Properties

Label 416.2.ba.c.17.1
Level $416$
Weight $2$
Character 416.17
Analytic conductor $3.322$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [416,2,Mod(17,416)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(416, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 3, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("416.17");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 416 = 2^{5} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 416.ba (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.32177672409\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: 16.0.8607891481591137382656.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 3 x^{15} + 5 x^{14} - 6 x^{13} + 6 x^{12} - 20 x^{10} + 48 x^{9} - 76 x^{8} + 96 x^{7} + \cdots + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 2^{8} \)
Twist minimal: no (minimal twist has level 104)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 17.1
Root \(-0.608487 + 1.27661i\) of defining polynomial
Character \(\chi\) \(=\) 416.17
Dual form 416.2.ba.c.49.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.28316 - 1.31818i) q^{3} -3.40672 q^{5} +(-1.30715 + 0.754684i) q^{7} +(1.97521 + 3.42116i) q^{9} +(1.69608 - 2.93770i) q^{11} +(2.16266 + 2.88494i) q^{13} +(7.77808 + 4.49068i) q^{15} +(-1.32767 - 2.29959i) q^{17} +(3.32953 + 5.76692i) q^{19} +3.97924 q^{21} +(0.307150 - 0.532000i) q^{23} +6.60576 q^{25} -2.50563i q^{27} +(2.50678 + 1.44729i) q^{29} -0.813985i q^{31} +(-7.74485 + 4.47149i) q^{33} +(4.45310 - 2.57100i) q^{35} +(2.53339 - 4.38796i) q^{37} +(-1.13482 - 9.43756i) q^{39} +(6.98302 + 4.03165i) q^{41} +(-7.93701 + 4.58243i) q^{43} +(-6.72898 - 11.6549i) q^{45} +5.88587i q^{47} +(-2.36091 + 4.08921i) q^{49} +7.00045i q^{51} +0.627889i q^{53} +(-5.77808 + 10.0079i) q^{55} -17.5557i q^{57} +(1.23678 + 2.14217i) q^{59} +(-5.75913 + 3.32504i) q^{61} +(-5.16378 - 2.98131i) q^{63} +(-7.36759 - 9.82820i) q^{65} +(0.664263 - 1.15054i) q^{67} +(-1.40255 + 0.809760i) q^{69} +(5.38030 - 3.10632i) q^{71} +10.2297i q^{73} +(-15.0820 - 8.70759i) q^{75} +5.12002i q^{77} +1.65534 q^{79} +(2.62274 - 4.54272i) q^{81} +7.81437 q^{83} +(4.52301 + 7.83408i) q^{85} +(-3.81559 - 6.60880i) q^{87} +(-1.12386 - 0.648863i) q^{89} +(-5.00414 - 2.13893i) q^{91} +(-1.07298 + 1.85846i) q^{93} +(-11.3428 - 19.6463i) q^{95} +(-12.5894 + 7.26849i) q^{97} +13.4005 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 18 q^{7} + 2 q^{9} + 36 q^{15} + 8 q^{17} + 2 q^{23} - 12 q^{25} - 30 q^{33} + 14 q^{39} + 24 q^{41} - 14 q^{49} - 4 q^{55} + 6 q^{65} - 6 q^{71} - 32 q^{79} + 12 q^{81} - 34 q^{87} - 30 q^{89} - 28 q^{95}+ \cdots - 30 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/416\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(287\) \(353\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.28316 1.31818i −1.31818 0.761053i −0.334746 0.942308i \(-0.608650\pi\)
−0.983436 + 0.181256i \(0.941984\pi\)
\(4\) 0 0
\(5\) −3.40672 −1.52353 −0.761766 0.647852i \(-0.775668\pi\)
−0.761766 + 0.647852i \(0.775668\pi\)
\(6\) 0 0
\(7\) −1.30715 + 0.754684i −0.494056 + 0.285244i −0.726256 0.687425i \(-0.758741\pi\)
0.232199 + 0.972668i \(0.425408\pi\)
\(8\) 0 0
\(9\) 1.97521 + 3.42116i 0.658402 + 1.14039i
\(10\) 0 0
\(11\) 1.69608 2.93770i 0.511388 0.885751i −0.488525 0.872550i \(-0.662465\pi\)
0.999913 0.0132004i \(-0.00420193\pi\)
\(12\) 0 0
\(13\) 2.16266 + 2.88494i 0.599815 + 0.800139i
\(14\) 0 0
\(15\) 7.77808 + 4.49068i 2.00829 + 1.15949i
\(16\) 0 0
\(17\) −1.32767 2.29959i −0.322008 0.557734i 0.658894 0.752235i \(-0.271024\pi\)
−0.980902 + 0.194502i \(0.937691\pi\)
\(18\) 0 0
\(19\) 3.32953 + 5.76692i 0.763847 + 1.32302i 0.940854 + 0.338813i \(0.110025\pi\)
−0.177006 + 0.984210i \(0.556641\pi\)
\(20\) 0 0
\(21\) 3.97924 0.868342
\(22\) 0 0
\(23\) 0.307150 0.532000i 0.0640453 0.110930i −0.832225 0.554438i \(-0.812933\pi\)
0.896270 + 0.443509i \(0.146266\pi\)
\(24\) 0 0
\(25\) 6.60576 1.32115
\(26\) 0 0
\(27\) 2.50563i 0.482209i
\(28\) 0 0
\(29\) 2.50678 + 1.44729i 0.465498 + 0.268756i 0.714353 0.699785i \(-0.246721\pi\)
−0.248855 + 0.968541i \(0.580054\pi\)
\(30\) 0 0
\(31\) 0.813985i 0.146196i −0.997325 0.0730980i \(-0.976711\pi\)
0.997325 0.0730980i \(-0.0232886\pi\)
\(32\) 0 0
\(33\) −7.74485 + 4.47149i −1.34821 + 0.778387i
\(34\) 0 0
\(35\) 4.45310 2.57100i 0.752711 0.434578i
\(36\) 0 0
\(37\) 2.53339 4.38796i 0.416486 0.721376i −0.579097 0.815259i \(-0.696595\pi\)
0.995583 + 0.0938831i \(0.0299280\pi\)
\(38\) 0 0
\(39\) −1.13482 9.43756i −0.181717 1.51122i
\(40\) 0 0
\(41\) 6.98302 + 4.03165i 1.09056 + 0.629637i 0.933726 0.357987i \(-0.116537\pi\)
0.156837 + 0.987624i \(0.449870\pi\)
\(42\) 0 0
\(43\) −7.93701 + 4.58243i −1.21038 + 0.698815i −0.962843 0.270063i \(-0.912955\pi\)
−0.247540 + 0.968878i \(0.579622\pi\)
\(44\) 0 0
\(45\) −6.72898 11.6549i −1.00310 1.73741i
\(46\) 0 0
\(47\) 5.88587i 0.858543i 0.903176 + 0.429271i \(0.141230\pi\)
−0.903176 + 0.429271i \(0.858770\pi\)
\(48\) 0 0
\(49\) −2.36091 + 4.08921i −0.337272 + 0.584173i
\(50\) 0 0
\(51\) 7.00045i 0.980259i
\(52\) 0 0
\(53\) 0.627889i 0.0862472i 0.999070 + 0.0431236i \(0.0137309\pi\)
−0.999070 + 0.0431236i \(0.986269\pi\)
\(54\) 0 0
\(55\) −5.77808 + 10.0079i −0.779117 + 1.34947i
\(56\) 0 0
\(57\) 17.5557i 2.32531i
\(58\) 0 0
