Properties

Label 4050.2.c.z.649.3
Level $4050$
Weight $2$
Character 4050.649
Analytic conductor $32.339$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4050,2,Mod(649,4050)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4050, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4050.649");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4050 = 2 \cdot 3^{4} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4050.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(32.3394128186\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 810)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 649.3
Root \(0.866025 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 4050.649
Dual form 4050.2.c.z.649.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{2} -1.00000 q^{4} -3.73205i q^{7} -1.00000i q^{8} +3.46410 q^{11} +3.73205i q^{13} +3.73205 q^{14} +1.00000 q^{16} +3.46410i q^{17} +7.92820 q^{19} +3.46410i q^{22} -0.464102i q^{23} -3.73205 q^{26} +3.73205i q^{28} -6.92820 q^{29} +5.46410 q^{31} +1.00000i q^{32} -3.46410 q^{34} -8.00000i q^{37} +7.92820i q^{38} -5.19615 q^{41} -1.46410i q^{43} -3.46410 q^{44} +0.464102 q^{46} -6.46410i q^{47} -6.92820 q^{49} -3.73205i q^{52} +12.4641i q^{53} -3.73205 q^{56} -6.92820i q^{58} +8.66025 q^{59} -8.39230 q^{61} +5.46410i q^{62} -1.00000 q^{64} -8.00000i q^{67} -3.46410i q^{68} +6.00000 q^{71} +6.39230i q^{73} +8.00000 q^{74} -7.92820 q^{76} -12.9282i q^{77} -6.39230 q^{79} -5.19615i q^{82} +8.53590i q^{83} +1.46410 q^{86} -3.46410i q^{88} +12.0000 q^{89} +13.9282 q^{91} +0.464102i q^{92} +6.46410 q^{94} -1.07180i q^{97} -6.92820i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{4} + 8 q^{14} + 4 q^{16} + 4 q^{19} - 8 q^{26} + 8 q^{31} - 12 q^{46} - 8 q^{56} + 8 q^{61} - 4 q^{64} + 24 q^{71} + 32 q^{74} - 4 q^{76} + 16 q^{79} - 8 q^{86} + 48 q^{89} + 28 q^{91} + 12 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4050\mathbb{Z}\right)^\times\).

\(n\) \(2351\) \(3727\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) 0 0
\(4\) −1.00000 −0.500000
\(5\) 0 0
\(6\) 0 0
\(7\) − 3.73205i − 1.41058i −0.708918 0.705291i \(-0.750816\pi\)
0.708918 0.705291i \(-0.249184\pi\)
\(8\) − 1.00000i − 0.353553i
\(9\) 0 0
\(10\) 0 0
\(11\) 3.46410 1.04447 0.522233 0.852803i \(-0.325099\pi\)
0.522233 + 0.852803i \(0.325099\pi\)
\(12\) 0 0
\(13\) 3.73205i 1.03508i 0.855658 + 0.517542i \(0.173153\pi\)
−0.855658 + 0.517542i \(0.826847\pi\)
\(14\) 3.73205 0.997433
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 3.46410i 0.840168i 0.907485 + 0.420084i \(0.137999\pi\)
−0.907485 + 0.420084i \(0.862001\pi\)
\(18\) 0 0
\(19\) 7.92820 1.81885 0.909427 0.415863i \(-0.136520\pi\)
0.909427 + 0.415863i \(0.136520\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 3.46410i 0.738549i
\(23\) − 0.464102i − 0.0967719i −0.998829 0.0483859i \(-0.984592\pi\)
0.998829 0.0483859i \(-0.0154077\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −3.73205 −0.731915
\(27\) 0 0
\(28\) 3.73205i 0.705291i
\(29\) −6.92820 −1.28654 −0.643268 0.765641i \(-0.722422\pi\)
−0.643268 + 0.765641i \(0.722422\pi\)
\(30\) 0 0
\(31\) 5.46410 0.981382 0.490691 0.871334i \(-0.336744\pi\)
0.490691 + 0.871334i \(0.336744\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 0 0
\(34\) −3.46410 −0.594089
\(35\) 0 0
\(36\) 0 0
\(37\) − 8.00000i − 1.31519i −0.753371 0.657596i \(-0.771573\pi\)
0.753371 0.657596i \(-0.228427\pi\)
\(38\) 7.92820i 1.28612i
\(39\) 0 0
\(40\) 0 0
\(41\) −5.19615 −0.811503 −0.405751 0.913984i \(-0.632990\pi\)
−0.405751 + 0.913984i \(0.632990\pi\)
\(42\) 0 0
\(43\) − 1.46410i − 0.223273i −0.993749 0.111637i \(-0.964391\pi\)
0.993749 0.111637i \(-0.0356093\pi\)
\(44\) −3.46410 −0.522233
\(45\) 0 0
\(46\) 0.464102 0.0684280
\(47\) − 6.46410i − 0.942886i −0.881897 0.471443i \(-0.843733\pi\)
0.881897 0.471443i \(-0.156267\pi\)
\(48\) 0 0
\(49\) −6.92820 −0.989743
\(50\) 0 0
\(51\) 0 0
\(52\) − 3.73205i − 0.517542i
\(53\) 12.4641i 1.71208i 0.516913 + 0.856038i \(0.327081\pi\)
−0.516913 + 0.856038i \(0.672919\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −3.73205 −0.498716
\(57\) 0 0
\(58\) − 6.92820i − 0.909718i
\(59\) 8.66025 1.12747 0.563735 0.825956i \(-0.309364\pi\)
0.563735 + 0.825956i \(0.309364\pi\)
\(60\) 0 0
\(61\) −8.39230 −1.07452 −0.537262 0.843415i \(-0.680541\pi\)
−0.537262 + 0.843415i \(0.680541\pi\)
\(62\) 5.46410i 0.693942i
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) 0 0
\(67\) − 8.00000i − 0.977356i −0.872464 0.488678i \(-0.837479\pi\)
