Properties

Label 4056.2.c.p.337.2
Level 40564056
Weight 22
Character 4056.337
Analytic conductor 32.38732.387
Analytic rank 00
Dimension 88
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4056,2,Mod(337,4056)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4056, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4056.337"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 4056=233132 4056 = 2^{3} \cdot 3 \cdot 13^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 4056.c (of order 22, degree 11, not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,8,0,0,0,0,0,8,0,0,0,0,0,0,0,-24,0,0,0,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(23)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 32.387323059832.3873230598
Analytic rank: 00
Dimension: 88
Coefficient field: 8.0.649638144.4
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x814x6+75x4170x2+169 x^{8} - 14x^{6} + 75x^{4} - 170x^{2} + 169 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 28 2^{8}
Twist minimal: no (minimal twist has level 312)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

Embedding invariants

Embedding label 337.2
Root 1.420550.500000i-1.42055 - 0.500000i of defining polynomial
Character χ\chi == 4056.337
Dual form 4056.2.c.p.337.7

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == q+1.00000q31.55452iq5+2.96046iq7+1.00000q92.24703iq111.55452iq15+1.01862q17+5.35607iq19+2.96046iq210.782926q23+2.58347q25+1.00000q27+2.69251q297.28657iq312.24703iq33+4.60209q35+7.80155iq375.34474iq413.12766q431.55452iq45+7.13799iq471.76430q49+1.01862q51+13.8388q533.49305q55+5.35607iq57+4.35506iq59+5.14528q61+2.96046iq63+12.9977iq670.782926q6913.8501iq71+8.30519iq73+2.58347q75+6.65223q77+1.23570q79+1.00000q817.67389iq831.58347iq85+2.69251q870.494055iq897.28657iq93+8.32611q95+11.1057iq972.24703iq99+O(q100)q+1.00000 q^{3} -1.55452i q^{5} +2.96046i q^{7} +1.00000 q^{9} -2.24703i q^{11} -1.55452i q^{15} +1.01862 q^{17} +5.35607i q^{19} +2.96046i q^{21} -0.782926 q^{23} +2.58347 q^{25} +1.00000 q^{27} +2.69251 q^{29} -7.28657i q^{31} -2.24703i q^{33} +4.60209 q^{35} +7.80155i q^{37} -5.34474i q^{41} -3.12766 q^{43} -1.55452i q^{45} +7.13799i q^{47} -1.76430 q^{49} +1.01862 q^{51} +13.8388 q^{53} -3.49305 q^{55} +5.35607i q^{57} +4.35506i q^{59} +5.14528 q^{61} +2.96046i q^{63} +12.9977i q^{67} -0.782926 q^{69} -13.8501i q^{71} +8.30519i q^{73} +2.58347 q^{75} +6.65223 q^{77} +1.23570 q^{79} +1.00000 q^{81} -7.67389i q^{83} -1.58347i q^{85} +2.69251 q^{87} -0.494055i q^{89} -7.28657i q^{93} +8.32611 q^{95} +11.1057i q^{97} -2.24703i q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q+8q3+8q924q17+4q234q25+8q2712q2920q35+16q4336q4924q51+4q53+20q554q61+4q694q75+56q7712q79++68q95+O(q100) 8 q + 8 q^{3} + 8 q^{9} - 24 q^{17} + 4 q^{23} - 4 q^{25} + 8 q^{27} - 12 q^{29} - 20 q^{35} + 16 q^{43} - 36 q^{49} - 24 q^{51} + 4 q^{53} + 20 q^{55} - 4 q^{61} + 4 q^{69} - 4 q^{75} + 56 q^{77} - 12 q^{79}+ \cdots + 68 q^{95}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/4056Z)×\left(\mathbb{Z}/4056\mathbb{Z}\right)^\times.

nn 10151015 20292029 27052705 38893889
χ(n)\chi(n) 11 11 11 1-1

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0 0
33 1.00000 0.577350
44 0 0
55 − 1.55452i − 0.695202i −0.937642 0.347601i 0.886996π-0.886996\pi
0.937642 0.347601i 0.113004π-0.113004\pi
66 0 0
77 2.96046i 1.11895i 0.828848 + 0.559474i 0.188997π0.188997\pi
−0.828848 + 0.559474i 0.811003π0.811003\pi
88 0 0
99 1.00000 0.333333
1010 0 0
1111 − 2.24703i − 0.677504i −0.940876 0.338752i 0.889995π-0.889995\pi
0.940876 0.338752i 0.110005π-0.110005\pi
1212 0 0
1313 0 0
1414 0 0
1515 − 1.55452i − 0.401375i
1616 0 0
1717 1.01862 0.247052 0.123526 0.992341i 0.460580π-0.460580\pi
0.123526 + 0.992341i 0.460580π0.460580\pi
1818 0 0
1919 5.35607i 1.22877i 0.789008 + 0.614383i 0.210595π0.210595\pi
−0.789008 + 0.614383i 0.789405π0.789405\pi
2020 0 0
2121 2.96046i 0.646025i
2222 0 0
2323 −0.782926 −0.163251 −0.0816257 0.996663i 0.526011π-0.526011\pi
−0.0816257 + 0.996663i 0.526011π0.526011\pi
2424 0 0
2525 2.58347 0.516694
2626 0 0
2727 1.00000 0.192450
2828 0 0
2929 2.69251 0.499986 0.249993 0.968248i 0.419572π-0.419572\pi
0.249993 + 0.968248i 0.419572π0.419572\pi
3030 0 0
3131 − 7.28657i − 1.30871i −0.756189 0.654353i 0.772941π-0.772941\pi
0.756189 0.654353i 0.227059π-0.227059\pi
3232 0 0
3333 − 2.24703i − 0.391157i
3434 0 0
3535 4.60209 0.777895
3636 0 0
3737 7.80155i 1.28257i 0.767304 + 0.641283i 0.221598π0.221598\pi
−0.767304 + 0.641283i 0.778402π0.778402\pi
3838 0 0