\(59\) 1.23678 + 2.14217i 0.161015 + 0.278887i 0.935233 0.354033i \(-0.115190\pi\)
−0.774218 + 0.632919i \(0.781857\pi\)
\(60\) 0 0
\(61\) −5.75913 + 3.32504i −0.737381 + 0.425727i −0.821116 0.570761i \(-0.806648\pi\)
0.0837352 + 0.996488i \(0.473315\pi\)
\(62\) 0 0
\(63\) −5.16378 2.98131i −0.650575 0.375610i
\(64\) 0 0
\(65\) −7.36759 9.82820i −0.913837 1.21904i
\(66\) 0 0
\(67\) 0.664263 1.15054i 0.0811526 0.140560i −0.822593 0.568631i \(-0.807473\pi\)
0.903745 + 0.428071i \(0.140807\pi\)
\(68\) 0 0
\(69\) −1.40255 + 0.809760i −0.168847 + 0.0974837i
\(70\) 0 0
\(71\) 5.38030 3.10632i 0.638524 0.368652i −0.145521 0.989355i \(-0.546486\pi\)
0.784046 + 0.620703i \(0.213153\pi\)
\(72\) 0 0
\(73\) 10.2297i 1.19729i 0.801014 + 0.598646i \(0.204294\pi\)
−0.801014 + 0.598646i \(0.795706\pi\)
\(74\) 0 0
\(75\) −15.0820 8.70759i −1.74152 1.00547i
\(76\) 0 0
\(77\) 5.12002i 0.583481i
\(78\) 0 0
\(79\) 1.65534 0.186241 0.0931203 0.995655i \(-0.470316\pi\)
0.0931203 + 0.995655i \(0.470316\pi\)
\(80\) 0 0
\(81\) 2.62274 4.54272i 0.291416 0.504747i
\(82\) 0 0
\(83\) 7.81437 0.857738 0.428869 0.903367i \(-0.358912\pi\)
0.428869 + 0.903367i \(0.358912\pi\)
\(84\) 0 0
\(85\) 4.52301 + 7.83408i 0.490589 + 0.849725i
\(86\) 0 0
\(87\) −3.81559 6.60880i −0.409074 0.708537i
\(88\) 0 0
\(89\) −1.12386 0.648863i −0.119129 0.0687794i 0.439251 0.898364i \(-0.355244\pi\)
−0.558381 + 0.829585i \(0.688577\pi\)
\(90\) 0 0
\(91\) −5.00414 2.13893i −0.524577 0.224220i
\(92\) 0 0
\(93\) −1.07298 + 1.85846i −0.111263 + 0.192713i
\(94\) 0 0
\(95\) −11.3428 19.6463i −1.16375 2.01567i
\(96\) 0 0
\(97\) −12.5894 + 7.26849i −1.27826 + 0.738004i −0.976528 0.215389i \(-0.930898\pi\)
−0.301732 + 0.953393i \(0.597565\pi\)
\(98\) 0 0
\(99\) 13.4005 1.34680
\(100\) 0 0
\(101\) −9.31772 5.37959i −0.927148 0.535289i −0.0412395 0.999149i \(-0.513131\pi\)
−0.885908 + 0.463860i \(0.846464\pi\)
\(102\) 0 0
\(103\) 3.40986 0.335984 0.167992 0.985788i \(-0.446272\pi\)
0.167992 + 0.985788i \(0.446272\pi\)
\(104\) 0 0
\(105\) −13.5562 −1.32295
\(106\) 0 0
\(107\) 0.792036 + 0.457282i 0.0765690 + 0.0442071i 0.537796 0.843075i \(-0.319257\pi\)
−0.461227 + 0.887282i \(0.652591\pi\)
\(108\) 0 0
\(109\) 20.3289 1.94716 0.973578 0.228355i \(-0.0733348\pi\)
0.973578 + 0.228355i \(0.0733348\pi\)
\(110\) 0 0
\(111\) −11.5682 + 6.67893i −1.09801 + 0.633936i
\(112\) 0 0
\(113\) −1.71337 2.96765i −0.161180 0.279173i 0.774112 0.633049i \(-0.218197\pi\)
−0.935292 + 0.353876i \(0.884863\pi\)
\(114\) 0 0
\(115\) −1.04638 + 1.81238i −0.0975751 + 0.169005i
\(116\) 0 0
\(117\) −5.59814 + 13.0972i −0.517548 + 1.21083i
\(118\) 0 0
\(119\) 3.47093 + 2.00394i 0.318180 + 0.183701i
\(120\) 0 0
\(121\) −0.253396 0.438894i −0.0230360 0.0398995i
\(122\) 0 0
\(123\) −10.6289 18.4098i −0.958374 1.65995i
\(124\) 0 0
\(125\) −5.47036 −0.489284
\(126\) 0 0
\(127\) 2.69954 4.67573i 0.239545 0.414904i −0.721039 0.692895i \(-0.756335\pi\)
0.960584 + 0.277991i \(0.0896684\pi\)
\(128\) 0 0
\(129\) 24.1619 2.12734
\(130\) 0 0
\(131\) 13.5230i 1.18151i 0.806850 + 0.590756i \(0.201171\pi\)
−0.806850 + 0.590756i \(0.798829\pi\)
\(132\) 0 0
\(133\) −8.70440 5.02549i −0.754767 0.435765i
\(134\) 0 0
\(135\) 8.53599i 0.734661i
\(136\) 0 0
\(137\) 7.11430 4.10744i 0.607816 0.350923i −0.164294 0.986411i \(-0.552535\pi\)
0.772110 + 0.635489i \(0.219201\pi\)
\(138\) 0 0
\(139\) 16.9128 9.76458i 1.43452 0.828221i 0.437060 0.899432i \(-0.356020\pi\)
0.997461 + 0.0712113i \(0.0226865\pi\)
\(140\) 0 0
\(141\) 7.75865 13.4384i 0.653396 1.13172i
\(142\) 0 0
\(143\) 12.1432 1.46016i 1.01546 0.122104i
\(144\) 0 0
\(145\) −8.53992 4.93052i −0.709202 0.409458i
\(146\) 0 0
\(147\) 10.7806 6.22420i 0.889172 0.513364i
\(148\) 0 0
\(149\) 6.48603 + 11.2341i 0.531356 + 0.920335i 0.999330 + 0.0365934i \(0.0116506\pi\)
−0.467974 + 0.883742i \(0.655016\pi\)
\(150\) 0 0
\(151\) 16.2580i 1.32306i 0.749920 + 0.661528i \(0.230092\pi\)
−0.749920 + 0.661528i \(0.769908\pi\)
\(152\) 0 0
\(153\) 5.24485 9.08435i 0.424021 0.734426i
\(154\) 0 0
\(155\) 2.77302i 0.222734i
\(156\) 0 0
\(157\) 8.87819i 0.708557i 0.935140 + 0.354278i \(0.115273\pi\)
−0.935140 + 0.354278i \(0.884727\pi\)
\(158\) 0 0
\(159\) 0.827672 1.43357i 0.0656386 0.113689i
\(160\) 0 0
\(161\) 0.927206i 0.0730740i
\(162\) 0 0
\(163\) 2.04217 + 3.53714i 0.159955 + 0.277050i 0.934852 0.355037i \(-0.115532\pi\)
−0.774897 + 0.632087i \(0.782198\pi\)
\(164\) 0 0
\(165\) 26.3846 15.2331i 2.05403 1.18590i
\(166\) 0 0
\(167\) −15.0204 8.67204i −1.16231 0.671063i −0.210457 0.977603i \(-0.567495\pi\)
−0.951858 + 0.306540i \(0.900829\pi\)
\(168\) 0 0
\(169\) −3.64578 + 12.4783i −0.280445 + 0.959870i
\(170\) 0 0
\(171\) −13.1530 + 22.7817i −1.00584 + 1.74216i
\(172\) 0 0
\(173\) −12.2964 + 7.09933i −0.934878 + 0.539752i −0.888351 0.459165i \(-0.848149\pi\)
−0.0465270 + 0.998917i \(0.514815\pi\)
\(174\) 0 0
\(175\) −8.63472 + 4.98526i −0.652723 + 0.376850i
\(176\) 0 0
\(177\) 6.52121i 0.490164i
\(178\) 0 0
\(179\) −4.23741 2.44647i −0.316719 0.182858i 0.333210 0.942853i \(-0.391868\pi\)
−0.649929 + 0.759995i \(0.725201\pi\)
\(180\) 0 0
\(181\) 21.2024i 1.57596i −0.615702 0.787979i \(-0.711127\pi\)
0.615702 0.787979i \(-0.288873\pi\)
\(182\) 0 0
\(183\) 17.5320 1.29600
\(184\) 0 0
\(185\) −8.63055 + 14.9486i −0.634531 + 1.09904i
\(186\) 0 0
\(187\) −9.00737 −0.658684