0.872464 0.488678i \(-0.162521\pi\)
\(68\) − 3.46410i − 0.420084i
\(69\) 0 0
\(70\) 0 0
\(71\) 6.00000 0.712069 0.356034 0.934473i \(-0.384129\pi\)
0.356034 + 0.934473i \(0.384129\pi\)
\(72\) 0 0
\(73\) 6.39230i 0.748163i 0.927396 + 0.374081i \(0.122042\pi\)
−0.927396 + 0.374081i \(0.877958\pi\)
\(74\) 8.00000 0.929981
\(75\) 0 0
\(76\) −7.92820 −0.909427
\(77\) − 12.9282i − 1.47331i
\(78\) 0 0
\(79\) −6.39230 −0.719190 −0.359595 0.933108i \(-0.617085\pi\)
−0.359595 + 0.933108i \(0.617085\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) − 5.19615i − 0.573819i
\(83\) 8.53590i 0.936937i 0.883480 + 0.468468i \(0.155194\pi\)
−0.883480 + 0.468468i \(0.844806\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 1.46410 0.157878
\(87\) 0 0
\(88\) − 3.46410i − 0.369274i
\(89\) 12.0000 1.27200 0.635999 0.771690i \(-0.280588\pi\)
0.635999 + 0.771690i \(0.280588\pi\)
\(90\) 0 0
\(91\) 13.9282 1.46007
\(92\) 0.464102i 0.0483859i
\(93\) 0 0
\(94\) 6.46410 0.666721
\(95\) 0 0
\(96\) 0 0
\(97\) − 1.07180i − 0.108824i −0.998519 0.0544122i \(-0.982671\pi\)
0.998519 0.0544122i \(-0.0173285\pi\)
\(98\) − 6.92820i − 0.699854i
\(99\) 0 0
\(100\) 0 0
\(101\) 9.46410 0.941713 0.470857 0.882210i \(-0.343945\pi\)
0.470857 + 0.882210i \(0.343945\pi\)
\(102\) 0 0
\(103\) − 15.1962i − 1.49732i −0.662953 0.748661i \(-0.730697\pi\)
0.662953 0.748661i \(-0.269303\pi\)
\(104\) 3.73205 0.365958
\(105\) 0 0
\(106\) −12.4641 −1.21062
\(107\) − 8.53590i − 0.825196i −0.910913 0.412598i \(-0.864621\pi\)
0.910913 0.412598i \(-0.135379\pi\)
\(108\) 0 0
\(109\) 17.8564 1.71033 0.855167 0.518353i \(-0.173455\pi\)
0.855167 + 0.518353i \(0.173455\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) − 3.73205i − 0.352646i
\(113\) 12.9282i 1.21618i 0.793867 + 0.608092i \(0.208065\pi\)
−0.793867 + 0.608092i \(0.791935\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 6.92820 0.643268
\(117\) 0 0
\(118\) 8.66025i 0.797241i
\(119\) 12.9282 1.18513
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) − 8.39230i − 0.759804i
\(123\) 0 0
\(124\) −5.46410 −0.490691
\(125\) 0 0
\(126\) 0 0
\(127\) 15.1962i 1.34844i 0.738530 + 0.674220i \(0.235520\pi\)
−0.738530 + 0.674220i \(0.764480\pi\)
\(128\) − 1.00000i − 0.0883883i
\(129\) 0 0
\(130\) 0 0
\(131\) 13.7321 1.19977 0.599887 0.800084i \(-0.295212\pi\)
0.599887 + 0.800084i \(0.295212\pi\)
\(132\) 0 0
\(133\) − 29.5885i − 2.56564i
\(134\) 8.00000 0.691095
\(135\) 0 0
\(136\) 3.46410 0.297044
\(137\) 10.3923i 0.887875i 0.896058 + 0.443937i \(0.146419\pi\)
−0.896058 + 0.443937i \(0.853581\pi\)
\(138\) 0 0
\(139\) 13.0000 1.10265 0.551323 0.834292i \(-0.314123\pi\)
0.551323 + 0.834292i \(0.314123\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 6.00000i 0.503509i
\(143\) 12.9282i 1.08111i
\(144\) 0 0
\(145\) 0 0
\(146\) −6.39230 −0.529031
\(147\) 0 0
\(148\) 8.00000i 0.657596i
\(149\) 18.0000 1.47462 0.737309 0.675556i \(-0.236096\pi\)
0.737309 + 0.675556i \(0.236096\pi\)
\(150\) 0 0
\(151\) 18.3923 1.49674 0.748372 0.663279i \(-0.230836\pi\)
0.748372 + 0.663279i \(0.230836\pi\)
\(152\) − 7.92820i − 0.643062i
\(153\) 0 0
\(154\) 12.9282 1.04178
\(155\) 0 0
\(156\) 0 0
\(157\) − 14.1244i − 1.12725i −0.826032 0.563623i \(-0.809407\pi\)
0.826032 0.563623i \(-0.190593\pi\)
\(158\) − 6.39230i − 0.508544i
\(159\) 0 0
\(160\) 0 0
\(161\) −1.73205 −0.136505
\(162\) 0 0
\(163\) 9.85641i 0.772013i 0.922496 + 0.386007i \(0.126146\pi\)
−0.922496 + 0.386007i \(0.873854\pi\)
\(164\) 5.19615 0.405751
\(165\) 0 0
\(166\) −8.53590 −0.662514
\(167\) − 6.92820i − 0.536120i −0.963402 0.268060i \(-0.913617\pi\)
0.963402 0.268060i \(-0.0863826\pi\)
\(168\) 0 0
\(169\) −0.928203 −0.0714002
\(170\) 0 0
\(171\) 0 0
\(172\) 1.46410i 0.111637i
\(173\) − 20.3205i − 1.54494i −0.635051 0.772470i \(-0.719021\pi\)
0.635051 0.772470i \(-0.280979\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 3.46410 0.261116
\(177\) 0 0
\(178\) 12.0000i 0.899438i
\(179\) −12.1244 −0.906217 −0.453108 0.891455i \(-0.649685\pi\)
−0.453108 + 0.891455i \(0.649685\pi\)
\(180\) 0 0
\(181\) −12.5359 −0.931786 −0.465893 0.884841i \(-0.654267\pi\)
−0.465893 + 0.884841i \(0.654267\pi\)
\(182\) 13.9282i 1.03243i
\(183\) 0 0
\(184\) −0.464102 −0.0342140
\(185\) 0 0
\(186\) 0 0
\(187\) 12.0000i 0.877527i
\(188\) 6.46410i 0.471443i
\(189\) 0 0
\(190\) 0 0
\(191\) 2.53590 0.183491 0.0917456 0.995782i \(-0.470755\pi\)
0.0917456 + 0.995782i \(0.470755\pi\)
\(192\) 0 0
\(193\) − 16.0000i − 1.15171i −0.817554 0.575853i \(-0.804670\pi\)
0.817554 0.575853i \(-0.195330\pi\)