3939 0 0
4040 0 0
4141 − 5.34474i − 0.834707i −0.908744 0.417354i 0.862958π-0.862958\pi
0.908744 0.417354i 0.137042π-0.137042\pi
4242 0 0
4343 −3.12766 −0.476964 −0.238482 0.971147i 0.576650π-0.576650\pi
−0.238482 + 0.971147i 0.576650π0.576650\pi
4444 0 0
4545 − 1.55452i − 0.231734i
4646 0 0
4747 7.13799i 1.04118i 0.853806 + 0.520591i 0.174288π0.174288\pi
−0.853806 + 0.520591i 0.825712π0.825712\pi
4848 0 0
4949 −1.76430 −0.252043
5050 0 0
5151 1.01862 0.142636
5252 0 0
5353 13.8388 1.90090 0.950452 0.310871i 0.100621π-0.100621\pi
0.950452 + 0.310871i 0.100621π0.100621\pi
5454 0 0
5555 −3.49305 −0.471003
5656 0 0
5757 5.35607i 0.709428i
5858 0 0
5959 4.35506i 0.566981i 0.958975 + 0.283490i 0.0914924π0.0914924\pi
−0.958975 + 0.283490i 0.908508π0.908508\pi
6060 0 0
6161 5.14528 0.658785 0.329393 0.944193i 0.393156π-0.393156\pi
0.329393 + 0.944193i 0.393156π0.393156\pi
6262 0 0
6363 2.96046i 0.372982i
6464 0 0
6565 0 0
6666 0 0
6767 12.9977i 1.58792i 0.607969 + 0.793961i 0.291985π0.291985\pi
−0.607969 + 0.793961i 0.708015π0.708015\pi
6868 0 0
6969 −0.782926 −0.0942532
7070 0 0
7171 − 13.8501i − 1.64371i −0.569699 0.821854i 0.692940π-0.692940\pi
0.569699 0.821854i 0.307060π-0.307060\pi
7272 0 0
7373 8.30519i 0.972049i 0.873945 + 0.486025i 0.161553π0.161553\pi
−0.873945 + 0.486025i 0.838447π0.838447\pi
7474 0 0
7575 2.58347 0.298313
7676 0 0
7777 6.65223 0.758092
7878 0 0
7979 1.23570 0.139027 0.0695133 0.997581i 0.477855π-0.477855\pi
0.0695133 + 0.997581i 0.477855π0.477855\pi
8080 0 0
8181 1.00000 0.111111
8282 0 0
8383 − 7.67389i − 0.842318i −0.906987 0.421159i 0.861623π-0.861623\pi
0.906987 0.421159i 0.138377π-0.138377\pi
8484 0 0
8585 − 1.58347i − 0.171751i
8686 0 0
8787 2.69251 0.288667
8888 0 0
8989 − 0.494055i − 0.0523697i −0.999657 0.0261849i 0.991664π-0.991664\pi
0.999657 0.0261849i 0.00833586π-0.00833586\pi
9090 0 0
9191 0 0
9292 0 0
9393 − 7.28657i − 0.755582i
9494 0 0
9595 8.32611 0.854241
9696 0 0
9797 11.1057i 1.12762i 0.825906 + 0.563808i 0.190664π0.190664\pi
−0.825906 + 0.563808i 0.809336π0.809336\pi
9898 0 0
9999 − 2.24703i − 0.225835i
100100 0 0
101101 15.1866 1.51112 0.755560 0.655080i 0.227365π-0.227365\pi
0.755560 + 0.655080i 0.227365π0.227365\pi
102102 0 0
103103 1.12766 0.111112 0.0555559 0.998456i 0.482307π-0.482307\pi
0.0555559 + 0.998456i 0.482307π0.482307\pi
104104 0 0
105105 4.60209 0.449118
106106 0 0
107107 −17.0382 −1.64715 −0.823575 0.567208i 0.808024π-0.808024\pi
−0.823575 + 0.567208i 0.808024π0.808024\pi
108108 0 0
109109 − 15.2866i − 1.46419i −0.681204 0.732094i 0.738543π-0.738543\pi
0.681204 0.732094i 0.261457π-0.261457\pi
110110 0 0
111111 7.80155i 0.740490i
112112 0 0
113113 7.01862 0.660256 0.330128 0.943936i 0.392908π-0.392908\pi
0.330128 + 0.943936i 0.392908π0.392908\pi
114114 0 0
115115 1.21707i 0.113493i
116116 0 0
117117 0 0
118118 0 0
119119 3.01559i 0.276438i
120120 0 0
121121 5.95087 0.540988
122122 0 0
123123 − 5.34474i − 0.481919i
124124 0 0
125125 − 11.7887i − 1.05441i
126126 0 0
127127 14.8015 1.31342 0.656712 0.754141i 0.271947π-0.271947\pi
0.656712 + 0.754141i 0.271947π0.271947\pi
128128 0 0
129129 −3.12766 −0.275375
130130 0 0
131131 5.81916 0.508423 0.254211 0.967149i 0.418184π-0.418184\pi
0.254211 + 0.967149i 0.418184π0.418184\pi
132132 0 0
133133 −15.8564 −1.37492
134134 0 0
135135 − 1.55452i − 0.133792i
136136 0 0
137137 17.3674i 1.48380i 0.670512 + 0.741899i 0.266074π0.266074\pi
−0.670512 + 0.741899i 0.733926π0.733926\pi
138138 0 0
139139 5.88792 0.499407 0.249704 0.968322i 0.419667π-0.419667\pi
0.249704 + 0.968322i 0.419667π0.419667\pi
140140 0 0
141141 7.13799i 0.601127i
142142 0 0
143143 0 0
144144 0 0
145145 − 4.18556i − 0.347592i
146146 0 0
147147 −1.76430 −0.145517
148148 0 0
149149 10.5845i 0.867114i 0.901126 + 0.433557i 0.142742π0.142742\pi
−0.901126 + 0.433557i 0.857258π0.857258\pi
150150 0 0
151151 2.24703i 0.182861i 0.995811 + 0.0914303i 0.0291439π0.0291439\pi
−0.995811 + 0.0914303i 0.970856π0.970856\pi
152152 0 0
153153 1.01862 0.0823507
154154 0 0
155155 −11.3271 −0.909816
156156 0 0
157157 −8.45782 −0.675007 −0.337504 0.941324i 0.609583π-0.609583\pi
−0.337504 + 0.941324i 0.609583π0.609583\pi
158158 0 0
159159 13.8388 1.09749
160160 0 0
161161 − 2.31782i − 0.182670i
162162 0 0
163163 − 4.20019i − 0.328985i −0.986378 0.164492i 0.947401π-0.947401\pi
0.986378 0.164492i 0.0525986π-0.0525986\pi
164164 0 0
165165 −3.49305 −0.271934
166166 0 0
167167 18.7121i 1.44799i 0.689806 + 0.723994i 0.257696π0.257696\pi
−0.689806 + 0.723994i 0.742304π0.742304\pi
168168 0 0