\(188\) 0 0
\(189\) 1.89096 + 3.27524i 0.137547 + 0.238238i
\(190\) 0 0
\(191\) −0.733892 1.27114i −0.0531026 0.0919763i 0.838252 0.545283i \(-0.183578\pi\)
−0.891355 + 0.453306i \(0.850244\pi\)
\(192\) 0 0
\(193\) 14.7436 + 8.51223i 1.06127 + 0.612724i 0.925783 0.378055i \(-0.123407\pi\)
0.135486 + 0.990779i \(0.456740\pi\)
\(194\) 0 0
\(195\) 3.86602 + 32.1511i 0.276852 + 2.30239i
\(196\) 0 0
\(197\) −8.23055 + 14.2557i −0.586402 + 1.01568i 0.408297 + 0.912849i \(0.366123\pi\)
−0.994699 + 0.102829i \(0.967211\pi\)
\(198\) 0 0
\(199\) 9.15170 + 15.8512i 0.648747 + 1.12366i 0.983422 + 0.181329i \(0.0580399\pi\)
−0.334676 + 0.942333i \(0.608627\pi\)
\(200\) 0 0
\(201\) −3.03323 + 1.75124i −0.213948 + 0.123523i
\(202\) 0 0
\(203\) −4.36899 −0.306643
\(204\) 0 0
\(205\) −23.7892 13.7347i −1.66151 0.959273i
\(206\) 0 0
\(207\) 2.42674 0.168670
\(208\) 0 0
\(209\) 22.5887 1.56249
\(210\) 0 0
\(211\) −3.82356 2.20753i −0.263225 0.151973i 0.362580 0.931953i \(-0.381896\pi\)
−0.625805 + 0.779980i \(0.715229\pi\)
\(212\) 0 0
\(213\) −16.3788 −1.12226
\(214\) 0 0
\(215\) 27.0392 15.6111i 1.84406 1.06467i
\(216\) 0 0
\(217\) 0.614301 + 1.06400i 0.0417015 + 0.0722291i
\(218\) 0 0
\(219\) 13.4846 23.3559i 0.911202 1.57825i
\(220\) 0 0
\(221\) 3.76289 8.80350i 0.253119 0.592188i
\(222\) 0 0
\(223\) 4.37362 + 2.52511i 0.292879 + 0.169094i 0.639240 0.769008i \(-0.279249\pi\)
−0.346360 + 0.938102i \(0.612583\pi\)
\(224\) 0 0
\(225\) 13.0477 + 22.5993i 0.869849 + 1.50662i
\(226\) 0 0
\(227\) −7.30877 12.6592i −0.485100 0.840219i 0.514753 0.857339i \(-0.327884\pi\)
−0.999853 + 0.0171199i \(0.994550\pi\)
\(228\) 0 0
\(229\) 12.1681 0.804089 0.402045 0.915620i \(-0.368300\pi\)
0.402045 + 0.915620i \(0.368300\pi\)
\(230\) 0 0
\(231\) 6.74912 11.6898i 0.444060 0.769134i
\(232\) 0 0
\(233\) −11.4232 −0.748361 −0.374180 0.927356i \(-0.622076\pi\)
−0.374180 + 0.927356i \(0.622076\pi\)
\(234\) 0 0
\(235\) 20.0515i 1.30802i
\(236\) 0 0
\(237\) −3.77941 2.18204i −0.245499 0.141739i
\(238\) 0 0
\(239\) 24.6424i 1.59398i 0.603990 + 0.796992i \(0.293577\pi\)
−0.603990 + 0.796992i \(0.706423\pi\)
\(240\) 0 0
\(241\) −0.154956 + 0.0894640i −0.00998161 + 0.00576288i −0.504982 0.863130i \(-0.668501\pi\)
0.495001 + 0.868892i \(0.335168\pi\)
\(242\) 0 0
\(243\) −18.4861 + 10.6729i −1.18588 + 0.684670i
\(244\) 0 0
\(245\) 8.04295 13.9308i 0.513845 0.890006i
\(246\) 0 0
\(247\) −9.43658 + 22.0774i −0.600435 + 1.40475i
\(248\) 0 0
\(249\) −17.8414 10.3008i −1.13065 0.652784i
\(250\) 0 0
\(251\) −17.4835 + 10.0941i −1.10355 + 0.637134i −0.937151 0.348925i \(-0.886547\pi\)
−0.166397 + 0.986059i \(0.553213\pi\)
\(252\) 0 0
\(253\) −1.04191 1.80463i −0.0655040 0.113456i
\(254\) 0 0
\(255\) 23.8486i 1.49346i
\(256\) 0 0
\(257\) −0.0990699 + 0.171594i −0.00617981 + 0.0107037i −0.869099 0.494639i \(-0.835300\pi\)
0.862919 + 0.505342i \(0.168634\pi\)
\(258\) 0 0
\(259\) 7.64763i 0.475200i
\(260\) 0 0
\(261\) 11.4348i 0.707797i
\(262\) 0 0
\(263\) −3.69285 + 6.39620i −0.227711 + 0.394407i −0.957129 0.289661i \(-0.906457\pi\)
0.729418 + 0.684068i \(0.239791\pi\)
\(264\) 0 0
\(265\) 2.13904i 0.131400i
\(266\) 0 0
\(267\) 1.71064 + 2.96291i 0.104689 + 0.181327i
\(268\) 0 0
\(269\) 16.0265 9.25292i 0.977155 0.564161i 0.0757448 0.997127i \(-0.475867\pi\)
0.901410 + 0.432967i \(0.142533\pi\)
\(270\) 0 0
\(271\) 8.18255 + 4.72420i 0.497055 + 0.286975i 0.727496 0.686112i \(-0.240684\pi\)
−0.230442 + 0.973086i \(0.574017\pi\)
\(272\) 0 0
\(273\) 8.60576 + 11.4799i 0.520844 + 0.694794i
\(274\) 0 0
\(275\) 11.2039 19.4057i 0.675621 1.17021i
\(276\) 0 0
\(277\) −8.64403 + 4.99063i −0.519370 + 0.299858i −0.736677 0.676245i \(-0.763606\pi\)
0.217307 + 0.976103i \(0.430273\pi\)
\(278\) 0 0
\(279\) 2.78477 1.60779i 0.166720 0.0962557i
\(280\) 0 0
\(281\) 11.1204i 0.663387i −0.943387 0.331694i \(-0.892380\pi\)
0.943387 0.331694i \(-0.107620\pi\)
\(282\) 0 0
\(283\) −1.16222 0.671005i −0.0690865 0.0398871i 0.465059 0.885280i \(-0.346033\pi\)
−0.534145 + 0.845393i \(0.679367\pi\)
\(284\) 0 0
\(285\) 59.8075i 3.54269i
\(286\) 0 0
\(287\) −12.1705 −0.718400
\(288\) 0 0
\(289\) 4.97458 8.61622i 0.292622 0.506836i
\(290\) 0 0
\(291\) 38.3248 2.24664
\(292\) 0 0
\(293\) −4.18139 7.24239i −0.244280 0.423105i 0.717649 0.696405i \(-0.245218\pi\)
−0.961929 + 0.273300i \(0.911885\pi\)
\(294\) 0 0
\(295\) −4.21337 7.29777i −0.245312 0.424893i
\(296\) 0 0
\(297\) −7.36080 4.24976i −0.427117 0.246596i
\(298\) 0 0
\(299\) 2.19905 0.264426i 0.127174 0.0152921i
\(300\) 0 0
\(301\) 6.91658 11.9799i 0.398665 0.690508i
\(302\) 0 0
\(303\) 14.1826 + 24.5649i 0.814766 + 1.41122i
\(304\) 0 0
\(305\) 19.6198 11.3275i 1.12342 0.648609i
\(306\) 0 0
\(307\) 19.5458 1.11554 0.557770 0.829996i \(-0.311657\pi\)
0.557770 + 0.829996i \(0.311657\pi\)
\(308\) 0 0
\(309\) −7.78525 4.49482i −0.442888 0.255701i
\(310\) 0 0
\(311\) −24.9794 −1.41645 −0.708226 0.705986i \(-0.750504\pi\)
−0.708226 + 0.705986i \(0.750504\pi\)
\(312\) 0 0
\(313\) 4.98312 0.281663 0.140831 0.990034i \(-0.455022\pi\)
0.140831 + 0.990034i \(0.455022\pi\)
\(314\) 0 0
\(315\) 17.5916 + 10.1565i 0.991173 + 0.572254i
\(316\) 0 0
\(317\) 22.2072 1.24728 0.623639 0.781712i \(-0.285653\pi\)
0.623639 + 0.781712i \(0.285653\pi\)
\(318\) 0 0
\(319\) 8.50343 4.90946i 0.476101 0.274877i
\(320\) 0 0
