Properties

Label 416.2.k.e.255.2
Level $416$
Weight $2$
Character 416.255
Analytic conductor $3.322$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [416,2,Mod(31,416)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(416, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 0, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("416.31");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 416 = 2^{5} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 416.k (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.32177672409\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 17x^{6} + 84x^{4} + 100x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 255.2
Root \(1.20241i\) of defining polynomial
Character \(\chi\) \(=\) 416.255
Dual form 416.2.k.e.31.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.46091i q^{3} +(1.87831 + 1.87831i) q^{5} +(0.675897 + 0.675897i) q^{7} +0.865736 q^{9} +(-0.202412 - 0.202412i) q^{11} +(0.675897 + 3.54163i) q^{13} +(2.74404 - 2.74404i) q^{15} -0.539088i q^{17} +(-1.66332 + 1.66332i) q^{19} +(0.987427 - 0.987427i) q^{21} +4.67844 q^{23} +2.05609i q^{25} -5.64750i q^{27} -4.27362 q^{29} +(5.66332 - 5.66332i) q^{31} +(-0.295706 + 0.295706i) q^{33} +2.53909i q^{35} +(4.80013 - 4.80013i) q^{37} +(5.17401 - 0.987427i) q^{39} +(2.21753 + 2.21753i) q^{41} -12.5693 q^{43} +(1.62612 + 1.62612i) q^{45} +(-1.08072 - 1.08072i) q^{47} -6.08633i q^{49} -0.787560 q^{51} +3.75662 q^{53} -0.760383i q^{55} +(2.42997 + 2.42997i) q^{57} +(3.41994 + 3.41994i) q^{59} -12.6533 q^{61} +(0.585148 + 0.585148i) q^{63} +(-5.38274 + 7.92182i) q^{65} +(-9.28568 + 9.28568i) q^{67} -6.83479i q^{69} +(-9.35434 + 9.35434i) q^{71} +(-0.865736 + 0.865736i) q^{73} +3.00377 q^{75} -0.273619i q^{77} +13.0833i q^{79} -5.65330 q^{81} +(3.12424 - 3.12424i) q^{83} +(1.01257 - 1.01257i) q^{85} +6.24338i q^{87} +(6.21753 - 6.21753i) q^{89} +(-1.93694 + 2.85062i) q^{91} +(-8.27362 - 8.27362i) q^{93} -6.24847 q^{95} +(-7.67844 - 7.67844i) q^{97} +(-0.175235 - 0.175235i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 2 q^{7} - 20 q^{9} + 6 q^{11} - 2 q^{13} - 20 q^{15} + 6 q^{19} - 4 q^{21} - 16 q^{23} + 4 q^{29} + 26 q^{31} + 16 q^{33} + 8 q^{39} - 24 q^{41} - 44 q^{43} + 8 q^{45} + 14 q^{47} + 44 q^{51} + 28 q^{57}+ \cdots - 66 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/416\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(287\) \(353\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.46091i 0.843458i −0.906722 0.421729i \(-0.861423\pi\)
0.906722 0.421729i \(-0.138577\pi\)
\(4\) 0 0
\(5\) 1.87831 + 1.87831i 0.840005 + 0.840005i 0.988859 0.148854i \(-0.0475584\pi\)
−0.148854 + 0.988859i \(0.547558\pi\)
\(6\) 0 0
\(7\) 0.675897 + 0.675897i 0.255465 + 0.255465i 0.823207 0.567742i \(-0.192183\pi\)
−0.567742 + 0.823207i \(0.692183\pi\)
\(8\) 0 0
\(9\) 0.865736 0.288579
\(10\) 0 0
\(11\) −0.202412 0.202412i −0.0610294 0.0610294i 0.675933 0.736963i \(-0.263741\pi\)
−0.736963 + 0.675933i \(0.763741\pi\)
\(12\) 0 0
\(13\) 0.675897 + 3.54163i 0.187460 + 0.982272i
\(14\) 0 0
\(15\) 2.74404 2.74404i 0.708509 0.708509i
\(16\) 0 0
\(17\) 0.539088i 0.130748i −0.997861 0.0653740i \(-0.979176\pi\)
0.997861 0.0653740i \(-0.0208240\pi\)
\(18\) 0 0
\(19\) −1.66332 + 1.66332i −0.381593 + 0.381593i −0.871676 0.490083i \(-0.836966\pi\)
0.490083 + 0.871676i \(0.336966\pi\)
\(20\) 0 0
\(21\) 0.987427 0.987427i 0.215474 0.215474i
\(22\) 0 0
\(23\) 4.67844 0.975523 0.487761 0.872977i \(-0.337814\pi\)
0.487761 + 0.872977i \(0.337814\pi\)
\(24\) 0 0
\(25\) 2.05609i 0.411218i
\(26\) 0 0
\(27\) 5.64750i 1.08686i
\(28\) 0 0
\(29\) −4.27362 −0.793591 −0.396796 0.917907i \(-0.629878\pi\)
−0.396796 + 0.917907i \(0.629878\pi\)
\(30\) 0 0
\(31\) 5.66332 5.66332i 1.01716 1.01716i 0.0173129 0.999850i \(-0.494489\pi\)
0.999850 0.0173129i \(-0.00551113\pi\)
\(32\) 0 0
\(33\) −0.295706 + 0.295706i −0.0514757 + 0.0514757i
\(34\) 0 0
\(35\) 2.53909i 0.429184i
\(36\) 0 0
\(37\) 4.80013 4.80013i 0.789137 0.789137i −0.192216 0.981353i \(-0.561567\pi\)
0.981353 + 0.192216i \(0.0615673\pi\)
\(38\) 0 0
\(39\) 5.17401 0.987427i 0.828505 0.158115i
\(40\) 0 0
\(41\) 2.21753 + 2.21753i 0.346320 + 0.346320i 0.858737 0.512417i \(-0.171250\pi\)
−0.512417 + 0.858737i \(0.671250\pi\)
\(42\) 0 0
\(43\) −12.5693 −1.91680 −0.958402 0.285422i \(-0.907866\pi\)
−0.958402 + 0.285422i \(0.907866\pi\)
\(44\) 0 0
\(45\) 1.62612 + 1.62612i 0.242407 + 0.242407i
\(46\) 0 0
\(47\) −1.08072 1.08072i −0.157639 0.157639i 0.623880 0.781520i \(-0.285555\pi\)
−0.781520 + 0.623880i \(0.785555\pi\)
\(48\) 0 0
\(49\) 6.08633i 0.869475i
\(50\) 0 0
\(51\) −0.787560 −0.110280
\(52\) 0 0
\(53\) 3.75662 0.516011 0.258006 0.966143i \(-0.416935\pi\)
0.258006 + 0.966143i \(0.416935\pi\)
\(54\) 0 0
\(55\) 0.760383i 0.102530i
\(56\) 0 0
\(57\) 2.42997 + 2.42997i 0.321857 + 0.321857i
\(58\) 0 0
\(59\) 3.41994 + 3.41994i 0.445238 + 0.445238i 0.893768 0.448530i \(-0.148052\pi\)
−0.448530 + 0.893768i \(0.648052\pi\)
\(60\) 0 0
\(61\) −12.6533 −1.62009 −0.810044 0.586369i \(-0.800557\pi\)
