Properties

Label 4056.2.c.p.337.2
Level $4056$
Weight $2$
Character 4056.337
Analytic conductor $32.387$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4056,2,Mod(337,4056)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4056, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4056.337");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4056 = 2^{3} \cdot 3 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4056.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(32.3873230598\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.649638144.4
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 14x^{6} + 75x^{4} - 170x^{2} + 169 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{8} \)
Twist minimal: no (minimal twist has level 312)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 337.2
Root \(-1.42055 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 4056.337
Dual form 4056.2.c.p.337.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{3} -1.55452i q^{5} +2.96046i q^{7} +1.00000 q^{9} -2.24703i q^{11} -1.55452i q^{15} +1.01862 q^{17} +5.35607i q^{19} +2.96046i q^{21} -0.782926 q^{23} +2.58347 q^{25} +1.00000 q^{27} +2.69251 q^{29} -7.28657i q^{31} -2.24703i q^{33} +4.60209 q^{35} +7.80155i q^{37} -5.34474i q^{41} -3.12766 q^{43} -1.55452i q^{45} +7.13799i q^{47} -1.76430 q^{49} +1.01862 q^{51} +13.8388 q^{53} -3.49305 q^{55} +5.35607i q^{57} +4.35506i q^{59} +5.14528 q^{61} +2.96046i q^{63} +12.9977i q^{67} -0.782926 q^{69} -13.8501i q^{71} +8.30519i q^{73} +2.58347 q^{75} +6.65223 q^{77} +1.23570 q^{79} +1.00000 q^{81} -7.67389i q^{83} -1.58347i q^{85} +2.69251 q^{87} -0.494055i q^{89} -7.28657i q^{93} +8.32611 q^{95} +11.1057i q^{97} -2.24703i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{3} + 8 q^{9} - 24 q^{17} + 4 q^{23} - 4 q^{25} + 8 q^{27} - 12 q^{29} - 20 q^{35} + 16 q^{43} - 36 q^{49} - 24 q^{51} + 4 q^{53} + 20 q^{55} - 4 q^{61} + 4 q^{69} - 4 q^{75} + 56 q^{77} - 12 q^{79}+ \cdots + 68 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4056\mathbb{Z}\right)^\times\).

\(n\) \(1015\) \(2029\) \(2705\) \(3889\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000 0.577350
\(4\) 0 0
\(5\) − 1.55452i − 0.695202i −0.937642 0.347601i \(-0.886996\pi\)
0.937642 0.347601i \(-0.113004\pi\)
\(6\) 0 0
\(7\) 2.96046i 1.11895i 0.828848 + 0.559474i \(0.188997\pi\)
−0.828848 + 0.559474i \(0.811003\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) − 2.24703i − 0.677504i −0.940876 0.338752i \(-0.889995\pi\)
0.940876 0.338752i \(-0.110005\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) 0 0
\(15\) − 1.55452i − 0.401375i
\(16\) 0 0
\(17\) 1.01862 0.247052 0.123526 0.992341i \(-0.460580\pi\)
0.123526 + 0.992341i \(0.460580\pi\)
\(18\) 0 0
\(19\) 5.35607i 1.22877i 0.789008 + 0.614383i \(0.210595\pi\)
−0.789008 + 0.614383i \(0.789405\pi\)
\(20\) 0 0
\(21\) 2.96046i 0.646025i
\(22\) 0 0
\(23\) −0.782926 −0.163251 −0.0816257 0.996663i \(-0.526011\pi\)
−0.0816257 + 0.996663i \(0.526011\pi\)
\(24\) 0 0
\(25\) 2.58347 0.516694
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) 2.69251 0.499986 0.249993 0.968248i \(-0.419572\pi\)
0.249993 + 0.968248i \(0.419572\pi\)
\(30\) 0 0
\(31\) − 7.28657i − 1.30871i −0.756189 0.654353i \(-0.772941\pi\)
0.756189 0.654353i \(-0.227059\pi\)
\(32\) 0 0
\(33\) − 2.24703i − 0.391157i
\(34\) 0 0
\(35\) 4.60209 0.777895
\(36\) 0 0
\(37\) 7.80155i 1.28257i 0.767304 + 0.641283i \(0.221598\pi\)
−0.767304 + 0.641283i \(0.778402\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) − 5.34474i − 0.834707i −0.908744 0.417354i \(-0.862958\pi\)
0.908744 0.417354i \(-0.137042\pi\)
\(42\) 0 0
\(43\) −3.12766 −0.476964 −0.238482 0.971147i \(-0.576650\pi\)
−0.238482 + 0.971147i \(0.576650\pi\)
\(44\) 0 0
\(45\) − 1.55452i − 0.231734i
\(46\) 0 0
\(47\) 7.13799i 1.04118i 0.853806 + 0.520591i \(0.174288\pi\)
−0.853806 + 0.520591i \(0.825712\pi\)
\(48\) 0 0
\(49\) −1.76430 −0.252043
\(50\) 0 0
\(51\) 1.01862 0.142636
\(52\) 0 0
\(53\) 13.8388 1.90090 0.950452 0.310871i \(-0.100621\pi\)
0.950452 + 0.310871i \(0.100621\pi\)
\(54\) 0 0
\(55\) −3.49305 −0.471003
\(56\) 0 0
\(57\) 5.35607i 0.709428i
\(58\) 0 0
\(59\) 4.35506i 0.566981i 0.958975 + 0.283490i \(0.0914924\pi\)
−0.958975 + 0.283490i \(0.908508\pi\)
\(60\) 0 0
\(61\) 5.14528 0.658785 0.329393 0.944193i \(-0.393156\pi\)
0.329393 + 0.944193i \(0.393156\pi\)