169169 0 0
170170 0 0
171171 5.35607i 0.409589i
172172 0 0
173173 −2.89096 −0.219796 −0.109898 0.993943i 0.535052π-0.535052\pi
−0.109898 + 0.993943i 0.535052π0.535052\pi
174174 0 0
175175 7.64824i 0.578153i
176176 0 0
177177 4.35506i 0.327346i
178178 0 0
179179 22.8574 1.70844 0.854222 0.519909i 0.174034π-0.174034\pi
0.854222 + 0.519909i 0.174034π0.174034\pi
180180 0 0
181181 8.09042 0.601356 0.300678 0.953726i 0.402787π-0.402787\pi
0.300678 + 0.953726i 0.402787π0.402787\pi
182182 0 0
183183 5.14528 0.380350
184184 0 0
185185 12.1277 0.891643
186186 0 0
187187 − 2.28887i − 0.167379i
188188 0 0
189189 2.96046i 0.215342i
190190 0 0
191191 −15.3850 −1.11322 −0.556610 0.830774i 0.687898π-0.687898\pi
−0.556610 + 0.830774i 0.687898π0.687898\pi
192192 0 0
193193 − 0.347036i − 0.0249802i −0.999922 0.0124901i 0.996024π-0.996024\pi
0.999922 0.0124901i 0.00397582π-0.00397582\pi
194194 0 0
195195 0 0
196196 0 0
197197 − 25.8564i − 1.84219i −0.389335 0.921096i 0.627295π-0.627295\pi
0.389335 0.921096i 0.372705π-0.372705\pi
198198 0 0
199199 7.34574 0.520726 0.260363 0.965511i 0.416158π-0.416158\pi
0.260363 + 0.965511i 0.416158π0.416158\pi
200200 0 0
201201 12.9977i 0.916787i
202202 0 0
203203 7.97105i 0.559458i
204204 0 0
205205 −8.30850 −0.580291
206206 0 0
207207 −0.782926 −0.0544171
208208 0 0
209209 12.0352 0.832494
210210 0 0
211211 −28.6952 −1.97546 −0.987729 0.156175i 0.950084π-0.950084\pi
−0.987729 + 0.156175i 0.950084π0.950084\pi
212212 0 0
213213 − 13.8501i − 0.948995i
214214 0 0
215215 4.86201i 0.331586i
216216 0 0
217217 21.5716 1.46437
218218 0 0
219219 8.30519i 0.561213i
220220 0 0
221221 0 0
222222 0 0
223223 2.13698i 0.143103i 0.997437 + 0.0715514i 0.0227950π0.0227950\pi
−0.997437 + 0.0715514i 0.977205π0.977205\pi
224224 0 0
225225 2.58347 0.172231
226226 0 0
227227 18.3860i 1.22032i 0.792277 + 0.610162i 0.208895π0.208895\pi
−0.792277 + 0.610162i 0.791105π0.791105\pi
228228 0 0
229229 1.74669i 0.115424i 0.998333 + 0.0577122i 0.0183806π0.0183806\pi
−0.998333 + 0.0577122i 0.981619π0.981619\pi
230230 0 0
231231 6.65223 0.437684
232232 0 0
233233 26.3525 1.72641 0.863204 0.504855i 0.168454π-0.168454\pi
0.863204 + 0.504855i 0.168454π0.168454\pi
234234 0 0
235235 11.0961 0.723833
236236 0 0
237237 1.23570 0.0802671
238238 0 0
239239 − 6.36336i − 0.411611i −0.978593 0.205806i 0.934019π-0.934019\pi
0.978593 0.205806i 0.0659815π-0.0659815\pi
240240 0 0
241241 − 9.01862i − 0.580940i −0.956884 0.290470i 0.906188π-0.906188\pi
0.956884 0.290470i 0.0938117π-0.0938117\pi
242242 0 0
243243 1.00000 0.0641500
244244 0 0
245245 2.74265i 0.175221i
246246 0 0
247247 0 0
248248 0 0
249249 − 7.67389i − 0.486313i
250250 0 0
251251 18.2760 1.15357 0.576785 0.816896i 0.304307π-0.304307\pi
0.576785 + 0.816896i 0.304307π0.304307\pi
252252 0 0
253253 1.75926i 0.110603i
254254 0 0
255255 − 1.58347i − 0.0991606i
256256 0 0
257257 −26.4263 −1.64843 −0.824214 0.566279i 0.808383π-0.808383\pi
−0.824214 + 0.566279i 0.808383π0.808383\pi
258258 0 0
259259 −23.0961 −1.43512
260260 0 0
261261 2.69251 0.166662
262262 0 0
263263 4.82017 0.297224 0.148612 0.988896i 0.452519π-0.452519\pi
0.148612 + 0.988896i 0.452519π0.452519\pi
264264 0 0
265265 − 21.5127i − 1.32151i
266266 0 0
267267 − 0.494055i − 0.0302357i
268268 0 0
269269 −1.64034 −0.100013 −0.0500066 0.998749i 0.515924π-0.515924\pi
−0.0500066 + 0.998749i 0.515924π0.515924\pi
270270 0 0
271271 − 12.7300i − 0.773294i −0.922228 0.386647i 0.873633π-0.873633\pi
0.922228 0.386647i 0.126367π-0.126367\pi
272272 0 0
273273 0 0
274274 0 0
275275 − 5.80512i − 0.350062i
276276 0 0
277277 −24.5008 −1.47211 −0.736055 0.676922i 0.763313π-0.763313\pi
−0.736055 + 0.676922i 0.763313π0.763313\pi
278278 0 0
279279 − 7.28657i − 0.436236i
280280 0 0
281281 1.93853i 0.115643i 0.998327 + 0.0578215i 0.0184154π0.0184154\pi
−0.998327 + 0.0578215i 0.981585π0.981585\pi
282282 0 0
283283 −8.07853 −0.480219 −0.240109 0.970746i 0.577183π-0.577183\pi
−0.240109 + 0.970746i 0.577183π0.577183\pi
284284 0 0
285285 8.32611 0.493196
286286 0 0
287287 15.8229 0.933994
288288 0 0
289289 −15.9624 −0.938965
290290 0 0
291291 11.1057i 0.651030i
292292 0 0
293293 − 28.3411i − 1.65571i −0.560944 0.827854i 0.689562π-0.689562\pi
0.560944 0.827854i 0.310438π-0.310438\pi
294294 0 0
295295 6.77003 0.394166
296296 0 0
297297 − 2.24703i − 0.130386i
298298 0 0
299299 0 0
300300 0 0
301301 − 9.25931i − 0.533698i
302302 0 0
303303 15.1866 0.872445
304304 0 0
305305 − 7.99844i − 0.457989i
306306 0 0
307307 − 30.7025i − 1.75229i −0.482051 0.876143i 0.660108π-0.660108\pi