−0.810044 + 0.586369i \(0.800557\pi\)
\(62\) 0 0
\(63\) 0.585148 + 0.585148i 0.0737218 + 0.0737218i
\(64\) 0 0
\(65\) −5.38274 + 7.92182i −0.667646 + 0.982581i
\(66\) 0 0
\(67\) −9.28568 + 9.28568i −1.13443 + 1.13443i −0.144993 + 0.989433i \(0.546316\pi\)
−0.989433 + 0.144993i \(0.953684\pi\)
\(68\) 0 0
\(69\) 6.83479i 0.822812i
\(70\) 0 0
\(71\) −9.35434 + 9.35434i −1.11016 + 1.11016i −0.117027 + 0.993129i \(0.537336\pi\)
−0.993129 + 0.117027i \(0.962664\pi\)
\(72\) 0 0
\(73\) −0.865736 + 0.865736i −0.101327 + 0.101327i −0.755953 0.654626i \(-0.772826\pi\)
0.654626 + 0.755953i \(0.272826\pi\)
\(74\) 0 0
\(75\) 3.00377 0.346845
\(76\) 0 0
\(77\) 0.273619i 0.0311818i
\(78\) 0 0
\(79\) 13.0833i 1.47198i 0.676991 + 0.735991i \(0.263284\pi\)
−0.676991 + 0.735991i \(0.736716\pi\)
\(80\) 0 0
\(81\) −5.65330 −0.628144
\(82\) 0 0
\(83\) 3.12424 3.12424i 0.342929 0.342929i −0.514538 0.857468i \(-0.672037\pi\)
0.857468 + 0.514538i \(0.172037\pi\)
\(84\) 0 0
\(85\) 1.01257 1.01257i 0.109829 0.109829i
\(86\) 0 0
\(87\) 6.24338i 0.669361i
\(88\) 0 0
\(89\) 6.21753 6.21753i 0.659057 0.659057i −0.296100 0.955157i \(-0.595686\pi\)
0.955157 + 0.296100i \(0.0956862\pi\)
\(90\) 0 0
\(91\) −1.93694 + 2.85062i −0.203047 + 0.298826i
\(92\) 0 0
\(93\) −8.27362 8.27362i −0.857934 0.857934i
\(94\) 0 0
\(95\) −6.24847 −0.641080
\(96\) 0 0
\(97\) −7.67844 7.67844i −0.779628 0.779628i 0.200140 0.979767i \(-0.435860\pi\)
−0.979767 + 0.200140i \(0.935860\pi\)
\(98\) 0 0
\(99\) −0.175235 0.175235i −0.0176118 0.0176118i
\(100\) 0 0
\(101\) 6.70359i 0.667032i 0.942744 + 0.333516i \(0.108235\pi\)
−0.942744 + 0.333516i \(0.891765\pi\)
\(102\) 0 0
\(103\) −4.46021 −0.439477 −0.219739 0.975559i \(-0.570520\pi\)
−0.219739 + 0.975559i \(0.570520\pi\)
\(104\) 0 0
\(105\) 3.70938 0.361999
\(106\) 0 0
\(107\) 10.2485i 0.990757i −0.868677 0.495379i \(-0.835029\pi\)
0.868677 0.495379i \(-0.164971\pi\)
\(108\) 0 0
\(109\) −0.556751 0.556751i −0.0533271 0.0533271i 0.679940 0.733267i \(-0.262006\pi\)
−0.733267 + 0.679940i \(0.762006\pi\)
\(110\) 0 0
\(111\) −7.01257 7.01257i −0.665604 0.665604i
\(112\) 0 0
\(113\) −12.9962 −1.22258 −0.611291 0.791406i \(-0.709350\pi\)
−0.611291 + 0.791406i \(0.709350\pi\)
\(114\) 0 0
\(115\) 8.78756 + 8.78756i 0.819444 + 0.819444i
\(116\) 0 0
\(117\) 0.585148 + 3.06612i 0.0540970 + 0.283463i
\(118\) 0 0
\(119\) 0.364368 0.364368i 0.0334016 0.0334016i
\(120\) 0 0
\(121\) 10.9181i 0.992551i
\(122\) 0 0
\(123\) 3.23962 3.23962i 0.292106 0.292106i
\(124\) 0 0
\(125\) 5.52957 5.52957i 0.494580 0.494580i
\(126\) 0 0
\(127\) −4.67844 −0.415145 −0.207572 0.978220i \(-0.566556\pi\)
−0.207572 + 0.978220i \(0.566556\pi\)
\(128\) 0 0
\(129\) 18.3627i 1.61674i
\(130\) 0 0
\(131\) 11.0802i 0.968082i −0.875045 0.484041i \(-0.839169\pi\)
0.875045 0.484041i \(-0.160831\pi\)
\(132\) 0 0
\(133\) −2.24847 −0.194967
\(134\) 0 0
\(135\) 10.6078 10.6078i 0.912970 0.912970i
\(136\) 0 0
\(137\) 15.6533 15.6533i 1.33735 1.33735i 0.438735 0.898617i \(-0.355427\pi\)
0.898617 0.438735i \(-0.144573\pi\)
\(138\) 0 0
\(139\) 15.8960i 1.34828i 0.738604 + 0.674139i \(0.235485\pi\)
−0.738604 + 0.674139i \(0.764515\pi\)
\(140\) 0 0
\(141\) −1.57884 + 1.57884i −0.132962 + 0.132962i
\(142\) 0 0
\(143\) 0.580058 0.853677i 0.0485069 0.0713881i
\(144\) 0 0
\(145\) −8.02718 8.02718i −0.666621 0.666621i
\(146\) 0 0
\(147\) −8.89159 −0.733366
\(148\) 0 0
\(149\) 11.8178 + 11.8178i 0.968152 + 0.968152i 0.999508 0.0313566i \(-0.00998276\pi\)
−0.0313566 + 0.999508i \(0.509983\pi\)
\(150\) 0 0
\(151\) 0.894133 + 0.894133i 0.0727635 + 0.0727635i 0.742552 0.669788i \(-0.233615\pi\)
−0.669788 + 0.742552i \(0.733615\pi\)
\(152\) 0 0
\(153\) 0.466707i 0.0377311i
\(154\) 0 0
\(155\) 21.2749 1.70884
\(156\) 0 0
\(157\) −11.3266 −0.903965 −0.451982 0.892027i \(-0.649283\pi\)
−0.451982 + 0.892027i \(0.649283\pi\)
\(158\) 0 0
\(159\) 5.48809i 0.435234i
\(160\) 0 0
\(161\) 3.16215 + 3.16215i 0.249212 + 0.249212i
\(162\) 0 0
\(163\) −5.95903 5.95903i −0.466747 0.466747i 0.434112 0.900859i \(-0.357062\pi\)
−0.900859 + 0.434112i \(0.857062\pi\)
\(164\) 0 0
\(165\) −1.11085 −0.0864798
\(166\) 0 0
\(167\) −16.0984 16.0984i −1.24573 1.24573i −0.957587 0.288143i \(-0.906962\pi\)
−0.288143 0.957587i \(-0.593038\pi\)
\(168\) 0 0
\(169\) −12.0863 + 4.78756i −0.929717 + 0.368274i
\(170\) 0 0
\(171\) −1.44000 + 1.44000i −0.110119 + 0.110119i
\(172\) 0 0
\(173\) 9.26985i 0.704774i 0.935854 + 0.352387i \(0.114630\pi\)
−0.935854 + 0.352387i \(0.885370\pi\)
\(174\) 0 0
\(175\) −1.38970 + 1.38970i −0.105052 + 0.105052i
\(176\) 0 0
\(177\) 4.99623 4.99623i 0.375540 0.375540i
\(178\) 0 0
\(179\) 22.1886 1.65846 0.829228 0.558911i \(-0.188781\pi\)
0.829228 + 0.558911i \(0.188781\pi\)
\(180\) 0 0
\(181\) 2.49185i 0.185218i −0.995703 0.0926090i \(-0.970479\pi\)
0.995703 0.0926090i \(-0.0295207\pi\)
\(182\) 0 0
\(183\) 18.4854i 1.36648i
\(184\) 0 0
\(185\) 18.0323 1.32576
\(186\) 0 0
\(187\) −0.109118 + 0.109118i −0.00797947 + 0.00797947i
\(188\) 0 0
\(189\) 3.81713 3.81713i 0.277655 0.277655i
\(190\) 0 0