\(62\) 0 0
\(63\) 2.96046i 0.372982i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 12.9977i 1.58792i 0.607969 + 0.793961i \(0.291985\pi\)
−0.607969 + 0.793961i \(0.708015\pi\)
\(68\) 0 0
\(69\) −0.782926 −0.0942532
\(70\) 0 0
\(71\) − 13.8501i − 1.64371i −0.569699 0.821854i \(-0.692940\pi\)
0.569699 0.821854i \(-0.307060\pi\)
\(72\) 0 0
\(73\) 8.30519i 0.972049i 0.873945 + 0.486025i \(0.161553\pi\)
−0.873945 + 0.486025i \(0.838447\pi\)
\(74\) 0 0
\(75\) 2.58347 0.298313
\(76\) 0 0
\(77\) 6.65223 0.758092
\(78\) 0 0
\(79\) 1.23570 0.139027 0.0695133 0.997581i \(-0.477855\pi\)
0.0695133 + 0.997581i \(0.477855\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) − 7.67389i − 0.842318i −0.906987 0.421159i \(-0.861623\pi\)
0.906987 0.421159i \(-0.138377\pi\)
\(84\) 0 0
\(85\) − 1.58347i − 0.171751i
\(86\) 0 0
\(87\) 2.69251 0.288667
\(88\) 0 0
\(89\) − 0.494055i − 0.0523697i −0.999657 0.0261849i \(-0.991664\pi\)
0.999657 0.0261849i \(-0.00833586\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) − 7.28657i − 0.755582i
\(94\) 0 0
\(95\) 8.32611 0.854241
\(96\) 0 0
\(97\) 11.1057i 1.12762i 0.825906 + 0.563808i \(0.190664\pi\)
−0.825906 + 0.563808i \(0.809336\pi\)
\(98\) 0 0
\(99\) − 2.24703i − 0.225835i
\(100\) 0 0
\(101\) 15.1866 1.51112 0.755560 0.655080i \(-0.227365\pi\)
0.755560 + 0.655080i \(0.227365\pi\)
\(102\) 0 0
\(103\) 1.12766 0.111112 0.0555559 0.998456i \(-0.482307\pi\)
0.0555559 + 0.998456i \(0.482307\pi\)
\(104\) 0 0
\(105\) 4.60209 0.449118
\(106\) 0 0
\(107\) −17.0382 −1.64715 −0.823575 0.567208i \(-0.808024\pi\)
−0.823575 + 0.567208i \(0.808024\pi\)
\(108\) 0 0
\(109\) − 15.2866i − 1.46419i −0.681204 0.732094i \(-0.738543\pi\)
0.681204 0.732094i \(-0.261457\pi\)
\(110\) 0 0
\(111\) 7.80155i 0.740490i
\(112\) 0 0
\(113\) 7.01862 0.660256 0.330128 0.943936i \(-0.392908\pi\)
0.330128 + 0.943936i \(0.392908\pi\)
\(114\) 0 0
\(115\) 1.21707i 0.113493i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 3.01559i 0.276438i
\(120\) 0 0
\(121\) 5.95087 0.540988
\(122\) 0 0
\(123\) − 5.34474i − 0.481919i
\(124\) 0 0
\(125\) − 11.7887i − 1.05441i
\(126\) 0 0
\(127\) 14.8015 1.31342 0.656712 0.754141i \(-0.271947\pi\)
0.656712 + 0.754141i \(0.271947\pi\)
\(128\) 0 0
\(129\) −3.12766 −0.275375
\(130\) 0 0
\(131\) 5.81916 0.508423 0.254211 0.967149i \(-0.418184\pi\)
0.254211 + 0.967149i \(0.418184\pi\)
\(132\) 0 0
\(133\) −15.8564 −1.37492
\(134\) 0 0
\(135\) − 1.55452i − 0.133792i
\(136\) 0 0
\(137\) 17.3674i 1.48380i 0.670512 + 0.741899i \(0.266074\pi\)
−0.670512 + 0.741899i \(0.733926\pi\)
\(138\) 0 0
\(139\) 5.88792 0.499407 0.249704 0.968322i \(-0.419667\pi\)
0.249704 + 0.968322i \(0.419667\pi\)
\(140\) 0 0
\(141\) 7.13799i 0.601127i
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) − 4.18556i − 0.347592i
\(146\) 0 0
\(147\) −1.76430 −0.145517
\(148\) 0 0
\(149\) 10.5845i 0.867114i 0.901126 + 0.433557i \(0.142742\pi\)
−0.901126 + 0.433557i \(0.857258\pi\)
\(150\) 0 0
\(151\) 2.24703i 0.182861i 0.995811 + 0.0914303i \(0.0291439\pi\)
−0.995811 + 0.0914303i \(0.970856\pi\)
\(152\) 0 0
\(153\) 1.01862 0.0823507
\(154\) 0 0
\(155\) −11.3271 −0.909816
\(156\) 0 0
\(157\) −8.45782 −0.675007 −0.337504 0.941324i \(-0.609583\pi\)
−0.337504 + 0.941324i \(0.609583\pi\)
\(158\) 0 0
\(159\) 13.8388 1.09749
\(160\) 0 0
\(161\) − 2.31782i − 0.182670i
\(162\) 0 0
\(163\) − 4.20019i − 0.328985i −0.986378 0.164492i \(-0.947401\pi\)
0.986378 0.164492i \(-0.0525986\pi\)
\(164\) 0 0
\(165\) −3.49305 −0.271934
\(166\) 0 0
\(167\) 18.7121i 1.44799i 0.689806 + 0.723994i \(0.257696\pi\)
−0.689806 + 0.723994i \(0.742304\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 0 0
\(171\) 5.35607i 0.409589i
\(172\) 0 0
\(173\) −2.89096 −0.219796 −0.109898 0.993943i \(-0.535052\pi\)
−0.109898 + 0.993943i \(0.535052\pi\)
\(174\) 0 0
\(175\) 7.64824i 0.578153i
\(176\) 0 0
\(177\) 4.35506i 0.327346i
\(178\) 0 0
\(179\) 22.8574 1.70844 0.854222 0.519909i \(-0.174034\pi\)
0.854222 + 0.519909i \(0.174034\pi\)
\(180\) 0 0
\(181\) 8.09042 0.601356 0.300678 0.953726i \(-0.402787\pi\)
0.300678 + 0.953726i \(0.402787\pi\)
\(182\) 0 0
\(183\) 5.14528 0.380350
\(184\) 0 0
\(185\) 12.1277 0.891643
\(186\) 0 0
\(187\) − 2.28887i − 0.167379i
\(188\) 0 0
\(189\) 2.96046i 0.215342i
\(190\) 0 0
\(191\) −15.3850 −1.11322 −0.556610 0.830774i \(-0.687898\pi\)
−0.556610 + 0.830774i \(0.687898\pi\)