\(194\) 1.07180 0.0769505
\(195\) 0 0
\(196\) 6.92820 0.494872
\(197\) 11.5359i 0.821899i 0.911658 + 0.410949i \(0.134803\pi\)
−0.911658 + 0.410949i \(0.865197\pi\)
\(198\) 0 0
\(199\) 22.2487 1.57717 0.788585 0.614926i \(-0.210814\pi\)
0.788585 + 0.614926i \(0.210814\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 9.46410i 0.665892i
\(203\) 25.8564i 1.81476i
\(204\) 0 0
\(205\) 0 0
\(206\) 15.1962 1.05877
\(207\) 0 0
\(208\) 3.73205i 0.258771i
\(209\) 27.4641 1.89973
\(210\) 0 0
\(211\) −8.85641 −0.609700 −0.304850 0.952400i \(-0.598606\pi\)
−0.304850 + 0.952400i \(0.598606\pi\)
\(212\) − 12.4641i − 0.856038i
\(213\) 0 0
\(214\) 8.53590 0.583502
\(215\) 0 0
\(216\) 0 0
\(217\) − 20.3923i − 1.38432i
\(218\) 17.8564i 1.20939i
\(219\) 0 0
\(220\) 0 0
\(221\) −12.9282 −0.869645
\(222\) 0 0
\(223\) − 12.5359i − 0.839466i −0.907648 0.419733i \(-0.862124\pi\)
0.907648 0.419733i \(-0.137876\pi\)
\(224\) 3.73205 0.249358
\(225\) 0 0
\(226\) −12.9282 −0.859971
\(227\) − 16.3923i − 1.08800i −0.839087 0.543998i \(-0.816910\pi\)
0.839087 0.543998i \(-0.183090\pi\)
\(228\) 0 0
\(229\) −21.8564 −1.44431 −0.722156 0.691730i \(-0.756849\pi\)
−0.722156 + 0.691730i \(0.756849\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 6.92820i 0.454859i
\(233\) − 12.0000i − 0.786146i −0.919507 0.393073i \(-0.871412\pi\)
0.919507 0.393073i \(-0.128588\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −8.66025 −0.563735
\(237\) 0 0
\(238\) 12.9282i 0.838011i
\(239\) 8.53590 0.552141 0.276071 0.961137i \(-0.410968\pi\)
0.276071 + 0.961137i \(0.410968\pi\)
\(240\) 0 0
\(241\) −16.9282 −1.09044 −0.545221 0.838293i \(-0.683554\pi\)
−0.545221 + 0.838293i \(0.683554\pi\)
\(242\) 1.00000i 0.0642824i
\(243\) 0 0
\(244\) 8.39230 0.537262
\(245\) 0 0
\(246\) 0 0
\(247\) 29.5885i 1.88267i
\(248\) − 5.46410i − 0.346971i
\(249\) 0 0
\(250\) 0 0
\(251\) −12.1244 −0.765283 −0.382641 0.923897i \(-0.624985\pi\)
−0.382641 + 0.923897i \(0.624985\pi\)
\(252\) 0 0
\(253\) − 1.60770i − 0.101075i
\(254\) −15.1962 −0.953491
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 31.8564i 1.98715i 0.113184 + 0.993574i \(0.463895\pi\)
−0.113184 + 0.993574i \(0.536105\pi\)
\(258\) 0 0
\(259\) −29.8564 −1.85519
\(260\) 0 0
\(261\) 0 0
\(262\) 13.7321i 0.848369i
\(263\) − 8.32051i − 0.513065i −0.966536 0.256532i \(-0.917420\pi\)
0.966536 0.256532i \(-0.0825800\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 29.5885 1.81418
\(267\) 0 0
\(268\) 8.00000i 0.488678i
\(269\) 12.9282 0.788246 0.394123 0.919058i \(-0.371048\pi\)
0.394123 + 0.919058i \(0.371048\pi\)
\(270\) 0 0
\(271\) 14.0000 0.850439 0.425220 0.905090i \(-0.360197\pi\)
0.425220 + 0.905090i \(0.360197\pi\)
\(272\) 3.46410i 0.210042i
\(273\) 0 0
\(274\) −10.3923 −0.627822
\(275\) 0 0
\(276\) 0 0
\(277\) − 12.2679i − 0.737110i −0.929606 0.368555i \(-0.879853\pi\)
0.929606 0.368555i \(-0.120147\pi\)
\(278\) 13.0000i 0.779688i
\(279\) 0 0
\(280\) 0 0
\(281\) 7.05256 0.420720 0.210360 0.977624i \(-0.432536\pi\)
0.210360 + 0.977624i \(0.432536\pi\)
\(282\) 0 0
\(283\) − 3.32051i − 0.197384i −0.995118 0.0986919i \(-0.968534\pi\)
0.995118 0.0986919i \(-0.0314658\pi\)
\(284\) −6.00000 −0.356034
\(285\) 0 0
\(286\) −12.9282 −0.764461
\(287\) 19.3923i 1.14469i
\(288\) 0 0
\(289\) 5.00000 0.294118
\(290\) 0 0
\(291\) 0 0
\(292\) − 6.39230i − 0.374081i
\(293\) 7.39230i 0.431863i 0.976409 + 0.215932i \(0.0692788\pi\)
−0.976409 + 0.215932i \(0.930721\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −8.00000 −0.464991
\(297\) 0 0
\(298\) 18.0000i 1.04271i
\(299\) 1.73205 0.100167
\(300\) 0 0
\(301\) −5.46410 −0.314946
\(302\) 18.3923i 1.05836i
\(303\) 0 0
\(304\) 7.92820 0.454714
\(305\) 0 0
\(306\) 0 0
\(307\) − 12.3923i − 0.707266i −0.935384 0.353633i \(-0.884946\pi\)
0.935384 0.353633i \(-0.115054\pi\)
\(308\) 12.9282i 0.736653i
\(309\) 0 0
\(310\) 0 0
\(311\) 8.53590 0.484026 0.242013 0.970273i \(-0.422192\pi\)
0.242013 + 0.970273i \(0.422192\pi\)
\(312\) 0 0
\(313\) − 3.32051i − 0.187686i −0.995587 0.0938431i \(-0.970085\pi\)
0.995587 0.0938431i \(-0.0299152\pi\)
\(314\) 14.1244 0.797084
\(315\) 0 0
\(316\) 6.39230 0.359595
\(317\) 17.5359i 0.984914i 0.870337 + 0.492457i \(0.163901\pi\)
−0.870337 + 0.492457i \(0.836099\pi\)
\(318\) 0 0
\(319\) −24.0000 −1.34374
\(320\) 0 0
\(321\) 0 0
\(322\) − 1.73205i − 0.0965234i
\(323\) 27.4641i 1.52814i
\(324\) 0 0
\(325\) 0 0
\(326\) −9.85641 −0.545896
\(327\) 0 0
\(328\) 5.19615i 0.286910i
\(329\) −24.1244 −1.33002
\(330\) 0 0
\(331\) 8.00000 0.439720 0.219860 0.975531i \(-0.429440\pi\)
