Properties

Label 416.2.i.d
Level 416416
Weight 22
Character orbit 416.i
Analytic conductor 3.3223.322
Analytic rank 00
Dimension 44
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [416,2,Mod(289,416)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(416, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("416.289");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 416=2513 416 = 2^{5} \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 416.i (of order 33, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 3.321776724093.32177672409
Analytic rank: 00
Dimension: 44
Relative dimension: 22 over Q(ζ3)\Q(\zeta_{3})
Coefficient field: Q(3,11)\Q(\sqrt{-3}, \sqrt{11})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4+11x2+121 x^{4} + 11x^{2} + 121 Copy content Toggle raw display
Coefficient ring: Z[a1,,a9]\Z[a_1, \ldots, a_{9}]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β1q3+(β3β1)q7+8β2q9+β1q11+(4β2+1)q133β2q17+(β3β1)q19+11q21β1q235q25++8β3q99+O(q100) q + \beta_1 q^{3} + ( - \beta_{3} - \beta_1) q^{7} + 8 \beta_{2} q^{9} + \beta_1 q^{11} + (4 \beta_{2} + 1) q^{13} - 3 \beta_{2} q^{17} + ( - \beta_{3} - \beta_1) q^{19} + 11 q^{21} - \beta_1 q^{23} - 5 q^{25}+ \cdots + 8 \beta_{3} q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q16q94q13+6q17+44q2120q25+10q2922q3318q37+6q418q4932q53+44q57+18q61+22q6916q73+44q7762q81+14q97+O(q100) 4 q - 16 q^{9} - 4 q^{13} + 6 q^{17} + 44 q^{21} - 20 q^{25} + 10 q^{29} - 22 q^{33} - 18 q^{37} + 6 q^{41} - 8 q^{49} - 32 q^{53} + 44 q^{57} + 18 q^{61} + 22 q^{69} - 16 q^{73} + 44 q^{77} - 62 q^{81}+ \cdots - 14 q^{97}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x4+11x2+121 x^{4} + 11x^{2} + 121 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (ν2)/11 ( \nu^{2} ) / 11 Copy content Toggle raw display
β3\beta_{3}== (ν3)/11 ( \nu^{3} ) / 11 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== 11β2 11\beta_{2} Copy content Toggle raw display
ν3\nu^{3}== 11β3 11\beta_{3} Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/416Z)×\left(\mathbb{Z}/416\mathbb{Z}\right)^\times.

nn 261261 287287 353353
χ(n)\chi(n) 11 11 β2\beta_{2}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
289.1
−1.65831 2.87228i
1.65831 + 2.87228i
−1.65831 + 2.87228i
1.65831 2.87228i
0 −1.65831 2.87228i 0 0 0 −1.65831 + 2.87228i 0 −4.00000 + 6.92820i 0
289.2 0 1.65831 + 2.87228i 0 0 0 1.65831 2.87228i 0 −4.00000 + 6.92820i 0
321.1 0 −1.65831 + 2.87228i 0 0 0 −1.65831 2.87228i 0 −4.00000 6.92820i 0
321.2 0 1.65831 2.87228i 0 0 0 1.65831 + 2.87228i 0 −4.00000 6.92820i 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner
13.c even 3 1 inner
52.j odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 416.2.i.d 4
4.b odd 2 1 inner 416.2.i.d 4
8.b even 2 1 832.2.i.n 4
8.d odd 2 1 832.2.i.n 4
13.c even 3 1 inner 416.2.i.d 4
13.c even 3 1 5408.2.a.x 2
13.e even 6 1 5408.2.a.w 2
52.i odd 6 1 5408.2.a.w 2
52.j odd 6 1 inner 416.2.i.d 4
52.j odd 6 1 5408.2.a.x 2
104.n odd 6 1 832.2.i.n 4
104.r even 6 1 832.2.i.n 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
416.2.i.d 4 1.a even 1 1 trivial
416.2.i.d 4 4.b odd 2 1 inner
416.2.i.d 4 13.c even 3 1 inner
416.2.i.d 4 52.j odd 6 1 inner
832.2.i.n 4 8.b even 2 1
832.2.i.n 4 8.d odd 2 1
832.2.i.n 4 104.n odd 6 1
832.2.i.n 4 104.r even 6 1
5408.2.a.w 2 13.e even 6 1
5408.2.a.w 2 52.i odd 6 1
5408.2.a.x 2 13.c even 3 1
5408.2.a.x 2 52.j odd 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T34+11T32+121 T_{3}^{4} + 11T_{3}^{2} + 121 acting on S2new(416,[χ])S_{2}^{\mathrm{new}}(416, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4 T^{4} Copy content Toggle raw display
33 T4+11T2+121 T^{4} + 11T^{2} + 121 Copy content Toggle raw display
55 T4 T^{4} Copy content Toggle raw display
77 T4+11T2+121 T^{4} + 11T^{2} + 121 Copy content Toggle raw display
1111 T4+11T2+121 T^{4} + 11T^{2} + 121 Copy content Toggle raw display
1313 (T2+2T+13)2 (T^{2} + 2 T + 13)^{2} Copy content Toggle raw display
1717 (T23T+9)2 (T^{2} - 3 T + 9)^{2} Copy content Toggle raw display
1919 T4+11T2+121 T^{4} + 11T^{2} + 121 Copy content Toggle raw display
2323 T4+11T2+121 T^{4} + 11T^{2} + 121 Copy content Toggle raw display
2929 (T25T+25)2 (T^{2} - 5 T + 25)^{2} Copy content Toggle raw display
3131 T4 T^{4} Copy content Toggle raw display
3737 (T2+9T+81)2 (T^{2} + 9 T + 81)^{2} Copy content Toggle raw display
4141 (T23T+9)2 (T^{2} - 3 T + 9)^{2} Copy content Toggle raw display
4343 T4+99T2+9801 T^{4} + 99T^{2} + 9801 Copy content Toggle raw display
4747 (T244)2 (T^{2} - 44)^{2} Copy content Toggle raw display
5353 (T+8)4 (T + 8)^{4} Copy content Toggle raw display
5959 T4+11T2+121 T^{4} + 11T^{2} + 121 Copy content Toggle raw display
6161 (T29T+81)2 (T^{2} - 9 T + 81)^{2} Copy content Toggle raw display
6767 T4+99T2+9801 T^{4} + 99T^{2} + 9801 Copy content Toggle raw display
7171 T4+99T2+9801 T^{4} + 99T^{2} + 9801 Copy content Toggle raw display
7373 (T+4)4 (T + 4)^{4} Copy content Toggle raw display
7979 (T244)2 (T^{2} - 44)^{2} Copy content Toggle raw display
8383 (T2176)2 (T^{2} - 176)^{2} Copy content Toggle raw display
8989 (T2T+1)2 (T^{2} - T + 1)^{2} Copy content Toggle raw display
9797 (T2+7T+49)2 (T^{2} + 7 T + 49)^{2} Copy content Toggle raw display
show more
show less