\pi\)
\(224\) 4.44949 0.297294
\(225\) 0 0
\(226\) 13.8990 0.924546
\(227\) 28.3485 1.88155 0.940777 0.339026i \(-0.110097\pi\)
0.940777 + 0.339026i \(0.110097\pi\)
\(228\) 0 0
\(229\) −21.1464 −1.39740 −0.698698 0.715417i \(-0.746237\pi\)
−0.698698 + 0.715417i \(0.746237\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 2.44949 0.160817
\(233\) 5.69694 0.373219 0.186609 0.982434i \(-0.440250\pi\)
0.186609 + 0.982434i \(0.440250\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0.550510 0.0358352
\(237\) 0 0
\(238\) −21.7980 −1.41295
\(239\) −9.55051 −0.617771 −0.308886 0.951099i \(-0.599956\pi\)
−0.308886 + 0.951099i \(0.599956\pi\)
\(240\) 0 0
\(241\) −22.7980 −1.46855 −0.734273 0.678854i \(-0.762477\pi\)
−0.734273 + 0.678854i \(0.762477\pi\)
\(242\) −13.0000 −0.835672
\(243\) 0 0
\(244\) 8.00000 0.512148
\(245\) 0 0
\(246\) 0 0
\(247\) −11.3485 −0.722086
\(248\) 0.449490 0.0285426
\(249\) 0 0
\(250\) 0 0
\(251\) 5.44949 0.343969 0.171984 0.985100i \(-0.444982\pi\)
0.171984 + 0.985100i \(0.444982\pi\)
\(252\) 0 0
\(253\) −12.0000 −0.754434
\(254\) −11.3485 −0.712066
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 6.79796 0.424045 0.212023 0.977265i \(-0.431995\pi\)
0.212023 + 0.977265i \(0.431995\pi\)
\(258\) 0 0
\(259\) 14.8990 0.925778
\(260\) 0 0
\(261\) 0 0
\(262\) 15.7980 0.976001
\(263\) 15.5505 0.958886 0.479443 0.877573i \(-0.340839\pi\)
0.479443 + 0.877573i \(0.340839\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 11.3485 0.695819
\(267\) 0 0
\(268\) 14.3485 0.876472
\(269\) −9.55051 −0.582305 −0.291152 0.956677i \(-0.594039\pi\)
−0.291152 + 0.956677i \(0.594039\pi\)
\(270\) 0 0
\(271\) 0.651531 0.0395777 0.0197888 0.999804i \(-0.493701\pi\)
0.0197888 + 0.999804i \(0.493701\pi\)
\(272\) −4.89898 −0.297044
\(273\) 0 0
\(274\) −3.00000 −0.181237
\(275\) 0 0
\(276\) 0 0
\(277\) 6.44949 0.387512 0.193756 0.981050i \(-0.437933\pi\)
0.193756 + 0.981050i \(0.437933\pi\)
\(278\) 4.00000 0.239904
\(279\) 0 0
\(280\) 0 0
\(281\) −28.8990 −1.72397 −0.861984 0.506935i \(-0.830778\pi\)
−0.861984 + 0.506935i \(0.830778\pi\)
\(282\) 0 0
\(283\) −11.2474 −0.668591 −0.334296 0.942468i \(-0.608498\pi\)
−0.334296 + 0.942468i \(0.608498\pi\)
\(284\) 1.34847 0.0800169
\(285\) 0 0
\(286\) −21.7980 −1.28894
\(287\) 40.0454 2.36381
\(288\) 0 0
\(289\) 7.00000 0.411765
\(290\) 0 0
\(291\) 0 0
\(292\) 1.00000 0.0585206
\(293\) −28.0454 −1.63843 −0.819215 0.573486i \(-0.805591\pi\)
−0.819215 + 0.573486i \(0.805591\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 3.34847 0.194626
\(297\) 0 0
\(298\) −6.00000 −0.347571
\(299\) −10.8990 −0.630304
\(300\) 0 0
\(301\) 33.1464 1.91053
\(302\) −20.0000 −1.15087
\(303\) 0 0
\(304\) 2.55051 0.146282
\(305\) 0 0
\(306\) 0 0
\(307\) 6.69694 0.382214 0.191107 0.981569i \(-0.438792\pi\)
0.191107 + 0.981569i \(0.438792\pi\)
\(308\) 21.7980 1.24205
\(309\) 0 0
\(310\) 0 0
\(311\) 10.8990 0.618024 0.309012 0.951058i \(-0.400002\pi\)
0.309012 + 0.951058i \(0.400002\pi\)
\(312\) 0 0
\(313\) −3.89898 −0.220383 −0.110192 0.993910i \(-0.535146\pi\)
−0.110192 + 0.993910i \(0.535146\pi\)
\(314\) −0.202041 −0.0114018
\(315\) 0 0
\(316\) −12.6969 −0.714259
\(317\) −17.1464 −0.963039 −0.481520 0.876435i \(-0.659915\pi\)
−0.481520 + 0.876435i \(0.659915\pi\)