\(321\) −1.20556 2.08809i −0.0672879 0.116546i
\(322\) 0 0
\(323\) 8.84106 15.3132i 0.491930 0.852047i
\(324\) 0 0
\(325\) 14.2860 + 19.0572i 0.792446 + 1.05710i
\(326\) 0 0
\(327\) −46.4141 26.7972i −2.56671 1.48189i
\(328\) 0 0
\(329\) −4.44197 7.69372i −0.244894 0.424169i
\(330\) 0 0
\(331\) −6.63759 11.4967i −0.364835 0.631913i 0.623914 0.781493i \(-0.285541\pi\)
−0.988750 + 0.149579i \(0.952208\pi\)
\(332\) 0 0
\(333\) 20.0159 1.09686
\(334\) 0 0
\(335\) −2.26296 + 3.91956i −0.123639 + 0.214148i
\(336\) 0 0
\(337\) −16.5718 −0.902723 −0.451361 0.892341i \(-0.649061\pi\)
−0.451361 + 0.892341i \(0.649061\pi\)
\(338\) 0 0
\(339\) 9.03414i 0.490667i
\(340\) 0 0
\(341\) −2.39124 1.38059i −0.129493 0.0747629i
\(342\) 0 0
\(343\) 17.6925i 0.955306i
\(344\) 0 0
\(345\) 4.77808 2.75863i 0.257243 0.148520i
\(346\) 0 0
\(347\) −8.74418 + 5.04846i −0.469412 + 0.271015i −0.715994 0.698107i \(-0.754026\pi\)
0.246581 + 0.969122i \(0.420693\pi\)
\(348\) 0 0
\(349\) −12.5147 + 21.6761i −0.669897 + 1.16030i 0.308035 + 0.951375i \(0.400328\pi\)
−0.977933 + 0.208921i \(0.933005\pi\)
\(350\) 0 0
\(351\) 7.22860 5.41884i 0.385834 0.289236i
\(352\) 0 0
\(353\) −3.34290 1.93003i −0.177925 0.102725i 0.408393 0.912806i \(-0.366089\pi\)
−0.586317 + 0.810082i \(0.699423\pi\)
\(354\) 0 0
\(355\) −18.3292 + 10.5824i −0.972813 + 0.561654i
\(356\) 0 0
\(357\) −5.28313 9.15064i −0.279613 0.484303i
\(358\) 0 0
\(359\) 14.0532i 0.741702i −0.928692 0.370851i \(-0.879066\pi\)
0.928692 0.370851i \(-0.120934\pi\)
\(360\) 0 0
\(361\) −12.6716 + 21.9478i −0.666926 + 1.15515i
\(362\) 0 0
\(363\) 1.33609i 0.0701264i
\(364\) 0 0
\(365\) 34.8496i 1.82411i
\(366\) 0 0
\(367\) 10.2165 17.6955i 0.533298 0.923699i −0.465946 0.884813i \(-0.654286\pi\)
0.999244 0.0388859i \(-0.0123809\pi\)
\(368\) 0 0
\(369\) 31.8533i 1.65822i
\(370\) 0 0
\(371\) −0.473858 0.820745i −0.0246015 0.0426110i
\(372\) 0 0
\(373\) −9.53854 + 5.50708i −0.493887 + 0.285146i −0.726186 0.687499i \(-0.758709\pi\)
0.232299 + 0.972645i \(0.425375\pi\)
\(374\) 0 0
\(375\) 12.4897 + 7.21093i 0.644965 + 0.372371i
\(376\) 0 0
\(377\) 1.24597 + 10.3619i 0.0641709 + 0.533667i
\(378\) 0 0
\(379\) −3.97232 + 6.88027i −0.204045 + 0.353416i −0.949828 0.312773i \(-0.898742\pi\)
0.745783 + 0.666189i \(0.232075\pi\)
\(380\) 0 0
\(381\) −12.3269 + 7.11696i −0.631528 + 0.364613i
\(382\) 0 0
\(383\) −6.51992 + 3.76428i −0.333152 + 0.192346i −0.657240 0.753681i \(-0.728276\pi\)
0.324087 + 0.946027i \(0.394943\pi\)
\(384\) 0 0
\(385\) 17.4425i 0.888952i
\(386\) 0 0
\(387\) −31.3545 18.1025i −1.59384 0.920202i
\(388\) 0 0
\(389\) 0.770469i 0.0390643i 0.999809 + 0.0195322i \(0.00621768\pi\)
−0.999809 + 0.0195322i \(0.993782\pi\)
\(390\) 0 0
\(391\) −1.63118 −0.0824923
\(392\) 0 0
\(393\) 17.8258 30.8752i 0.899193 1.55745i
\(394\) 0 0
\(395\) −5.63930 −0.283744
\(396\) 0 0
\(397\) −6.90453 11.9590i −0.346528 0.600205i 0.639102 0.769122i \(-0.279306\pi\)
−0.985630 + 0.168917i \(0.945973\pi\)
\(398\) 0 0
\(399\) 13.2490 + 22.9480i 0.663280 + 1.14884i
\(400\) 0 0
\(401\) −31.1377 17.9773i −1.55494 0.897745i −0.997728 0.0673752i \(-0.978538\pi\)
−0.557213 0.830370i \(-0.688129\pi\)
\(402\) 0 0
\(403\) 2.34830 1.76037i 0.116977 0.0876905i
\(404\) 0 0
\(405\) −8.93495 + 15.4758i −0.443981 + 0.768998i
\(406\) 0 0
\(407\) −8.59367 14.8847i −0.425973 0.737806i
\(408\) 0 0
\(409\) −3.98302 + 2.29959i −0.196947 + 0.113708i −0.595231 0.803555i \(-0.702939\pi\)
0.398283 + 0.917262i \(0.369606\pi\)
\(410\) 0 0
\(411\) −21.6574 −1.06828
\(412\) 0 0
\(413\) −3.23332 1.86676i −0.159101 0.0918571i
\(414\) 0 0
\(415\) −26.6214 −1.30679
\(416\) 0 0
\(417\) −51.4860 −2.52128
\(418\) 0 0
\(419\) −33.6915 19.4518i −1.64594 0.950284i −0.978663 0.205474i \(-0.934126\pi\)
−0.667277 0.744810i \(-0.732540\pi\)
\(420\) 0 0
\(421\) −25.5891 −1.24714 −0.623568 0.781769i \(-0.714317\pi\)
−0.623568 + 0.781769i \(0.714317\pi\)
\(422\) 0 0
\(423\) −20.1365 + 11.6258i −0.979070 + 0.565266i
\(424\) 0 0
\(425\) −8.77027 15.1906i −0.425421 0.736850i
\(426\) 0 0
\(427\) 5.01870 8.69264i 0.242872 0.420666i
\(428\) 0 0
\(429\) −29.6495 12.6731i −1.43149 0.611864i
\(430\) 0 0
\(431\) 14.9148 + 8.61104i 0.718419 + 0.414779i 0.814170 0.580626i \(-0.197192\pi\)
−0.0957515 + 0.995405i \(0.530525\pi\)
\(432\) 0 0
\(433\) −9.17891 15.8983i −0.441110 0.764025i 0.556662 0.830739i \(-0.312082\pi\)
−0.997772 + 0.0667139i \(0.978749\pi\)
\(434\) 0 0
\(435\) 12.9987 + 22.5143i 0.623238 + 1.07948i
\(436\) 0 0
\(437\) 4.09067 0.195683
\(438\) 0 0
\(439\) −17.6824 + 30.6269i −0.843937 + 1.46174i 0.0426041 + 0.999092i \(0.486435\pi\)
−0.886541 + 0.462650i \(0.846899\pi\)
\(440\) 0 0
\(441\) −18.6531 −0.888243
\(442\) 0 0
\(443\) 21.5119i 1.02206i 0.859563 + 0.511030i \(0.170736\pi\)
−0.859563 + 0.511030i \(0.829264\pi\)
\(444\) 0 0
\(445\) 3.82869 + 2.21050i 0.181497 + 0.104788i
\(446\) 0 0
\(447\) 34.1990i 1.61756i
\(448\) 0 0
\(449\) 19.2769 11.1295i 0.909731 0.525233i 0.0293864 0.999568i \(-0.490645\pi\)
0.880345 + 0.474335i \(0.157311\pi\)
\(450\) 0 0
\(451\) 23.6875 13.6760i 1.11540 0.643978i
\(452\) 0 0
\(453\) 21.4310 37.1196i 1.00692 1.74403i
\(454\) 0 0
\(455\) 17.0477 + 7.28673i 0.799210 + 0.341607i
\(456\) 0 0
\(457\) 15.2508 + 8.80505i 0.713402 + 0.411883i 0.812320 0.583213i \(-0.198205\pi\)
−0.0989172 + 0.995096i \(0.531538\pi\)
\(458\) 0 0
