Properties

Label 408.4.a.h
Level 408408
Weight 44
Character orbit 408.a
Self dual yes
Analytic conductor 24.07324.073
Analytic rank 00
Dimension 44
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [408,4,Mod(1,408)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(408, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("408.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 408=23317 408 = 2^{3} \cdot 3 \cdot 17
Weight: k k == 4 4
Character orbit: [χ][\chi] == 408.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 24.072779282324.0727792823
Analytic rank: 00
Dimension: 44
Coefficient field: Q[x]/(x4)\mathbb{Q}[x]/(x^{4} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4x375x2+136x+578 x^{4} - x^{3} - 75x^{2} + 136x + 578 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 24 2^{4}
Twist minimal: yes
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q3q3+(β1+2)q5+(β3β21)q7+9q9+(β2β19)q11+(β3+β23β1+3)q13+(3β16)q15++(9β29β181)q99+O(q100) q - 3 q^{3} + ( - \beta_1 + 2) q^{5} + ( - \beta_{3} - \beta_{2} - 1) q^{7} + 9 q^{9} + ( - \beta_{2} - \beta_1 - 9) q^{11} + ( - \beta_{3} + \beta_{2} - 3 \beta_1 + 3) q^{13} + (3 \beta_1 - 6) q^{15}+ \cdots + ( - 9 \beta_{2} - 9 \beta_1 - 81) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q12q3+10q54q7+36q934q11+18q1330q15+68q1786q19+12q2126q23+206q25108q27+216q29+20q31+102q33+164q35+306q99+O(q100) 4 q - 12 q^{3} + 10 q^{5} - 4 q^{7} + 36 q^{9} - 34 q^{11} + 18 q^{13} - 30 q^{15} + 68 q^{17} - 86 q^{19} + 12 q^{21} - 26 q^{23} + 206 q^{25} - 108 q^{27} + 216 q^{29} + 20 q^{31} + 102 q^{33} + 164 q^{35}+ \cdots - 306 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x4x375x2+136x+578 x^{4} - x^{3} - 75x^{2} + 136x + 578 : Copy content Toggle raw display

β1\beta_{1}== (7ν310ν2+406ν68)/51 ( -7\nu^{3} - 10\nu^{2} + 406\nu - 68 ) / 51 Copy content Toggle raw display
β2\beta_{2}== (2ν3+32ν2+88ν1139)/51 ( 2\nu^{3} + 32\nu^{2} + 88\nu - 1139 ) / 51 Copy content Toggle raw display
β3\beta_{3}== (2ν332ν2+116ν+1088)/51 ( -2\nu^{3} - 32\nu^{2} + 116\nu + 1088 ) / 51 Copy content Toggle raw display
ν\nu== (β3+β2+1)/4 ( \beta_{3} + \beta_{2} + 1 ) / 4 Copy content Toggle raw display
ν2\nu^{2}== (7β3+2β1+152)/4 ( -7\beta_{3} + 2\beta _1 + 152 ) / 4 Copy content Toggle raw display
ν3\nu^{3}== (34β3+29β216β199)/2 ( 34\beta_{3} + 29\beta_{2} - 16\beta _1 - 99 ) / 2 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
4.45853
−8.62405
7.24141
−2.07588
0 −3.00000 0 −16.0976 0 −17.8341 0 9.00000 0
1.2 0 −3.00000 0 −1.46562 0 34.4962 0 9.00000 0
1.3 0 −3.00000 0 8.08710 0 −28.9656 0 9.00000 0
1.4 0 −3.00000 0 19.4761 0 8.30352 0 9.00000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 1 -1
33 +1 +1
1717 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 408.4.a.h 4
3.b odd 2 1 1224.4.a.k 4
4.b odd 2 1 816.4.a.x 4
12.b even 2 1 2448.4.a.bp 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
408.4.a.h 4 1.a even 1 1 trivial
816.4.a.x 4 4.b odd 2 1
1224.4.a.k 4 3.b odd 2 1
2448.4.a.bp 4 12.b even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T5410T53303T52+2116T5+3716 T_{5}^{4} - 10T_{5}^{3} - 303T_{5}^{2} + 2116T_{5} + 3716 acting on S4new(Γ0(408))S_{4}^{\mathrm{new}}(\Gamma_0(408)). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4 T^{4} Copy content Toggle raw display
33 (T+3)4 (T + 3)^{4} Copy content Toggle raw display
55 T410T3++3716 T^{4} - 10 T^{3} + \cdots + 3716 Copy content Toggle raw display
77 T4+4T3++147968 T^{4} + 4 T^{3} + \cdots + 147968 Copy content Toggle raw display
1111 T4+34T3++120336 T^{4} + 34 T^{3} + \cdots + 120336 Copy content Toggle raw display
1313 T418T3++263652 T^{4} - 18 T^{3} + \cdots + 263652 Copy content Toggle raw display
1717 (T17)4 (T - 17)^{4} Copy content Toggle raw display
1919 T4+86T3++314448 T^{4} + 86 T^{3} + \cdots + 314448 Copy content Toggle raw display
2323 T4+26T3++60511008 T^{4} + 26 T^{3} + \cdots + 60511008 Copy content Toggle raw display
2929 T4216T3++1348560 T^{4} - 216 T^{3} + \cdots + 1348560 Copy content Toggle raw display
3131 T420T3++186656896 T^{4} - 20 T^{3} + \cdots + 186656896 Copy content Toggle raw display
3737 T4532T3++18739968 T^{4} - 532 T^{3} + \cdots + 18739968 Copy content Toggle raw display
4141 T4+13225619916 T^{4} + \cdots - 13225619916 Copy content Toggle raw display
4343 T422T3+325658864 T^{4} - 22 T^{3} + \cdots - 325658864 Copy content Toggle raw display
4747 T4+2767428096 T^{4} + \cdots - 2767428096 Copy content Toggle raw display
5353 T41164T3++144333360 T^{4} - 1164 T^{3} + \cdots + 144333360 Copy content Toggle raw display
5959 T4++52918788416 T^{4} + \cdots + 52918788416 Copy content Toggle raw display
6161 T4+21310161088 T^{4} + \cdots - 21310161088 Copy content Toggle raw display
6767 T4++19413025536 T^{4} + \cdots + 19413025536 Copy content Toggle raw display
7171 T4+158658138624 T^{4} + \cdots - 158658138624 Copy content Toggle raw display
7373 T4+4086194960 T^{4} + \cdots - 4086194960 Copy content Toggle raw display
7979 T4+63606204800 T^{4} + \cdots - 63606204800 Copy content Toggle raw display
8383 T4+28091792704 T^{4} + \cdots - 28091792704 Copy content Toggle raw display
8989 T4+604526726592 T^{4} + \cdots - 604526726592 Copy content Toggle raw display
9797 T4+52003306944 T^{4} + \cdots - 52003306944 Copy content Toggle raw display
show more
show less