\(318\) 0 0
\(319\) 12.0000 0.671871
\(320\) 0 0
\(321\) 0 0
\(322\) 10.8990 0.607376
\(323\) −12.4949 −0.695235
\(324\) 0 0
\(325\) 0 0
\(326\) 2.55051 0.141260
\(327\) 0 0
\(328\) 9.00000 0.496942
\(329\) 4.89898 0.270089
\(330\) 0 0
\(331\) −8.34847 −0.458873 −0.229437 0.973324i \(-0.573688\pi\)
−0.229437 + 0.973324i \(0.573688\pi\)
\(332\) −0.550510 −0.0302132
\(333\) 0 0
\(334\) 19.5959 1.07224
\(335\) 0 0
\(336\) 0 0
\(337\) 11.1010 0.604711 0.302356 0.953195i \(-0.402227\pi\)
0.302356 + 0.953195i \(0.402227\pi\)
\(338\) −6.79796 −0.369760
\(339\) 0 0
\(340\) 0 0
\(341\) 2.20204 0.119247
\(342\) 0 0
\(343\) −25.7980 −1.39296
\(344\) 7.44949 0.401650
\(345\) 0 0
\(346\) 9.79796 0.526742
\(347\) 12.0000 0.644194 0.322097 0.946707i \(-0.395612\pi\)
0.322097 + 0.946707i \(0.395612\pi\)
\(348\) 0 0
\(349\) 14.0000 0.749403 0.374701 0.927146i \(-0.377745\pi\)
0.374701 + 0.927146i \(0.377745\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 4.89898 0.261116
\(353\) −9.00000 −0.479022 −0.239511 0.970894i \(-0.576987\pi\)
−0.239511 + 0.970894i \(0.576987\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 9.00000 0.476999
\(357\) 0 0
\(358\) −15.2474 −0.805853
\(359\) 33.7980 1.78379 0.891894 0.452244i \(-0.149377\pi\)
0.891894 + 0.452244i \(0.149377\pi\)
\(360\) 0 0
\(361\) −12.4949 −0.657626
\(362\) 1.79796 0.0944986
\(363\) 0 0
\(364\) 19.7980 1.03770
\(365\) 0 0
\(366\) 0 0
\(367\) −16.6969 −0.871573 −0.435787 0.900050i \(-0.643530\pi\)
−0.435787 + 0.900050i \(0.643530\pi\)
\(368\) 2.44949 0.127688
\(369\) 0 0
\(370\) 0 0
\(371\) 37.5959 1.95188
\(372\) 0 0
\(373\) −15.5959 −0.807526 −0.403763 0.914864i \(-0.632298\pi\)
−0.403763 + 0.914864i \(0.632298\pi\)
\(374\) −24.0000 −1.24101
\(375\) 0 0
\(376\) 1.10102 0.0567808
\(377\) 10.8990 0.561326
\(378\) 0 0
\(379\) 0.898979 0.0461775 0.0230887 0.999733i \(-0.492650\pi\)
0.0230887 + 0.999733i \(0.492650\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −10.8990 −0.557640
\(383\) 26.4495 1.35151 0.675753 0.737128i \(-0.263819\pi\)
0.675753 + 0.737128i \(0.263819\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 20.0000 1.01797
\(387\) 0 0
\(388\) 10.7980 0.548183
\(389\) 13.5959 0.689340 0.344670 0.938724i \(-0.387991\pi\)
0.344670 + 0.938724i \(0.387991\pi\)
\(390\) 0 0
\(391\) −12.0000 −0.606866
\(392\) −12.7980 −0.646395
\(393\) 0 0
\(394\) −24.2474 −1.22157
\(395\) 0 0
\(396\) 0 0
\(397\) −21.5959 −1.08387 −0.541934 0.840421i \(-0.682308\pi\)
−0.541934 + 0.840421i \(0.682308\pi\)
\(398\) −5.79796 −0.290625
\(399\) 0 0
\(400\) 0 0
\(401\) −9.30306 −0.464573 −0.232286 0.972647i \(-0.574621\pi\)
−0.232286 + 0.972647i \(0.574621\pi\)
\(402\) 0 0
\(403\) 2.00000 0.0996271
\(404\) −3.55051 −0.176644
\(405\) 0 0
\(406\) −10.8990 −0.540907
\(407\) 16.4041 0.813120
\(408\) 0 0
\(409\) 9.89898 0.489473 0.244737 0.969590i \(-0.421299\pi\)
0.244737 + 0.969590i \(0.421299\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 12.6969 0.625533
\(413\) −2.44949 −0.120532
\(414\) 0 0
\(415\) 0 0
\(416\) 4.44949 0.218154
\(417\) 0 0
\(418\) 12.4949 0.611145
\(419\) −8.14643 −0.397979 −0.198990 0.980002i \(-0.563766\pi\)
−0.198990 + 0.980002i \(0.563766\pi\)
\(420\) 0 0
\(421\) 18.0454 0.879479 0.439740 0.898125i \(-0.355071\pi\)
0.439740 + 0.898125i \(0.355071\pi\)