\(459\) −5.76194 + 3.32666i −0.268944 + 0.155275i
\(460\) 0 0
\(461\) −13.2686 22.9818i −0.617979 1.07037i −0.989854 0.142088i \(-0.954618\pi\)
0.371875 0.928283i \(-0.378715\pi\)
\(462\) 0 0
\(463\) 24.6645i 1.14626i −0.819466 0.573128i \(-0.805730\pi\)
0.819466 0.573128i \(-0.194270\pi\)
\(464\) 0 0
\(465\) 3.65534 6.33124i 0.169512 0.293604i
\(466\) 0 0
\(467\) 16.4718i 0.762226i 0.924528 + 0.381113i \(0.124459\pi\)
−0.924528 + 0.381113i \(0.875541\pi\)
\(468\) 0 0
\(469\) 2.00523i 0.0925931i
\(470\) 0 0
\(471\) 11.7031 20.2703i 0.539249 0.934007i
\(472\) 0 0
\(473\) 31.0888i 1.42946i
\(474\) 0 0
\(475\) 21.9941 + 38.0949i 1.00916 + 1.74791i
\(476\) 0 0
\(477\) −2.14811 + 1.24021i −0.0983551 + 0.0567853i
\(478\) 0 0
\(479\) 28.7794 + 16.6158i 1.31496 + 0.759194i 0.982914 0.184068i \(-0.0589265\pi\)
0.332050 + 0.943262i \(0.392260\pi\)
\(480\) 0 0
\(481\) 18.1379 2.18099i 0.827015 0.0994447i
\(482\) 0 0
\(483\) 1.22223 2.11696i 0.0556132 0.0963249i
\(484\) 0 0
\(485\) 42.8886 24.7617i 1.94747 1.12437i
\(486\) 0 0
\(487\) 10.7320 6.19614i 0.486315 0.280774i −0.236730 0.971576i \(-0.576076\pi\)
0.723044 + 0.690802i \(0.242742\pi\)
\(488\) 0 0
\(489\) 10.7678i 0.486936i
\(490\) 0 0
\(491\) 9.13776 + 5.27569i 0.412381 + 0.238089i 0.691812 0.722077i \(-0.256813\pi\)
−0.279431 + 0.960166i \(0.590146\pi\)
\(492\) 0 0
\(493\) 7.68612i 0.346165i
\(494\) 0 0
\(495\) −45.6516 −2.05189
\(496\) 0 0
\(497\) −4.68858 + 8.12085i −0.210311 + 0.364270i
\(498\) 0 0
\(499\) −31.2661 −1.39966 −0.699830 0.714309i \(-0.746741\pi\)
−0.699830 + 0.714309i \(0.746741\pi\)
\(500\) 0 0
\(501\) 22.8627 + 39.5993i 1.02143 + 1.76917i
\(502\) 0 0
\(503\) −2.06167 3.57092i −0.0919253 0.159219i 0.816396 0.577493i \(-0.195969\pi\)
−0.908321 + 0.418273i \(0.862635\pi\)
\(504\) 0 0
\(505\) 31.7429 + 18.3268i 1.41254 + 0.815530i
\(506\) 0 0
\(507\) 24.7726 23.6842i 1.10019 1.05185i
\(508\) 0 0
\(509\) −11.0588 + 19.1544i −0.490172 + 0.849002i −0.999936 0.0113120i \(-0.996399\pi\)
0.509764 + 0.860314i \(0.329733\pi\)
\(510\) 0 0
\(511\) −7.72016 13.3717i −0.341520 0.591530i
\(512\) 0 0
\(513\) 14.4498 8.34259i 0.637973 0.368334i
\(514\) 0 0
\(515\) −11.6165 −0.511882
\(516\) 0 0
\(517\) 17.2909 + 9.98293i 0.760455 + 0.439049i
\(518\) 0 0
\(519\) 37.4328 1.64312
\(520\) 0 0
\(521\) 36.7823 1.61146 0.805731 0.592281i \(-0.201773\pi\)
0.805731 + 0.592281i \(0.201773\pi\)
\(522\) 0 0
\(523\) 25.6362 + 14.8011i 1.12099 + 0.647205i 0.941654 0.336582i \(-0.109271\pi\)
0.179338 + 0.983788i \(0.442604\pi\)
\(524\) 0 0
\(525\) 26.2859 1.14721
\(526\) 0 0
\(527\) −1.87183 + 1.08070i −0.0815384 + 0.0470762i
\(528\) 0 0
\(529\) 11.3113 + 19.5918i 0.491796 + 0.851816i
\(530\) 0 0
\(531\) −4.88580 + 8.46245i −0.212026 + 0.367239i
\(532\) 0 0
\(533\) 3.47084 + 28.8647i 0.150339 + 1.25027i
\(534\) 0 0
\(535\) −2.69825 1.55783i −0.116655 0.0673510i
\(536\) 0 0
\(537\) 6.44978 + 11.1713i 0.278329 + 0.482079i
\(538\) 0 0
\(539\) 8.00858 + 13.8713i 0.344954 + 0.597478i
\(540\) 0 0
\(541\) 22.5906 0.971245 0.485623 0.874169i \(-0.338593\pi\)
0.485623 + 0.874169i \(0.338593\pi\)
\(542\) 0 0
\(543\) −27.9486 + 48.4083i −1.19939 + 2.07740i
\(544\) 0 0
\(545\) −69.2549 −2.96655
\(546\) 0 0
\(547\) 22.1421i 0.946729i 0.880867 + 0.473365i \(0.156961\pi\)
−0.880867 + 0.473365i \(0.843039\pi\)
\(548\) 0 0
\(549\) −22.7509 13.1353i −0.970986 0.560599i
\(550\) 0 0
\(551\) 19.2752i 0.821153i
\(552\) 0 0
\(553\) −2.16378 + 1.24926i −0.0920134 + 0.0531240i
\(554\) 0 0
\(555\) 39.4098 22.7533i 1.67285 0.965822i
\(556\) 0 0
\(557\) −8.54145 + 14.7942i −0.361913 + 0.626851i −0.988276 0.152680i \(-0.951209\pi\)
0.626363 + 0.779532i \(0.284543\pi\)
\(558\) 0 0
\(559\) −30.3851 12.9876i −1.28515 0.549315i
\(560\) 0 0
\(561\) 20.5652 + 11.8733i 0.868265 + 0.501293i
\(562\) 0 0
\(563\) 33.4112 19.2900i 1.40811 0.812975i 0.412907 0.910773i \(-0.364513\pi\)
0.995206 + 0.0977986i \(0.0311801\pi\)
\(564\) 0 0
\(565\) 5.83698 + 10.1099i 0.245564 + 0.425328i
\(566\) 0 0
\(567\) 7.91736i 0.332498i
\(568\) 0 0
\(569\) −10.4819 + 18.1552i −0.439424 + 0.761104i −0.997645 0.0685878i \(-0.978151\pi\)
0.558221 + 0.829692i \(0.311484\pi\)
\(570\) 0 0
\(571\) 35.3147i 1.47787i −0.673774 0.738937i \(-0.735328\pi\)
0.673774 0.738937i \(-0.264672\pi\)
\(572\) 0 0
\(573\) 3.86961i 0.161655i
\(574\) 0 0
\(575\) 2.02896 3.51426i 0.0846135 0.146555i
\(576\) 0 0
\(577\) 40.8549i 1.70081i −0.526128 0.850405i \(-0.676357\pi\)
0.526128 0.850405i \(-0.323643\pi\)
\(578\) 0 0
\(579\) −22.4413 38.8695i −0.932630 1.61536i
\(580\) 0 0
\(581\) −10.2146 + 5.89737i −0.423771 + 0.244664i
\(582\) 0 0
\(583\) 1.84455 + 1.06495i 0.0763935 + 0.0441058i
\(584\) 0 0
\(585\) 19.0713 44.6184i 0.788501 1.84474i
\(586\) 0 0
\(587\) −5.89364 + 10.2081i −0.243256 + 0.421332i −0.961640 0.274315i \(-0.911549\pi\)
0.718384 + 0.695647i \(0.244882\pi\)
\(588\) 0 0
\(589\) 4.69419 2.71019i 0.193421 0.111671i
\(590\) 0 0
\(591\) 37.5833 21.6987i 1.54597 0.892566i
\(592\) 0 0
\(593\) 37.3071i 1.53202i 0.642830 + 0.766009i \(0.277760\pi\)
−0.642830 + 0.766009i \(0.722240\pi\)
\(594\) 0 0
\(595\) −11.8245 6.82688i −0.484757 0.279875i
\(596\) 0 0
\(597\) 48.2544i 1.97492i
\(598\) 0 0
\(599\) 20.3759 0.832536 0.416268 0.909242i \(-0.363338\pi\)
0.416268 + 0.909242i \(0.363338\pi\)
\(600\) 0 0
