Properties

Label 4080.2.h.o
Level 40804080
Weight 22
Character orbit 4080.h
Analytic conductor 32.57932.579
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4080,2,Mod(3841,4080)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4080, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4080.3841");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 4080=243517 4080 = 2^{4} \cdot 3 \cdot 5 \cdot 17
Weight: k k == 2 2
Character orbit: [χ][\chi] == 4080.h (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 32.578964024732.5789640247
Analytic rank: 00
Dimension: 44
Coefficient field: Q(ζ8)\Q(\zeta_{8})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4+1 x^{4} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 23 2^{3}
Twist minimal: no (minimal twist has level 510)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qβ1q3β1q5+(β2+2β1)q7q9+2β2q11+(β3+2)q13q15+(β2+3)q17+(β3+2)q216β1q23+2β2q99+O(q100) q - \beta_1 q^{3} - \beta_1 q^{5} + (\beta_{2} + 2 \beta_1) q^{7} - q^{9} + 2 \beta_{2} q^{11} + ( - \beta_{3} + 2) q^{13} - q^{15} + (\beta_{2} + 3) q^{17} + (\beta_{3} + 2) q^{21} - 6 \beta_1 q^{23}+ \cdots - 2 \beta_{2} q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q4q9+8q134q15+12q17+8q214q25+8q35+16q4320q4924q5332q5924q6964q77+4q81+8q8724q89+8q93+O(q100) 4 q - 4 q^{9} + 8 q^{13} - 4 q^{15} + 12 q^{17} + 8 q^{21} - 4 q^{25} + 8 q^{35} + 16 q^{43} - 20 q^{49} - 24 q^{53} - 32 q^{59} - 24 q^{69} - 64 q^{77} + 4 q^{81} + 8 q^{87} - 24 q^{89} + 8 q^{93}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring

β1\beta_{1}== ζ82 \zeta_{8}^{2} Copy content Toggle raw display
β2\beta_{2}== 2ζ83+2ζ8 2\zeta_{8}^{3} + 2\zeta_{8} Copy content Toggle raw display
β3\beta_{3}== 2ζ83+2ζ8 -2\zeta_{8}^{3} + 2\zeta_{8} Copy content Toggle raw display
ζ8\zeta_{8}== (β3+β2)/4 ( \beta_{3} + \beta_{2} ) / 4 Copy content Toggle raw display
ζ82\zeta_{8}^{2}== β1 \beta_1 Copy content Toggle raw display
ζ83\zeta_{8}^{3}== (β3+β2)/4 ( -\beta_{3} + \beta_{2} ) / 4 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/4080Z)×\left(\mathbb{Z}/4080\mathbb{Z}\right)^\times.

nn 241241 511511 817817 13611361 30613061
χ(n)\chi(n) 1-1 11 11 11 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
3841.1
−0.707107 0.707107i
0.707107 + 0.707107i
0.707107 0.707107i
−0.707107 + 0.707107i
0 1.00000i 0 1.00000i 0 0.828427i 0 −1.00000 0
3841.2 0 1.00000i 0 1.00000i 0 4.82843i 0 −1.00000 0
3841.3 0 1.00000i 0 1.00000i 0 4.82843i 0 −1.00000 0
3841.4 0 1.00000i 0 1.00000i 0 0.828427i 0 −1.00000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
17.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4080.2.h.o 4
4.b odd 2 1 510.2.c.d 4
12.b even 2 1 1530.2.c.f 4
17.b even 2 1 inner 4080.2.h.o 4
20.d odd 2 1 2550.2.c.l 4
20.e even 4 1 2550.2.f.o 4
20.e even 4 1 2550.2.f.t 4
68.d odd 2 1 510.2.c.d 4
68.f odd 4 1 8670.2.a.bd 2
68.f odd 4 1 8670.2.a.bf 2
204.h even 2 1 1530.2.c.f 4
340.d odd 2 1 2550.2.c.l 4
340.r even 4 1 2550.2.f.o 4
340.r even 4 1 2550.2.f.t 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
510.2.c.d 4 4.b odd 2 1
510.2.c.d 4 68.d odd 2 1
1530.2.c.f 4 12.b even 2 1
1530.2.c.f 4 204.h even 2 1
2550.2.c.l 4 20.d odd 2 1
2550.2.c.l 4 340.d odd 2 1
2550.2.f.o 4 20.e even 4 1
2550.2.f.o 4 340.r even 4 1
2550.2.f.t 4 20.e even 4 1
2550.2.f.t 4 340.r even 4 1
4080.2.h.o 4 1.a even 1 1 trivial
4080.2.h.o 4 17.b even 2 1 inner
8670.2.a.bd 2 68.f odd 4 1
8670.2.a.bf 2 68.f odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(4080,[χ])S_{2}^{\mathrm{new}}(4080, [\chi]):

T74+24T72+16 T_{7}^{4} + 24T_{7}^{2} + 16 Copy content Toggle raw display
T112+32 T_{11}^{2} + 32 Copy content Toggle raw display
T1324T134 T_{13}^{2} - 4T_{13} - 4 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4 T^{4} Copy content Toggle raw display
33 (T2+1)2 (T^{2} + 1)^{2} Copy content Toggle raw display
55 (T2+1)2 (T^{2} + 1)^{2} Copy content Toggle raw display
77 T4+24T2+16 T^{4} + 24T^{2} + 16 Copy content Toggle raw display
1111 (T2+32)2 (T^{2} + 32)^{2} Copy content Toggle raw display
1313 (T24T4)2 (T^{2} - 4 T - 4)^{2} Copy content Toggle raw display
1717 (T26T+17)2 (T^{2} - 6 T + 17)^{2} Copy content Toggle raw display
1919 T4 T^{4} Copy content Toggle raw display
2323 (T2+36)2 (T^{2} + 36)^{2} Copy content Toggle raw display
2929 T4+72T2+784 T^{4} + 72T^{2} + 784 Copy content Toggle raw display
3131 T4+72T2+784 T^{4} + 72T^{2} + 784 Copy content Toggle raw display
3737 (T2+4)2 (T^{2} + 4)^{2} Copy content Toggle raw display
4141 (T2+8)2 (T^{2} + 8)^{2} Copy content Toggle raw display
4343 (T28T56)2 (T^{2} - 8 T - 56)^{2} Copy content Toggle raw display
4747 (T232)2 (T^{2} - 32)^{2} Copy content Toggle raw display
5353 (T2+12T+4)2 (T^{2} + 12 T + 4)^{2} Copy content Toggle raw display
5959 (T2+16T+56)2 (T^{2} + 16 T + 56)^{2} Copy content Toggle raw display
6161 (T2+36)2 (T^{2} + 36)^{2} Copy content Toggle raw display
6767 (T272)2 (T^{2} - 72)^{2} Copy content Toggle raw display
7171 T4+24T2+16 T^{4} + 24T^{2} + 16 Copy content Toggle raw display
7373 T4+144T2+3136 T^{4} + 144T^{2} + 3136 Copy content Toggle raw display
7979 (T2+196)2 (T^{2} + 196)^{2} Copy content Toggle raw display
8383 (T2288)2 (T^{2} - 288)^{2} Copy content Toggle raw display
8989 (T2+12T+4)2 (T^{2} + 12 T + 4)^{2} Copy content Toggle raw display
9797 T4+176T2+3136 T^{4} + 176T^{2} + 3136 Copy content Toggle raw display
show more
show less