\(192\) 0 0
\(193\) − 0.347036i − 0.0249802i −0.999922 0.0124901i \(-0.996024\pi\)
0.999922 0.0124901i \(-0.00397582\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 25.8564i − 1.84219i −0.389335 0.921096i \(-0.627295\pi\)
0.389335 0.921096i \(-0.372705\pi\)
\(198\) 0 0
\(199\) 7.34574 0.520726 0.260363 0.965511i \(-0.416158\pi\)
0.260363 + 0.965511i \(0.416158\pi\)
\(200\) 0 0
\(201\) 12.9977i 0.916787i
\(202\) 0 0
\(203\) 7.97105i 0.559458i
\(204\) 0 0
\(205\) −8.30850 −0.580291
\(206\) 0 0
\(207\) −0.782926 −0.0544171
\(208\) 0 0
\(209\) 12.0352 0.832494
\(210\) 0 0
\(211\) −28.6952 −1.97546 −0.987729 0.156175i \(-0.950084\pi\)
−0.987729 + 0.156175i \(0.950084\pi\)
\(212\) 0 0
\(213\) − 13.8501i − 0.948995i
\(214\) 0 0
\(215\) 4.86201i 0.331586i
\(216\) 0 0
\(217\) 21.5716 1.46437
\(218\) 0 0
\(219\) 8.30519i 0.561213i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 2.13698i 0.143103i 0.997437 + 0.0715514i \(0.0227950\pi\)
−0.997437 + 0.0715514i \(0.977205\pi\)
\(224\) 0 0
\(225\) 2.58347 0.172231
\(226\) 0 0
\(227\) 18.3860i 1.22032i 0.792277 + 0.610162i \(0.208895\pi\)
−0.792277 + 0.610162i \(0.791105\pi\)
\(228\) 0 0
\(229\) 1.74669i 0.115424i 0.998333 + 0.0577122i \(0.0183806\pi\)
−0.998333 + 0.0577122i \(0.981619\pi\)
\(230\) 0 0
\(231\) 6.65223 0.437684
\(232\) 0 0
\(233\) 26.3525 1.72641 0.863204 0.504855i \(-0.168454\pi\)
0.863204 + 0.504855i \(0.168454\pi\)
\(234\) 0 0
\(235\) 11.0961 0.723833
\(236\) 0 0
\(237\) 1.23570 0.0802671
\(238\) 0 0
\(239\) − 6.36336i − 0.411611i −0.978593 0.205806i \(-0.934019\pi\)
0.978593 0.205806i \(-0.0659815\pi\)
\(240\) 0 0
\(241\) − 9.01862i − 0.580940i −0.956884 0.290470i \(-0.906188\pi\)
0.956884 0.290470i \(-0.0938117\pi\)
\(242\) 0 0
\(243\) 1.00000 0.0641500
\(244\) 0 0
\(245\) 2.74265i 0.175221i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) − 7.67389i − 0.486313i
\(250\) 0 0
\(251\) 18.2760 1.15357 0.576785 0.816896i \(-0.304307\pi\)
0.576785 + 0.816896i \(0.304307\pi\)
\(252\) 0 0
\(253\) 1.75926i 0.110603i
\(254\) 0 0
\(255\) − 1.58347i − 0.0991606i
\(256\) 0 0
\(257\) −26.4263 −1.64843 −0.824214 0.566279i \(-0.808383\pi\)
−0.824214 + 0.566279i \(0.808383\pi\)
\(258\) 0 0
\(259\) −23.0961 −1.43512
\(260\) 0 0
\(261\) 2.69251 0.166662
\(262\) 0 0
\(263\) 4.82017 0.297224 0.148612 0.988896i \(-0.452519\pi\)
0.148612 + 0.988896i \(0.452519\pi\)
\(264\) 0 0
\(265\) − 21.5127i − 1.32151i
\(266\) 0 0
\(267\) − 0.494055i − 0.0302357i
\(268\) 0 0
\(269\) −1.64034 −0.100013 −0.0500066 0.998749i \(-0.515924\pi\)
−0.0500066 + 0.998749i \(0.515924\pi\)
\(270\) 0 0
\(271\) − 12.7300i − 0.773294i −0.922228 0.386647i \(-0.873633\pi\)
0.922228 0.386647i \(-0.126367\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) − 5.80512i − 0.350062i
\(276\) 0 0
\(277\) −24.5008 −1.47211 −0.736055 0.676922i \(-0.763313\pi\)
−0.736055 + 0.676922i \(0.763313\pi\)
\(278\) 0 0
\(279\) − 7.28657i − 0.436236i
\(280\) 0 0
\(281\) 1.93853i 0.115643i 0.998327 + 0.0578215i \(0.0184154\pi\)
−0.998327 + 0.0578215i \(0.981585\pi\)
\(282\) 0 0
\(283\) −8.07853 −0.480219 −0.240109 0.970746i \(-0.577183\pi\)
−0.240109 + 0.970746i \(0.577183\pi\)
\(284\) 0 0
\(285\) 8.32611 0.493196
\(286\) 0 0
\(287\) 15.8229 0.933994
\(288\) 0 0
\(289\) −15.9624 −0.938965
\(290\) 0 0
\(291\) 11.1057i 0.651030i
\(292\) 0 0
\(293\) − 28.3411i − 1.65571i −0.560944 0.827854i \(-0.689562\pi\)
0.560944 0.827854i \(-0.310438\pi\)
\(294\) 0 0
\(295\) 6.77003 0.394166
\(296\) 0 0
\(297\) − 2.24703i − 0.130386i
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) − 9.25931i − 0.533698i
\(302\) 0 0
\(303\) 15.1866 0.872445
\(304\) 0 0
\(305\) − 7.99844i − 0.457989i
\(306\) 0 0
\(307\) − 30.7025i − 1.75229i −0.482051 0.876143i \(-0.660108\pi\)
0.482051 0.876143i \(-0.339892\pi\)
\(308\) 0 0
\(309\) 1.12766 0.0641504
\(310\) 0 0
\(311\) 13.7338 0.778772 0.389386 0.921075i \(-0.372687\pi\)
0.389386 + 0.921075i \(0.372687\pi\)
\(312\) 0 0
\(313\) 32.1886 1.81941 0.909703 0.415260i \(-0.136309\pi\)
0.909703 + 0.415260i \(0.136309\pi\)
\(314\) 0 0
\(315\) 4.60209 0.259298
\(316\) 0 0
\(317\) 4.54723i 0.255398i 0.991813 + 0.127699i \(0.0407591\pi\)
−0.991813 + 0.127699i \(0.959241\pi\)
\(318\) 0 0
\(319\) − 6.05014i − 0.338743i
\(320\) 0 0
\(321\) −17.0382 −0.950982
\(322\) 0 0
\(323\) 5.45581i 0.303569i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) − 15.2866i − 0.845349i