\(601\) −4.80175 + 8.31688i −0.195868 + 0.339253i −0.947185 0.320689i \(-0.896086\pi\)
0.751317 + 0.659942i \(0.229419\pi\)
\(602\) 0 0
\(603\) 5.24822 0.213724
\(604\) 0 0
\(605\) 0.863249 + 1.49519i 0.0350961 + 0.0607882i
\(606\) 0 0
\(607\) 13.4951 + 23.3742i 0.547749 + 0.948729i 0.998428 + 0.0560433i \(0.0178485\pi\)
−0.450679 + 0.892686i \(0.648818\pi\)
\(608\) 0 0
\(609\) 9.97510 + 5.75913i 0.404211 + 0.233372i
\(610\) 0 0
\(611\) −16.9804 + 12.7292i −0.686954 + 0.514967i
\(612\) 0 0
\(613\) 1.49345 2.58672i 0.0603197 0.104477i −0.834289 0.551328i \(-0.814121\pi\)
0.894608 + 0.446851i \(0.147455\pi\)
\(614\) 0 0
\(615\) 36.2097 + 62.7170i 1.46011 + 2.52899i
\(616\) 0 0
\(617\) 30.9399 17.8632i 1.24559 0.719144i 0.275366 0.961339i \(-0.411201\pi\)
0.970227 + 0.242196i \(0.0778676\pi\)
\(618\) 0 0
\(619\) 19.9292 0.801024 0.400512 0.916292i \(-0.368832\pi\)
0.400512 + 0.916292i \(0.368832\pi\)
\(620\) 0 0
\(621\) −1.33300 0.769606i −0.0534913 0.0308832i
\(622\) 0 0
\(623\) 1.95875 0.0784755
\(624\) 0 0
\(625\) −14.3928 −0.575711
\(626\) 0 0
\(627\) −51.5735 29.7760i −2.05965 1.18914i
\(628\) 0 0
\(629\) −13.4540 −0.536447
\(630\) 0 0
\(631\) 16.1192 9.30643i 0.641695 0.370483i −0.143572 0.989640i \(-0.545859\pi\)
0.785267 + 0.619157i \(0.212526\pi\)
\(632\) 0 0
\(633\) 5.81986 + 10.0803i 0.231319 + 0.400656i
\(634\) 0 0
\(635\) −9.19657 + 15.9289i −0.364955 + 0.632120i
\(636\) 0 0
\(637\) −16.9030 + 2.03250i −0.669720 + 0.0805307i
\(638\) 0 0
\(639\) 21.2544 + 12.2712i 0.840812 + 0.485443i
\(640\) 0 0
\(641\) −0.401423 0.695285i −0.0158553 0.0274621i 0.857989 0.513668i \(-0.171714\pi\)
−0.873844 + 0.486206i \(0.838380\pi\)
\(642\) 0 0
\(643\) −10.5732 18.3133i −0.416965 0.722205i 0.578667 0.815564i \(-0.303573\pi\)
−0.995633 + 0.0933589i \(0.970240\pi\)
\(644\) 0 0
\(645\) −82.3130 −3.24107
\(646\) 0 0
\(647\) 19.5120 33.7957i 0.767095 1.32865i −0.172037 0.985090i \(-0.555035\pi\)
0.939132 0.343557i \(-0.111632\pi\)
\(648\) 0 0
\(649\) 8.39074 0.329365
\(650\) 0 0
\(651\) 3.23904i 0.126948i
\(652\) 0 0
\(653\) 41.6632 + 24.0543i 1.63041 + 0.941316i 0.983967 + 0.178351i \(0.0570762\pi\)
0.646440 + 0.762965i \(0.276257\pi\)
\(654\) 0 0
\(655\) 46.0692i 1.80007i
\(656\) 0 0
\(657\) −34.9973 + 20.2057i −1.36537 + 0.788299i
\(658\) 0 0
\(659\) −13.6735 + 7.89443i −0.532646 + 0.307523i −0.742093 0.670297i \(-0.766167\pi\)
0.209447 + 0.977820i \(0.432834\pi\)
\(660\) 0 0
\(661\) −0.142144 + 0.246200i −0.00552876 + 0.00957608i −0.868777 0.495204i \(-0.835093\pi\)
0.863248 + 0.504780i \(0.168427\pi\)
\(662\) 0 0
\(663\) −20.1959 + 15.1396i −0.784343 + 0.587974i
\(664\) 0 0
\(665\) 29.6535 + 17.1204i 1.14991 + 0.663902i
\(666\) 0 0
\(667\) 1.53992 0.889073i 0.0596259 0.0344251i
\(668\) 0 0
\(669\) −6.65711 11.5304i −0.257379 0.445793i
\(670\) 0 0
\(671\) 22.5581i 0.870848i
\(672\) 0 0
\(673\) 7.08159 12.2657i 0.272975 0.472807i −0.696647 0.717414i \(-0.745326\pi\)
0.969622 + 0.244607i \(0.0786589\pi\)
\(674\) 0 0
\(675\) 16.5516i 0.637071i
\(676\) 0 0
\(677\) 39.2276i 1.50764i 0.657081 + 0.753820i \(0.271791\pi\)
−0.657081 + 0.753820i \(0.728209\pi\)
\(678\) 0 0
\(679\) 10.9708 19.0020i 0.421022 0.729231i
\(680\) 0 0
\(681\) 38.5372i 1.47675i
\(682\) 0 0
\(683\) −3.76785 6.52610i −0.144173 0.249714i 0.784891 0.619633i \(-0.212719\pi\)
−0.929064 + 0.369919i \(0.879385\pi\)
\(684\) 0 0
\(685\) −24.2364 + 13.9929i −0.926027 + 0.534642i
\(686\) 0 0
\(687\) −27.7816 16.0397i −1.05994 0.611954i
\(688\) 0 0
\(689\) −1.81142 + 1.35791i −0.0690097 + 0.0517323i
\(690\) 0 0
\(691\) 1.92252 3.32990i 0.0731360 0.126675i −0.827138 0.561999i \(-0.810033\pi\)
0.900274 + 0.435323i \(0.143366\pi\)
\(692\) 0 0
\(693\) −17.5164 + 10.1131i −0.665393 + 0.384165i
\(694\) 0 0
\(695\) −57.6171 + 33.2652i −2.18554 + 1.26182i
\(696\) 0 0
\(697\) 21.4108i 0.810992i
\(698\) 0 0
\(699\) 26.0810 + 15.0579i 0.986476 + 0.569542i
\(700\) 0 0
\(701\) 34.5455i 1.30476i 0.757890 + 0.652382i \(0.226230\pi\)
−0.757890 + 0.652382i \(0.773770\pi\)
\(702\) 0 0
\(703\) 33.7400 1.27253
\(704\) 0 0
\(705\) −26.4316 + 45.7808i −0.995470 + 1.72421i
\(706\) 0 0
\(707\) 16.2396 0.610751
\(708\) 0 0
\(709\) −13.2970 23.0310i −0.499378 0.864948i 0.500622 0.865666i \(-0.333105\pi\)
−1.00000 0.000718230i \(0.999771\pi\)
\(710\) 0 0
\(711\) 3.26964 + 5.66319i 0.122621 + 0.212386i
\(712\) 0 0
\(713\) −0.433040 0.250016i −0.0162175 0.00936316i
\(714\) 0 0
\(715\) −41.3684 + 4.97435i −1.54709 + 0.186030i
\(716\) 0 0
\(717\) 32.4831 56.2625i 1.21311 2.10116i
\(718\) 0 0
\(719\) −19.6503 34.0354i −0.732834 1.26931i −0.955667 0.294449i \(-0.904864\pi\)
0.222833 0.974857i \(-0.428469\pi\)
\(720\) 0 0
\(721\) −4.45720 + 2.57337i −0.165995 + 0.0958372i
\(722\) 0 0
\(723\) 0.471719 0.0175434
\(724\) 0 0
\(725\) 16.5592 + 9.56046i 0.614994 + 0.355067i
\(726\) 0 0
\(727\) 28.1259 1.04313 0.521566 0.853211i \(-0.325348\pi\)
0.521566 + 0.853211i \(0.325348\pi\)
\(728\) 0 0
\(729\) 40.5391 1.50145
\(730\) 0 0
\(731\) 21.0755 + 12.1679i 0.779505 + 0.450047i
\(732\) 0 0
\(733\) 30.6364 1.13158 0.565791 0.824549i \(-0.308571\pi\)
0.565791 + 0.824549i \(0.308571\pi\)
\(734\) 0 0
\(735\) −36.7266 + 21.2041i −1.35468 + 0.782126i
\(736\) 0 0
\(737\) −2.25329 3.90281i −0.0830010 0.143762i
\(738\) 0 0
\(739\) −13.8293 + 23.9531i −0.508721 + 0.881130i 0.491228 + 0.871031i \(0.336548\pi\)