0.219860 + 0.975531i \(0.429440\pi\)
\(332\) − 8.53590i − 0.468468i
\(333\) 0 0
\(334\) 6.92820 0.379094
\(335\) 0 0
\(336\) 0 0
\(337\) − 7.07180i − 0.385225i −0.981275 0.192613i \(-0.938304\pi\)
0.981275 0.192613i \(-0.0616961\pi\)
\(338\) − 0.928203i − 0.0504876i
\(339\) 0 0
\(340\) 0 0
\(341\) 18.9282 1.02502
\(342\) 0 0
\(343\) − 0.267949i − 0.0144679i
\(344\) −1.46410 −0.0789391
\(345\) 0 0
\(346\) 20.3205 1.09244
\(347\) 14.7846i 0.793679i 0.917888 + 0.396840i \(0.129893\pi\)
−0.917888 + 0.396840i \(0.870107\pi\)
\(348\) 0 0
\(349\) −2.00000 −0.107058 −0.0535288 0.998566i \(-0.517047\pi\)
−0.0535288 + 0.998566i \(0.517047\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 3.46410i 0.184637i
\(353\) 22.3923i 1.19182i 0.803050 + 0.595911i \(0.203209\pi\)
−0.803050 + 0.595911i \(0.796791\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −12.0000 −0.635999
\(357\) 0 0
\(358\) − 12.1244i − 0.640792i
\(359\) 8.53590 0.450507 0.225254 0.974300i \(-0.427679\pi\)
0.225254 + 0.974300i \(0.427679\pi\)
\(360\) 0 0
\(361\) 43.8564 2.30823
\(362\) − 12.5359i − 0.658872i
\(363\) 0 0
\(364\) −13.9282 −0.730036
\(365\) 0 0
\(366\) 0 0
\(367\) − 6.39230i − 0.333676i −0.985984 0.166838i \(-0.946644\pi\)
0.985984 0.166838i \(-0.0533556\pi\)
\(368\) − 0.464102i − 0.0241930i
\(369\) 0 0
\(370\) 0 0
\(371\) 46.5167 2.41502
\(372\) 0 0
\(373\) − 10.9282i − 0.565841i −0.959143 0.282920i \(-0.908697\pi\)
0.959143 0.282920i \(-0.0913032\pi\)
\(374\) −12.0000 −0.620505
\(375\) 0 0
\(376\) −6.46410 −0.333361
\(377\) − 25.8564i − 1.33167i
\(378\) 0 0
\(379\) −36.8564 −1.89319 −0.946593 0.322430i \(-0.895500\pi\)
−0.946593 + 0.322430i \(0.895500\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 2.53590i 0.129748i
\(383\) − 6.46410i − 0.330300i −0.986268 0.165150i \(-0.947189\pi\)
0.986268 0.165150i \(-0.0528109\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 16.0000 0.814379
\(387\) 0 0
\(388\) 1.07180i 0.0544122i
\(389\) −23.3205 −1.18240 −0.591198 0.806526i \(-0.701345\pi\)
−0.591198 + 0.806526i \(0.701345\pi\)
\(390\) 0 0
\(391\) 1.60770 0.0813046
\(392\) 6.92820i 0.349927i
\(393\) 0 0
\(394\) −11.5359 −0.581170
\(395\) 0 0
\(396\) 0 0
\(397\) − 9.85641i − 0.494679i −0.968929 0.247339i \(-0.920444\pi\)
0.968929 0.247339i \(-0.0795563\pi\)
\(398\) 22.2487i 1.11523i
\(399\) 0 0
\(400\) 0 0
\(401\) −39.5885 −1.97695 −0.988477 0.151374i \(-0.951630\pi\)
−0.988477 + 0.151374i \(0.951630\pi\)
\(402\) 0 0
\(403\) 20.3923i 1.01581i
\(404\) −9.46410 −0.470857
\(405\) 0 0
\(406\) −25.8564 −1.28323
\(407\) − 27.7128i − 1.37367i
\(408\) 0 0
\(409\) 13.9282 0.688705 0.344353 0.938840i \(-0.388098\pi\)
0.344353 + 0.938840i \(0.388098\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 15.1962i 0.748661i
\(413\) − 32.3205i − 1.59039i
\(414\) 0 0
\(415\) 0 0
\(416\) −3.73205 −0.182979
\(417\) 0 0
\(418\) 27.4641i 1.34331i
\(419\) 3.46410 0.169232 0.0846162 0.996414i \(-0.473034\pi\)
0.0846162 + 0.996414i \(0.473034\pi\)
\(420\) 0 0
\(421\) 9.60770 0.468250 0.234125 0.972206i \(-0.424777\pi\)
0.234125 + 0.972206i \(0.424777\pi\)
\(422\) − 8.85641i − 0.431123i
\(423\) 0 0
\(424\) 12.4641 0.605310
\(425\) 0 0
\(426\) 0 0
\(427\) 31.3205i 1.51571i
\(428\) 8.53590i 0.412598i
\(429\) 0 0
\(430\) 0 0
\(431\) −28.3923 −1.36761 −0.683805 0.729665i \(-0.739676\pi\)
−0.683805 + 0.729665i \(0.739676\pi\)
\(432\) 0 0
\(433\) 2.92820i 0.140720i 0.997522 + 0.0703602i \(0.0224149\pi\)
−0.997522 + 0.0703602i \(0.977585\pi\)
\(434\) 20.3923 0.978862
\(435\) 0 0
\(436\) −17.8564 −0.855167
\(437\) − 3.67949i − 0.176014i
\(438\) 0 0
\(439\) −18.3923 −0.877817 −0.438908 0.898532i \(-0.644635\pi\)
−0.438908 + 0.898532i \(0.644635\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) − 12.9282i − 0.614932i
\(443\) − 31.8564i − 1.51354i −0.653679 0.756772i \(-0.726775\pi\)
0.653679 0.756772i \(-0.273225\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 12.5359 0.593592
\(447\) 0 0
\(448\) 3.73205i 0.176323i
\(449\) 32.9090 1.55307 0.776535 0.630074i \(-0.216975\pi\)
0.776535 + 0.630074i \(0.216975\pi\)
\(450\) 0 0
\(451\) −18.0000 −0.847587
\(452\) − 12.9282i − 0.608092i
\(453\) 0 0
\(454\) 16.3923 0.769329
\(455\) 0 0
\(456\) 0 0
\(457\) 20.3923i 0.953912i 0.878927 + 0.476956i \(0.158260\pi\)
−0.878927 + 0.476956i \(0.841740\pi\)
\(458\) − 21.8564i − 1.02128i
\(459\) 0 0
\(460\) 0 0
\(461\) 8.78461 0.409140 0.204570 0.978852i \(-0.434420\pi\)
0.204570 + 0.978852i \(0.434420\pi\)
\(462\) 0 0