\(328\) 0 0
\(329\) −21.1317 −1.16503
\(330\) 0 0
\(331\) − 14.7899i − 0.812928i −0.913667 0.406464i \(-0.866762\pi\)
0.913667 0.406464i \(-0.133238\pi\)
\(332\) 0 0
\(333\) 7.80155i 0.427522i
\(334\) 0 0
\(335\) 20.2052 1.10393
\(336\) 0 0
\(337\) −3.21808 −0.175300 −0.0876500 0.996151i \(-0.527936\pi\)
−0.0876500 + 0.996151i \(0.527936\pi\)
\(338\) 0 0
\(339\) 7.01862 0.381199
\(340\) 0 0
\(341\) −16.3731 −0.886654
\(342\) 0 0
\(343\) 15.5001i 0.836924i
\(344\) 0 0
\(345\) 1.21707i 0.0655251i
\(346\) 0 0
\(347\) −4.30345 −0.231021 −0.115511 0.993306i \(-0.536850\pi\)
−0.115511 + 0.993306i \(0.536850\pi\)
\(348\) 0 0
\(349\) − 11.1284i − 0.595689i −0.954614 0.297845i \(-0.903732\pi\)
0.954614 0.297845i \(-0.0962678\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) − 10.8295i − 0.576396i −0.957571 0.288198i \(-0.906944\pi\)
0.957571 0.288198i \(-0.0930561\pi\)
\(354\) 0 0
\(355\) −21.5303 −1.14271
\(356\) 0 0
\(357\) 3.01559i 0.159602i
\(358\) 0 0
\(359\) 32.0616i 1.69215i 0.533067 + 0.846073i \(0.321039\pi\)
−0.533067 + 0.846073i \(0.678961\pi\)
\(360\) 0 0
\(361\) −9.68746 −0.509866
\(362\) 0 0
\(363\) 5.95087 0.312340
\(364\) 0 0
\(365\) 12.9106 0.675771
\(366\) 0 0
\(367\) 0.222122 0.0115947 0.00579734 0.999983i \(-0.498155\pi\)
0.00579734 + 0.999983i \(0.498155\pi\)
\(368\) 0 0
\(369\) − 5.34474i − 0.278236i
\(370\) 0 0
\(371\) 40.9691i 2.12701i
\(372\) 0 0
\(373\) 24.0961 1.24765 0.623826 0.781564i \(-0.285578\pi\)
0.623826 + 0.781564i \(0.285578\pi\)
\(374\) 0 0
\(375\) − 11.7887i − 0.608763i
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 16.3518i 0.839933i 0.907540 + 0.419967i \(0.137958\pi\)
−0.907540 + 0.419967i \(0.862042\pi\)
\(380\) 0 0
\(381\) 14.8015 0.758306
\(382\) 0 0
\(383\) 19.4967i 0.996237i 0.867109 + 0.498119i \(0.165976\pi\)
−0.867109 + 0.498119i \(0.834024\pi\)
\(384\) 0 0
\(385\) − 10.3410i − 0.527027i
\(386\) 0 0
\(387\) −3.12766 −0.158988
\(388\) 0 0
\(389\) −29.6972 −1.50571 −0.752854 0.658187i \(-0.771323\pi\)
−0.752854 + 0.658187i \(0.771323\pi\)
\(390\) 0 0
\(391\) −0.797505 −0.0403316
\(392\) 0 0
\(393\) 5.81916 0.293538
\(394\) 0 0
\(395\) − 1.92091i − 0.0966517i
\(396\) 0 0
\(397\) − 15.8743i − 0.796708i −0.917232 0.398354i \(-0.869582\pi\)
0.917232 0.398354i \(-0.130418\pi\)
\(398\) 0 0
\(399\) −15.8564 −0.793813
\(400\) 0 0
\(401\) − 11.5402i − 0.576288i −0.957587 0.288144i \(-0.906962\pi\)
0.957587 0.288144i \(-0.0930381\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) − 1.55452i − 0.0772447i
\(406\) 0 0
\(407\) 17.5303 0.868944
\(408\) 0 0
\(409\) 35.0979i 1.73548i 0.497019 + 0.867739i \(0.334428\pi\)
−0.497019 + 0.867739i \(0.665572\pi\)
\(410\) 0 0
\(411\) 17.3674i 0.856671i
\(412\) 0 0
\(413\) −12.8930 −0.634422
\(414\) 0 0
\(415\) −11.9292 −0.585582
\(416\) 0 0
\(417\) 5.88792 0.288333
\(418\) 0 0
\(419\) 22.6284 1.10547 0.552736 0.833356i \(-0.313584\pi\)
0.552736 + 0.833356i \(0.313584\pi\)
\(420\) 0 0
\(421\) − 13.3833i − 0.652261i −0.945325 0.326130i \(-0.894255\pi\)
0.945325 0.326130i \(-0.105745\pi\)
\(422\) 0 0
\(423\) 7.13799i 0.347061i
\(424\) 0 0
\(425\) 2.63158 0.127650
\(426\) 0 0
\(427\) 15.2324i 0.737146i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 20.0616i 0.966333i 0.875529 + 0.483166i \(0.160513\pi\)
−0.875529 + 0.483166i \(0.839487\pi\)
\(432\) 0 0
\(433\) −37.8445 −1.81869 −0.909346 0.416041i \(-0.863417\pi\)
−0.909346 + 0.416041i \(0.863417\pi\)
\(434\) 0 0
\(435\) − 4.18556i − 0.200682i
\(436\) 0 0
\(437\) − 4.19340i − 0.200598i
\(438\) 0 0
\(439\) 25.6796 1.22562 0.612811 0.790230i \(-0.290039\pi\)
0.612811 + 0.790230i \(0.290039\pi\)
\(440\) 0 0
\(441\) −1.76430 −0.0840145
\(442\) 0 0
\(443\) −37.4822 −1.78083 −0.890416 0.455148i \(-0.849586\pi\)
−0.890416 + 0.455148i \(0.849586\pi\)
\(444\) 0 0
\(445\) −0.768019 −0.0364076
\(446\) 0 0
\(447\) 10.5845i 0.500628i
\(448\) 0 0
\(449\) − 5.92091i − 0.279425i −0.990192 0.139713i \(-0.955382\pi\)
0.990192 0.139713i \(-0.0446179\pi\)
\(450\) 0 0
\(451\) −12.0098 −0.565518
\(452\) 0 0
\(453\) 2.24703i 0.105575i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 40.6184i 1.90005i 0.312175 + 0.950025i \(0.398942\pi\)
−0.312175 + 0.950025i \(0.601058\pi\)
\(458\) 0 0
\(459\) 1.01862 0.0475452
\(460\) 0 0
\(461\) − 7.86627i − 0.366369i −0.983079 0.183184i \(-0.941360\pi\)
0.983079 0.183184i \(-0.0586405\pi\)
\(462\) 0 0
