Properties

Label 416.2.u.b.47.3
Level $416$
Weight $2$
Character 416.47
Analytic conductor $3.322$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [416,2,Mod(47,416)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(416, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 2, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("416.47");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 416 = 2^{5} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 416.u (of order \(4\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.32177672409\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 2 x^{19} + 2 x^{18} - 7 x^{16} + 14 x^{15} - 14 x^{14} + 8 x^{13} + 16 x^{12} - 40 x^{11} + \cdots + 1024 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{16} \)
Twist minimal: no (minimal twist has level 104)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 47.3
Root \(1.15650 - 0.813947i\) of defining polynomial
Character \(\chi\) \(=\) 416.47
Dual form 416.2.u.b.239.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.38809 q^{3} +(-2.40872 + 2.40872i) q^{5} +(0.127019 + 0.127019i) q^{7} -1.07320 q^{9} +(2.63237 - 2.63237i) q^{11} +(1.93837 - 3.04019i) q^{13} +(3.34352 - 3.34352i) q^{15} -4.33908i q^{17} +(-4.97146 - 4.97146i) q^{19} +(-0.176315 - 0.176315i) q^{21} -3.98711 q^{23} -6.60383i q^{25} +5.65398 q^{27} +4.59378i q^{29} +(-1.07702 + 1.07702i) q^{31} +(-3.65398 + 3.65398i) q^{33} -0.611907 q^{35} +(-2.45494 - 2.45494i) q^{37} +(-2.69063 + 4.22006i) q^{39} +(0.388093 + 0.388093i) q^{41} -5.02419i q^{43} +(2.58503 - 2.58503i) q^{45} +(-1.00356 - 1.00356i) q^{47} -6.96773i q^{49} +6.02305i q^{51} +1.83922i q^{53} +12.6813i q^{55} +(6.90084 + 6.90084i) q^{57} +(-6.28635 + 6.28635i) q^{59} -10.5817i q^{61} +(-0.136317 - 0.136317i) q^{63} +(2.65398 + 11.9919i) q^{65} +(4.21315 + 4.21315i) q^{67} +5.53449 q^{69} +(2.59715 - 2.59715i) q^{71} +(-0.388093 + 0.388093i) q^{73} +9.16673i q^{75} +0.668725 q^{77} -15.3812i q^{79} -4.62865 q^{81} +(2.46502 + 2.46502i) q^{83} +(10.4516 + 10.4516i) q^{85} -6.37660i q^{87} +(-11.3583 + 11.3583i) q^{89} +(0.632373 - 0.139953i) q^{91} +(1.49500 - 1.49500i) q^{93} +23.9497 q^{95} +(3.31375 + 3.31375i) q^{97} +(-2.82506 + 2.82506i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 4 q^{3} + 16 q^{9} + 8 q^{11} + 12 q^{19} + 52 q^{27} - 12 q^{33} - 44 q^{35} - 24 q^{41} + 8 q^{57} - 20 q^{59} - 8 q^{65} + 16 q^{67} + 24 q^{73} - 44 q^{81} - 16 q^{83} - 16 q^{89} - 32 q^{91}+ \cdots - 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/416\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(287\) \(353\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.38809 −0.801416 −0.400708 0.916206i \(-0.631236\pi\)
−0.400708 + 0.916206i \(0.631236\pi\)
\(4\) 0 0
\(5\) −2.40872 + 2.40872i −1.07721 + 1.07721i −0.0804522 + 0.996758i \(0.525636\pi\)
−0.996758 + 0.0804522i \(0.974364\pi\)
\(6\) 0 0
\(7\) 0.127019 + 0.127019i 0.0480088 + 0.0480088i 0.730704 0.682695i \(-0.239192\pi\)
−0.682695 + 0.730704i \(0.739192\pi\)
\(8\) 0 0
\(9\) −1.07320 −0.357733
\(10\) 0 0