0.482051 0.876143i 0.339892π-0.339892\pi
308308 0 0
309309 1.12766 0.0641504
310310 0 0
311311 13.7338 0.778772 0.389386 0.921075i 0.372687π-0.372687\pi
0.389386 + 0.921075i 0.372687π0.372687\pi
312312 0 0
313313 32.1886 1.81941 0.909703 0.415260i 0.136309π-0.136309\pi
0.909703 + 0.415260i 0.136309π0.136309\pi
314314 0 0
315315 4.60209 0.259298
316316 0 0
317317 4.54723i 0.255398i 0.991813 + 0.127699i 0.0407591π0.0407591\pi
−0.991813 + 0.127699i 0.959241π0.959241\pi
318318 0 0
319319 − 6.05014i − 0.338743i
320320 0 0
321321 −17.0382 −0.950982
322322 0 0
323323 5.45581i 0.303569i
324324 0 0
325325 0 0
326326 0 0
327327 − 15.2866i − 0.845349i
328328 0 0
329329 −21.1317 −1.16503
330330 0 0
331331 − 14.7899i − 0.812928i −0.913667 0.406464i 0.866762π-0.866762\pi
0.913667 0.406464i 0.133238π-0.133238\pi
332332 0 0
333333 7.80155i 0.427522i
334334 0 0
335335 20.2052 1.10393
336336 0 0
337337 −3.21808 −0.175300 −0.0876500 0.996151i 0.527936π-0.527936\pi
−0.0876500 + 0.996151i 0.527936π0.527936\pi
338338 0 0
339339 7.01862 0.381199
340340 0 0
341341 −16.3731 −0.886654
342342 0 0
343343 15.5001i 0.836924i
344344 0 0
345345 1.21707i 0.0655251i
346346 0 0
347347 −4.30345 −0.231021 −0.115511 0.993306i 0.536850π-0.536850\pi
−0.115511 + 0.993306i 0.536850π0.536850\pi
348348 0 0
349349 − 11.1284i − 0.595689i −0.954614 0.297845i 0.903732π-0.903732\pi
0.954614 0.297845i 0.0962678π-0.0962678\pi
350350 0 0
351351 0 0
352352 0 0
353353 − 10.8295i − 0.576396i −0.957571 0.288198i 0.906944π-0.906944\pi
0.957571 0.288198i 0.0930561π-0.0930561\pi
354354 0 0
355355 −21.5303 −1.14271
356356 0 0
357357 3.01559i 0.159602i
358358 0 0
359359 32.0616i 1.69215i 0.533067 + 0.846073i 0.321039π0.321039\pi
−0.533067 + 0.846073i 0.678961π0.678961\pi
360360 0 0
361361 −9.68746 −0.509866
362362 0 0
363363 5.95087 0.312340
364364 0 0
365365 12.9106 0.675771
366366 0 0
367367 0.222122 0.0115947 0.00579734 0.999983i 0.498155π-0.498155\pi
0.00579734 + 0.999983i 0.498155π0.498155\pi
368368 0 0
369369 − 5.34474i − 0.278236i
370370 0 0
371371 40.9691i 2.12701i
372372 0 0
373373 24.0961 1.24765 0.623826 0.781564i 0.285578π-0.285578\pi
0.623826 + 0.781564i 0.285578π0.285578\pi
374374 0 0
375375 − 11.7887i − 0.608763i
376376 0 0
377377 0 0
378378 0 0
379379 16.3518i 0.839933i 0.907540 + 0.419967i 0.137958π0.137958\pi
−0.907540 + 0.419967i 0.862042π0.862042\pi
380380 0 0
381381 14.8015 0.758306
382382 0 0
383383 19.4967i 0.996237i 0.867109 + 0.498119i 0.165976π0.165976\pi
−0.867109 + 0.498119i 0.834024π0.834024\pi
384384 0 0
385385 − 10.3410i − 0.527027i
386386 0 0
387387 −3.12766 −0.158988
388388 0 0
389389 −29.6972 −1.50571 −0.752854 0.658187i 0.771323π-0.771323\pi
−0.752854 + 0.658187i 0.771323π0.771323\pi
390390 0 0
391391 −0.797505 −0.0403316
392392 0 0
393393 5.81916 0.293538
394394 0 0
395395 − 1.92091i − 0.0966517i
396396 0 0
397397 − 15.8743i − 0.796708i −0.917232 0.398354i 0.869582π-0.869582\pi
0.917232 0.398354i 0.130418π-0.130418\pi
398398 0 0
399399 −15.8564 −0.793813
400400 0 0
401401 − 11.5402i − 0.576288i −0.957587 0.288144i 0.906962π-0.906962\pi
0.957587 0.288144i 0.0930381π-0.0930381\pi
402402 0 0
403403 0 0
404404 0 0
405405 − 1.55452i − 0.0772447i
406406 0 0
407407 17.5303 0.868944
408408 0 0
409409 35.0979i 1.73548i 0.497019 + 0.867739i 0.334428π0.334428\pi
−0.497019 + 0.867739i 0.665572π0.665572\pi
410410 0 0
411411 17.3674i 0.856671i
412412 0 0
413413 −12.8930 −0.634422
414414 0 0
415415 −11.9292 −0.585582
416416 0 0
417417 5.88792 0.288333
418418 0 0
419419 22.6284 1.10547 0.552736 0.833356i 0.313584π-0.313584\pi
0.552736 + 0.833356i 0.313584π0.313584\pi
420420 0 0
421421 − 13.3833i − 0.652261i −0.945325 0.326130i 0.894255π-0.894255\pi
0.945325 0.326130i 0.105745π-0.105745\pi
422422 0 0
423423 7.13799i 0.347061i
424424 0 0
425425 2.63158 0.127650
426426 0 0
427427 15.2324i 0.737146i
428428 0 0
429429 0 0
430430 0 0
431431 20.0616i 0.966333i 0.875529 + 0.483166i 0.160513π0.160513\pi
−0.875529 + 0.483166i 0.839487π0.839487\pi
432432 0 0
433433 −37.8445 −1.81869 −0.909346 0.416041i 0.863417π-0.863417\pi
−0.909346 + 0.416041i 0.863417π0.863417\pi
434434 0 0
435435 − 4.18556i − 0.200682i
436436 0 0
437437 − 4.19340i − 0.200598i
438438 0 0
439439 25.6796 1.22562 0.612811 0.790230i 0.290039π-0.290039\pi
0.612811 + 0.790230i 0.290039π0.290039\pi
440440 0 0
441441 −1.76430 −0.0840145
442442 0 0
443443 −37.4822 −1.78083 −0.890416 0.455148i 0.849586π-0.849586\pi
−0.890416 + 0.455148i 0.849586π0.849586\pi
444444 0 0
445445 −0.768019 −0.0364076
446446 0 0