\(191\) 15.2396i 1.10270i 0.834274 + 0.551350i \(0.185887\pi\)
−0.834274 + 0.551350i \(0.814113\pi\)
\(192\) 0 0
\(193\) −11.1917 + 11.1917i −0.805595 + 0.805595i −0.983964 0.178369i \(-0.942918\pi\)
0.178369 + 0.983964i \(0.442918\pi\)
\(194\) 0 0
\(195\) 11.5731 + 7.86371i 0.828766 + 0.563132i
\(196\) 0 0
\(197\) 1.23010 + 1.23010i 0.0876412 + 0.0876412i 0.749568 0.661927i \(-0.230261\pi\)
−0.661927 + 0.749568i \(0.730261\pi\)
\(198\) 0 0
\(199\) 8.19168 0.580693 0.290346 0.956922i \(-0.406229\pi\)
0.290346 + 0.956922i \(0.406229\pi\)
\(200\) 0 0
\(201\) 13.5656 + 13.5656i 0.956841 + 0.956841i
\(202\) 0 0
\(203\) −2.88853 2.88853i −0.202735 0.202735i
\(204\) 0 0
\(205\) 8.33041i 0.581821i
\(206\) 0 0
\(207\) 4.05029 0.281515
\(208\) 0 0
\(209\) 0.673352 0.0465768
\(210\) 0 0
\(211\) 11.6173i 0.799765i −0.916566 0.399883i \(-0.869051\pi\)
0.916566 0.399883i \(-0.130949\pi\)
\(212\) 0 0
\(213\) 13.6659 + 13.6659i 0.936370 + 0.936370i
\(214\) 0 0
\(215\) −23.6091 23.6091i −1.61013 1.61013i
\(216\) 0 0
\(217\) 7.65565 0.519699
\(218\) 0 0
\(219\) 1.26476 + 1.26476i 0.0854648 + 0.0854648i
\(220\) 0 0
\(221\) 1.90925 0.364368i 0.128430 0.0245100i
\(222\) 0 0
\(223\) −12.2762 + 12.2762i −0.822073 + 0.822073i −0.986405 0.164332i \(-0.947453\pi\)
0.164332 + 0.986405i \(0.447453\pi\)
\(224\) 0 0
\(225\) 1.78003i 0.118669i
\(226\) 0 0
\(227\) 15.9118 15.9118i 1.05610 1.05610i 0.0577733 0.998330i \(-0.481600\pi\)
0.998330 0.0577733i \(-0.0184000\pi\)
\(228\) 0 0
\(229\) 4.37016 4.37016i 0.288789 0.288789i −0.547813 0.836601i \(-0.684539\pi\)
0.836601 + 0.547813i \(0.184539\pi\)
\(230\) 0 0
\(231\) −0.399733 −0.0263005
\(232\) 0 0
\(233\) 12.8379i 0.841036i 0.907284 + 0.420518i \(0.138152\pi\)
−0.907284 + 0.420518i \(0.861848\pi\)
\(234\) 0 0
\(235\) 4.05985i 0.264836i
\(236\) 0 0
\(237\) 19.1135 1.24156
\(238\) 0 0
\(239\) 14.2459 14.2459i 0.921492 0.921492i −0.0756426 0.997135i \(-0.524101\pi\)
0.997135 + 0.0756426i \(0.0241008\pi\)
\(240\) 0 0
\(241\) 8.92112 8.92112i 0.574660 0.574660i −0.358767 0.933427i \(-0.616803\pi\)
0.933427 + 0.358767i \(0.116803\pi\)
\(242\) 0 0
\(243\) 8.68353i 0.557049i
\(244\) 0 0
\(245\) 11.4320 11.4320i 0.730364 0.730364i
\(246\) 0 0
\(247\) −7.01512 4.76665i −0.446361 0.303294i
\(248\) 0 0
\(249\) −4.56423 4.56423i −0.289247 0.289247i
\(250\) 0 0
\(251\) 5.13865 0.324349 0.162174 0.986762i \(-0.448149\pi\)
0.162174 + 0.986762i \(0.448149\pi\)
\(252\) 0 0
\(253\) −0.946971 0.946971i −0.0595356 0.0595356i
\(254\) 0 0
\(255\) −1.47928 1.47928i −0.0926362 0.0926362i
\(256\) 0 0
\(257\) 17.9262i 1.11821i 0.829098 + 0.559103i \(0.188854\pi\)
−0.829098 + 0.559103i \(0.811146\pi\)
\(258\) 0 0
\(259\) 6.48879 0.403194
\(260\) 0 0
\(261\) −3.69982 −0.229013
\(262\) 0 0
\(263\) 2.73524i 0.168662i 0.996438 + 0.0843310i \(0.0268753\pi\)
−0.996438 + 0.0843310i \(0.973125\pi\)
\(264\) 0 0
\(265\) 7.05609 + 7.05609i 0.433452 + 0.433452i
\(266\) 0 0
\(267\) −9.08327 9.08327i −0.555887 0.555887i
\(268\) 0 0
\(269\) −31.9785 −1.94977 −0.974883 0.222719i \(-0.928507\pi\)
−0.974883 + 0.222719i \(0.928507\pi\)
\(270\) 0 0
\(271\) 2.43252 + 2.43252i 0.147765 + 0.147765i 0.777119 0.629354i \(-0.216680\pi\)
−0.629354 + 0.777119i \(0.716680\pi\)
\(272\) 0 0
\(273\) 4.16450 + 2.82970i 0.252047 + 0.171261i
\(274\) 0 0
\(275\) 0.416176 0.416176i 0.0250964 0.0250964i
\(276\) 0 0
\(277\) 26.4351i 1.58833i −0.607703 0.794164i \(-0.707909\pi\)
0.607703 0.794164i \(-0.292091\pi\)
\(278\) 0 0
\(279\) 4.90294 4.90294i 0.293531 0.293531i
\(280\) 0 0
\(281\) −5.32594 + 5.32594i −0.317719 + 0.317719i −0.847890 0.530171i \(-0.822128\pi\)
0.530171 + 0.847890i \(0.322128\pi\)
\(282\) 0 0
\(283\) 20.0000 1.18888 0.594438 0.804141i \(-0.297374\pi\)
0.594438 + 0.804141i \(0.297374\pi\)
\(284\) 0 0
\(285\) 9.12847i 0.540724i
\(286\) 0 0
\(287\) 2.99765i 0.176945i
\(288\) 0 0
\(289\) 16.7094 0.982905
\(290\) 0 0
\(291\) −11.2175 + 11.2175i −0.657583 + 0.657583i
\(292\) 0 0
\(293\) 5.09278 5.09278i 0.297523 0.297523i −0.542520 0.840043i \(-0.682530\pi\)
0.840043 + 0.542520i \(0.182530\pi\)
\(294\) 0 0
\(295\) 12.8474i 0.748005i
\(296\) 0 0
\(297\) −1.14312 + 1.14312i −0.0663305 + 0.0663305i
\(298\) 0 0
\(299\) 3.16215 + 16.5693i 0.182872 + 0.958229i
\(300\) 0 0
\(301\) −8.49557 8.49557i −0.489677 0.489677i
\(302\) 0 0
\(303\) 9.79336 0.562614
\(304\) 0 0
\(305\) −23.7668 23.7668i −1.36088 1.36088i
\(306\) 0 0
\(307\) −23.8852 23.8852i −1.36320 1.36320i −0.869802 0.493400i \(-0.835754\pi\)
−0.493400 0.869802i \(-0.664246\pi\)
\(308\) 0 0
\(309\) 6.51597i 0.370681i
\(310\) 0 0
\(311\) 21.6254 1.22626 0.613132 0.789980i \(-0.289909\pi\)
0.613132 + 0.789980i \(0.289909\pi\)
\(312\) 0 0
\(313\) −27.6274 −1.56160 −0.780798 0.624784i \(-0.785187\pi\)
−0.780798 + 0.624784i \(0.785187\pi\)
\(314\) 0 0
\(315\) 2.19818i 0.123853i
\(316\) 0 0
\(317\) −2.34873 2.34873i −0.131918 0.131918i 0.638065 0.769983i \(-0.279735\pi\)
−0.769983 + 0.638065i \(0.779735\pi\)
\(318\) 0 0
\(319\) 0.865030 + 0.865030i 0.0484324 + 0.0484324i
\(320\) 0 0
\(321\) −14.9721 −0.835662