\(463\) − 4.80385i − 0.223254i −0.993750 0.111627i \(-0.964394\pi\)
0.993750 0.111627i \(-0.0356061\pi\)
\(464\) −6.92820 −0.321634
\(465\) 0 0
\(466\) 12.0000 0.555889
\(467\) − 6.00000i − 0.277647i −0.990317 0.138823i \(-0.955668\pi\)
0.990317 0.138823i \(-0.0443321\pi\)
\(468\) 0 0
\(469\) −29.8564 −1.37864
\(470\) 0 0
\(471\) 0 0
\(472\) − 8.66025i − 0.398621i
\(473\) − 5.07180i − 0.233201i
\(474\) 0 0
\(475\) 0 0
\(476\) −12.9282 −0.592563
\(477\) 0 0
\(478\) 8.53590i 0.390423i
\(479\) −12.9282 −0.590705 −0.295352 0.955388i \(-0.595437\pi\)
−0.295352 + 0.955388i \(0.595437\pi\)
\(480\) 0 0
\(481\) 29.8564 1.36133
\(482\) − 16.9282i − 0.771059i
\(483\) 0 0
\(484\) −1.00000 −0.0454545
\(485\) 0 0
\(486\) 0 0
\(487\) 27.4449i 1.24365i 0.783158 + 0.621823i \(0.213608\pi\)
−0.783158 + 0.621823i \(0.786392\pi\)
\(488\) 8.39230i 0.379902i
\(489\) 0 0
\(490\) 0 0
\(491\) −12.1244 −0.547165 −0.273582 0.961849i \(-0.588209\pi\)
−0.273582 + 0.961849i \(0.588209\pi\)
\(492\) 0 0
\(493\) − 24.0000i − 1.08091i
\(494\) −29.5885 −1.33125
\(495\) 0 0
\(496\) 5.46410 0.245345
\(497\) − 22.3923i − 1.00443i
\(498\) 0 0
\(499\) 3.78461 0.169422 0.0847112 0.996406i \(-0.473003\pi\)
0.0847112 + 0.996406i \(0.473003\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) − 12.1244i − 0.541136i
\(503\) − 5.07180i − 0.226140i −0.993587 0.113070i \(-0.963932\pi\)
0.993587 0.113070i \(-0.0360685\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 1.60770 0.0714708
\(507\) 0 0
\(508\) − 15.1962i − 0.674220i
\(509\) 18.0000 0.797836 0.398918 0.916987i \(-0.369386\pi\)
0.398918 + 0.916987i \(0.369386\pi\)
\(510\) 0 0
\(511\) 23.8564 1.05535
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) −31.8564 −1.40513
\(515\) 0 0
\(516\) 0 0
\(517\) − 22.3923i − 0.984812i
\(518\) − 29.8564i − 1.31182i
\(519\) 0 0
\(520\) 0 0
\(521\) −17.1962 −0.753377 −0.376689 0.926340i \(-0.622937\pi\)
−0.376689 + 0.926340i \(0.622937\pi\)
\(522\) 0 0
\(523\) 2.00000i 0.0874539i 0.999044 + 0.0437269i \(0.0139232\pi\)
−0.999044 + 0.0437269i \(0.986077\pi\)
\(524\) −13.7321 −0.599887
\(525\) 0 0
\(526\) 8.32051 0.362791
\(527\) 18.9282i 0.824525i
\(528\) 0 0
\(529\) 22.7846 0.990635
\(530\) 0 0
\(531\) 0 0
\(532\) 29.5885i 1.28282i
\(533\) − 19.3923i − 0.839974i
\(534\) 0 0
\(535\) 0 0
\(536\) −8.00000 −0.345547
\(537\) 0 0
\(538\) 12.9282i 0.557374i
\(539\) −24.0000 −1.03375
\(540\) 0 0
\(541\) 26.9282 1.15773 0.578867 0.815422i \(-0.303495\pi\)
0.578867 + 0.815422i \(0.303495\pi\)
\(542\) 14.0000i 0.601351i
\(543\) 0 0
\(544\) −3.46410 −0.148522
\(545\) 0 0
\(546\) 0 0
\(547\) − 12.3923i − 0.529857i −0.964268 0.264928i \(-0.914652\pi\)
0.964268 0.264928i \(-0.0853483\pi\)
\(548\) − 10.3923i − 0.443937i
\(549\) 0 0
\(550\) 0 0
\(551\) −54.9282 −2.34002
\(552\) 0 0
\(553\) 23.8564i 1.01448i
\(554\) 12.2679 0.521215
\(555\) 0 0
\(556\) −13.0000 −0.551323
\(557\) − 22.1769i − 0.939666i −0.882755 0.469833i \(-0.844314\pi\)
0.882755 0.469833i \(-0.155686\pi\)
\(558\) 0 0
\(559\) 5.46410 0.231107
\(560\) 0 0
\(561\) 0 0
\(562\) 7.05256i 0.297494i
\(563\) 13.8564i 0.583978i 0.956422 + 0.291989i \(0.0943171\pi\)
−0.956422 + 0.291989i \(0.905683\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 3.32051 0.139571
\(567\) 0 0
\(568\) − 6.00000i − 0.251754i
\(569\) 12.1244 0.508279 0.254140 0.967168i \(-0.418208\pi\)
0.254140 + 0.967168i \(0.418208\pi\)
\(570\) 0 0
\(571\) 14.9282 0.624726 0.312363 0.949963i \(-0.398880\pi\)
0.312363 + 0.949963i \(0.398880\pi\)
\(572\) − 12.9282i − 0.540555i
\(573\) 0 0
\(574\) −19.3923 −0.809419
\(575\) 0 0
\(576\) 0 0
\(577\) 24.7846i 1.03180i 0.856650 + 0.515898i \(0.172542\pi\)
−0.856650 + 0.515898i \(0.827458\pi\)
\(578\) 5.00000i 0.207973i
\(579\) 0 0
\(580\) 0 0
\(581\) 31.8564 1.32163
\(582\) 0 0
\(583\) 43.1769i 1.78821i
\(584\) 6.39230 0.264515
\(585\) 0 0
\(586\) −7.39230 −0.305373
\(587\) − 22.3923i − 0.924229i −0.886820 0.462115i \(-0.847091\pi\)
0.886820 0.462115i \(-0.152909\pi\)
\(588\) 0 0
\(589\) 43.3205 1.78499
\(590\) 0 0
\(591\) 0 0
\(592\) − 8.00000i − 0.328798i
\(593\) 3.46410i 0.142254i 0.997467 + 0.0711268i \(0.0226595\pi\)
−0.997467 + 0.0711268i \(0.977341\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −18.0000 −0.737309
\(597\) 0 0
\(598\) 1.73205i 0.0708288i
\(599\) −18.0000 −0.735460 −0.367730 0.929933i \(-0.619865\pi\)
−0.367730 + 0.929933i \(0.619865\pi\)
\(600\) 0 0
\(601\) 5.92820 0.241816 0.120908 0.992664i \(-0.461419\pi\)
0.120908 + 0.992664i \(0.461419\pi\)
\(602\) − 5.46410i − 0.222700i
\(603\) 0 0
\(604\) −18.3923 −0.748372