447447 10.5845i 0.500628i
448448 0 0
449449 − 5.92091i − 0.279425i −0.990192 0.139713i 0.955382π-0.955382\pi
0.990192 0.139713i 0.0446179π-0.0446179\pi
450450 0 0
451451 −12.0098 −0.565518
452452 0 0
453453 2.24703i 0.105575i
454454 0 0
455455 0 0
456456 0 0
457457 40.6184i 1.90005i 0.312175 + 0.950025i 0.398942π0.398942\pi
−0.312175 + 0.950025i 0.601058π0.601058\pi
458458 0 0
459459 1.01862 0.0475452
460460 0 0
461461 − 7.86627i − 0.366369i −0.983079 0.183184i 0.941360π-0.941360\pi
0.983079 0.183184i 0.0586405π-0.0586405\pi
462462 0 0
463463 − 3.96775i − 0.184397i −0.995741 0.0921984i 0.970611π-0.970611\pi
0.995741 0.0921984i 0.0293894π-0.0293894\pi
464464 0 0
465465 −11.3271 −0.525283
466466 0 0
467467 1.41249 0.0653622 0.0326811 0.999466i 0.489595π-0.489595\pi
0.0326811 + 0.999466i 0.489595π0.489595\pi
468468 0 0
469469 −38.4791 −1.77680
470470 0 0
471471 −8.45782 −0.389716
472472 0 0
473473 7.02794i 0.323145i
474474 0 0
475475 13.8372i 0.634896i
476476 0 0
477477 13.8388 0.633635
478478 0 0
479479 21.4368i 0.979474i 0.871870 + 0.489737i 0.162907π0.162907\pi
−0.871870 + 0.489737i 0.837093π0.837093\pi
480480 0 0
481481 0 0
482482 0 0
483483 − 2.31782i − 0.105464i
484484 0 0
485485 17.2641 0.783922
486486 0 0
487487 − 11.1898i − 0.507059i −0.967328 0.253529i 0.918409π-0.918409\pi
0.967328 0.253529i 0.0815914π-0.0815914\pi
488488 0 0
489489 − 4.20019i − 0.189939i
490490 0 0
491491 −19.9665 −0.901073 −0.450537 0.892758i 0.648767π-0.648767\pi
−0.450537 + 0.892758i 0.648767π0.648767\pi
492492 0 0
493493 2.74265 0.123523
494494 0 0
495495 −3.49305 −0.157001
496496 0 0
497497 41.0027 1.83922
498498 0 0
499499 4.15156i 0.185849i 0.995673 + 0.0929247i 0.0296216π0.0296216\pi
−0.995673 + 0.0929247i 0.970378π0.970378\pi
500500 0 0
501501 18.7121i 0.835997i
502502 0 0
503503 −22.3488 −0.996483 −0.498241 0.867038i 0.666021π-0.666021\pi
−0.498241 + 0.867038i 0.666021π0.666021\pi
504504 0 0
505505 − 23.6078i − 1.05053i
506506 0 0
507507 0 0
508508 0 0
509509 − 34.6523i − 1.53594i −0.640487 0.767969i 0.721267π-0.721267\pi
0.640487 0.767969i 0.278733π-0.278733\pi
510510 0 0
511511 −24.5872 −1.08767
512512 0 0
513513 5.35607i 0.236476i
514514 0 0
515515 − 1.75297i − 0.0772452i
516516 0 0
517517 16.0393 0.705406
518518 0 0
519519 −2.89096 −0.126899
520520 0 0
521521 25.0186 1.09609 0.548043 0.836450i 0.315373π-0.315373\pi
0.548043 + 0.836450i 0.315373π0.315373\pi
522522 0 0
523523 −27.7484 −1.21335 −0.606676 0.794949i 0.707497π-0.707497\pi
−0.606676 + 0.794949i 0.707497π0.707497\pi
524524 0 0
525525 7.64824i 0.333797i
526526 0 0
527527 − 7.42226i − 0.323319i
528528 0 0
529529 −22.3870 −0.973349
530530 0 0
531531 4.35506i 0.188994i
532532 0 0
533533 0 0
534534 0 0
535535 26.4863i 1.14510i
536536 0 0
537537 22.8574 0.986370
538538 0 0
539539 3.96444i 0.170761i
540540 0 0
541541 − 31.4592i − 1.35254i −0.736655 0.676269i 0.763596π-0.763596\pi
0.736655 0.676269i 0.236404π-0.236404\pi
542542 0 0
543543 8.09042 0.347193
544544 0 0
545545 −23.7633 −1.01791
546546 0 0
547547 −18.1510 −0.776081 −0.388040 0.921642i 0.626848π-0.626848\pi
−0.388040 + 0.921642i 0.626848π0.626848\pi
548548 0 0
549549 5.14528 0.219595
550550 0 0
551551 14.4213i 0.614366i
552552 0 0
553553 3.65822i 0.155563i
554554 0 0
555555 12.1277 0.514791
556556 0 0
557557 14.8977i 0.631235i 0.948886 + 0.315618i 0.102212π0.102212\pi
−0.948886 + 0.315618i 0.897788π0.897788\pi
558558 0 0
559559 0 0
560560 0 0
561561 − 2.28887i − 0.0966362i
562562 0 0
563563 6.23873 0.262931 0.131466 0.991321i 0.458032π-0.458032\pi
0.131466 + 0.991321i 0.458032π0.458032\pi
564564 0 0
565565 − 10.9106i − 0.459012i
566566 0 0
567567 2.96046i 0.124327i
568568 0 0
569569 15.2268 0.638342 0.319171 0.947697i 0.396595π-0.396595\pi
0.319171 + 0.947697i 0.396595π0.396595\pi
570570 0 0
571571 14.8801 0.622712 0.311356 0.950293i 0.399217π-0.399217\pi
0.311356 + 0.950293i 0.399217π0.399217\pi
572572 0 0
573573 −15.3850 −0.642718
574574 0 0
575575 −2.02266 −0.0843509
576576 0 0
577577 − 15.6078i − 0.649762i −0.945755 0.324881i 0.894676π-0.894676\pi
0.945755 0.324881i 0.105324π-0.105324\pi
578578 0 0
579579 − 0.347036i − 0.0144223i
580580 0 0
581581 22.7182 0.942510
582582 0 0
583583 − 31.0961i − 1.28787i
584584 0 0
585585 0 0
586586 0 0
587587 40.2301i 1.66047i 0.557411 + 0.830236i 0.311795π0.311795\pi
−0.557411 + 0.830236i 0.688205π0.688205\pi
588588 0 0
589589 39.0274 1.60809
590590 0 0
591591 − 25.8564i − 1.06359i
592592 0 0
593593 37.7225i 1.54908i 0.632527 + 0.774538i 0.282018π0.282018\pi
−0.632527 + 0.774538i 0.717982π0.717982\pi