\(463\) − 3.96775i − 0.184397i −0.995741 0.0921984i \(-0.970611\pi\)
0.995741 0.0921984i \(-0.0293894\pi\)
\(464\) 0 0
\(465\) −11.3271 −0.525283
\(466\) 0 0
\(467\) 1.41249 0.0653622 0.0326811 0.999466i \(-0.489595\pi\)
0.0326811 + 0.999466i \(0.489595\pi\)
\(468\) 0 0
\(469\) −38.4791 −1.77680
\(470\) 0 0
\(471\) −8.45782 −0.389716
\(472\) 0 0
\(473\) 7.02794i 0.323145i
\(474\) 0 0
\(475\) 13.8372i 0.634896i
\(476\) 0 0
\(477\) 13.8388 0.633635
\(478\) 0 0
\(479\) 21.4368i 0.979474i 0.871870 + 0.489737i \(0.162907\pi\)
−0.871870 + 0.489737i \(0.837093\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) − 2.31782i − 0.105464i
\(484\) 0 0
\(485\) 17.2641 0.783922
\(486\) 0 0
\(487\) − 11.1898i − 0.507059i −0.967328 0.253529i \(-0.918409\pi\)
0.967328 0.253529i \(-0.0815914\pi\)
\(488\) 0 0
\(489\) − 4.20019i − 0.189939i
\(490\) 0 0
\(491\) −19.9665 −0.901073 −0.450537 0.892758i \(-0.648767\pi\)
−0.450537 + 0.892758i \(0.648767\pi\)
\(492\) 0 0
\(493\) 2.74265 0.123523
\(494\) 0 0
\(495\) −3.49305 −0.157001
\(496\) 0 0
\(497\) 41.0027 1.83922
\(498\) 0 0
\(499\) 4.15156i 0.185849i 0.995673 + 0.0929247i \(0.0296216\pi\)
−0.995673 + 0.0929247i \(0.970378\pi\)
\(500\) 0 0
\(501\) 18.7121i 0.835997i
\(502\) 0 0
\(503\) −22.3488 −0.996483 −0.498241 0.867038i \(-0.666021\pi\)
−0.498241 + 0.867038i \(0.666021\pi\)
\(504\) 0 0
\(505\) − 23.6078i − 1.05053i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) − 34.6523i − 1.53594i −0.640487 0.767969i \(-0.721267\pi\)
0.640487 0.767969i \(-0.278733\pi\)
\(510\) 0 0
\(511\) −24.5872 −1.08767
\(512\) 0 0
\(513\) 5.35607i 0.236476i
\(514\) 0 0
\(515\) − 1.75297i − 0.0772452i
\(516\) 0 0
\(517\) 16.0393 0.705406
\(518\) 0 0
\(519\) −2.89096 −0.126899
\(520\) 0 0
\(521\) 25.0186 1.09609 0.548043 0.836450i \(-0.315373\pi\)
0.548043 + 0.836450i \(0.315373\pi\)
\(522\) 0 0
\(523\) −27.7484 −1.21335 −0.606676 0.794949i \(-0.707497\pi\)
−0.606676 + 0.794949i \(0.707497\pi\)
\(524\) 0 0
\(525\) 7.64824i 0.333797i
\(526\) 0 0
\(527\) − 7.42226i − 0.323319i
\(528\) 0 0
\(529\) −22.3870 −0.973349
\(530\) 0 0
\(531\) 4.35506i 0.188994i
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 26.4863i 1.14510i
\(536\) 0 0
\(537\) 22.8574 0.986370
\(538\) 0 0
\(539\) 3.96444i 0.170761i
\(540\) 0 0
\(541\) − 31.4592i − 1.35254i −0.736655 0.676269i \(-0.763596\pi\)
0.736655 0.676269i \(-0.236404\pi\)
\(542\) 0 0
\(543\) 8.09042 0.347193
\(544\) 0 0
\(545\) −23.7633 −1.01791
\(546\) 0 0
\(547\) −18.1510 −0.776081 −0.388040 0.921642i \(-0.626848\pi\)
−0.388040 + 0.921642i \(0.626848\pi\)
\(548\) 0 0
\(549\) 5.14528 0.219595
\(550\) 0 0
\(551\) 14.4213i 0.614366i
\(552\) 0 0
\(553\) 3.65822i 0.155563i
\(554\) 0 0
\(555\) 12.1277 0.514791
\(556\) 0 0
\(557\) 14.8977i 0.631235i 0.948886 + 0.315618i \(0.102212\pi\)
−0.948886 + 0.315618i \(0.897788\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) − 2.28887i − 0.0966362i
\(562\) 0 0
\(563\) 6.23873 0.262931 0.131466 0.991321i \(-0.458032\pi\)
0.131466 + 0.991321i \(0.458032\pi\)
\(564\) 0 0
\(565\) − 10.9106i − 0.459012i
\(566\) 0 0
\(567\) 2.96046i 0.124327i
\(568\) 0 0
\(569\) 15.2268 0.638342 0.319171 0.947697i \(-0.396595\pi\)
0.319171 + 0.947697i \(0.396595\pi\)
\(570\) 0 0
\(571\) 14.8801 0.622712 0.311356 0.950293i \(-0.399217\pi\)
0.311356 + 0.950293i \(0.399217\pi\)
\(572\) 0 0
\(573\) −15.3850 −0.642718
\(574\) 0 0
\(575\) −2.02266 −0.0843509
\(576\) 0 0
\(577\) − 15.6078i − 0.649762i −0.945755 0.324881i \(-0.894676\pi\)
0.945755 0.324881i \(-0.105324\pi\)
\(578\) 0 0
\(579\) − 0.347036i − 0.0144223i
\(580\) 0 0
\(581\) 22.7182 0.942510
\(582\) 0 0
\(583\) − 31.0961i − 1.28787i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 40.2301i 1.66047i 0.557411 + 0.830236i \(0.311795\pi\)
−0.557411 + 0.830236i \(0.688205\pi\)
\(588\) 0 0
\(589\) 39.0274 1.60809
\(590\) 0 0
\(591\) − 25.8564i − 1.06359i
\(592\) 0 0
\(593\) 37.7225i 1.54908i 0.632527 + 0.774538i \(0.282018\pi\)
−0.632527 + 0.774538i \(0.717982\pi\)
\(594\) 0 0
\(595\) 4.68779 0.192181
\(596\) 0 0
\(597\) 7.34574 0.300641
\(598\) 0 0
\(599\) −30.0518 −1.22788 −0.613942 0.789351i \(-0.710417\pi\)
−0.613942 + 0.789351i \(0.710417\pi\)
\(600\) 0 0
\(601\) −3.58347 −0.146173 −0.0730863 0.997326i \(-0.523285\pi\)
−0.0730863 + 0.997326i \(0.523285\pi\)
\(602\) 0 0
\(603\) 12.9977i 0.529307i
\(604\) 0 0
\(605\) − 9.25074i − 0.376096i