\(422\) −1.44949 −0.0705601
\(423\) 0 0
\(424\) 8.44949 0.410343
\(425\) 0 0
\(426\) 0 0
\(427\) −35.5959 −1.72261
\(428\) −15.2474 −0.737013
\(429\) 0 0
\(430\) 0 0
\(431\) −10.6515 −0.513066 −0.256533 0.966535i \(-0.582580\pi\)
−0.256533 + 0.966535i \(0.582580\pi\)
\(432\) 0 0
\(433\) 29.5959 1.42229 0.711145 0.703046i \(-0.248177\pi\)
0.711145 + 0.703046i \(0.248177\pi\)
\(434\) −2.00000 −0.0960031
\(435\) 0 0
\(436\) 10.4495 0.500440
\(437\) 6.24745 0.298856
\(438\) 0 0
\(439\) −11.3485 −0.541633 −0.270816 0.962631i \(-0.587294\pi\)
−0.270816 + 0.962631i \(0.587294\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −21.7980 −1.03682
\(443\) 27.7980 1.32072 0.660360 0.750949i \(-0.270404\pi\)
0.660360 + 0.750949i \(0.270404\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −1.79796 −0.0851358
\(447\) 0 0
\(448\) −4.44949 −0.210219
\(449\) −10.5959 −0.500052 −0.250026 0.968239i \(-0.580439\pi\)
−0.250026 + 0.968239i \(0.580439\pi\)
\(450\) 0 0
\(451\) 44.0908 2.07616
\(452\) −13.8990 −0.653753
\(453\) 0 0
\(454\) −28.3485 −1.33046
\(455\) 0 0
\(456\) 0 0
\(457\) 15.6969 0.734272 0.367136 0.930167i \(-0.380338\pi\)
0.367136 + 0.930167i \(0.380338\pi\)
\(458\) 21.1464 0.988108
\(459\) 0 0
\(460\) 0 0
\(461\) −19.3485 −0.901148 −0.450574 0.892739i \(-0.648781\pi\)
−0.450574 + 0.892739i \(0.648781\pi\)
\(462\) 0 0
\(463\) −9.34847 −0.434460 −0.217230 0.976120i \(-0.569702\pi\)
−0.217230 + 0.976120i \(0.569702\pi\)
\(464\) −2.44949 −0.113715
\(465\) 0 0
\(466\) −5.69694 −0.263906
\(467\) 4.34847 0.201223 0.100612 0.994926i \(-0.467920\pi\)
0.100612 + 0.994926i \(0.467920\pi\)
\(468\) 0 0
\(469\) −63.8434 −2.94801
\(470\) 0 0
\(471\) 0 0
\(472\) −0.550510 −0.0253393
\(473\) 36.4949 1.67804
\(474\) 0 0
\(475\) 0 0
\(476\) 21.7980 0.999108
\(477\) 0 0
\(478\) 9.55051 0.436830
\(479\) 24.2474 1.10789 0.553947 0.832552i \(-0.313121\pi\)
0.553947 + 0.832552i \(0.313121\pi\)
\(480\) 0 0
\(481\) 14.8990 0.679335
\(482\) 22.7980 1.03842
\(483\) 0 0
\(484\) 13.0000 0.590909
\(485\) 0 0
\(486\) 0 0
\(487\) 19.5505 0.885918 0.442959 0.896542i \(-0.353929\pi\)
0.442959 + 0.896542i \(0.353929\pi\)
\(488\) −8.00000 −0.362143
\(489\) 0 0
\(490\) 0 0
\(491\) 2.75255 0.124221 0.0621105 0.998069i \(-0.480217\pi\)
0.0621105 + 0.998069i \(0.480217\pi\)
\(492\) 0 0
\(493\) 12.0000 0.540453
\(494\) 11.3485 0.510592
\(495\) 0 0
\(496\) −0.449490 −0.0201827
\(497\) −6.00000 −0.269137
\(498\) 0 0
\(499\) 6.34847 0.284197 0.142098 0.989853i \(-0.454615\pi\)
0.142098 + 0.989853i \(0.454615\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −5.44949 −0.243223
\(503\) 26.4495 1.17932 0.589662 0.807650i \(-0.299261\pi\)
0.589662 + 0.807650i \(0.299261\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 12.0000 0.533465
\(507\) 0 0
\(508\) 11.3485 0.503507
\(509\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(510\) 0 0
\(511\) −4.44949 −0.196834
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) −6.79796 −0.299845
\(515\) 0 0
\(516\) 0 0
\(517\) 5.39388 0.237222
\(518\) −14.8990 −0.654624
\(519\) 0 0
\(520\) 0 0
\(521\) −29.3939 −1.28777 −0.643885 0.765123i \(-0.722678\pi\)
−0.643885 + 0.765123i \(0.722678\pi\)
\(522\) 0 0
\(523\) 5.65153 0.247124 0.123562 0.992337i \(-0.460568\pi\)
0.123562 + 0.992337i \(0.460568\pi\)