\(322\) 0 0
\(323\) 0.896678 + 0.896678i 0.0498925 + 0.0498925i
\(324\) 0 0
\(325\) −7.28191 + 1.38970i −0.403928 + 0.0770870i
\(326\) 0 0
\(327\) −0.813365 + 0.813365i −0.0449792 + 0.0449792i
\(328\) 0 0
\(329\) 1.46091i 0.0805427i
\(330\) 0 0
\(331\) −1.90365 + 1.90365i −0.104634 + 0.104634i −0.757486 0.652852i \(-0.773572\pi\)
0.652852 + 0.757486i \(0.273572\pi\)
\(332\) 0 0
\(333\) 4.15565 4.15565i 0.227728 0.227728i
\(334\) 0 0
\(335\) −34.8827 −1.90585
\(336\) 0 0
\(337\) 15.7396i 0.857392i −0.903449 0.428696i \(-0.858973\pi\)
0.903449 0.428696i \(-0.141027\pi\)
\(338\) 0 0
\(339\) 18.9864i 1.03120i
\(340\) 0 0
\(341\) −2.29265 −0.124154
\(342\) 0 0
\(343\) 8.84501 8.84501i 0.477586 0.477586i
\(344\) 0 0
\(345\) 12.8379 12.8379i 0.691167 0.691167i
\(346\) 0 0
\(347\) 18.2264i 0.978444i 0.872159 + 0.489222i \(0.162719\pi\)
−0.872159 + 0.489222i \(0.837281\pi\)
\(348\) 0 0
\(349\) −14.8001 + 14.8001i −0.792233 + 0.792233i −0.981857 0.189624i \(-0.939273\pi\)
0.189624 + 0.981857i \(0.439273\pi\)
\(350\) 0 0
\(351\) 20.0014 3.81713i 1.06759 0.203743i
\(352\) 0 0
\(353\) 3.78450 + 3.78450i 0.201429 + 0.201429i 0.800612 0.599183i \(-0.204508\pi\)
−0.599183 + 0.800612i \(0.704508\pi\)
\(354\) 0 0
\(355\) −35.1407 −1.86507
\(356\) 0 0
\(357\) −0.532310 0.532310i −0.0281728 0.0281728i
\(358\) 0 0
\(359\) 16.9900 + 16.9900i 0.896696 + 0.896696i 0.995142 0.0984460i \(-0.0313872\pi\)
−0.0984460 + 0.995142i \(0.531387\pi\)
\(360\) 0 0
\(361\) 13.4667i 0.708774i
\(362\) 0 0
\(363\) −15.9503 −0.837175
\(364\) 0 0
\(365\) −3.25224 −0.170230
\(366\) 0 0
\(367\) 7.19544i 0.375599i 0.982207 + 0.187800i \(0.0601355\pi\)
−0.982207 + 0.187800i \(0.939864\pi\)
\(368\) 0 0
\(369\) 1.91979 + 1.91979i 0.0999405 + 0.0999405i
\(370\) 0 0
\(371\) 2.53909 + 2.53909i 0.131823 + 0.131823i
\(372\) 0 0
\(373\) −1.43271 −0.0741827 −0.0370913 0.999312i \(-0.511809\pi\)
−0.0370913 + 0.999312i \(0.511809\pi\)
\(374\) 0 0
\(375\) −8.07822 8.07822i −0.417158 0.417158i
\(376\) 0 0
\(377\) −2.88853 15.1356i −0.148767 0.779522i
\(378\) 0 0
\(379\) −11.9893 + 11.9893i −0.615847 + 0.615847i −0.944464 0.328616i \(-0.893418\pi\)
0.328616 + 0.944464i \(0.393418\pi\)
\(380\) 0 0
\(381\) 6.83479i 0.350157i
\(382\) 0 0
\(383\) 5.03655 5.03655i 0.257356 0.257356i −0.566622 0.823978i \(-0.691750\pi\)
0.823978 + 0.566622i \(0.191750\pi\)
\(384\) 0 0
\(385\) 0.513941 0.513941i 0.0261929 0.0261929i
\(386\) 0 0
\(387\) −10.8817 −0.553148
\(388\) 0 0
\(389\) 3.16418i 0.160430i 0.996778 + 0.0802151i \(0.0255607\pi\)
−0.996778 + 0.0802151i \(0.974439\pi\)
\(390\) 0 0
\(391\) 2.52209i 0.127548i
\(392\) 0 0
\(393\) −16.1872 −0.816537
\(394\) 0 0
\(395\) −24.5744 + 24.5744i −1.23647 + 1.23647i
\(396\) 0 0
\(397\) 10.7094 10.7094i 0.537489 0.537489i −0.385302 0.922791i \(-0.625903\pi\)
0.922791 + 0.385302i \(0.125903\pi\)
\(398\) 0 0
\(399\) 3.28482i 0.164447i
\(400\) 0 0
\(401\) 12.8120 12.8120i 0.639801 0.639801i −0.310705 0.950506i \(-0.600565\pi\)
0.950506 + 0.310705i \(0.100565\pi\)
\(402\) 0 0
\(403\) 23.8852 + 16.2296i 1.18981 + 0.808453i
\(404\) 0 0
\(405\) −10.6186 10.6186i −0.527644 0.527644i
\(406\) 0 0
\(407\) −1.94321 −0.0963211
\(408\) 0 0
\(409\) −7.54724 7.54724i −0.373187 0.373187i 0.495450 0.868637i \(-0.335003\pi\)
−0.868637 + 0.495450i \(0.835003\pi\)
\(410\) 0 0
\(411\) −22.8681 22.8681i −1.12800 1.12800i
\(412\) 0 0
\(413\) 4.62306i 0.227486i
\(414\) 0 0
\(415\) 11.7366 0.576125
\(416\) 0 0
\(417\) 23.2226 1.13722
\(418\) 0 0
\(419\) 18.0082i 0.879756i 0.898058 + 0.439878i \(0.144978\pi\)
−0.898058 + 0.439878i \(0.855022\pi\)
\(420\) 0 0
\(421\) 16.9616 + 16.9616i 0.826657 + 0.826657i 0.987053 0.160396i \(-0.0512772\pi\)
−0.160396 + 0.987053i \(0.551277\pi\)
\(422\) 0 0
\(423\) −0.935618 0.935618i −0.0454913 0.0454913i
\(424\) 0 0
\(425\) 1.10841 0.0537659
\(426\) 0 0
\(427\) −8.55233 8.55233i −0.413876 0.413876i
\(428\) 0 0
\(429\) −1.24715 0.847414i −0.0602128 0.0409135i
\(430\) 0 0
\(431\) −12.9546 + 12.9546i −0.624001 + 0.624001i −0.946552 0.322551i \(-0.895460\pi\)
0.322551 + 0.946552i \(0.395460\pi\)
\(432\) 0 0
\(433\) 11.1621i 0.536419i −0.963361 0.268209i \(-0.913568\pi\)
0.963361 0.268209i \(-0.0864319\pi\)
\(434\) 0 0
\(435\) −11.7270 + 11.7270i −0.562267 + 0.562267i
\(436\) 0 0
\(437\) −7.78176 + 7.78176i −0.372252 + 0.372252i
\(438\) 0 0
\(439\) −3.77564 −0.180202 −0.0901008 0.995933i \(-0.528719\pi\)
−0.0901008 + 0.995933i \(0.528719\pi\)
\(440\) 0 0
\(441\) 5.26915i 0.250912i
\(442\) 0 0
\(443\) 34.0183i 1.61626i −0.589004 0.808130i \(-0.700480\pi\)
0.589004 0.808130i \(-0.299520\pi\)
\(444\) 0 0
\(445\) 23.3569 1.10722
\(446\) 0 0
\(447\) 17.2648 17.2648i 0.816595 0.816595i
\(448\) 0 0
\(449\) −26.3620 + 26.3620i −1.24410 + 1.24410i −0.285813 + 0.958285i \(0.592264\pi\)
−0.958285 + 0.285813i \(0.907736\pi\)
\(450\) 0 0
\(451\) 0.897708i 0.0422714i
\(452\) 0 0
\(453\) 1.30625 1.30625i 0.0613729 0.0613729i
\(454\) 0 0
\(455\) −8.99252 + 1.71616i −0.421576 + 0.0804549i
\(456\) 0 0
\(457\) −6.03094 6.03094i −0.282116 0.282116i 0.551837 0.833952i \(-0.313927\pi\)