−0.999949 + 0.0100991i \(0.996785\pi\)
\(740\) 0 0
\(741\) 50.6472 37.9671i 1.86057 1.39476i
\(742\) 0 0
\(743\) 17.1394 + 9.89546i 0.628785 + 0.363029i 0.780281 0.625429i \(-0.215076\pi\)
−0.151496 + 0.988458i \(0.548409\pi\)
\(744\) 0 0
\(745\) −22.0961 38.2715i −0.809538 1.40216i
\(746\) 0 0
\(747\) 15.4350 + 26.7342i 0.564736 + 0.978152i
\(748\) 0 0
\(749\) −1.38041 −0.0504392
\(750\) 0 0
\(751\) −9.60222 + 16.6315i −0.350390 + 0.606893i −0.986318 0.164855i \(-0.947284\pi\)
0.635928 + 0.771749i \(0.280618\pi\)
\(752\) 0 0
\(753\) 53.2234 1.93957
\(754\) 0 0
\(755\) 55.3865i 2.01572i
\(756\) 0 0
\(757\) 8.30082 + 4.79248i 0.301698 + 0.174186i 0.643206 0.765694i \(-0.277604\pi\)
−0.341507 + 0.939879i \(0.610937\pi\)
\(758\) 0 0
\(759\) 5.49368i 0.199408i
\(760\) 0 0
\(761\) −3.55022 + 2.04972i −0.128695 + 0.0743023i −0.562966 0.826480i \(-0.690340\pi\)
0.434270 + 0.900783i \(0.357006\pi\)
\(762\) 0 0
\(763\) −26.5729 + 15.3419i −0.962005 + 0.555414i
\(764\) 0 0
\(765\) −17.8677 + 30.9478i −0.646010 + 1.11892i
\(766\) 0 0
\(767\) −3.50529 + 8.20083i −0.126569 + 0.296115i
\(768\) 0 0
\(769\) 12.3725 + 7.14328i 0.446165 + 0.257593i 0.706209 0.708003i \(-0.250404\pi\)
−0.260044 + 0.965597i \(0.583737\pi\)
\(770\) 0 0
\(771\) 0.452385 0.261184i 0.0162922 0.00940632i
\(772\) 0 0
\(773\) −9.10369 15.7681i −0.327437 0.567138i 0.654565 0.756005i \(-0.272852\pi\)
−0.982003 + 0.188868i \(0.939518\pi\)
\(774\) 0 0
\(775\) 5.37698i 0.193147i
\(776\) 0 0
\(777\) 10.0810 17.4607i 0.361652 0.626400i
\(778\) 0 0
\(779\) 53.6940i 1.92379i
\(780\) 0 0
\(781\) 21.0743i 0.754098i
\(782\) 0 0
\(783\) 3.62638 6.28108i 0.129596 0.224467i
\(784\) 0 0
\(785\) 30.2455i 1.07951i
\(786\) 0 0
\(787\) 6.01748 + 10.4226i 0.214500 + 0.371525i 0.953118 0.302599i \(-0.0978544\pi\)
−0.738618 + 0.674125i \(0.764521\pi\)
\(788\) 0 0
\(789\) 16.8627 9.73569i 0.600329 0.346600i
\(790\) 0 0
\(791\) 4.47927 + 2.58611i 0.159264 + 0.0919513i
\(792\) 0 0
\(793\) −22.0476 9.42383i −0.782933 0.334650i
\(794\) 0 0
\(795\) −2.81965 + 4.88377i −0.100003 + 0.173210i
\(796\) 0 0
\(797\) −37.8735 + 21.8663i −1.34155 + 0.774544i −0.987035 0.160507i \(-0.948687\pi\)
−0.354514 + 0.935051i \(0.615354\pi\)
\(798\) 0 0
\(799\) 13.5351 7.81451i 0.478838 0.276457i
\(800\) 0 0
\(801\) 5.12655i 0.181138i
\(802\) 0 0
\(803\) 30.0517 + 17.3504i 1.06050 + 0.612281i
\(804\) 0 0
\(805\) 3.15873i 0.111331i
\(806\) 0 0
\(807\) −48.7881 −1.71742
\(808\) 0 0
\(809\) −6.93343 + 12.0090i −0.243766 + 0.422216i −0.961784 0.273809i \(-0.911716\pi\)
0.718018 + 0.696025i \(0.245050\pi\)
\(810\) 0 0
\(811\) 2.29509 0.0805916 0.0402958 0.999188i \(-0.487170\pi\)
0.0402958 + 0.999188i \(0.487170\pi\)
\(812\) 0 0
\(813\) −12.4547 21.5722i −0.436805 0.756569i
\(814\) 0 0
\(815\) −6.95710 12.0500i −0.243697 0.422095i
\(816\) 0 0
\(817\) −52.8531 30.5147i −1.84910 1.06758i
\(818\) 0 0
\(819\) −2.56661 21.3448i −0.0896846 0.745847i
\(820\) 0 0
\(821\) 2.46599 4.27121i 0.0860635 0.149066i −0.819780 0.572678i \(-0.805905\pi\)
0.905844 + 0.423612i \(0.139238\pi\)
\(822\) 0 0
\(823\) −20.3378 35.2261i −0.708931 1.22790i −0.965254 0.261313i \(-0.915845\pi\)
0.256323 0.966591i \(-0.417489\pi\)
\(824\) 0 0
\(825\) −51.1606 + 29.5376i −1.78118 + 1.02837i
\(826\) 0 0
\(827\) 21.5663 0.749933 0.374967 0.927038i \(-0.377654\pi\)
0.374967 + 0.927038i \(0.377654\pi\)
\(828\) 0 0
\(829\) −26.5594 15.3341i −0.922445 0.532574i −0.0380310 0.999277i \(-0.512109\pi\)
−0.884414 + 0.466702i \(0.845442\pi\)
\(830\) 0 0
\(831\) 26.3143 0.912831
\(832\) 0 0
\(833\) 12.5380 0.434417
\(834\) 0 0
\(835\) 51.1704 + 29.5432i 1.77082 + 1.02239i
\(836\) 0 0
\(837\) −2.03955 −0.0704970
\(838\) 0 0
\(839\) −26.4685 + 15.2816i −0.913793 + 0.527579i −0.881650 0.471905i \(-0.843567\pi\)
−0.0321435 + 0.999483i \(0.510233\pi\)
\(840\) 0 0
\(841\) −10.3107 17.8586i −0.355541 0.615815i
\(842\) 0 0
\(843\) −14.6587 + 25.3896i −0.504873 + 0.874465i
\(844\) 0 0
\(845\) 12.4202 42.5101i 0.427267 1.46239i
\(846\) 0 0
\(847\) 0.662453 + 0.382467i 0.0227621 + 0.0131417i
\(848\) 0 0
\(849\) 1.76901 + 3.06402i 0.0607124 + 0.105157i
\(850\) 0 0
\(851\) −1.55626 2.69553i −0.0533480 0.0924014i
\(852\) 0 0
\(853\) 36.3580 1.24487 0.622437 0.782670i \(-0.286143\pi\)
0.622437 + 0.782670i \(0.286143\pi\)
\(854\) 0 0
\(855\) 44.8087 77.6110i 1.53243 2.65424i
\(856\) 0 0
\(857\) −0.0833458 −0.00284704 −0.00142352 0.999999i \(-0.500453\pi\)
−0.00142352 + 0.999999i \(0.500453\pi\)
\(858\) 0 0
\(859\) 55.2828i 1.88622i −0.332476 0.943112i \(-0.607884\pi\)
0.332476 0.943112i \(-0.392116\pi\)
\(860\) 0 0
\(861\) 27.7871 + 16.0429i 0.946982 + 0.546740i
\(862\) 0 0
\(863\) 14.5282i 0.494546i −0.968946 0.247273i \(-0.920466\pi\)
0.968946 0.247273i \(-0.0795345\pi\)
\(864\) 0 0
\(865\) 41.8904 24.1854i 1.42432 0.822330i
\(866\) 0 0
\(867\) −22.7155 + 13.1148i −0.771458 + 0.445402i
\(868\) 0 0
\(869\) 2.80760 4.86291i 0.0952413 0.164963i
\(870\) 0 0
\(871\) 4.75581 0.571864i 0.161144 0.0193769i
\(872\) 0 0
\(873\) −49.7333 28.7135i −1.68322 0.971806i
\(874\) 0 0
\(875\) 7.15059 4.12839i 0.241734 0.139565i
\(876\) 0 0
\(877\) 23.5728 + 40.8294i 0.795998 + 1.37871i 0.922203 + 0.386705i \(0.126387\pi\)
−0.126205 + 0.992004i \(0.540280\pi\)
\(878\) 0 0
\(879\) 22.0474i 0.743639i
\(880\) 0 0