\(606\) 0 0
\(607\) −23.5679 −0.956590 −0.478295 0.878199i \(-0.658745\pi\)
−0.478295 + 0.878199i \(0.658745\pi\)
\(608\) 0 0
\(609\) 7.97105i 0.323003i
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 10.2390i 0.413549i 0.978389 + 0.206775i \(0.0662967\pi\)
−0.978389 + 0.206775i \(0.933703\pi\)
\(614\) 0 0
\(615\) −8.30850 −0.335031
\(616\) 0 0
\(617\) − 37.7804i − 1.52098i −0.649350 0.760490i \(-0.724959\pi\)
0.649350 0.760490i \(-0.275041\pi\)
\(618\) 0 0
\(619\) 20.1165i 0.808551i 0.914637 + 0.404275i \(0.132476\pi\)
−0.914637 + 0.404275i \(0.867524\pi\)
\(620\) 0 0
\(621\) −0.782926 −0.0314177
\(622\) 0 0
\(623\) 1.46263 0.0585990
\(624\) 0 0
\(625\) −5.40836 −0.216334
\(626\) 0 0
\(627\) 12.0352 0.480641
\(628\) 0 0
\(629\) 7.94682i 0.316861i
\(630\) 0 0
\(631\) − 23.6225i − 0.940395i −0.882561 0.470198i \(-0.844183\pi\)
0.882561 0.470198i \(-0.155817\pi\)
\(632\) 0 0
\(633\) −28.6952 −1.14053
\(634\) 0 0
\(635\) − 23.0093i − 0.913096i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) − 13.8501i − 0.547902i
\(640\) 0 0
\(641\) −3.57370 −0.141153 −0.0705763 0.997506i \(-0.522484\pi\)
−0.0705763 + 0.997506i \(0.522484\pi\)
\(642\) 0 0
\(643\) − 32.6876i − 1.28907i −0.764573 0.644537i \(-0.777050\pi\)
0.764573 0.644537i \(-0.222950\pi\)
\(644\) 0 0
\(645\) 4.86201i 0.191442i
\(646\) 0 0
\(647\) −37.0998 −1.45855 −0.729273 0.684223i \(-0.760141\pi\)
−0.729273 + 0.684223i \(0.760141\pi\)
\(648\) 0 0
\(649\) 9.78594 0.384132
\(650\) 0 0
\(651\) 21.5716 0.845457
\(652\) 0 0
\(653\) 25.9143 1.01410 0.507052 0.861915i \(-0.330735\pi\)
0.507052 + 0.861915i \(0.330735\pi\)
\(654\) 0 0
\(655\) − 9.04601i − 0.353457i
\(656\) 0 0
\(657\) 8.30519i 0.324016i
\(658\) 0 0
\(659\) −14.9861 −0.583776 −0.291888 0.956453i \(-0.594283\pi\)
−0.291888 + 0.956453i \(0.594283\pi\)
\(660\) 0 0
\(661\) − 12.1765i − 0.473611i −0.971557 0.236806i \(-0.923900\pi\)
0.971557 0.236806i \(-0.0761004\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 24.6491i 0.955851i
\(666\) 0 0
\(667\) −2.10803 −0.0816234
\(668\) 0 0
\(669\) 2.13698i 0.0826205i
\(670\) 0 0
\(671\) − 11.5616i − 0.446330i
\(672\) 0 0
\(673\) −38.8564 −1.49780 −0.748902 0.662681i \(-0.769419\pi\)
−0.748902 + 0.662681i \(0.769419\pi\)
\(674\) 0 0
\(675\) 2.58347 0.0994377
\(676\) 0 0
\(677\) −25.3624 −0.974754 −0.487377 0.873192i \(-0.662046\pi\)
−0.487377 + 0.873192i \(0.662046\pi\)
\(678\) 0 0
\(679\) −32.8780 −1.26174
\(680\) 0 0
\(681\) 18.3860i 0.704554i
\(682\) 0 0
\(683\) 15.9189i 0.609120i 0.952493 + 0.304560i \(0.0985094\pi\)
−0.952493 + 0.304560i \(0.901491\pi\)
\(684\) 0 0
\(685\) 26.9980 1.03154
\(686\) 0 0
\(687\) 1.74669i 0.0666403i
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) − 3.57084i − 0.135841i −0.997691 0.0679206i \(-0.978364\pi\)
0.997691 0.0679206i \(-0.0216365\pi\)
\(692\) 0 0
\(693\) 6.65223 0.252697
\(694\) 0 0
\(695\) − 9.15289i − 0.347189i
\(696\) 0 0
\(697\) − 5.44426i − 0.206216i
\(698\) 0 0
\(699\) 26.3525 0.996742
\(700\) 0 0
\(701\) 1.56585 0.0591414 0.0295707 0.999563i \(-0.490586\pi\)
0.0295707 + 0.999563i \(0.490586\pi\)
\(702\) 0 0
\(703\) −41.7856 −1.57597
\(704\) 0 0
\(705\) 11.0961 0.417905
\(706\) 0 0
\(707\) 44.9592i 1.69086i
\(708\) 0 0
\(709\) − 40.7930i − 1.53201i −0.642833 0.766006i \(-0.722241\pi\)
0.642833 0.766006i \(-0.277759\pi\)
\(710\) 0 0
\(711\) 1.23570 0.0463422
\(712\) 0 0
\(713\) 5.70485i 0.213648i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) − 6.36336i − 0.237644i
\(718\) 0 0
\(719\) 0.831053 0.0309930 0.0154965 0.999880i \(-0.495067\pi\)
0.0154965 + 0.999880i \(0.495067\pi\)
\(720\) 0 0
\(721\) 3.33839i 0.124328i
\(722\) 0 0
\(723\) − 9.01862i − 0.335406i
\(724\) 0 0
\(725\) 6.95601 0.258340
\(726\) 0 0
\(727\) 9.85844 0.365629 0.182815 0.983147i \(-0.441479\pi\)
0.182815 + 0.983147i \(0.441479\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −3.18590 −0.117835
\(732\) 0 0
\(733\) 11.6467i 0.430180i 0.976594 + 0.215090i \(0.0690045\pi\)
−0.976594 + 0.215090i \(0.930996\pi\)
\(734\) 0 0
\(735\) 2.74265i 0.101164i
\(736\) 0 0
\(737\) 29.2062 1.07582
\(738\) 0 0
\(739\) 28.1132i 1.03416i 0.855937 + 0.517080i \(0.172981\pi\)
−0.855937 + 0.517080i \(0.827019\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) − 16.8078i − 0.616619i −0.951286 0.308309i \(-0.900237\pi\)
0.951286 0.308309i \(-0.0997632\pi\)
\(744\) 0 0
\(745\) 16.4538 0.602820