\(524\) −15.7980 −0.690137
\(525\) 0 0
\(526\) −15.5505 −0.678034
\(527\) 2.20204 0.0959224
\(528\) 0 0
\(529\) −17.0000 −0.739130
\(530\) 0 0
\(531\) 0 0
\(532\) −11.3485 −0.492019
\(533\) 40.0454 1.73456
\(534\) 0 0
\(535\) 0 0
\(536\) −14.3485 −0.619759
\(537\) 0 0
\(538\) 9.55051 0.411752
\(539\) −62.6969 −2.70055
\(540\) 0 0
\(541\) −18.2020 −0.782567 −0.391283 0.920270i \(-0.627969\pi\)
−0.391283 + 0.920270i \(0.627969\pi\)
\(542\) −0.651531 −0.0279856
\(543\) 0 0
\(544\) 4.89898 0.210042
\(545\) 0 0
\(546\) 0 0
\(547\) −30.3485 −1.29761 −0.648803 0.760956i \(-0.724730\pi\)
−0.648803 + 0.760956i \(0.724730\pi\)
\(548\) 3.00000 0.128154
\(549\) 0 0
\(550\) 0 0
\(551\) −6.24745 −0.266150
\(552\) 0 0
\(553\) 56.4949 2.40241
\(554\) −6.44949 −0.274013
\(555\) 0 0
\(556\) −4.00000 −0.169638
\(557\) −17.3939 −0.737002 −0.368501 0.929627i \(-0.620129\pi\)
−0.368501 + 0.929627i \(0.620129\pi\)
\(558\) 0 0
\(559\) 33.1464 1.40194
\(560\) 0 0
\(561\) 0 0
\(562\) 28.8990 1.21903
\(563\) 29.9444 1.26201 0.631003 0.775781i \(-0.282644\pi\)
0.631003 + 0.775781i \(0.282644\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 11.2474 0.472766
\(567\) 0 0
\(568\) −1.34847 −0.0565805
\(569\) −14.2020 −0.595381 −0.297690 0.954663i \(-0.596216\pi\)
−0.297690 + 0.954663i \(0.596216\pi\)
\(570\) 0 0
\(571\) −27.9444 −1.16944 −0.584718 0.811237i \(-0.698795\pi\)
−0.584718 + 0.811237i \(0.698795\pi\)
\(572\) 21.7980 0.911418
\(573\) 0 0
\(574\) −40.0454 −1.67146
\(575\) 0 0
\(576\) 0 0
\(577\) 18.3939 0.765747 0.382874 0.923801i \(-0.374934\pi\)
0.382874 + 0.923801i \(0.374934\pi\)
\(578\) −7.00000 −0.291162
\(579\) 0 0
\(580\) 0 0
\(581\) 2.44949 0.101622
\(582\) 0 0
\(583\) 41.3939 1.71436
\(584\) −1.00000 −0.0413803
\(585\) 0 0
\(586\) 28.0454 1.15855
\(587\) 2.69694 0.111315 0.0556573 0.998450i \(-0.482275\pi\)
0.0556573 + 0.998450i \(0.482275\pi\)
\(588\) 0 0
\(589\) −1.14643 −0.0472378
\(590\) 0 0
\(591\) 0 0
\(592\) −3.34847 −0.137621
\(593\) 1.89898 0.0779817 0.0389909 0.999240i \(-0.487586\pi\)
0.0389909 + 0.999240i \(0.487586\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 6.00000 0.245770
\(597\) 0 0
\(598\) 10.8990 0.445692
\(599\) 37.3485 1.52602 0.763009 0.646388i \(-0.223721\pi\)
0.763009 + 0.646388i \(0.223721\pi\)
\(600\) 0 0
\(601\) 32.4949 1.32549 0.662747 0.748843i \(-0.269390\pi\)
0.662747 + 0.748843i \(0.269390\pi\)
\(602\) −33.1464 −1.35095
\(603\) 0 0
\(604\) 20.0000 0.813788
\(605\) 0 0
\(606\) 0 0
\(607\) 11.3485 0.460620 0.230310 0.973117i \(-0.426026\pi\)
0.230310 + 0.973117i \(0.426026\pi\)
\(608\) −2.55051 −0.103437
\(609\) 0 0
\(610\) 0 0
\(611\) 4.89898 0.198191
\(612\) 0 0
\(613\) 32.0454 1.29430 0.647151 0.762362i \(-0.275960\pi\)
0.647151 + 0.762362i \(0.275960\pi\)
\(614\) −6.69694 −0.270266
\(615\) 0 0
\(616\) −21.7980 −0.878265
\(617\) −14.3939 −0.579476 −0.289738 0.957106i \(-0.593568\pi\)
−0.289738 + 0.957106i \(0.593568\pi\)
\(618\) 0 0
\(619\) 41.7423 1.67777 0.838883 0.544311i \(-0.183209\pi\)
0.838883 + 0.544311i \(0.183209\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −10.8990 −0.437009
\(623\) −40.0454 −1.60439
\(624\) 0 0
\(625\) 0 0
\(626\) 3.89898 0.155835
\(627\) 0 0
\(628\) 0.202041 0.00806231
\(629\) 16.4041 0.654074
\(630\) 0 0