594594 0 0
595595 4.68779 0.192181
596596 0 0
597597 7.34574 0.300641
598598 0 0
599599 −30.0518 −1.22788 −0.613942 0.789351i 0.710417π-0.710417\pi
−0.613942 + 0.789351i 0.710417π0.710417\pi
600600 0 0
601601 −3.58347 −0.146173 −0.0730863 0.997326i 0.523285π-0.523285\pi
−0.0730863 + 0.997326i 0.523285π0.523285\pi
602602 0 0
603603 12.9977i 0.529307i
604604 0 0
605605 − 9.25074i − 0.376096i
606606 0 0
607607 −23.5679 −0.956590 −0.478295 0.878199i 0.658745π-0.658745\pi
−0.478295 + 0.878199i 0.658745π0.658745\pi
608608 0 0
609609 7.97105i 0.323003i
610610 0 0
611611 0 0
612612 0 0
613613 10.2390i 0.413549i 0.978389 + 0.206775i 0.0662967π0.0662967\pi
−0.978389 + 0.206775i 0.933703π0.933703\pi
614614 0 0
615615 −8.30850 −0.335031
616616 0 0
617617 − 37.7804i − 1.52098i −0.649350 0.760490i 0.724959π-0.724959\pi
0.649350 0.760490i 0.275041π-0.275041\pi
618618 0 0
619619 20.1165i 0.808551i 0.914637 + 0.404275i 0.132476π0.132476\pi
−0.914637 + 0.404275i 0.867524π0.867524\pi
620620 0 0
621621 −0.782926 −0.0314177
622622 0 0
623623 1.46263 0.0585990
624624 0 0
625625 −5.40836 −0.216334
626626 0 0
627627 12.0352 0.480641
628628 0 0
629629 7.94682i 0.316861i
630630 0 0
631631 − 23.6225i − 0.940395i −0.882561 0.470198i 0.844183π-0.844183\pi
0.882561 0.470198i 0.155817π-0.155817\pi
632632 0 0
633633 −28.6952 −1.14053
634634 0 0
635635 − 23.0093i − 0.913096i
636636 0 0
637637 0 0
638638 0 0
639639 − 13.8501i − 0.547902i
640640 0 0
641641 −3.57370 −0.141153 −0.0705763 0.997506i 0.522484π-0.522484\pi
−0.0705763 + 0.997506i 0.522484π0.522484\pi
642642 0 0
643643 − 32.6876i − 1.28907i −0.764573 0.644537i 0.777050π-0.777050\pi
0.764573 0.644537i 0.222950π-0.222950\pi
644644 0 0
645645 4.86201i 0.191442i
646646 0 0
647647 −37.0998 −1.45855 −0.729273 0.684223i 0.760141π-0.760141\pi
−0.729273 + 0.684223i 0.760141π0.760141\pi
648648 0 0
649649 9.78594 0.384132
650650 0 0
651651 21.5716 0.845457
652652 0 0
653653 25.9143 1.01410 0.507052 0.861915i 0.330735π-0.330735\pi
0.507052 + 0.861915i 0.330735π0.330735\pi
654654 0 0
655655 − 9.04601i − 0.353457i
656656 0 0
657657 8.30519i 0.324016i
658658 0 0
659659 −14.9861 −0.583776 −0.291888 0.956453i 0.594283π-0.594283\pi
−0.291888 + 0.956453i 0.594283π0.594283\pi
660660 0 0
661661 − 12.1765i − 0.473611i −0.971557 0.236806i 0.923900π-0.923900\pi
0.971557 0.236806i 0.0761004π-0.0761004\pi
662662 0 0
663663 0 0
664664 0 0
665665 24.6491i 0.955851i
666666 0 0
667667 −2.10803 −0.0816234
668668 0 0
669669 2.13698i 0.0826205i
670670 0 0
671671 − 11.5616i − 0.446330i
672672 0 0
673673 −38.8564 −1.49780 −0.748902 0.662681i 0.769419π-0.769419\pi
−0.748902 + 0.662681i 0.769419π0.769419\pi
674674 0 0
675675 2.58347 0.0994377
676676 0 0
677677 −25.3624 −0.974754 −0.487377 0.873192i 0.662046π-0.662046\pi
−0.487377 + 0.873192i 0.662046π0.662046\pi
678678 0 0
679679 −32.8780 −1.26174
680680 0 0
681681 18.3860i 0.704554i
682682 0 0
683683 15.9189i 0.609120i 0.952493 + 0.304560i 0.0985094π0.0985094\pi
−0.952493 + 0.304560i 0.901491π0.901491\pi
684684 0 0
685685 26.9980 1.03154
686686 0 0
687687 1.74669i 0.0666403i
688688 0 0
689689 0 0
690690 0 0
691691 − 3.57084i − 0.135841i −0.997691 0.0679206i 0.978364π-0.978364\pi
0.997691 0.0679206i 0.0216365π-0.0216365\pi
692692 0 0
693693 6.65223 0.252697
694694 0 0
695695 − 9.15289i − 0.347189i
696696 0 0
697697 − 5.44426i − 0.206216i
698698 0 0
699699 26.3525 0.996742
700700 0 0
701701 1.56585 0.0591414 0.0295707 0.999563i 0.490586π-0.490586\pi
0.0295707 + 0.999563i 0.490586π0.490586\pi
702702 0 0
703703 −41.7856 −1.57597
704704 0 0
705705 11.0961 0.417905
706706 0 0
707707 44.9592i 1.69086i
708708 0 0
709709 − 40.7930i − 1.53201i −0.642833 0.766006i 0.722241π-0.722241\pi
0.642833 0.766006i 0.277759π-0.277759\pi
710710 0 0
711711 1.23570 0.0463422
712712 0 0
713713 5.70485i 0.213648i
714714 0 0
715715 0 0
716716 0 0
717717 − 6.36336i − 0.237644i
718718 0 0
719719 0.831053 0.0309930 0.0154965 0.999880i 0.495067π-0.495067\pi
0.0154965 + 0.999880i 0.495067π0.495067\pi
720720 0 0
721721 3.33839i 0.124328i
722722 0 0
723723 − 9.01862i − 0.335406i
724724 0 0
725725 6.95601 0.258340
726726 0 0
727727 9.85844 0.365629 0.182815 0.983147i 0.441479π-0.441479\pi
0.182815 + 0.983147i 0.441479π0.441479\pi
728728 0 0
729729 1.00000 0.0370370
730730 0 0
731731 −3.18590 −0.117835
732732 0 0
733733 11.6467i 0.430180i 0.976594 + 0.215090i 0.0690045π0.0690045\pi
−0.976594 + 0.215090i 0.930996π0.930996\pi
734734 0 0
735735 2.74265i 0.101164i
736736 0 0
737737 29.2062 1.07582
738738 0 0