−0.833952 + 0.551837i \(0.813927\pi\)
\(458\) 0 0
\(459\) −3.04450 −0.142105
\(460\) 0 0
\(461\) −14.5618 14.5618i −0.678213 0.678213i 0.281383 0.959596i \(-0.409207\pi\)
−0.959596 + 0.281383i \(0.909207\pi\)
\(462\) 0 0
\(463\) 26.9383 + 26.9383i 1.25193 + 1.25193i 0.954855 + 0.297073i \(0.0960103\pi\)
0.297073 + 0.954855i \(0.403990\pi\)
\(464\) 0 0
\(465\) 31.0808i 1.44134i
\(466\) 0 0
\(467\) −16.9143 −0.782700 −0.391350 0.920242i \(-0.627992\pi\)
−0.391350 + 0.920242i \(0.627992\pi\)
\(468\) 0 0
\(469\) −12.5523 −0.579613
\(470\) 0 0
\(471\) 16.5472i 0.762456i
\(472\) 0 0
\(473\) 2.54418 + 2.54418i 0.116981 + 0.116981i
\(474\) 0 0
\(475\) −3.41994 3.41994i −0.156918 0.156918i
\(476\) 0 0
\(477\) 3.25224 0.148910
\(478\) 0 0
\(479\) −9.80334 9.80334i −0.447926 0.447926i 0.446739 0.894665i \(-0.352585\pi\)
−0.894665 + 0.446739i \(0.852585\pi\)
\(480\) 0 0
\(481\) 20.2447 + 13.7559i 0.923079 + 0.627216i
\(482\) 0 0
\(483\) 4.61962 4.61962i 0.210200 0.210200i
\(484\) 0 0
\(485\) 28.8450i 1.30978i
\(486\) 0 0
\(487\) 4.09838 4.09838i 0.185716 0.185716i −0.608125 0.793841i \(-0.708078\pi\)
0.793841 + 0.608125i \(0.208078\pi\)
\(488\) 0 0
\(489\) −8.70562 + 8.70562i −0.393682 + 0.393682i
\(490\) 0 0
\(491\) 31.5455 1.42363 0.711814 0.702368i \(-0.247874\pi\)
0.711814 + 0.702368i \(0.247874\pi\)
\(492\) 0 0
\(493\) 2.30386i 0.103760i
\(494\) 0 0
\(495\) 0.658291i 0.0295880i
\(496\) 0 0
\(497\) −12.6451 −0.567212
\(498\) 0 0
\(499\) 1.84991 1.84991i 0.0828134 0.0828134i −0.664487 0.747300i \(-0.731350\pi\)
0.747300 + 0.664487i \(0.231350\pi\)
\(500\) 0 0
\(501\) −23.5183 + 23.5183i −1.05072 + 1.05072i
\(502\) 0 0
\(503\) 38.0948i 1.69856i 0.527941 + 0.849281i \(0.322964\pi\)
−0.527941 + 0.849281i \(0.677036\pi\)
\(504\) 0 0
\(505\) −12.5914 + 12.5914i −0.560310 + 0.560310i
\(506\) 0 0
\(507\) 6.99420 + 17.6571i 0.310624 + 0.784178i
\(508\) 0 0
\(509\) 15.0082 + 15.0082i 0.665225 + 0.665225i 0.956607 0.291382i \(-0.0941151\pi\)
−0.291382 + 0.956607i \(0.594115\pi\)
\(510\) 0 0
\(511\) −1.17030 −0.0517709
\(512\) 0 0
\(513\) 9.39362 + 9.39362i 0.414739 + 0.414739i
\(514\) 0 0
\(515\) −8.37765 8.37765i −0.369163 0.369163i
\(516\) 0 0
\(517\) 0.437501i 0.0192413i
\(518\) 0 0
\(519\) 13.5424 0.594447
\(520\) 0 0
\(521\) −6.49491 −0.284547 −0.142274 0.989827i \(-0.545441\pi\)
−0.142274 + 0.989827i \(0.545441\pi\)
\(522\) 0 0
\(523\) 12.4048i 0.542425i −0.962519 0.271213i \(-0.912575\pi\)
0.962519 0.271213i \(-0.0874246\pi\)
\(524\) 0 0
\(525\) 2.03024 + 2.03024i 0.0886068 + 0.0886068i
\(526\) 0 0
\(527\) −3.05303 3.05303i −0.132992 0.132992i
\(528\) 0 0
\(529\) −1.11218 −0.0483556
\(530\) 0 0
\(531\) 2.96077 + 2.96077i 0.128486 + 0.128486i
\(532\) 0 0
\(533\) −6.35485 + 9.35250i −0.275259 + 0.405102i
\(534\) 0 0
\(535\) 19.2498 19.2498i 0.832241 0.832241i
\(536\) 0 0
\(537\) 32.4156i 1.39884i
\(538\) 0 0
\(539\) −1.23194 + 1.23194i −0.0530636 + 0.0530636i
\(540\) 0 0
\(541\) 11.4976 11.4976i 0.494321 0.494321i −0.415344 0.909664i \(-0.636339\pi\)
0.909664 + 0.415344i \(0.136339\pi\)
\(542\) 0 0
\(543\) −3.64038 −0.156224
\(544\) 0 0
\(545\) 2.09150i 0.0895901i
\(546\) 0 0
\(547\) 7.02991i 0.300577i −0.988642 0.150289i \(-0.951980\pi\)
0.988642 0.150289i \(-0.0480203\pi\)
\(548\) 0 0
\(549\) −10.9544 −0.467523
\(550\) 0 0
\(551\) 7.10841 7.10841i 0.302829 0.302829i
\(552\) 0 0
\(553\) −8.84294 + 8.84294i −0.376040 + 0.376040i
\(554\) 0 0
\(555\) 26.3436i 1.11822i
\(556\) 0 0
\(557\) 4.03466 4.03466i 0.170954 0.170954i −0.616444 0.787398i \(-0.711427\pi\)
0.787398 + 0.616444i \(0.211427\pi\)
\(558\) 0 0
\(559\) −8.49557 44.5159i −0.359324 1.88282i
\(560\) 0 0
\(561\) 0.159411 + 0.159411i 0.00673035 + 0.00673035i
\(562\) 0 0
\(563\) 5.97038 0.251622 0.125811 0.992054i \(-0.459847\pi\)
0.125811 + 0.992054i \(0.459847\pi\)
\(564\) 0 0
\(565\) −24.4109 24.4109i −1.02698 1.02698i
\(566\) 0 0
\(567\) −3.82105 3.82105i −0.160469 0.160469i
\(568\) 0 0
\(569\) 23.5958i 0.989187i 0.869124 + 0.494594i \(0.164683\pi\)
−0.869124 + 0.494594i \(0.835317\pi\)
\(570\) 0 0
\(571\) −4.83173 −0.202202 −0.101101 0.994876i \(-0.532236\pi\)
−0.101101 + 0.994876i \(0.532236\pi\)
\(572\) 0 0
\(573\) 22.2637 0.930081
\(574\) 0 0
\(575\) 9.61929i 0.401152i
\(576\) 0 0
\(577\) 27.2189 + 27.2189i 1.13314 + 1.13314i 0.989653 + 0.143483i \(0.0458302\pi\)
0.143483 + 0.989653i \(0.454170\pi\)
\(578\) 0 0
\(579\) 16.3501 + 16.3501i 0.679485 + 0.679485i
\(580\) 0 0
\(581\) 4.22333 0.175213
\(582\) 0 0
\(583\) −0.760383 0.760383i −0.0314919 0.0314919i
\(584\) 0 0
\(585\) −4.66003 + 6.85820i −0.192668 + 0.283552i
\(586\) 0 0
\(587\) 22.2880 22.2880i 0.919926 0.919926i −0.0770980 0.997024i \(-0.524565\pi\)
0.997024 + 0.0770980i \(0.0245654\pi\)
\(588\) 0 0
\(589\) 18.8399i 0.776284i
\(590\) 0 0
\(591\) 1.79707 1.79707i 0.0739217 0.0739217i
\(592\) 0 0
\(593\) 19.3341 19.3341i 0.793956 0.793956i −0.188179 0.982135i \(-0.560258\pi\)
0.982135 + 0.188179i \(0.0602584\pi\)
\(594\) 0 0
\(595\) 1.36879 0.0561150
\(596\) 0 0
\(597\) 11.9673i 0.489790i
