Properties

Label 408.4.a.h
Level $408$
Weight $4$
Character orbit 408.a
Self dual yes
Analytic conductor $24.073$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [408,4,Mod(1,408)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(408, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("408.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 408 = 2^{3} \cdot 3 \cdot 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 408.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(24.0727792823\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 75x^{2} + 136x + 578 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 3 q^{3} + ( - \beta_1 + 2) q^{5} + ( - \beta_{3} - \beta_{2} - 1) q^{7} + 9 q^{9} + ( - \beta_{2} - \beta_1 - 9) q^{11} + ( - \beta_{3} + \beta_{2} - 3 \beta_1 + 3) q^{13} + (3 \beta_1 - 6) q^{15}+ \cdots + ( - 9 \beta_{2} - 9 \beta_1 - 81) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 12 q^{3} + 10 q^{5} - 4 q^{7} + 36 q^{9} - 34 q^{11} + 18 q^{13} - 30 q^{15} + 68 q^{17} - 86 q^{19} + 12 q^{21} - 26 q^{23} + 206 q^{25} - 108 q^{27} + 216 q^{29} + 20 q^{31} + 102 q^{33} + 164 q^{35}+ \cdots - 306 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} - 75x^{2} + 136x + 578 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -7\nu^{3} - 10\nu^{2} + 406\nu - 68 ) / 51 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 2\nu^{3} + 32\nu^{2} + 88\nu - 1139 ) / 51 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -2\nu^{3} - 32\nu^{2} + 116\nu + 1088 ) / 51 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{3} + \beta_{2} + 1 ) / 4 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -7\beta_{3} + 2\beta _1 + 152 ) / 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 34\beta_{3} + 29\beta_{2} - 16\beta _1 - 99 ) / 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
4.45853
−8.62405
7.24141
−2.07588
0 −3.00000 0 −16.0976 0 −17.8341 0 9.00000 0
1.2 0 −3.00000 0 −1.46562 0 34.4962 0 9.00000 0
1.3 0 −3.00000 0 8.08710 0 −28.9656 0 9.00000 0
1.4 0 −3.00000 0 19.4761 0 8.30352 0 9.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( +1 \)
\(17\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 408.4.a.h 4
3.b odd 2 1 1224.4.a.k 4
4.b odd 2 1 816.4.a.x 4
12.b even 2 1 2448.4.a.bp 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
408.4.a.h 4 1.a even 1 1 trivial
816.4.a.x 4 4.b odd 2 1
1224.4.a.k 4 3.b odd 2 1
2448.4.a.bp 4 12.b even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{4} - 10T_{5}^{3} - 303T_{5}^{2} + 2116T_{5} + 3716 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(408))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( (T + 3)^{4} \) Copy content Toggle raw display
$5$ \( T^{4} - 10 T^{3} + \cdots + 3716 \) Copy content Toggle raw display
$7$ \( T^{4} + 4 T^{3} + \cdots + 147968 \) Copy content Toggle raw display
$11$ \( T^{4} + 34 T^{3} + \cdots + 120336 \) Copy content Toggle raw display
$13$ \( T^{4} - 18 T^{3} + \cdots + 263652 \) Copy content Toggle raw display
$17$ \( (T - 17)^{4} \) Copy content Toggle raw display
$19$ \( T^{4} + 86 T^{3} + \cdots + 314448 \) Copy content Toggle raw display
$23$ \( T^{4} + 26 T^{3} + \cdots + 60511008 \) Copy content Toggle raw display
$29$ \( T^{4} - 216 T^{3} + \cdots + 1348560 \) Copy content Toggle raw display
$31$ \( T^{4} - 20 T^{3} + \cdots + 186656896 \) Copy content Toggle raw display
$37$ \( T^{4} - 532 T^{3} + \cdots + 18739968 \) Copy content Toggle raw display
$41$ \( T^{4} + \cdots - 13225619916 \) Copy content Toggle raw display
$43$ \( T^{4} - 22 T^{3} + \cdots - 325658864 \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots - 2767428096 \) Copy content Toggle raw display
$53$ \( T^{4} - 1164 T^{3} + \cdots + 144333360 \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots + 52918788416 \) Copy content Toggle raw display
$61$ \( T^{4} + \cdots - 21310161088 \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 19413025536 \) Copy content Toggle raw display
$71$ \( T^{4} + \cdots - 158658138624 \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots - 4086194960 \) Copy content Toggle raw display
$79$ \( T^{4} + \cdots - 63606204800 \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots - 28091792704 \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots - 604526726592 \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots - 52003306944 \) Copy content Toggle raw display
show more
show less