Properties

Label 4080.2.h.o
Level $4080$
Weight $2$
Character orbit 4080.h
Analytic conductor $32.579$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4080,2,Mod(3841,4080)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4080, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4080.3841");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4080 = 2^{4} \cdot 3 \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4080.h (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(32.5789640247\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{8})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 510)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{3} - \beta_1 q^{5} + (\beta_{2} + 2 \beta_1) q^{7} - q^{9} + 2 \beta_{2} q^{11} + ( - \beta_{3} + 2) q^{13} - q^{15} + (\beta_{2} + 3) q^{17} + (\beta_{3} + 2) q^{21} - 6 \beta_1 q^{23}+ \cdots - 2 \beta_{2} q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{9} + 8 q^{13} - 4 q^{15} + 12 q^{17} + 8 q^{21} - 4 q^{25} + 8 q^{35} + 16 q^{43} - 20 q^{49} - 24 q^{53} - 32 q^{59} - 24 q^{69} - 64 q^{77} + 4 q^{81} + 8 q^{87} - 24 q^{89} + 8 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring

\(\beta_{1}\)\(=\) \( \zeta_{8}^{2} \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( 2\zeta_{8}^{3} + 2\zeta_{8} \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( -2\zeta_{8}^{3} + 2\zeta_{8} \) Copy content Toggle raw display
\(\zeta_{8}\)\(=\) \( ( \beta_{3} + \beta_{2} ) / 4 \) Copy content Toggle raw display
\(\zeta_{8}^{2}\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\zeta_{8}^{3}\)\(=\) \( ( -\beta_{3} + \beta_{2} ) / 4 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4080\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(511\) \(817\) \(1361\) \(3061\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
3841.1
−0.707107 0.707107i
0.707107 + 0.707107i
0.707107 0.707107i
−0.707107 + 0.707107i
0 1.00000i 0 1.00000i 0 0.828427i 0 −1.00000 0
3841.2 0 1.00000i 0 1.00000i 0 4.82843i 0 −1.00000 0
3841.3 0 1.00000i 0 1.00000i 0 4.82843i 0 −1.00000 0
3841.4 0 1.00000i 0 1.00000i 0 0.828427i 0 −1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
17.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4080.2.h.o 4
4.b odd 2 1 510.2.c.d 4
12.b even 2 1 1530.2.c.f 4
17.b even 2 1 inner 4080.2.h.o 4
20.d odd 2 1 2550.2.c.l 4
20.e even 4 1 2550.2.f.o 4
20.e even 4 1 2550.2.f.t 4
68.d odd 2 1 510.2.c.d 4
68.f odd 4 1 8670.2.a.bd 2
68.f odd 4 1 8670.2.a.bf 2
204.h even 2 1 1530.2.c.f 4
340.d odd 2 1 2550.2.c.l 4
340.r even 4 1 2550.2.f.o 4
340.r even 4 1 2550.2.f.t 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
510.2.c.d 4 4.b odd 2 1
510.2.c.d 4 68.d odd 2 1
1530.2.c.f 4 12.b even 2 1
1530.2.c.f 4 204.h even 2 1
2550.2.c.l 4 20.d odd 2 1
2550.2.c.l 4 340.d odd 2 1
2550.2.f.o 4 20.e even 4 1
2550.2.f.o 4 340.r even 4 1
2550.2.f.t 4 20.e even 4 1
2550.2.f.t 4 340.r even 4 1
4080.2.h.o 4 1.a even 1 1 trivial
4080.2.h.o 4 17.b even 2 1 inner
8670.2.a.bd 2 68.f odd 4 1
8670.2.a.bf 2 68.f odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(4080, [\chi])\):

\( T_{7}^{4} + 24T_{7}^{2} + 16 \) Copy content Toggle raw display
\( T_{11}^{2} + 32 \) Copy content Toggle raw display
\( T_{13}^{2} - 4T_{13} - 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$5$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$7$ \( T^{4} + 24T^{2} + 16 \) Copy content Toggle raw display
$11$ \( (T^{2} + 32)^{2} \) Copy content Toggle raw display
$13$ \( (T^{2} - 4 T - 4)^{2} \) Copy content Toggle raw display
$17$ \( (T^{2} - 6 T + 17)^{2} \) Copy content Toggle raw display
$19$ \( T^{4} \) Copy content Toggle raw display
$23$ \( (T^{2} + 36)^{2} \) Copy content Toggle raw display
$29$ \( T^{4} + 72T^{2} + 784 \) Copy content Toggle raw display
$31$ \( T^{4} + 72T^{2} + 784 \) Copy content Toggle raw display
$37$ \( (T^{2} + 4)^{2} \) Copy content Toggle raw display
$41$ \( (T^{2} + 8)^{2} \) Copy content Toggle raw display
$43$ \( (T^{2} - 8 T - 56)^{2} \) Copy content Toggle raw display
$47$ \( (T^{2} - 32)^{2} \) Copy content Toggle raw display
$53$ \( (T^{2} + 12 T + 4)^{2} \) Copy content Toggle raw display
$59$ \( (T^{2} + 16 T + 56)^{2} \) Copy content Toggle raw display
$61$ \( (T^{2} + 36)^{2} \) Copy content Toggle raw display
$67$ \( (T^{2} - 72)^{2} \) Copy content Toggle raw display
$71$ \( T^{4} + 24T^{2} + 16 \) Copy content Toggle raw display
$73$ \( T^{4} + 144T^{2} + 3136 \) Copy content Toggle raw display
$79$ \( (T^{2} + 196)^{2} \) Copy content Toggle raw display
$83$ \( (T^{2} - 288)^{2} \) Copy content Toggle raw display
$89$ \( (T^{2} + 12 T + 4)^{2} \) Copy content Toggle raw display
$97$ \( T^{4} + 176T^{2} + 3136 \) Copy content Toggle raw display
show more
show less