\(598\) 0 0
\(599\) 30.0404i 1.22742i −0.789532 0.613709i \(-0.789677\pi\)
0.789532 0.613709i \(-0.210323\pi\)
\(600\) 0 0
\(601\) 25.2427 1.02967 0.514835 0.857289i \(-0.327853\pi\)
0.514835 + 0.857289i \(0.327853\pi\)
\(602\) 0 0
\(603\) −8.03894 + 8.03894i −0.327371 + 0.327371i
\(604\) 0 0
\(605\) 20.5075 20.5075i 0.833748 0.833748i
\(606\) 0 0
\(607\) 32.1968i 1.30683i −0.757001 0.653413i \(-0.773336\pi\)
0.757001 0.653413i \(-0.226664\pi\)
\(608\) 0 0
\(609\) −4.21988 + 4.21988i −0.170998 + 0.170998i
\(610\) 0 0
\(611\) 3.09706 4.55797i 0.125294 0.184396i
\(612\) 0 0
\(613\) 23.6061 + 23.6061i 0.953440 + 0.953440i 0.998963 0.0455234i \(-0.0144956\pi\)
−0.0455234 + 0.998963i \(0.514496\pi\)
\(614\) 0 0
\(615\) 12.1700 0.490742
\(616\) 0 0
\(617\) 28.2226 + 28.2226i 1.13620 + 1.13620i 0.989125 + 0.147074i \(0.0469857\pi\)
0.147074 + 0.989125i \(0.453014\pi\)
\(618\) 0 0
\(619\) 12.0542 + 12.0542i 0.484500 + 0.484500i 0.906565 0.422066i \(-0.138695\pi\)
−0.422066 + 0.906565i \(0.638695\pi\)
\(620\) 0 0
\(621\) 26.4215i 1.06026i
\(622\) 0 0
\(623\) 8.40482 0.336732
\(624\) 0 0
\(625\) 31.0529 1.24212
\(626\) 0 0
\(627\) 0.983709i 0.0392855i
\(628\) 0 0
\(629\) −2.58769 2.58769i −0.103178 0.103178i
\(630\) 0 0
\(631\) 24.6493 + 24.6493i 0.981275 + 0.981275i 0.999828 0.0185531i \(-0.00590599\pi\)
−0.0185531 + 0.999828i \(0.505906\pi\)
\(632\) 0 0
\(633\) −16.9718 −0.674569
\(634\) 0 0
\(635\) −8.78756 8.78756i −0.348724 0.348724i
\(636\) 0 0
\(637\) 21.5555 4.11373i 0.854061 0.162992i
\(638\) 0 0
\(639\) −8.09838 + 8.09838i −0.320367 + 0.320367i
\(640\) 0 0
\(641\) 17.2825i 0.682617i 0.939951 + 0.341308i \(0.110870\pi\)
−0.939951 + 0.341308i \(0.889130\pi\)
\(642\) 0 0
\(643\) 7.04739 7.04739i 0.277922 0.277922i −0.554357 0.832279i \(-0.687036\pi\)
0.832279 + 0.554357i \(0.187036\pi\)
\(644\) 0 0
\(645\) −34.4908 + 34.4908i −1.35807 + 1.35807i
\(646\) 0 0
\(647\) −32.8198 −1.29028 −0.645140 0.764064i \(-0.723201\pi\)
−0.645140 + 0.764064i \(0.723201\pi\)
\(648\) 0 0
\(649\) 1.38447i 0.0543453i
\(650\) 0 0
\(651\) 11.1842i 0.438345i
\(652\) 0 0
\(653\) −6.57747 −0.257396 −0.128698 0.991684i \(-0.541080\pi\)
−0.128698 + 0.991684i \(0.541080\pi\)
\(654\) 0 0
\(655\) 20.8120 20.8120i 0.813194 0.813194i
\(656\) 0 0
\(657\) −0.749498 + 0.749498i −0.0292407 + 0.0292407i
\(658\) 0 0
\(659\) 10.6849i 0.416226i −0.978105 0.208113i \(-0.933268\pi\)
0.978105 0.208113i \(-0.0667322\pi\)
\(660\) 0 0
\(661\) −10.7345 + 10.7345i −0.417525 + 0.417525i −0.884350 0.466825i \(-0.845398\pi\)
0.466825 + 0.884350i \(0.345398\pi\)
\(662\) 0 0
\(663\) −0.532310 2.78925i −0.0206732 0.108325i
\(664\) 0 0
\(665\) −4.22333 4.22333i −0.163774 0.163774i
\(666\) 0 0
\(667\) −19.9939 −0.774166
\(668\) 0 0
\(669\) 17.9344 + 17.9344i 0.693384 + 0.693384i
\(670\) 0 0
\(671\) 2.56117 + 2.56117i 0.0988730 + 0.0988730i
\(672\) 0 0
\(673\) 24.0625i 0.927541i 0.885955 + 0.463771i \(0.153504\pi\)
−0.885955 + 0.463771i \(0.846496\pi\)
\(674\) 0 0
\(675\) 11.6118 0.446937
\(676\) 0 0
\(677\) 30.2522 1.16268 0.581342 0.813659i \(-0.302528\pi\)
0.581342 + 0.813659i \(0.302528\pi\)
\(678\) 0 0
\(679\) 10.3797i 0.398335i
\(680\) 0 0
\(681\) −23.2457 23.2457i −0.890779 0.890779i
\(682\) 0 0
\(683\) 19.3108 + 19.3108i 0.738908 + 0.738908i 0.972367 0.233459i \(-0.0750043\pi\)
−0.233459 + 0.972367i \(0.575004\pi\)
\(684\) 0 0
\(685\) 58.8034 2.24676
\(686\) 0 0
\(687\) −6.38442 6.38442i −0.243581 0.243581i
\(688\) 0 0
\(689\) 2.53909 + 13.3046i 0.0967315 + 0.506863i
\(690\) 0 0
\(691\) −4.72247 + 4.72247i −0.179651 + 0.179651i −0.791204 0.611553i \(-0.790545\pi\)
0.611553 + 0.791204i \(0.290545\pi\)
\(692\) 0 0
\(693\) 0.236882i 0.00899839i
\(694\) 0 0
\(695\) −29.8575 + 29.8575i −1.13256 + 1.13256i
\(696\) 0 0
\(697\) 1.19544 1.19544i 0.0452806 0.0452806i
\(698\) 0 0
\(699\) 18.7550 0.709378
\(700\) 0 0
\(701\) 15.1969i 0.573977i 0.957934 + 0.286989i \(0.0926542\pi\)
−0.957934 + 0.286989i \(0.907346\pi\)
\(702\) 0 0
\(703\) 15.9684i 0.602258i
\(704\) 0 0
\(705\) −5.93109 −0.223378
\(706\) 0 0
\(707\) −4.53094 + 4.53094i −0.170403 + 0.170403i
\(708\) 0 0
\(709\) −20.0183 + 20.0183i −0.751804 + 0.751804i −0.974816 0.223012i \(-0.928411\pi\)
0.223012 + 0.974816i \(0.428411\pi\)
\(710\) 0 0
\(711\) 11.3266i 0.424782i
\(712\) 0 0
\(713\) 26.4955 26.4955i 0.992266 0.992266i
\(714\) 0 0
\(715\) 2.69300 0.513941i 0.100712 0.0192203i
\(716\) 0 0
\(717\) −20.8120 20.8120i −0.777240 0.777240i
\(718\) 0 0
\(719\) −4.14138 −0.154448 −0.0772238 0.997014i \(-0.524606\pi\)
−0.0772238 + 0.997014i \(0.524606\pi\)
\(720\) 0 0
\(721\) −3.01464 3.01464i −0.112271 0.112271i
\(722\) 0 0
\(723\) −13.0330 13.0330i −0.484701 0.484701i
\(724\) 0 0
\(725\) 8.78694i 0.326339i
\(726\) 0 0
\(727\) −31.6988 −1.17564 −0.587822 0.808991i \(-0.700014\pi\)
−0.587822 + 0.808991i \(0.700014\pi\)
\(728\) 0 0
\(729\) −29.6458 −1.09799
\(730\) 0 0
\(731\) 6.77597i 0.250618i
\(732\) 0 0
\(733\) −14.4205 14.4205i −0.532632 0.532632i 0.388723 0.921355i \(-0.372916\pi\)
−0.921355 + 0.388723i \(0.872916\pi\)
\(734\) 0 0