\(605\) 0 0
\(606\) 0 0
\(607\) − 27.1769i − 1.10308i −0.834149 0.551538i \(-0.814041\pi\)
0.834149 0.551538i \(-0.185959\pi\)
\(608\) 7.92820i 0.321531i
\(609\) 0 0
\(610\) 0 0
\(611\) 24.1244 0.975967
\(612\) 0 0
\(613\) − 11.9808i − 0.483898i −0.970289 0.241949i \(-0.922213\pi\)
0.970289 0.241949i \(-0.0777867\pi\)
\(614\) 12.3923 0.500113
\(615\) 0 0
\(616\) −12.9282 −0.520892
\(617\) 22.3923i 0.901480i 0.892655 + 0.450740i \(0.148840\pi\)
−0.892655 + 0.450740i \(0.851160\pi\)
\(618\) 0 0
\(619\) 15.7846 0.634437 0.317219 0.948352i \(-0.397251\pi\)
0.317219 + 0.948352i \(0.397251\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 8.53590i 0.342258i
\(623\) − 44.7846i − 1.79426i
\(624\) 0 0
\(625\) 0 0
\(626\) 3.32051 0.132714
\(627\) 0 0
\(628\) 14.1244i 0.563623i
\(629\) 27.7128 1.10498
\(630\) 0 0
\(631\) −19.7128 −0.784755 −0.392377 0.919804i \(-0.628347\pi\)
−0.392377 + 0.919804i \(0.628347\pi\)
\(632\) 6.39230i 0.254272i
\(633\) 0 0
\(634\) −17.5359 −0.696439
\(635\) 0 0
\(636\) 0 0
\(637\) − 25.8564i − 1.02447i
\(638\) − 24.0000i − 0.950169i
\(639\) 0 0
\(640\) 0 0
\(641\) 3.21539 0.127000 0.0635001 0.997982i \(-0.479774\pi\)
0.0635001 + 0.997982i \(0.479774\pi\)
\(642\) 0 0
\(643\) 0.392305i 0.0154710i 0.999970 + 0.00773550i \(0.00246231\pi\)
−0.999970 + 0.00773550i \(0.997538\pi\)
\(644\) 1.73205 0.0682524
\(645\) 0 0
\(646\) −27.4641 −1.08056
\(647\) 22.6410i 0.890110i 0.895503 + 0.445055i \(0.146816\pi\)
−0.895503 + 0.445055i \(0.853184\pi\)
\(648\) 0 0
\(649\) 30.0000 1.17760
\(650\) 0 0
\(651\) 0 0
\(652\) − 9.85641i − 0.386007i
\(653\) 12.9282i 0.505920i 0.967477 + 0.252960i \(0.0814041\pi\)
−0.967477 + 0.252960i \(0.918596\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −5.19615 −0.202876
\(657\) 0 0
\(658\) − 24.1244i − 0.940465i
\(659\) −4.94744 −0.192725 −0.0963625 0.995346i \(-0.530721\pi\)
−0.0963625 + 0.995346i \(0.530721\pi\)
\(660\) 0 0
\(661\) −11.6077 −0.451487 −0.225744 0.974187i \(-0.572481\pi\)
−0.225744 + 0.974187i \(0.572481\pi\)
\(662\) 8.00000i 0.310929i
\(663\) 0 0
\(664\) 8.53590 0.331257
\(665\) 0 0
\(666\) 0 0
\(667\) 3.21539i 0.124500i
\(668\) 6.92820i 0.268060i
\(669\) 0 0
\(670\) 0 0
\(671\) −29.0718 −1.12230
\(672\) 0 0
\(673\) 39.1769i 1.51016i 0.655633 + 0.755080i \(0.272402\pi\)
−0.655633 + 0.755080i \(0.727598\pi\)
\(674\) 7.07180 0.272395
\(675\) 0 0
\(676\) 0.928203 0.0357001
\(677\) 15.2487i 0.586056i 0.956104 + 0.293028i \(0.0946628\pi\)
−0.956104 + 0.293028i \(0.905337\pi\)
\(678\) 0 0
\(679\) −4.00000 −0.153506
\(680\) 0 0
\(681\) 0 0
\(682\) 18.9282i 0.724798i
\(683\) 21.7128i 0.830818i 0.909635 + 0.415409i \(0.136361\pi\)
−0.909635 + 0.415409i \(0.863639\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0.267949 0.0102303
\(687\) 0 0
\(688\) − 1.46410i − 0.0558184i
\(689\) −46.5167 −1.77214
\(690\) 0 0
\(691\) −39.7846 −1.51348 −0.756739 0.653717i \(-0.773209\pi\)
−0.756739 + 0.653717i \(0.773209\pi\)
\(692\) 20.3205i 0.772470i
\(693\) 0 0
\(694\) −14.7846 −0.561216
\(695\) 0 0
\(696\) 0 0
\(697\) − 18.0000i − 0.681799i
\(698\) − 2.00000i − 0.0757011i
\(699\) 0 0
\(700\) 0 0
\(701\) −41.3205 −1.56065 −0.780327 0.625372i \(-0.784947\pi\)
−0.780327 + 0.625372i \(0.784947\pi\)
\(702\) 0 0
\(703\) − 63.4256i − 2.39214i
\(704\) −3.46410 −0.130558
\(705\) 0 0
\(706\) −22.3923 −0.842746
\(707\) − 35.3205i − 1.32836i
\(708\) 0 0
\(709\) 21.3205 0.800708 0.400354 0.916360i \(-0.368887\pi\)
0.400354 + 0.916360i \(0.368887\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) − 12.0000i − 0.449719i
\(713\) − 2.53590i − 0.0949701i
\(714\) 0 0
\(715\) 0 0
\(716\) 12.1244 0.453108
\(717\) 0 0
\(718\) 8.53590i 0.318557i
\(719\) −35.5692 −1.32651 −0.663254 0.748394i \(-0.730825\pi\)
−0.663254 + 0.748394i \(0.730825\pi\)
\(720\) 0 0
\(721\) −56.7128 −2.11210
\(722\) 43.8564i 1.63217i
\(723\) 0 0
\(724\) 12.5359 0.465893
\(725\) 0 0
\(726\) 0 0
\(727\) 28.8038i 1.06828i 0.845397 + 0.534138i \(0.179364\pi\)
−0.845397 + 0.534138i \(0.820636\pi\)
\(728\) − 13.9282i − 0.516214i
\(729\) 0 0
\(730\) 0 0
\(731\) 5.07180 0.187587
\(732\) 0 0
\(733\) − 16.0000i − 0.590973i −0.955347 0.295487i \(-0.904518\pi\)
0.955347 0.295487i \(-0.0954818\pi\)
\(734\) 6.39230 0.235944
\(735\) 0 0
\(736\) 0.464102 0.0171070
\(737\) − 27.7128i − 1.02081i
\(738\) 0 0
\(739\) −37.5692 −1.38201 −0.691003 0.722852i \(-0.742831\pi\)
−0.691003 + 0.722852i \(0.742831\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 46.5167i 1.70768i
\(743\) − 24.0000i − 0.880475i −0.897881 0.440237i \(-0.854894\pi\)