739739 28.1132i 1.03416i 0.855937 + 0.517080i 0.172981π0.172981\pi
−0.855937 + 0.517080i 0.827019π0.827019\pi
740740 0 0
741741 0 0
742742 0 0
743743 − 16.8078i − 0.616619i −0.951286 0.308309i 0.900237π-0.900237\pi
0.951286 0.308309i 0.0997632π-0.0997632\pi
744744 0 0
745745 16.4538 0.602820
746746 0 0
747747 − 7.67389i − 0.280773i
748748 0 0
749749 − 50.4410i − 1.84307i
750750 0 0
751751 −18.4378 −0.672806 −0.336403 0.941718i 0.609211π-0.609211\pi
−0.336403 + 0.941718i 0.609211π0.609211\pi
752752 0 0
753753 18.2760 0.666014
754754 0 0
755755 3.49305 0.127125
756756 0 0
757757 −1.44805 −0.0526303 −0.0263151 0.999654i 0.508377π-0.508377\pi
−0.0263151 + 0.999654i 0.508377π0.508377\pi
758758 0 0
759759 1.75926i 0.0638570i
760760 0 0
761761 − 14.7121i − 0.533314i −0.963791 0.266657i 0.914081π-0.914081\pi
0.963791 0.266657i 0.0859192π-0.0859192\pi
762762 0 0
763763 45.2552 1.63835
764764 0 0
765765 − 1.58347i − 0.0572504i
766766 0 0
767767 0 0
768768 0 0
769769 9.10703i 0.328408i 0.986426 + 0.164204i 0.0525055π0.0525055\pi
−0.986426 + 0.164204i 0.947494π0.947494\pi
770770 0 0
771771 −26.4263 −0.951720
772772 0 0
773773 − 23.2027i − 0.834543i −0.908782 0.417272i 0.862986π-0.862986\pi
0.908782 0.417272i 0.137014π-0.137014\pi
774774 0 0
775775 − 18.8246i − 0.676200i
776776 0 0
777777 −23.0961 −0.828570
778778 0 0
779779 28.6268 1.02566
780780 0 0
781781 −31.1216 −1.11362
782782 0 0
783783 2.69251 0.0962224
784784 0 0
785785 13.1478i 0.469267i
786786 0 0
787787 − 12.7879i − 0.455840i −0.973680 0.227920i 0.926808π-0.926808\pi
0.973680 0.227920i 0.0731925π-0.0731925\pi
788788 0 0
789789 4.82017 0.171603
790790 0 0
791791 20.7783i 0.738792i
792792 0 0
793793 0 0
794794 0 0
795795 − 21.5127i − 0.762976i
796796 0 0
797797 −40.4330 −1.43221 −0.716106 0.697992i 0.754077π-0.754077\pi
−0.716106 + 0.697992i 0.754077π0.754077\pi
798798 0 0
799799 7.27091i 0.257226i
800800 0 0
801801 − 0.494055i − 0.0174566i
802802 0 0
803803 18.6620 0.658568
804804 0 0
805805 −3.60310 −0.126992
806806 0 0
807807 −1.64034 −0.0577426
808808 0 0
809809 44.5607 1.56667 0.783335 0.621599i 0.213517π-0.213517\pi
0.783335 + 0.621599i 0.213517π0.213517\pi
810810 0 0
811811 1.90102i 0.0667537i 0.999443 + 0.0333769i 0.0106262π0.0106262\pi
−0.999443 + 0.0333769i 0.989374π0.989374\pi
812812 0 0
813813 − 12.7300i − 0.446461i
814814 0 0
815815 −6.52929 −0.228711
816816 0 0
817817 − 16.7520i − 0.586077i
818818 0 0
819819 0 0
820820 0 0
821821 − 43.0062i − 1.50093i −0.660913 0.750463i 0.729831π-0.729831\pi
0.660913 0.750463i 0.270169π-0.270169\pi
822822 0 0
823823 −32.1490 −1.12064 −0.560321 0.828275i 0.689322π-0.689322\pi
−0.560321 + 0.828275i 0.689322π0.689322\pi
824824 0 0
825825 − 5.80512i − 0.202108i
826826 0 0
827827 − 2.20149i − 0.0765533i −0.999267 0.0382766i 0.987813π-0.987813\pi
0.999267 0.0382766i 0.0121868π-0.0121868\pi
828828 0 0
829829 −37.7013 −1.30942 −0.654709 0.755881i 0.727209π-0.727209\pi
−0.654709 + 0.755881i 0.727209π0.727209\pi
830830 0 0
831831 −24.5008 −0.849923
832832 0 0
833833 −1.79716 −0.0622679
834834 0 0
835835 29.0884 1.00665
836836 0 0
837837 − 7.28657i − 0.251861i
838838 0 0
839839 − 27.8776i − 0.962442i −0.876599 0.481221i 0.840194π-0.840194\pi
0.876599 0.481221i 0.159806π-0.159806\pi
840840 0 0
841841 −21.7504 −0.750014
842842 0 0
843843 1.93853i 0.0667665i
844844 0 0
845845 0 0
846846 0 0
847847 17.6173i 0.605337i
848848 0 0
849849 −8.07853 −0.277254
850850 0 0
851851 − 6.10803i − 0.209381i
852852 0 0
853853 3.38475i 0.115891i 0.998320 + 0.0579457i 0.0184550π0.0184550\pi
−0.998320 + 0.0579457i 0.981545π0.981545\pi
854854 0 0
855855 8.32611 0.284747
856856 0 0
857857 −0.567882 −0.0193985 −0.00969925 0.999953i 0.503087π-0.503087\pi
−0.00969925 + 0.999953i 0.503087π0.503087\pi
858858 0 0
859859 −43.1391 −1.47189 −0.735944 0.677043i 0.763261π-0.763261\pi
−0.735944 + 0.677043i 0.763261π0.763261\pi
860860 0 0
861861 15.8229 0.539242
862862 0 0
863863 − 21.6466i − 0.736860i −0.929656 0.368430i 0.879895π-0.879895\pi
0.929656 0.368430i 0.120105π-0.120105\pi
864864 0 0
865865 4.49406i 0.152802i
866866 0 0
867867 −15.9624 −0.542112
868868 0 0
869869 − 2.77664i − 0.0941911i
870870 0 0
871871 0 0
872872 0 0
873873 11.1057i 0.375872i
874874 0 0
875875 34.8998 1.17983
876876 0 0
877877 42.3494i 1.43004i 0.699105 + 0.715019i 0.253582π0.253582\pi
−0.699105 + 0.715019i 0.746418π0.746418\pi
878878 0 0
879879 − 28.3411i − 0.955923i
880880 0 0
881881 29.1903 0.983445 0.491722 0.870752i 0.336367π-0.336367\pi
0.491722 + 0.870752i 0.336367π0.336367\pi
882882 0 0