\(631\) −25.7980 −1.02700 −0.513500 0.858089i \(-0.671651\pi\)
−0.513500 + 0.858089i \(0.671651\pi\)
\(632\) 12.6969 0.505057
\(633\) 0 0
\(634\) 17.1464 0.680972
\(635\) 0 0
\(636\) 0 0
\(637\) −56.9444 −2.25622
\(638\) −12.0000 −0.475085
\(639\) 0 0
\(640\) 0 0
\(641\) −44.3939 −1.75345 −0.876726 0.480989i \(-0.840278\pi\)
−0.876726 + 0.480989i \(0.840278\pi\)
\(642\) 0 0
\(643\) 32.3485 1.27570 0.637850 0.770161i \(-0.279824\pi\)
0.637850 + 0.770161i \(0.279824\pi\)
\(644\) −10.8990 −0.429480
\(645\) 0 0
\(646\) 12.4949 0.491605
\(647\) −0.247449 −0.00972821 −0.00486411 0.999988i \(-0.501548\pi\)
−0.00486411 + 0.999988i \(0.501548\pi\)
\(648\) 0 0
\(649\) −2.69694 −0.105864
\(650\) 0 0
\(651\) 0 0
\(652\) −2.55051 −0.0998857
\(653\) −6.24745 −0.244482 −0.122241 0.992500i \(-0.539008\pi\)
−0.122241 + 0.992500i \(0.539008\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −9.00000 −0.351391
\(657\) 0 0
\(658\) −4.89898 −0.190982
\(659\) −44.1464 −1.71970 −0.859850 0.510546i \(-0.829443\pi\)
−0.859850 + 0.510546i \(0.829443\pi\)
\(660\) 0 0
\(661\) −51.3939 −1.99899 −0.999495 0.0317744i \(-0.989884\pi\)
−0.999495 + 0.0317744i \(0.989884\pi\)
\(662\) 8.34847 0.324472
\(663\) 0 0
\(664\) 0.550510 0.0213639
\(665\) 0 0
\(666\) 0 0
\(667\) −6.00000 −0.232321
\(668\) −19.5959 −0.758189
\(669\) 0 0
\(670\) 0 0
\(671\) −39.1918 −1.51298
\(672\) 0 0
\(673\) 6.69694 0.258148 0.129074 0.991635i \(-0.458800\pi\)
0.129074 + 0.991635i \(0.458800\pi\)
\(674\) −11.1010 −0.427595
\(675\) 0 0
\(676\) 6.79796 0.261460
\(677\) 37.8434 1.45444 0.727219 0.686405i \(-0.240812\pi\)
0.727219 + 0.686405i \(0.240812\pi\)
\(678\) 0 0
\(679\) −48.0454 −1.84381
\(680\) 0 0
\(681\) 0 0
\(682\) −2.20204 −0.0843205
\(683\) −11.9444 −0.457039 −0.228520 0.973539i \(-0.573389\pi\)
−0.228520 + 0.973539i \(0.573389\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 25.7980 0.984971
\(687\) 0 0
\(688\) −7.44949 −0.284009
\(689\) 37.5959 1.43229
\(690\) 0 0
\(691\) −5.04541 −0.191936 −0.0959682 0.995384i \(-0.530595\pi\)
−0.0959682 + 0.995384i \(0.530595\pi\)
\(692\) −9.79796 −0.372463
\(693\) 0 0
\(694\) −12.0000 −0.455514
\(695\) 0 0
\(696\) 0 0
\(697\) 44.0908 1.67006
\(698\) −14.0000 −0.529908
\(699\) 0 0
\(700\) 0 0
\(701\) −14.2020 −0.536404 −0.268202 0.963363i \(-0.586429\pi\)
−0.268202 + 0.963363i \(0.586429\pi\)
\(702\) 0 0
\(703\) −8.54031 −0.322104
\(704\) −4.89898 −0.184637
\(705\) 0 0
\(706\) 9.00000 0.338719
\(707\) 15.7980 0.594143
\(708\) 0 0
\(709\) −0.449490 −0.0168809 −0.00844047 0.999964i \(-0.502687\pi\)
−0.00844047 + 0.999964i \(0.502687\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −9.00000 −0.337289
\(713\) −1.10102 −0.0412335
\(714\) 0 0
\(715\) 0 0
\(716\) 15.2474 0.569824
\(717\) 0 0
\(718\) −33.7980 −1.26133
\(719\) −52.0454 −1.94097 −0.970483 0.241169i \(-0.922469\pi\)
−0.970483 + 0.241169i \(0.922469\pi\)
\(720\) 0 0
\(721\) −56.4949 −2.10398
\(722\) 12.4949 0.465012
\(723\) 0 0
\(724\) −1.79796 −0.0668206
\(725\) 0 0
\(726\) 0 0
\(727\) 16.0000 0.593407 0.296704 0.954970i \(-0.404113\pi\)
0.296704 + 0.954970i \(0.404113\pi\)
\(728\) −19.7980 −0.733761
\(729\) 0 0
\(730\) 0 0
\(731\) 36.4949 1.34981
\(732\) 0 0
\(733\) −26.0000 −0.960332 −0.480166 0.877178i \(-0.659424\pi\)
−0.480166 + 0.877178i \(0.659424\pi\)