\(746\) 0 0
\(747\) − 7.67389i − 0.280773i
\(748\) 0 0
\(749\) − 50.4410i − 1.84307i
\(750\) 0 0
\(751\) −18.4378 −0.672806 −0.336403 0.941718i \(-0.609211\pi\)
−0.336403 + 0.941718i \(0.609211\pi\)
\(752\) 0 0
\(753\) 18.2760 0.666014
\(754\) 0 0
\(755\) 3.49305 0.127125
\(756\) 0 0
\(757\) −1.44805 −0.0526303 −0.0263151 0.999654i \(-0.508377\pi\)
−0.0263151 + 0.999654i \(0.508377\pi\)
\(758\) 0 0
\(759\) 1.75926i 0.0638570i
\(760\) 0 0
\(761\) − 14.7121i − 0.533314i −0.963791 0.266657i \(-0.914081\pi\)
0.963791 0.266657i \(-0.0859192\pi\)
\(762\) 0 0
\(763\) 45.2552 1.63835
\(764\) 0 0
\(765\) − 1.58347i − 0.0572504i
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 9.10703i 0.328408i 0.986426 + 0.164204i \(0.0525055\pi\)
−0.986426 + 0.164204i \(0.947494\pi\)
\(770\) 0 0
\(771\) −26.4263 −0.951720
\(772\) 0 0
\(773\) − 23.2027i − 0.834543i −0.908782 0.417272i \(-0.862986\pi\)
0.908782 0.417272i \(-0.137014\pi\)
\(774\) 0 0
\(775\) − 18.8246i − 0.676200i
\(776\) 0 0
\(777\) −23.0961 −0.828570
\(778\) 0 0
\(779\) 28.6268 1.02566
\(780\) 0 0
\(781\) −31.1216 −1.11362
\(782\) 0 0
\(783\) 2.69251 0.0962224
\(784\) 0 0
\(785\) 13.1478i 0.469267i
\(786\) 0 0
\(787\) − 12.7879i − 0.455840i −0.973680 0.227920i \(-0.926808\pi\)
0.973680 0.227920i \(-0.0731925\pi\)
\(788\) 0 0
\(789\) 4.82017 0.171603
\(790\) 0 0
\(791\) 20.7783i 0.738792i
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) − 21.5127i − 0.762976i
\(796\) 0 0
\(797\) −40.4330 −1.43221 −0.716106 0.697992i \(-0.754077\pi\)
−0.716106 + 0.697992i \(0.754077\pi\)
\(798\) 0 0
\(799\) 7.27091i 0.257226i
\(800\) 0 0
\(801\) − 0.494055i − 0.0174566i
\(802\) 0 0
\(803\) 18.6620 0.658568
\(804\) 0 0
\(805\) −3.60310 −0.126992
\(806\) 0 0
\(807\) −1.64034 −0.0577426
\(808\) 0 0
\(809\) 44.5607 1.56667 0.783335 0.621599i \(-0.213517\pi\)
0.783335 + 0.621599i \(0.213517\pi\)
\(810\) 0 0
\(811\) 1.90102i 0.0667537i 0.999443 + 0.0333769i \(0.0106262\pi\)
−0.999443 + 0.0333769i \(0.989374\pi\)
\(812\) 0 0
\(813\) − 12.7300i − 0.446461i
\(814\) 0 0
\(815\) −6.52929 −0.228711
\(816\) 0 0
\(817\) − 16.7520i − 0.586077i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) − 43.0062i − 1.50093i −0.660913 0.750463i \(-0.729831\pi\)
0.660913 0.750463i \(-0.270169\pi\)
\(822\) 0 0
\(823\) −32.1490 −1.12064 −0.560321 0.828275i \(-0.689322\pi\)
−0.560321 + 0.828275i \(0.689322\pi\)
\(824\) 0 0
\(825\) − 5.80512i − 0.202108i
\(826\) 0 0
\(827\) − 2.20149i − 0.0765533i −0.999267 0.0382766i \(-0.987813\pi\)
0.999267 0.0382766i \(-0.0121868\pi\)
\(828\) 0 0
\(829\) −37.7013 −1.30942 −0.654709 0.755881i \(-0.727209\pi\)
−0.654709 + 0.755881i \(0.727209\pi\)
\(830\) 0 0
\(831\) −24.5008 −0.849923
\(832\) 0 0
\(833\) −1.79716 −0.0622679
\(834\) 0 0
\(835\) 29.0884 1.00665
\(836\) 0 0
\(837\) − 7.28657i − 0.251861i
\(838\) 0 0
\(839\) − 27.8776i − 0.962442i −0.876599 0.481221i \(-0.840194\pi\)
0.876599 0.481221i \(-0.159806\pi\)
\(840\) 0 0
\(841\) −21.7504 −0.750014
\(842\) 0 0
\(843\) 1.93853i 0.0667665i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 17.6173i 0.605337i
\(848\) 0 0
\(849\) −8.07853 −0.277254
\(850\) 0 0
\(851\) − 6.10803i − 0.209381i
\(852\) 0 0
\(853\) 3.38475i 0.115891i 0.998320 + 0.0579457i \(0.0184550\pi\)
−0.998320 + 0.0579457i \(0.981545\pi\)
\(854\) 0 0
\(855\) 8.32611 0.284747
\(856\) 0 0
\(857\) −0.567882 −0.0193985 −0.00969925 0.999953i \(-0.503087\pi\)
−0.00969925 + 0.999953i \(0.503087\pi\)
\(858\) 0 0
\(859\) −43.1391 −1.47189 −0.735944 0.677043i \(-0.763261\pi\)
−0.735944 + 0.677043i \(0.763261\pi\)
\(860\) 0 0
\(861\) 15.8229 0.539242
\(862\) 0 0
\(863\) − 21.6466i − 0.736860i −0.929656 0.368430i \(-0.879895\pi\)
0.929656 0.368430i \(-0.120105\pi\)
\(864\) 0 0
\(865\) 4.49406i 0.152802i
\(866\) 0 0
\(867\) −15.9624 −0.542112
\(868\) 0 0
\(869\) − 2.77664i − 0.0941911i
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 11.1057i 0.375872i
\(874\) 0 0
\(875\) 34.8998 1.17983
\(876\) 0 0
\(877\) 42.3494i 1.43004i 0.699105 + 0.715019i \(0.253582\pi\)
−0.699105 + 0.715019i \(0.746418\pi\)
\(878\) 0 0
\(879\) − 28.3411i − 0.955923i
\(880\) 0 0
\(881\) 29.1903 0.983445 0.491722 0.870752i \(-0.336367\pi\)
0.491722 + 0.870752i \(0.336367\pi\)
\(882\) 0 0
\(883\) −41.6461 −1.40150 −0.700751 0.713406i \(-0.747152\pi\)
−0.700751 + 0.713406i \(0.747152\pi\)
\(884\) 0 0
\(885\) 6.77003 0.227572