0.897881 0.440237i \(-0.145106\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 10.9282 0.400110
\(747\) 0 0
\(748\) − 12.0000i − 0.438763i
\(749\) −31.8564 −1.16401
\(750\) 0 0
\(751\) 22.7846 0.831422 0.415711 0.909497i \(-0.363533\pi\)
0.415711 + 0.909497i \(0.363533\pi\)
\(752\) − 6.46410i − 0.235722i
\(753\) 0 0
\(754\) 25.8564 0.941635
\(755\) 0 0
\(756\) 0 0
\(757\) − 8.80385i − 0.319981i −0.987119 0.159991i \(-0.948854\pi\)
0.987119 0.159991i \(-0.0511464\pi\)
\(758\) − 36.8564i − 1.33868i
\(759\) 0 0
\(760\) 0 0
\(761\) 13.7321 0.497786 0.248893 0.968531i \(-0.419933\pi\)
0.248893 + 0.968531i \(0.419933\pi\)
\(762\) 0 0
\(763\) − 66.6410i − 2.41257i
\(764\) −2.53590 −0.0917456
\(765\) 0 0
\(766\) 6.46410 0.233557
\(767\) 32.3205i 1.16703i
\(768\) 0 0
\(769\) 27.0718 0.976234 0.488117 0.872778i \(-0.337684\pi\)
0.488117 + 0.872778i \(0.337684\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 16.0000i 0.575853i
\(773\) 24.9282i 0.896605i 0.893882 + 0.448303i \(0.147971\pi\)
−0.893882 + 0.448303i \(0.852029\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −1.07180 −0.0384753
\(777\) 0 0
\(778\) − 23.3205i − 0.836081i
\(779\) −41.1962 −1.47601
\(780\) 0 0
\(781\) 20.7846 0.743732
\(782\) 1.60770i 0.0574911i
\(783\) 0 0
\(784\) −6.92820 −0.247436
\(785\) 0 0
\(786\) 0 0
\(787\) 34.0000i 1.21197i 0.795476 + 0.605985i \(0.207221\pi\)
−0.795476 + 0.605985i \(0.792779\pi\)
\(788\) − 11.5359i − 0.410949i
\(789\) 0 0
\(790\) 0 0
\(791\) 48.2487 1.71553
\(792\) 0 0
\(793\) − 31.3205i − 1.11222i
\(794\) 9.85641 0.349791
\(795\) 0 0
\(796\) −22.2487 −0.788585
\(797\) 16.1436i 0.571835i 0.958254 + 0.285918i \(0.0922984\pi\)
−0.958254 + 0.285918i \(0.907702\pi\)
\(798\) 0 0
\(799\) 22.3923 0.792183
\(800\) 0 0
\(801\) 0 0
\(802\) − 39.5885i − 1.39792i
\(803\) 22.1436i 0.781430i
\(804\) 0 0
\(805\) 0 0
\(806\) −20.3923 −0.718288
\(807\) 0 0
\(808\) − 9.46410i − 0.332946i
\(809\) −51.5885 −1.81375 −0.906877 0.421396i \(-0.861540\pi\)
−0.906877 + 0.421396i \(0.861540\pi\)
\(810\) 0 0
\(811\) −2.14359 −0.0752717 −0.0376359 0.999292i \(-0.511983\pi\)
−0.0376359 + 0.999292i \(0.511983\pi\)
\(812\) − 25.8564i − 0.907382i
\(813\) 0 0
\(814\) 27.7128 0.971334
\(815\) 0 0
\(816\) 0 0
\(817\) − 11.6077i − 0.406102i
\(818\) 13.9282i 0.486988i
\(819\) 0 0
\(820\) 0 0
\(821\) −41.3205 −1.44210 −0.721048 0.692885i \(-0.756339\pi\)
−0.721048 + 0.692885i \(0.756339\pi\)
\(822\) 0 0
\(823\) 25.3205i 0.882617i 0.897355 + 0.441309i \(0.145486\pi\)
−0.897355 + 0.441309i \(0.854514\pi\)
\(824\) −15.1962 −0.529383
\(825\) 0 0
\(826\) 32.3205 1.12457
\(827\) 56.1051i 1.95097i 0.220075 + 0.975483i \(0.429370\pi\)
−0.220075 + 0.975483i \(0.570630\pi\)
\(828\) 0 0
\(829\) −37.5692 −1.30483 −0.652416 0.757861i \(-0.726245\pi\)
−0.652416 + 0.757861i \(0.726245\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) − 3.73205i − 0.129386i
\(833\) − 24.0000i − 0.831551i
\(834\) 0 0
\(835\) 0 0
\(836\) −27.4641 −0.949866
\(837\) 0 0
\(838\) 3.46410i 0.119665i
\(839\) −12.0000 −0.414286 −0.207143 0.978311i \(-0.566417\pi\)
−0.207143 + 0.978311i \(0.566417\pi\)
\(840\) 0 0
\(841\) 19.0000 0.655172
\(842\) 9.60770i 0.331103i
\(843\) 0 0
\(844\) 8.85641 0.304850
\(845\) 0 0
\(846\) 0 0
\(847\) − 3.73205i − 0.128235i
\(848\) 12.4641i 0.428019i
\(849\) 0 0
\(850\) 0 0
\(851\) −3.71281 −0.127274
\(852\) 0 0
\(853\) − 7.21539i − 0.247050i −0.992341 0.123525i \(-0.960580\pi\)
0.992341 0.123525i \(-0.0394200\pi\)
\(854\) −31.3205 −1.07177
\(855\) 0 0
\(856\) −8.53590 −0.291751
\(857\) 45.7128i 1.56152i 0.624831 + 0.780760i \(0.285168\pi\)
−0.624831 + 0.780760i \(0.714832\pi\)
\(858\) 0 0
\(859\) −52.7846 −1.80099 −0.900494 0.434869i \(-0.856795\pi\)
−0.900494 + 0.434869i \(0.856795\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) − 28.3923i − 0.967046i
\(863\) − 9.67949i − 0.329494i −0.986336 0.164747i \(-0.947319\pi\)
0.986336 0.164747i \(-0.0526807\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −2.92820 −0.0995044
\(867\) 0 0
\(868\) 20.3923i 0.692160i
\(869\) −22.1436 −0.751170
\(870\) 0 0
\(871\) 29.8564 1.01165
\(872\) − 17.8564i − 0.604694i
\(873\) 0 0
\(874\) 3.67949 0.124461
\(875\) 0 0
\(876\) 0 0
\(877\) 27.4449i 0.926747i 0.886163 + 0.463374i \(0.153361\pi\)
−0.886163 + 0.463374i \(0.846639\pi\)
\(878\) − 18.3923i − 0.620710i
\(879\) 0 0
\(880\) 0 0
\(881\) −29.5692 −0.996212 −0.498106 0.867116i \(-0.665971\pi\)
−0.498106 + 0.867116i \(0.665971\pi\)
\(882\) 0 0
\(883\) 23.4641i 0.789630i 0.918761 + 0.394815i \(0.129191\pi\)