\(734\) 16.6969 0.616295
\(735\) 0 0
\(736\) −2.44949 −0.0902894
\(737\) −70.2929 −2.58927
\(738\) 0 0
\(739\) −41.0454 −1.50988 −0.754940 0.655794i \(-0.772334\pi\)
−0.754940 + 0.655794i \(0.772334\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −37.5959 −1.38019
\(743\) 34.6515 1.27124 0.635621 0.772002i \(-0.280744\pi\)
0.635621 + 0.772002i \(0.280744\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 15.5959 0.571007
\(747\) 0 0
\(748\) 24.0000 0.877527
\(749\) 67.8434 2.47894
\(750\) 0 0
\(751\) −50.0454 −1.82618 −0.913091 0.407755i \(-0.866312\pi\)
−0.913091 + 0.407755i \(0.866312\pi\)
\(752\) −1.10102 −0.0401501
\(753\) 0 0
\(754\) −10.8990 −0.396917
\(755\) 0 0
\(756\) 0 0
\(757\) −6.04541 −0.219724 −0.109862 0.993947i \(-0.535041\pi\)
−0.109862 + 0.993947i \(0.535041\pi\)
\(758\) −0.898979 −0.0326524
\(759\) 0 0
\(760\) 0 0
\(761\) −4.10102 −0.148662 −0.0743309 0.997234i \(-0.523682\pi\)
−0.0743309 + 0.997234i \(0.523682\pi\)
\(762\) 0 0
\(763\) −46.4949 −1.68323
\(764\) 10.8990 0.394311
\(765\) 0 0
\(766\) −26.4495 −0.955659
\(767\) −2.44949 −0.0884459
\(768\) 0 0
\(769\) 50.1918 1.80996 0.904982 0.425450i \(-0.139884\pi\)
0.904982 + 0.425450i \(0.139884\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −20.0000 −0.719816
\(773\) −49.5959 −1.78384 −0.891921 0.452192i \(-0.850642\pi\)
−0.891921 + 0.452192i \(0.850642\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −10.7980 −0.387624
\(777\) 0 0
\(778\) −13.5959 −0.487437
\(779\) −22.9546 −0.822434
\(780\) 0 0
\(781\) −6.60612 −0.236386
\(782\) 12.0000 0.429119
\(783\) 0 0
\(784\) 12.7980 0.457070
\(785\) 0 0
\(786\) 0 0
\(787\) −5.30306 −0.189034 −0.0945169 0.995523i \(-0.530131\pi\)
−0.0945169 + 0.995523i \(0.530131\pi\)
\(788\) 24.2474 0.863780
\(789\) 0 0
\(790\) 0 0
\(791\) 61.8434 2.19890
\(792\) 0 0
\(793\) −35.5959 −1.26405
\(794\) 21.5959 0.766410
\(795\) 0 0
\(796\) 5.79796 0.205503
\(797\) −5.75255 −0.203766 −0.101883 0.994796i \(-0.532487\pi\)
−0.101883 + 0.994796i \(0.532487\pi\)
\(798\) 0 0
\(799\) 5.39388 0.190822
\(800\) 0 0
\(801\) 0 0
\(802\) 9.30306 0.328503
\(803\) −4.89898 −0.172881
\(804\) 0 0
\(805\) 0 0
\(806\) −2.00000 −0.0704470
\(807\) 0 0
\(808\) 3.55051 0.124907
\(809\) 35.6969 1.25504 0.627519 0.778601i \(-0.284071\pi\)
0.627519 + 0.778601i \(0.284071\pi\)
\(810\) 0 0
\(811\) −33.4495 −1.17457 −0.587285 0.809380i \(-0.699803\pi\)
−0.587285 + 0.809380i \(0.699803\pi\)
\(812\) 10.8990 0.382479
\(813\) 0 0
\(814\) −16.4041 −0.574963
\(815\) 0 0
\(816\) 0 0
\(817\) −19.0000 −0.664726
\(818\) −9.89898 −0.346110
\(819\) 0 0
\(820\) 0 0
\(821\) 51.1918 1.78661 0.893304 0.449454i \(-0.148381\pi\)
0.893304 + 0.449454i \(0.148381\pi\)
\(822\) 0 0
\(823\) 26.8990 0.937639 0.468820 0.883294i \(-0.344679\pi\)
0.468820 + 0.883294i \(0.344679\pi\)
\(824\) −12.6969 −0.442319
\(825\) 0 0
\(826\) 2.44949 0.0852286
\(827\) 17.9444 0.623987 0.311994 0.950084i \(-0.399003\pi\)
0.311994 + 0.950084i \(0.399003\pi\)
\(828\) 0 0
\(829\) 26.7423 0.928800 0.464400 0.885626i \(-0.346270\pi\)
0.464400 + 0.885626i \(0.346270\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −4.44949 −0.154258
\(833\) −62.6969 −2.17232
\(834\) 0 0
\(835\) 0 0
\(836\) −12.4949 −0.432145
\(837\) 0 0
\(838\) 8.14643 0.281414