\(886\) 0 0
\(887\) 40.6471 1.36480 0.682398 0.730981i \(-0.260937\pi\)
0.682398 + 0.730981i \(0.260937\pi\)
\(888\) 0 0
\(889\) 43.8193i 1.46965i
\(890\) 0 0
\(891\) − 2.24703i − 0.0752783i
\(892\) 0 0
\(893\) −38.2315 −1.27937
\(894\) 0 0
\(895\) − 35.5323i − 1.18771i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) − 19.6191i − 0.654335i
\(900\) 0 0
\(901\) 14.0965 0.469622
\(902\) 0 0
\(903\) − 9.25931i − 0.308130i
\(904\) 0 0
\(905\) − 12.5767i − 0.418064i
\(906\) 0 0
\(907\) −37.7561 −1.25367 −0.626836 0.779151i \(-0.715650\pi\)
−0.626836 + 0.779151i \(0.715650\pi\)
\(908\) 0 0
\(909\) 15.1866 0.503706
\(910\) 0 0
\(911\) −42.4249 −1.40560 −0.702801 0.711387i \(-0.748067\pi\)
−0.702801 + 0.711387i \(0.748067\pi\)
\(912\) 0 0
\(913\) −17.2434 −0.570674
\(914\) 0 0
\(915\) − 7.99844i − 0.264420i
\(916\) 0 0
\(917\) 17.2274i 0.568898i
\(918\) 0 0
\(919\) 49.8346 1.64389 0.821947 0.569565i \(-0.192888\pi\)
0.821947 + 0.569565i \(0.192888\pi\)
\(920\) 0 0
\(921\) − 30.7025i − 1.01168i
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 20.1550i 0.662694i
\(926\) 0 0
\(927\) 1.12766 0.0370373
\(928\) 0 0
\(929\) − 44.1893i − 1.44980i −0.688853 0.724901i \(-0.741885\pi\)
0.688853 0.724901i \(-0.258115\pi\)
\(930\) 0 0
\(931\) − 9.44973i − 0.309703i
\(932\) 0 0
\(933\) 13.7338 0.449624
\(934\) 0 0
\(935\) −3.55810 −0.116362
\(936\) 0 0
\(937\) −22.9644 −0.750215 −0.375107 0.926981i \(-0.622394\pi\)
−0.375107 + 0.926981i \(0.622394\pi\)
\(938\) 0 0
\(939\) 32.1886 1.05043
\(940\) 0 0
\(941\) − 6.09255i − 0.198611i −0.995057 0.0993057i \(-0.968338\pi\)
0.995057 0.0993057i \(-0.0316622\pi\)
\(942\) 0 0
\(943\) 4.18453i 0.136267i
\(944\) 0 0
\(945\) 4.60209 0.149706
\(946\) 0 0
\(947\) − 41.6982i − 1.35501i −0.735518 0.677505i \(-0.763061\pi\)
0.735518 0.677505i \(-0.236939\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 4.54723i 0.147454i
\(952\) 0 0
\(953\) −35.3850 −1.14623 −0.573117 0.819474i \(-0.694266\pi\)
−0.573117 + 0.819474i \(0.694266\pi\)
\(954\) 0 0
\(955\) 23.9163i 0.773914i
\(956\) 0 0
\(957\) − 6.05014i − 0.195573i
\(958\) 0 0
\(959\) −51.4154 −1.66029
\(960\) 0 0
\(961\) −22.0941 −0.712713
\(962\) 0 0
\(963\) −17.0382 −0.549050
\(964\) 0 0
\(965\) −0.539474 −0.0173663
\(966\) 0 0
\(967\) 4.08684i 0.131424i 0.997839 + 0.0657120i \(0.0209319\pi\)
−0.997839 + 0.0657120i \(0.979068\pi\)
\(968\) 0 0
\(969\) 5.45581i 0.175266i
\(970\) 0 0
\(971\) −5.72402 −0.183693 −0.0918463 0.995773i \(-0.529277\pi\)
−0.0918463 + 0.995773i \(0.529277\pi\)
\(972\) 0 0
\(973\) 17.4309i 0.558810i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 9.04498i − 0.289375i −0.989477 0.144687i \(-0.953782\pi\)
0.989477 0.144687i \(-0.0462176\pi\)
\(978\) 0 0
\(979\) −1.11016 −0.0354807
\(980\) 0 0
\(981\) − 15.2866i − 0.488063i
\(982\) 0 0
\(983\) − 7.05061i − 0.224879i −0.993659 0.112440i \(-0.964133\pi\)
0.993659 0.112440i \(-0.0358665\pi\)
\(984\) 0 0
\(985\) −40.1943 −1.28070
\(986\) 0 0
\(987\) −21.1317 −0.672630
\(988\) 0 0
\(989\) 2.44873 0.0778650
\(990\) 0 0
\(991\) −19.9292 −0.633072 −0.316536 0.948580i \(-0.602520\pi\)
−0.316536 + 0.948580i \(0.602520\pi\)
\(992\) 0 0
\(993\) − 14.7899i − 0.469344i
\(994\) 0 0
\(995\) − 11.4191i − 0.362010i
\(996\) 0 0
\(997\) −22.1395 −0.701164 −0.350582 0.936532i \(-0.614016\pi\)
−0.350582 + 0.936532i \(0.614016\pi\)
\(998\) 0 0
\(999\) 7.80155i 0.246830i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4056.2.c.p.337.2 8
13.5 odd 4 4056.2.a.bd.1.2 4
13.8 odd 4 4056.2.a.be.1.3 4
13.9 even 3 312.2.bf.b.49.1 8
13.10 even 6 312.2.bf.b.121.4 yes 8
13.12 even 2 inner 4056.2.c.p.337.7 8
39.23 odd 6 936.2.bi.c.433.1 8
39.35 odd 6 936.2.bi.c.361.4 8
52.23 odd 6 624.2.bv.g.433.4 8
52.31 even 4 8112.2.a.cq.1.2 4
52.35 odd 6 624.2.bv.g.49.1 8
52.47 even 4 8112.2.a.cs.1.3 4
156.23 even 6 1872.2.by.m.433.1 8
156.35 even 6 1872.2.by.m.1297.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
312.2.bf.b.49.1 8 13.9 even 3
312.2.bf.b.121.4 yes 8 13.10 even 6
624.2.bv.g.49.1 8 52.35 odd 6
624.2.bv.g.433.4 8 52.23 odd 6
936.2.bi.c.361.4 8 39.35 odd 6
936.2.bi.c.433.1 8 39.23 odd 6
1872.2.by.m.433.1 8 156.23 even 6
1872.2.by.m.1297.4 8 156.35 even 6
4056.2.a.bd.1.2 4 13.5 odd 4
4056.2.a.be.1.3 4 13.8 odd 4
4056.2.c.p.337.2 8 1.1 even 1 trivial
4056.2.c.p.337.7 8 13.12 even 2 inner
8112.2.a.cq.1.2 4 52.31 even 4
8112.2.a.cs.1.3 4 52.47 even 4