\(735\) −16.7011 16.7011i −0.616031 0.616031i
\(736\) 0 0
\(737\) 3.75906 0.138467
\(738\) 0 0
\(739\) 36.8639 + 36.8639i 1.35606 + 1.35606i 0.878718 + 0.477340i \(0.158399\pi\)
0.477340 + 0.878718i \(0.341601\pi\)
\(740\) 0 0
\(741\) −6.96365 + 10.2485i −0.255816 + 0.376487i
\(742\) 0 0
\(743\) 7.05557 7.05557i 0.258844 0.258844i −0.565740 0.824584i \(-0.691409\pi\)
0.824584 + 0.565740i \(0.191409\pi\)
\(744\) 0 0
\(745\) 44.3949i 1.62650i
\(746\) 0 0
\(747\) 2.70476 2.70476i 0.0989621 0.0989621i
\(748\) 0 0
\(749\) 6.92691 6.92691i 0.253104 0.253104i
\(750\) 0 0
\(751\) −24.7757 −0.904076 −0.452038 0.891999i \(-0.649303\pi\)
−0.452038 + 0.891999i \(0.649303\pi\)
\(752\) 0 0
\(753\) 7.50712i 0.273574i
\(754\) 0 0
\(755\) 3.35891i 0.122243i
\(756\) 0 0
\(757\) −26.6444 −0.968409 −0.484204 0.874955i \(-0.660891\pi\)
−0.484204 + 0.874955i \(0.660891\pi\)
\(758\) 0 0
\(759\) −1.38344 + 1.38344i −0.0502158 + 0.0502158i
\(760\) 0 0
\(761\) −2.49115 + 2.49115i −0.0903041 + 0.0903041i −0.750816 0.660512i \(-0.770339\pi\)
0.660512 + 0.750816i \(0.270339\pi\)
\(762\) 0 0
\(763\) 0.752613i 0.0272464i
\(764\) 0 0
\(765\) 0.876621 0.876621i 0.0316943 0.0316943i
\(766\) 0 0
\(767\) −9.80065 + 14.4237i −0.353881 + 0.520810i
\(768\) 0 0
\(769\) 21.8178 + 21.8178i 0.786770 + 0.786770i 0.980963 0.194193i \(-0.0622089\pi\)
−0.194193 + 0.980963i \(0.562209\pi\)
\(770\) 0 0
\(771\) 26.1886 0.943160
\(772\) 0 0
\(773\) −17.0537 17.0537i −0.613379 0.613379i 0.330446 0.943825i \(-0.392801\pi\)
−0.943825 + 0.330446i \(0.892801\pi\)
\(774\) 0 0
\(775\) 11.6443 + 11.6443i 0.418276 + 0.418276i
\(776\) 0 0
\(777\) 9.47956i 0.340077i
\(778\) 0 0
\(779\) −7.37694 −0.264306
\(780\) 0 0
\(781\) 3.78685 0.135504
\(782\) 0 0
\(783\) 24.1353i 0.862524i
\(784\) 0 0
\(785\) −21.2749 21.2749i −0.759335 0.759335i
\(786\) 0 0
\(787\) 9.83739 + 9.83739i 0.350665 + 0.350665i 0.860357 0.509692i \(-0.170241\pi\)
−0.509692 + 0.860357i \(0.670241\pi\)
\(788\) 0 0
\(789\) 3.99594 0.142259
\(790\) 0 0
\(791\) −8.78412 8.78412i −0.312327 0.312327i
\(792\) 0 0
\(793\) −8.55233 44.8133i −0.303702 1.59137i
\(794\) 0 0
\(795\) 10.3083 10.3083i 0.365599 0.365599i
\(796\) 0 0
\(797\) 24.3531i 0.862632i 0.902201 + 0.431316i \(0.141951\pi\)
−0.902201 + 0.431316i \(0.858049\pi\)
\(798\) 0 0
\(799\) −0.582603 + 0.582603i −0.0206110 + 0.0206110i
\(800\) 0 0
\(801\) 5.38274 5.38274i 0.190190 0.190190i
\(802\) 0 0
\(803\) 0.350470 0.0123678
\(804\) 0 0
\(805\) 11.8790i 0.418679i
\(806\) 0 0
\(807\) 46.7178i 1.64455i
\(808\) 0 0
\(809\) −35.0904 −1.23371 −0.616856 0.787076i \(-0.711594\pi\)
−0.616856 + 0.787076i \(0.711594\pi\)
\(810\) 0 0
\(811\) 13.0137 13.0137i 0.456973 0.456973i −0.440687 0.897661i \(-0.645265\pi\)
0.897661 + 0.440687i \(0.145265\pi\)
\(812\) 0 0
\(813\) 3.55369 3.55369i 0.124633 0.124633i
\(814\) 0 0
\(815\) 22.3858i 0.784140i
\(816\) 0 0
\(817\) 20.9069 20.9069i 0.731438 0.731438i
\(818\) 0 0
\(819\) −1.67688 + 2.46788i −0.0585949 + 0.0862347i
\(820\) 0 0
\(821\) 13.7838 + 13.7838i 0.481059 + 0.481059i 0.905470 0.424410i \(-0.139519\pi\)
−0.424410 + 0.905470i \(0.639519\pi\)
\(822\) 0 0
\(823\) 7.28888 0.254074 0.127037 0.991898i \(-0.459453\pi\)
0.127037 + 0.991898i \(0.459453\pi\)
\(824\) 0 0
\(825\) −0.607997 0.607997i −0.0211677 0.0211677i
\(826\) 0 0
\(827\) 14.2044 + 14.2044i 0.493937 + 0.493937i 0.909544 0.415607i \(-0.136431\pi\)
−0.415607 + 0.909544i \(0.636431\pi\)
\(828\) 0 0
\(829\) 5.36432i 0.186311i 0.995652 + 0.0931553i \(0.0296953\pi\)
−0.995652 + 0.0931553i \(0.970305\pi\)
\(830\) 0 0
\(831\) −38.6193 −1.33969
\(832\) 0 0
\(833\) −3.28106 −0.113682
\(834\) 0 0
\(835\) 60.4755i 2.09284i
\(836\) 0 0
\(837\) −31.9836 31.9836i −1.10552 1.10552i
\(838\) 0 0
\(839\) −21.9923 21.9923i −0.759259 0.759259i 0.216928 0.976188i \(-0.430396\pi\)
−0.976188 + 0.216928i \(0.930396\pi\)
\(840\) 0 0
\(841\) −10.7362 −0.370213
\(842\) 0 0
\(843\) 7.78073 + 7.78073i 0.267983 + 0.267983i
\(844\) 0 0
\(845\) −31.6944 13.7093i −1.09032 0.471616i
\(846\) 0 0
\(847\) 7.37949 7.37949i 0.253562 0.253562i
\(848\) 0 0
\(849\) 29.2182i 1.00277i
\(850\) 0 0
\(851\) 22.4571 22.4571i 0.769821 0.769821i
\(852\) 0 0
\(853\) −6.25290 + 6.25290i −0.214095 + 0.214095i −0.806004 0.591909i \(-0.798374\pi\)
0.591909 + 0.806004i \(0.298374\pi\)
\(854\) 0 0
\(855\) −5.40952 −0.185002
\(856\) 0 0
\(857\) 29.0442i 0.992130i −0.868285 0.496065i \(-0.834778\pi\)
0.868285 0.496065i \(-0.165222\pi\)
\(858\) 0 0
\(859\) 2.78553i 0.0950411i −0.998870 0.0475205i \(-0.984868\pi\)
0.998870 0.0475205i \(-0.0151320\pi\)
\(860\) 0 0
\(861\) 4.37930 0.149246
\(862\) 0 0
\(863\) −32.4678 + 32.4678i −1.10522 + 1.10522i −0.111448 + 0.993770i \(0.535549\pi\)
−0.993770 + 0.111448i \(0.964451\pi\)
\(864\) 0 0
\(865\) −17.4116 + 17.4116i −0.592014 + 0.592014i
\(866\) 0 0
\(867\) 24.4109i 0.829039i
\(868\) 0 0
\(869\) 2.64821 2.64821i 0.0898342 0.0898342i
\(870\) 0 0
\(871\) −39.1626 26.6103i −1.32697 0.901655i
\(872\) 0 0
\(873\) −6.64750 6.64750i −0.224984 0.224984i
\(874\) 0 0
\(875\) 7.47485 0.252696