\(881\) 11.0991 19.2242i 0.373937 0.647678i −0.616230 0.787566i \(-0.711341\pi\)
0.990167 + 0.139888i \(0.0446742\pi\)
\(882\) 0 0
\(883\) 23.0291i 0.774991i −0.921872 0.387496i \(-0.873340\pi\)
0.921872 0.387496i \(-0.126660\pi\)
\(884\) 0 0
\(885\) 22.2160i 0.746781i
\(886\) 0 0
\(887\) −27.4780 + 47.5933i −0.922621 + 1.59803i −0.127278 + 0.991867i \(0.540624\pi\)
−0.795343 + 0.606160i \(0.792709\pi\)
\(888\) 0 0
\(889\) 8.14918i 0.273315i
\(890\) 0 0
\(891\) −8.89677 15.4097i −0.298053 0.516243i
\(892\) 0 0
\(893\) −33.9434 + 19.5972i −1.13587 + 0.655796i
\(894\) 0 0
\(895\) 14.4357 + 8.33444i 0.482531 + 0.278590i
\(896\) 0 0
\(897\) −5.36934 2.29503i −0.179277 0.0766287i
\(898\) 0 0
\(899\) 1.17807 2.04048i 0.0392910 0.0680540i
\(900\) 0 0
\(901\) 1.44389 0.833630i 0.0481030 0.0277723i
\(902\) 0 0
\(903\) −31.5833 + 18.2346i −1.05103 + 0.606810i
\(904\) 0 0
\(905\) 72.2305i 2.40102i
\(906\) 0 0
\(907\) 27.9245 + 16.1222i 0.927217 + 0.535329i 0.885930 0.463818i \(-0.153521\pi\)
0.0412866 + 0.999147i \(0.486854\pi\)
\(908\) 0 0
\(909\) 42.5032i 1.40974i
\(910\) 0 0
\(911\) 6.52220 0.216090 0.108045 0.994146i \(-0.465541\pi\)
0.108045 + 0.994146i \(0.465541\pi\)
\(912\) 0 0
\(913\) 13.2538 22.9563i 0.438637 0.759742i
\(914\) 0 0
\(915\) −59.7267 −1.97450
\(916\) 0 0
\(917\) −10.2056 17.6766i −0.337019 0.583734i
\(918\) 0 0
\(919\) −22.7062 39.3283i −0.749009 1.29732i −0.948298 0.317381i \(-0.897197\pi\)
0.199289 0.979941i \(-0.436137\pi\)
\(920\) 0 0
\(921\) −44.6262 25.7649i −1.47048 0.848984i
\(922\) 0 0
\(923\) 20.5973 + 8.80394i 0.677969 + 0.289785i
\(924\) 0 0
\(925\) 16.7349 28.9858i 0.550242 0.953046i
\(926\) 0 0
\(927\) 6.73518 + 11.6657i 0.221212 + 0.383151i
\(928\) 0 0
\(929\) −14.8259 + 8.55975i −0.486423 + 0.280836i −0.723089 0.690755i \(-0.757278\pi\)
0.236667 + 0.971591i \(0.423945\pi\)
\(930\) 0 0
\(931\) −31.4429 −1.03050
\(932\) 0 0
\(933\) 57.0319 + 32.9274i 1.86714 + 1.07799i
\(934\) 0 0
\(935\) 30.6856 1.00353
\(936\) 0 0
\(937\) −28.4076 −0.928036 −0.464018 0.885826i \(-0.653593\pi\)
−0.464018 + 0.885826i \(0.653593\pi\)
\(938\) 0 0
\(939\) −11.3773 6.56866i −0.371283 0.214360i
\(940\) 0 0
\(941\) −18.6692 −0.608599 −0.304299 0.952576i \(-0.598422\pi\)
−0.304299 + 0.952576i \(0.598422\pi\)
\(942\) 0 0
\(943\) 4.28967 2.47664i 0.139691 0.0806506i
\(944\) 0 0
\(945\) −6.44197 11.1578i −0.209557 0.362964i
\(946\) 0 0
\(947\) 7.05574 12.2209i 0.229281 0.397126i −0.728314 0.685243i \(-0.759696\pi\)
0.957595 + 0.288117i \(0.0930293\pi\)
\(948\) 0 0
\(949\) −29.5120 + 22.1233i −0.958000 + 0.718153i
\(950\) 0 0
\(951\) −50.7025 29.2731i −1.64414 0.949245i
\(952\) 0 0
\(953\) 9.69488 + 16.7920i 0.314048 + 0.543947i 0.979235 0.202730i \(-0.0649814\pi\)
−0.665187 + 0.746677i \(0.731648\pi\)
\(954\) 0 0
\(955\) 2.50017 + 4.33042i 0.0809035 + 0.140129i
\(956\) 0 0
\(957\) −25.8862 −0.836783
\(958\) 0 0
\(959\) −6.19964 + 10.7381i −0.200197 + 0.346751i
\(960\) 0 0
\(961\) 30.3374 0.978627
\(962\) 0 0
\(963\) 3.61291i 0.116424i
\(964\) 0 0
\(965\) −50.2274 28.9988i −1.61688 0.933505i
\(966\) 0 0
\(967\) 4.50833i 0.144978i 0.997369 + 0.0724891i \(0.0230943\pi\)
−0.997369 + 0.0724891i \(0.976906\pi\)
\(968\) 0 0
\(969\) −40.3710 + 23.3082i −1.29690 + 0.748768i
\(970\) 0 0
\(971\) 26.6115 15.3641i 0.854003 0.493059i −0.00799665 0.999968i \(-0.502545\pi\)
0.861999 + 0.506909i \(0.169212\pi\)
\(972\) 0 0
\(973\) −14.7383 + 25.5276i −0.472490 + 0.818376i
\(974\) 0 0
\(975\) −7.49636 62.3422i −0.240076 1.99655i
\(976\) 0 0
\(977\) −8.57480 4.95066i −0.274332 0.158386i 0.356523 0.934287i \(-0.383962\pi\)
−0.630855 + 0.775901i \(0.717296\pi\)
\(978\) 0 0
\(979\) −3.81233 + 2.20105i −0.121843 + 0.0703459i
\(980\) 0 0
\(981\) 40.1538 + 69.5484i 1.28201 + 2.22051i
\(982\) 0 0
\(983\) 9.87697i 0.315026i −0.987517 0.157513i \(-0.949652\pi\)
0.987517 0.157513i \(-0.0503477\pi\)
\(984\) 0 0
\(985\) 28.0392 48.5653i 0.893403 1.54742i
\(986\) 0 0
\(987\) 23.4213i 0.745508i
\(988\) 0 0
\(989\) 5.62999i 0.179023i
\(990\) 0 0
\(991\) −20.9826 + 36.3428i −0.666533 + 1.15447i 0.312335 + 0.949972i \(0.398889\pi\)
−0.978867 + 0.204496i \(0.934444\pi\)
\(992\) 0 0
\(993\) 34.9982i 1.11064i
\(994\) 0 0
\(995\) −31.1773 54.0007i −0.988387 1.71194i
\(996\) 0 0
\(997\) 28.3587 16.3729i 0.898128 0.518534i 0.0215355 0.999768i \(-0.493145\pi\)
0.876592 + 0.481234i \(0.159811\pi\)
\(998\) 0 0
\(999\) −10.9946 6.34774i −0.347854 0.200834i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 416.2.ba.c.17.1 16
4.3 odd 2 104.2.s.c.69.5 yes 16
8.3 odd 2 104.2.s.c.69.3 16
8.5 even 2 inner 416.2.ba.c.17.8 16
12.11 even 2 936.2.dg.d.901.4 16
13.10 even 6 inner 416.2.ba.c.49.8 16
24.11 even 2 936.2.dg.d.901.6 16
52.23 odd 6 104.2.s.c.101.3 yes 16
104.75 odd 6 104.2.s.c.101.5 yes 16
104.101 even 6 inner 416.2.ba.c.49.1 16
156.23 even 6 936.2.dg.d.829.6 16
312.179 even 6 936.2.dg.d.829.4 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
104.2.s.c.69.3 16 8.3 odd 2
104.2.s.c.69.5 yes 16 4.3 odd 2
104.2.s.c.101.3 yes 16 52.23 odd 6
104.2.s.c.101.5 yes 16 104.75 odd 6
416.2.ba.c.17.1 16 1.1 even 1 trivial
416.2.ba.c.17.8 16 8.5 even 2 inner
416.2.ba.c.49.1 16 104.101 even 6 inner
416.2.ba.c.49.8 16 13.10 even 6 inner
936.2.dg.d.829.4 16 312.179 even 6
936.2.dg.d.829.6 16 156.23 even 6
936.2.dg.d.901.4 16 12.11 even 2
936.2.dg.d.901.6 16 24.11 even 2