\(839\) −22.6515 −0.782018 −0.391009 0.920387i \(-0.627874\pi\)
−0.391009 + 0.920387i \(0.627874\pi\)
\(840\) 0 0
\(841\) −23.0000 −0.793103
\(842\) −18.0454 −0.621886
\(843\) 0 0
\(844\) 1.44949 0.0498935
\(845\) 0 0
\(846\) 0 0
\(847\) −57.8434 −1.98752
\(848\) −8.44949 −0.290157
\(849\) 0 0
\(850\) 0 0
\(851\) −8.20204 −0.281162
\(852\) 0 0
\(853\) 46.0000 1.57501 0.787505 0.616308i \(-0.211372\pi\)
0.787505 + 0.616308i \(0.211372\pi\)
\(854\) 35.5959 1.21807
\(855\) 0 0
\(856\) 15.2474 0.521147
\(857\) −40.1010 −1.36982 −0.684912 0.728625i \(-0.740160\pi\)
−0.684912 + 0.728625i \(0.740160\pi\)
\(858\) 0 0
\(859\) −5.65153 −0.192828 −0.0964139 0.995341i \(-0.530737\pi\)
−0.0964139 + 0.995341i \(0.530737\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 10.6515 0.362793
\(863\) 19.8434 0.675476 0.337738 0.941240i \(-0.390338\pi\)
0.337738 + 0.941240i \(0.390338\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −29.5959 −1.00571
\(867\) 0 0
\(868\) 2.00000 0.0678844
\(869\) 62.2020 2.11006
\(870\) 0 0
\(871\) −63.8434 −2.16325
\(872\) −10.4495 −0.353864
\(873\) 0 0
\(874\) −6.24745 −0.211323
\(875\) 0 0
\(876\) 0 0
\(877\) 12.2020 0.412034 0.206017 0.978548i \(-0.433950\pi\)
0.206017 + 0.978548i \(0.433950\pi\)
\(878\) 11.3485 0.382992
\(879\) 0 0
\(880\) 0 0
\(881\) −9.30306 −0.313428 −0.156714 0.987644i \(-0.550090\pi\)
−0.156714 + 0.987644i \(0.550090\pi\)
\(882\) 0 0
\(883\) −28.2020 −0.949074 −0.474537 0.880235i \(-0.657385\pi\)
−0.474537 + 0.880235i \(0.657385\pi\)
\(884\) 21.7980 0.733145
\(885\) 0 0
\(886\) −27.7980 −0.933891
\(887\) 54.4949 1.82976 0.914880 0.403726i \(-0.132285\pi\)
0.914880 + 0.403726i \(0.132285\pi\)
\(888\) 0 0
\(889\) −50.4949 −1.69354
\(890\) 0 0
\(891\) 0 0
\(892\) 1.79796 0.0602001
\(893\) −2.80816 −0.0939716
\(894\) 0 0
\(895\) 0 0
\(896\) 4.44949 0.148647
\(897\) 0 0
\(898\) 10.5959 0.353590
\(899\) 1.10102 0.0367211
\(900\) 0 0
\(901\) 41.3939 1.37903
\(902\) −44.0908 −1.46806
\(903\) 0 0
\(904\) 13.8990 0.462273
\(905\) 0 0
\(906\) 0 0
\(907\) −21.6515 −0.718927 −0.359464 0.933159i \(-0.617040\pi\)
−0.359464 + 0.933159i \(0.617040\pi\)
\(908\) 28.3485 0.940777
\(909\) 0 0
\(910\) 0 0
\(911\) −7.34847 −0.243466 −0.121733 0.992563i \(-0.538845\pi\)
−0.121733 + 0.992563i \(0.538845\pi\)
\(912\) 0 0
\(913\) 2.69694 0.0892556
\(914\) −15.6969 −0.519209
\(915\) 0 0
\(916\) −21.1464 −0.698698
\(917\) 70.2929 2.32127
\(918\) 0 0
\(919\) −11.3485 −0.374351 −0.187176 0.982326i \(-0.559933\pi\)
−0.187176 + 0.982326i \(0.559933\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 19.3485 0.637208
\(923\) −6.00000 −0.197492
\(924\) 0 0
\(925\) 0 0
\(926\) 9.34847 0.307210
\(927\) 0 0
\(928\) 2.44949 0.0804084
\(929\) −27.1918 −0.892135 −0.446068 0.894999i \(-0.647176\pi\)
−0.446068 + 0.894999i \(0.647176\pi\)
\(930\) 0 0
\(931\) 32.6413 1.06978
\(932\) 5.69694 0.186609
\(933\) 0 0
\(934\) −4.34847 −0.142286
\(935\) 0 0
\(936\) 0 0
\(937\) −26.7980 −0.875451 −0.437726 0.899109i \(-0.644216\pi\)
−0.437726 + 0.899109i \(0.644216\pi\)
\(938\) 63.8434 2.08456
\(939\) 0 0
\(940\) 0 0
\(941\) 29.6413 0.966280 0.483140 0.875543i \(-0.339496\pi\)
0.483140 + 0.875543i \(0.339496\pi\)
\(942\) 0 0
\(943\) −22.0454 −0.717897
\(944\) 0.550510 0.0179176
\(945\) 0 0
\(946\) −36.4949 −1.18655