\(876\) 0 0
\(877\) 12.3637 + 12.3637i 0.417491 + 0.417491i 0.884338 0.466847i \(-0.154610\pi\)
−0.466847 + 0.884338i \(0.654610\pi\)
\(878\) 0 0
\(879\) −7.44010 7.44010i −0.250948 0.250948i
\(880\) 0 0
\(881\) 45.2212i 1.52354i −0.647847 0.761771i \(-0.724330\pi\)
0.647847 0.761771i \(-0.275670\pi\)
\(882\) 0 0
\(883\) 2.77597 0.0934188 0.0467094 0.998909i \(-0.485127\pi\)
0.0467094 + 0.998909i \(0.485127\pi\)
\(884\) 0 0
\(885\) 18.7689 0.630911
\(886\) 0 0
\(887\) 13.9962i 0.469948i −0.972002 0.234974i \(-0.924500\pi\)
0.972002 0.234974i \(-0.0755005\pi\)
\(888\) 0 0
\(889\) −3.16215 3.16215i −0.106055 0.106055i
\(890\) 0 0
\(891\) 1.14429 + 1.14429i 0.0383353 + 0.0383353i
\(892\) 0 0
\(893\) 3.59518 0.120308
\(894\) 0 0
\(895\) 41.6771 + 41.6771i 1.39311 + 1.39311i
\(896\) 0 0
\(897\) 24.2063 4.61962i 0.808226 0.154245i
\(898\) 0 0
\(899\) −24.2029 + 24.2029i −0.807212 + 0.807212i
\(900\) 0 0
\(901\) 2.02515i 0.0674674i
\(902\) 0 0
\(903\) −12.4113 + 12.4113i −0.413022 + 0.413022i
\(904\) 0 0
\(905\) 4.68047 4.68047i 0.155584 0.155584i
\(906\) 0 0
\(907\) 27.0587 0.898471 0.449235 0.893413i \(-0.351696\pi\)
0.449235 + 0.893413i \(0.351696\pi\)
\(908\) 0 0
\(909\) 5.80354i 0.192491i
\(910\) 0 0
\(911\) 48.1804i 1.59629i 0.602467 + 0.798144i \(0.294185\pi\)
−0.602467 + 0.798144i \(0.705815\pi\)
\(912\) 0 0
\(913\) −1.26476 −0.0418576
\(914\) 0 0
\(915\) −34.7212 + 34.7212i −1.14785 + 1.14785i
\(916\) 0 0
\(917\) 7.48908 7.48908i 0.247311 0.247311i
\(918\) 0 0
\(919\) 35.5359i 1.17222i −0.810231 0.586111i \(-0.800658\pi\)
0.810231 0.586111i \(-0.199342\pi\)
\(920\) 0 0
\(921\) −34.8942 + 34.8942i −1.14980 + 1.14980i
\(922\) 0 0
\(923\) −39.4522 26.8071i −1.29859 0.882365i
\(924\) 0 0
\(925\) 9.86950 + 9.86950i 0.324507 + 0.324507i
\(926\) 0 0
\(927\) −3.86136 −0.126824
\(928\) 0 0
\(929\) 8.19238 + 8.19238i 0.268783 + 0.268783i 0.828610 0.559826i \(-0.189132\pi\)
−0.559826 + 0.828610i \(0.689132\pi\)
\(930\) 0 0
\(931\) 10.1235 + 10.1235i 0.331785 + 0.331785i
\(932\) 0 0
\(933\) 31.5928i 1.03430i
\(934\) 0 0
\(935\) −0.409913 −0.0134056
\(936\) 0 0
\(937\) −35.9483 −1.17438 −0.587190 0.809449i \(-0.699766\pi\)
−0.587190 + 0.809449i \(0.699766\pi\)
\(938\) 0 0
\(939\) 40.3613i 1.31714i
\(940\) 0 0
\(941\) −22.6387 22.6387i −0.738000 0.738000i 0.234190 0.972191i \(-0.424756\pi\)
−0.972191 + 0.234190i \(0.924756\pi\)
\(942\) 0 0
\(943\) 10.3746 + 10.3746i 0.337843 + 0.337843i
\(944\) 0 0
\(945\) 14.3395 0.466464
\(946\) 0 0
\(947\) 6.18848 + 6.18848i 0.201098 + 0.201098i 0.800471 0.599372i \(-0.204583\pi\)
−0.599372 + 0.800471i \(0.704583\pi\)
\(948\) 0 0
\(949\) −3.65127 2.48097i −0.118525 0.0805357i
\(950\) 0 0
\(951\) −3.43129 + 3.43129i −0.111267 + 0.111267i
\(952\) 0 0
\(953\) 46.3124i 1.50021i 0.661321 + 0.750103i \(0.269996\pi\)
−0.661321 + 0.750103i \(0.730004\pi\)
\(954\) 0 0
\(955\) −28.6247 + 28.6247i −0.926274 + 0.926274i
\(956\) 0 0
\(957\) 1.26373 1.26373i 0.0408507 0.0408507i
\(958\) 0 0
\(959\) 21.1600 0.683293
\(960\) 0 0
\(961\) 33.1465i 1.06924i
\(962\) 0 0
\(963\) 8.87247i 0.285911i
\(964\) 0 0
\(965\) −42.0429 −1.35341
\(966\) 0 0
\(967\) −5.85872 + 5.85872i −0.188404 + 0.188404i −0.795006 0.606602i \(-0.792532\pi\)
0.606602 + 0.795006i \(0.292532\pi\)
\(968\) 0 0
\(969\) 1.30997 1.30997i 0.0420822 0.0420822i
\(970\) 0 0
\(971\) 8.81309i 0.282825i 0.989951 + 0.141413i \(0.0451645\pi\)
−0.989951 + 0.141413i \(0.954836\pi\)
\(972\) 0 0
\(973\) −10.7440 + 10.7440i −0.344438 + 0.344438i
\(974\) 0 0
\(975\) 2.03024 + 10.6382i 0.0650196 + 0.340696i
\(976\) 0 0
\(977\) −6.68730 6.68730i −0.213946 0.213946i 0.591996 0.805941i \(-0.298340\pi\)
−0.805941 + 0.591996i \(0.798340\pi\)
\(978\) 0 0
\(979\) −2.51700 −0.0804437
\(980\) 0 0
\(981\) −0.481999 0.481999i −0.0153891 0.0153891i
\(982\) 0 0
\(983\) 15.4162 + 15.4162i 0.491701 + 0.491701i 0.908842 0.417141i \(-0.136968\pi\)
−0.417141 + 0.908842i \(0.636968\pi\)
\(984\) 0 0
\(985\) 4.62103i 0.147238i
\(986\) 0 0
\(987\) −2.13426 −0.0679344
\(988\) 0 0
\(989\) −58.8049 −1.86989
\(990\) 0 0
\(991\) 25.3885i 0.806493i −0.915091 0.403247i \(-0.867882\pi\)
0.915091 0.403247i \(-0.132118\pi\)
\(992\) 0 0
\(993\) 2.78106 + 2.78106i 0.0882543 + 0.0882543i
\(994\) 0 0
\(995\) 15.3865 + 15.3865i 0.487785 + 0.487785i
\(996\) 0 0
\(997\) 15.6017 0.494110 0.247055 0.969001i \(-0.420537\pi\)
0.247055 + 0.969001i \(0.420537\pi\)
\(998\) 0 0
\(999\) −27.1088 27.1088i −0.857683 0.857683i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 416.2.k.e.255.2 yes 8
4.3 odd 2 416.2.k.f.255.3 yes 8
8.3 odd 2 832.2.k.i.255.2 8
8.5 even 2 832.2.k.g.255.3 8
13.5 odd 4 416.2.k.f.31.2 yes 8
52.31 even 4 inner 416.2.k.e.31.3 8
104.5 odd 4 832.2.k.i.447.3 8
104.83 even 4 832.2.k.g.447.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
416.2.k.e.31.3 8 52.31 even 4 inner
416.2.k.e.255.2 yes 8 1.1 even 1 trivial
416.2.k.f.31.2 yes 8 13.5 odd 4
416.2.k.f.255.3 yes 8 4.3 odd 2
832.2.k.g.255.3 8 8.5 even 2
832.2.k.g.447.2 8 104.83 even 4
832.2.k.i.255.2 8 8.3 odd 2
832.2.k.i.447.3 8 104.5 odd 4