883883 −41.6461 −1.40150 −0.700751 0.713406i 0.747152π-0.747152\pi
−0.700751 + 0.713406i 0.747152π0.747152\pi
884884 0 0
885885 6.77003 0.227572
886886 0 0
887887 40.6471 1.36480 0.682398 0.730981i 0.260937π-0.260937\pi
0.682398 + 0.730981i 0.260937π0.260937\pi
888888 0 0
889889 43.8193i 1.46965i
890890 0 0
891891 − 2.24703i − 0.0752783i
892892 0 0
893893 −38.2315 −1.27937
894894 0 0
895895 − 35.5323i − 1.18771i
896896 0 0
897897 0 0
898898 0 0
899899 − 19.6191i − 0.654335i
900900 0 0
901901 14.0965 0.469622
902902 0 0
903903 − 9.25931i − 0.308130i
904904 0 0
905905 − 12.5767i − 0.418064i
906906 0 0
907907 −37.7561 −1.25367 −0.626836 0.779151i 0.715650π-0.715650\pi
−0.626836 + 0.779151i 0.715650π0.715650\pi
908908 0 0
909909 15.1866 0.503706
910910 0 0
911911 −42.4249 −1.40560 −0.702801 0.711387i 0.748067π-0.748067\pi
−0.702801 + 0.711387i 0.748067π0.748067\pi
912912 0 0
913913 −17.2434 −0.570674
914914 0 0
915915 − 7.99844i − 0.264420i
916916 0 0
917917 17.2274i 0.568898i
918918 0 0
919919 49.8346 1.64389 0.821947 0.569565i 0.192888π-0.192888\pi
0.821947 + 0.569565i 0.192888π0.192888\pi
920920 0 0
921921 − 30.7025i − 1.01168i
922922 0 0
923923 0 0
924924 0 0
925925 20.1550i 0.662694i
926926 0 0
927927 1.12766 0.0370373
928928 0 0
929929 − 44.1893i − 1.44980i −0.688853 0.724901i 0.741885π-0.741885\pi
0.688853 0.724901i 0.258115π-0.258115\pi
930930 0 0
931931 − 9.44973i − 0.309703i
932932 0 0
933933 13.7338 0.449624
934934 0 0
935935 −3.55810 −0.116362
936936 0 0
937937 −22.9644 −0.750215 −0.375107 0.926981i 0.622394π-0.622394\pi
−0.375107 + 0.926981i 0.622394π0.622394\pi
938938 0 0
939939 32.1886 1.05043
940940 0 0
941941 − 6.09255i − 0.198611i −0.995057 0.0993057i 0.968338π-0.968338\pi
0.995057 0.0993057i 0.0316622π-0.0316622\pi
942942 0 0
943943 4.18453i 0.136267i
944944 0 0
945945 4.60209 0.149706
946946 0 0
947947 − 41.6982i − 1.35501i −0.735518 0.677505i 0.763061π-0.763061\pi
0.735518 0.677505i 0.236939π-0.236939\pi
948948 0 0
949949 0 0
950950 0 0
951951 4.54723i 0.147454i
952952 0 0
953953 −35.3850 −1.14623 −0.573117 0.819474i 0.694266π-0.694266\pi
−0.573117 + 0.819474i 0.694266π0.694266\pi
954954 0 0
955955 23.9163i 0.773914i
956956 0 0
957957 − 6.05014i − 0.195573i
958958 0 0
959959 −51.4154 −1.66029
960960 0 0
961961 −22.0941 −0.712713
962962 0 0
963963 −17.0382 −0.549050
964964 0 0
965965 −0.539474 −0.0173663
966966 0 0
967967 4.08684i 0.131424i 0.997839 + 0.0657120i 0.0209319π0.0209319\pi
−0.997839 + 0.0657120i 0.979068π0.979068\pi
968968 0 0
969969 5.45581i 0.175266i
970970 0 0
971971 −5.72402 −0.183693 −0.0918463 0.995773i 0.529277π-0.529277\pi
−0.0918463 + 0.995773i 0.529277π0.529277\pi
972972 0 0
973973 17.4309i 0.558810i
974974 0 0
975975 0 0
976976 0 0
977977 − 9.04498i − 0.289375i −0.989477 0.144687i 0.953782π-0.953782\pi
0.989477 0.144687i 0.0462176π-0.0462176\pi
978978 0 0
979979 −1.11016 −0.0354807
980980 0 0
981981 − 15.2866i − 0.488063i
982982 0 0
983983 − 7.05061i − 0.224879i −0.993659 0.112440i 0.964133π-0.964133\pi
0.993659 0.112440i 0.0358665π-0.0358665\pi
984984 0 0
985985 −40.1943 −1.28070
986986 0 0
987987 −21.1317 −0.672630
988988 0 0
989989 2.44873 0.0778650
990990 0 0
991991 −19.9292 −0.633072 −0.316536 0.948580i 0.602520π-0.602520\pi
−0.316536 + 0.948580i 0.602520π0.602520\pi
992992 0 0
993993 − 14.7899i − 0.469344i
994994 0 0
995995 − 11.4191i − 0.362010i
996996 0 0
997997 −22.1395 −0.701164 −0.350582 0.936532i 0.614016π-0.614016\pi
−0.350582 + 0.936532i 0.614016π0.614016\pi
998998 0 0
999999 7.80155i 0.246830i
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4056.2.c.p.337.2 8
13.5 odd 4 4056.2.a.bd.1.2 4
13.8 odd 4 4056.2.a.be.1.3 4
13.9 even 3 312.2.bf.b.49.1 8
13.10 even 6 312.2.bf.b.121.4 yes 8
13.12 even 2 inner 4056.2.c.p.337.7 8
39.23 odd 6 936.2.bi.c.433.1 8
39.35 odd 6 936.2.bi.c.361.4 8
52.23 odd 6 624.2.bv.g.433.4 8
52.31 even 4 8112.2.a.cq.1.2 4
52.35 odd 6 624.2.bv.g.49.1 8
52.47 even 4 8112.2.a.cs.1.3 4
156.23 even 6 1872.2.by.m.433.1 8
156.35 even 6 1872.2.by.m.1297.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
312.2.bf.b.49.1 8 13.9 even 3
312.2.bf.b.121.4 yes 8 13.10 even 6
624.2.bv.g.49.1 8 52.35 odd 6
624.2.bv.g.433.4 8 52.23 odd 6
936.2.bi.c.361.4 8 39.35 odd 6
936.2.bi.c.433.1 8 39.23 odd 6
1872.2.by.m.433.1 8 156.23 even 6
1872.2.by.m.1297.4 8 156.35 even 6
4056.2.a.bd.1.2 4 13.5 odd 4
4056.2.a.be.1.3 4 13.8 odd 4
4056.2.c.p.337.2 8 1.1 even 1 trivial
4056.2.c.p.337.7 8 13.12 even 2 inner
8112.2.a.cq.1.2 4 52.31 even 4
8112.2.a.cs.1.3 4 52.47 even 4