−0.918761 + 0.394815i \(0.870809\pi\)
\(884\) 12.9282 0.434823
\(885\) 0 0
\(886\) 31.8564 1.07024
\(887\) − 53.1051i − 1.78310i −0.452927 0.891548i \(-0.649620\pi\)
0.452927 0.891548i \(-0.350380\pi\)
\(888\) 0 0
\(889\) 56.7128 1.90209
\(890\) 0 0
\(891\) 0 0
\(892\) 12.5359i 0.419733i
\(893\) − 51.2487i − 1.71497i
\(894\) 0 0
\(895\) 0 0
\(896\) −3.73205 −0.124679
\(897\) 0 0
\(898\) 32.9090i 1.09819i
\(899\) −37.8564 −1.26258
\(900\) 0 0
\(901\) −43.1769 −1.43843
\(902\) − 18.0000i − 0.599334i
\(903\) 0 0
\(904\) 12.9282 0.429986
\(905\) 0 0
\(906\) 0 0
\(907\) 27.5692i 0.915421i 0.889101 + 0.457710i \(0.151330\pi\)
−0.889101 + 0.457710i \(0.848670\pi\)
\(908\) 16.3923i 0.543998i
\(909\) 0 0
\(910\) 0 0
\(911\) 46.3923 1.53705 0.768523 0.639822i \(-0.220992\pi\)
0.768523 + 0.639822i \(0.220992\pi\)
\(912\) 0 0
\(913\) 29.5692i 0.978598i
\(914\) −20.3923 −0.674517
\(915\) 0 0
\(916\) 21.8564 0.722156
\(917\) − 51.2487i − 1.69238i
\(918\) 0 0
\(919\) −16.7846 −0.553673 −0.276837 0.960917i \(-0.589286\pi\)
−0.276837 + 0.960917i \(0.589286\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 8.78461i 0.289306i
\(923\) 22.3923i 0.737052i
\(924\) 0 0
\(925\) 0 0
\(926\) 4.80385 0.157864
\(927\) 0 0
\(928\) − 6.92820i − 0.227429i
\(929\) −30.9282 −1.01472 −0.507361 0.861734i \(-0.669379\pi\)
−0.507361 + 0.861734i \(0.669379\pi\)
\(930\) 0 0
\(931\) −54.9282 −1.80020
\(932\) 12.0000i 0.393073i
\(933\) 0 0
\(934\) 6.00000 0.196326
\(935\) 0 0
\(936\) 0 0
\(937\) − 6.14359i − 0.200702i −0.994952 0.100351i \(-0.968003\pi\)
0.994952 0.100351i \(-0.0319966\pi\)
\(938\) − 29.8564i − 0.974846i
\(939\) 0 0
\(940\) 0 0
\(941\) 5.32051 0.173444 0.0867218 0.996233i \(-0.472361\pi\)
0.0867218 + 0.996233i \(0.472361\pi\)
\(942\) 0 0
\(943\) 2.41154i 0.0785306i
\(944\) 8.66025 0.281867
\(945\) 0 0
\(946\) 5.07180 0.164898
\(947\) 14.5359i 0.472353i 0.971710 + 0.236177i \(0.0758944\pi\)
−0.971710 + 0.236177i \(0.924106\pi\)
\(948\) 0 0
\(949\) −23.8564 −0.774412
\(950\) 0 0
\(951\) 0 0
\(952\) − 12.9282i − 0.419005i
\(953\) − 18.2487i − 0.591134i −0.955322 0.295567i \(-0.904491\pi\)
0.955322 0.295567i \(-0.0955085\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −8.53590 −0.276071
\(957\) 0 0
\(958\) − 12.9282i − 0.417691i
\(959\) 38.7846 1.25242
\(960\) 0 0
\(961\) −1.14359 −0.0368901
\(962\) 29.8564i 0.962609i
\(963\) 0 0
\(964\) 16.9282 0.545221
\(965\) 0 0
\(966\) 0 0
\(967\) − 6.39230i − 0.205563i −0.994704 0.102781i \(-0.967226\pi\)
0.994704 0.102781i \(-0.0327742\pi\)
\(968\) − 1.00000i − 0.0321412i
\(969\) 0 0
\(970\) 0 0
\(971\) 43.3013 1.38960 0.694802 0.719201i \(-0.255492\pi\)
0.694802 + 0.719201i \(0.255492\pi\)
\(972\) 0 0
\(973\) − 48.5167i − 1.55537i
\(974\) −27.4449 −0.879390
\(975\) 0 0
\(976\) −8.39230 −0.268631
\(977\) − 42.0000i − 1.34370i −0.740688 0.671850i \(-0.765500\pi\)
0.740688 0.671850i \(-0.234500\pi\)
\(978\) 0 0
\(979\) 41.5692 1.32856
\(980\) 0 0
\(981\) 0 0
\(982\) − 12.1244i − 0.386904i
\(983\) 36.4974i 1.16409i 0.813158 + 0.582043i \(0.197747\pi\)
−0.813158 + 0.582043i \(0.802253\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 24.0000 0.764316
\(987\) 0 0
\(988\) − 29.5885i − 0.941334i
\(989\) −0.679492 −0.0216066
\(990\) 0 0
\(991\) 11.2154 0.356269 0.178134 0.984006i \(-0.442994\pi\)
0.178134 + 0.984006i \(0.442994\pi\)
\(992\) 5.46410i 0.173485i
\(993\) 0 0
\(994\) 22.3923 0.710241
\(995\) 0 0
\(996\) 0 0
\(997\) 3.19615i 0.101223i 0.998718 + 0.0506116i \(0.0161171\pi\)
−0.998718 + 0.0506116i \(0.983883\pi\)
\(998\) 3.78461i 0.119800i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4050.2.c.z.649.3 4
3.2 odd 2 4050.2.c.x.649.1 4
5.2 odd 4 810.2.a.j.1.2 2
5.3 odd 4 4050.2.a.bt.1.1 2
5.4 even 2 inner 4050.2.c.z.649.2 4
15.2 even 4 810.2.a.l.1.2 yes 2
15.8 even 4 4050.2.a.bk.1.1 2
15.14 odd 2 4050.2.c.x.649.4 4
20.7 even 4 6480.2.a.bb.1.1 2
45.2 even 12 810.2.e.m.271.1 4
45.7 odd 12 810.2.e.n.271.1 4
45.22 odd 12 810.2.e.n.541.1 4
45.32 even 12 810.2.e.m.541.1 4
60.47 odd 4 6480.2.a.bj.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
810.2.a.j.1.2 2 5.2 odd 4
810.2.a.l.1.2 yes 2 15.2 even 4
810.2.e.m.271.1 4 45.2 even 12
810.2.e.m.541.1 4 45.32 even 12
810.2.e.n.271.1 4 45.7 odd 12
810.2.e.n.541.1 4 45.22 odd 12
4050.2.a.bk.1.1 2 15.8 even 4
4050.2.a.bt.1.1 2 5.3 odd 4
4050.2.c.x.649.1 4 3.2 odd 2
4050.2.c.x.649.4 4 15.14 odd 2
4050.2.c.z.649.2 4 5.4 even 2 inner
4050.2.c.z.649.3 4 1.1 even 1 trivial
6480.2.a.bb.1.1 2 20.7 even 4
6480.2.a.bj.1.1 2 60.47 odd 4