\(947\) −8.14643 −0.264723 −0.132362 0.991201i \(-0.542256\pi\)
−0.132362 + 0.991201i \(0.542256\pi\)
\(948\) 0 0
\(949\) −4.44949 −0.144437
\(950\) 0 0
\(951\) 0 0
\(952\) −21.7980 −0.706476
\(953\) 21.7980 0.706105 0.353053 0.935603i \(-0.385144\pi\)
0.353053 + 0.935603i \(0.385144\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −9.55051 −0.308886
\(957\) 0 0
\(958\) −24.2474 −0.783400
\(959\) −13.3485 −0.431045
\(960\) 0 0
\(961\) −30.7980 −0.993483
\(962\) −14.8990 −0.480362
\(963\) 0 0
\(964\) −22.7980 −0.734273
\(965\) 0 0
\(966\) 0 0
\(967\) −32.0000 −1.02905 −0.514525 0.857475i \(-0.672032\pi\)
−0.514525 + 0.857475i \(0.672032\pi\)
\(968\) −13.0000 −0.417836
\(969\) 0 0
\(970\) 0 0
\(971\) −22.8434 −0.733079 −0.366539 0.930403i \(-0.619457\pi\)
−0.366539 + 0.930403i \(0.619457\pi\)
\(972\) 0 0
\(973\) 17.7980 0.570576
\(974\) −19.5505 −0.626439
\(975\) 0 0
\(976\) 8.00000 0.256074
\(977\) −9.00000 −0.287936 −0.143968 0.989582i \(-0.545986\pi\)
−0.143968 + 0.989582i \(0.545986\pi\)
\(978\) 0 0
\(979\) −44.0908 −1.40915
\(980\) 0 0
\(981\) 0 0
\(982\) −2.75255 −0.0878374
\(983\) −22.8990 −0.730364 −0.365182 0.930936i \(-0.618993\pi\)
−0.365182 + 0.930936i \(0.618993\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −12.0000 −0.382158
\(987\) 0 0
\(988\) −11.3485 −0.361043
\(989\) −18.2474 −0.580235
\(990\) 0 0
\(991\) −16.0000 −0.508257 −0.254128 0.967170i \(-0.581789\pi\)
−0.254128 + 0.967170i \(0.581789\pi\)
\(992\) 0.449490 0.0142713
\(993\) 0 0
\(994\) 6.00000 0.190308
\(995\) 0 0
\(996\) 0 0
\(997\) −36.0454 −1.14157 −0.570785 0.821100i \(-0.693361\pi\)
−0.570785 + 0.821100i \(0.693361\pi\)
\(998\) −6.34847 −0.200957
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4050.2.a.bl.1.1 2
3.2 odd 2 4050.2.a.bu.1.1 2
5.2 odd 4 4050.2.c.w.649.1 4
5.3 odd 4 4050.2.c.w.649.4 4
5.4 even 2 4050.2.a.by.1.2 2
9.2 odd 6 450.2.e.l.301.1 yes 4
9.4 even 3 1350.2.e.n.451.2 4
9.5 odd 6 450.2.e.l.151.2 4
9.7 even 3 1350.2.e.n.901.2 4
15.2 even 4 4050.2.c.y.649.3 4
15.8 even 4 4050.2.c.y.649.2 4
15.14 odd 2 4050.2.a.br.1.2 2
45.2 even 12 450.2.j.f.49.3 8
45.4 even 6 1350.2.e.k.451.1 4
45.7 odd 12 1350.2.j.g.199.1 8
45.13 odd 12 1350.2.j.g.1099.1 8
45.14 odd 6 450.2.e.m.151.1 yes 4
45.22 odd 12 1350.2.j.g.1099.4 8
45.23 even 12 450.2.j.f.349.3 8
45.29 odd 6 450.2.e.m.301.2 yes 4
45.32 even 12 450.2.j.f.349.2 8
45.34 even 6 1350.2.e.k.901.1 4
45.38 even 12 450.2.j.f.49.2 8
45.43 odd 12 1350.2.j.g.199.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
450.2.e.l.151.2 4 9.5 odd 6
450.2.e.l.301.1 yes 4 9.2 odd 6
450.2.e.m.151.1 yes 4 45.14 odd 6
450.2.e.m.301.2 yes 4 45.29 odd 6
450.2.j.f.49.2 8 45.38 even 12
450.2.j.f.49.3 8 45.2 even 12
450.2.j.f.349.2 8 45.32 even 12
450.2.j.f.349.3 8 45.23 even 12
1350.2.e.k.451.1 4 45.4 even 6
1350.2.e.k.901.1 4 45.34 even 6
1350.2.e.n.451.2 4 9.4 even 3
1350.2.e.n.901.2 4 9.7 even 3
1350.2.j.g.199.1 8 45.7 odd 12
1350.2.j.g.199.4 8 45.43 odd 12
1350.2.j.g.1099.1 8 45.13 odd 12
1350.2.j.g.1099.4 8 45.22 odd 12
4050.2.a.bl.1.1 2 1.1 even 1 trivial
4050.2.a.br.1.2 2 15.14 odd 2
4050.2.a.bu.1.1 2 3.2 odd 2
4050.2.a.by.1.2 2 5.4 even 2
4050.2.c.w.649.1 4 5.2 odd 4
4050.2.c.w.649.4 4 5.3 odd 4
4050.2.c.y.649.2 4 15.8 even 4
4050.2.c.y.649.3 4 15.2 even 4