\(11\) 2.63237 2.63237i 0.793690 0.793690i −0.188402 0.982092i \(-0.560331\pi\)
0.982092 + 0.188402i \(0.0603307\pi\)
\(12\) 0 0
\(13\) 1.93837 3.04019i 0.537606 0.843196i
\(14\) 0 0
\(15\) 3.34352 3.34352i 0.863294 0.863294i
\(16\) 0 0
\(17\) 4.33908i 1.05238i −0.850366 0.526191i \(-0.823620\pi\)
0.850366 0.526191i \(-0.176380\pi\)
\(18\) 0 0
\(19\) −4.97146 4.97146i −1.14053 1.14053i −0.988353 0.152177i \(-0.951372\pi\)
−0.152177 0.988353i \(-0.548628\pi\)
\(20\) 0 0
\(21\) −0.176315 0.176315i −0.0384750 0.0384750i
\(22\) 0 0
\(23\) −3.98711 −0.831371 −0.415685 0.909508i \(-0.636458\pi\)
−0.415685 + 0.909508i \(0.636458\pi\)
\(24\) 0 0
\(25\) 6.60383i 1.32077i
\(26\) 0 0
\(27\) 5.65398 1.08811
\(28\) 0 0
\(29\) 4.59378i 0.853044i 0.904477 + 0.426522i \(0.140261\pi\)
−0.904477 + 0.426522i \(0.859739\pi\)
\(30\) 0 0
\(31\) −1.07702 + 1.07702i −0.193438 + 0.193438i −0.797180 0.603742i \(-0.793676\pi\)
0.603742 + 0.797180i \(0.293676\pi\)
\(32\) 0 0
\(33\) −3.65398 + 3.65398i −0.636076 + 0.636076i
\(34\) 0 0
\(35\) −0.611907 −0.103431
\(36\) 0 0
\(37\) −2.45494 2.45494i −0.403590 0.403590i 0.475906 0.879496i \(-0.342120\pi\)
−0.879496 + 0.475906i \(0.842120\pi\)
\(38\) 0 0
\(39\) −2.69063 + 4.22006i −0.430846 + 0.675751i
\(40\) 0 0
\(41\) 0.388093 + 0.388093i 0.0606099 + 0.0606099i 0.736762 0.676152i \(-0.236354\pi\)
−0.676152 + 0.736762i \(0.736354\pi\)
\(42\) 0 0
\(43\) 5.02419i 0.766182i −0.923711 0.383091i \(-0.874860\pi\)
0.923711 0.383091i \(-0.125140\pi\)
\(44\) 0 0
\(45\) 2.58503 2.58503i 0.385354 0.385354i
\(46\) 0 0
\(47\) −1.00356 1.00356i −0.146384 0.146384i 0.630116 0.776501i \(-0.283007\pi\)
−0.776501 + 0.630116i \(0.783007\pi\)
\(48\) 0 0
\(49\) 6.96773i 0.995390i
\(50\) 0 0
\(51\) 6.02305i 0.843396i
\(52\) 0 0
\(53\) 1.83922i 0.252636i 0.991990 + 0.126318i \(0.0403161\pi\)
−0.991990 + 0.126318i \(0.959684\pi\)
\(54\) 0 0
\(55\) 12.6813i 1.70994i
\(56\) 0 0
\(57\) 6.90084 + 6.90084i 0.914039 + 0.914039i
\(58\) 0 0
\(59\) −6.28635 + 6.28635i −0.818413 + 0.818413i −0.985878 0.167465i \(-0.946442\pi\)
0.167465 + 0.985878i \(0.446442\pi\)
\(60\) 0 0
\(61\) 10.5817i 1.35485i −0.735592 0.677425i \(-0.763096\pi\)
0.735592 0.677425i \(-0.236904\pi\)
\(62\) 0 0
\(63\) −0.136317 0.136317i −0.0171743 0.0171743i
\(64\) 0 0
\(65\) 2.65398 + 11.9919i 0.329185 + 1.48741i
\(66\) 0 0
\(67\) 4.21315 + 4.21315i 0.514718 + 0.514718i 0.915969 0.401250i \(-0.131424\pi\)
−0.401250 + 0.915969i \(0.631424\pi\)
\(68\) 0 0
\(69\) 5.53449 0.666274
\(70\) 0 0
\(71\) 2.59715 2.59715i 0.308225 0.308225i −0.535995 0.844221i \(-0.680064\pi\)
0.844221 + 0.535995i \(0.180064\pi\)
\(72\) 0 0
\(73\) −0.388093 + 0.388093i −0.0454228 + 0.0454228i −0.729453 0.684031i \(-0.760225\pi\)
0.684031 + 0.729453i \(0.260225\pi\)
\(74\) 0 0
\(75\) 9.16673i 1.05848i
\(76\) 0 0
\(77\) 0.668725 0.0762082
\(78\) 0 0
\(79\) 15.3812i 1.73052i −0.501323 0.865260i \(-0.667153\pi\)
0.501323 0.865260i \(-0.332847\pi\)
\(80\) 0 0
\(81\) −4.62865 −0.514294
\(82\) 0 0
\(83\) 2.46502 + 2.46502i 0.270571 + 0.270571i 0.829330 0.558759i \(-0.188722\pi\)
−0.558759 + 0.829330i \(0.688722\pi\)
\(84\) 0 0
\(85\) 10.4516 + 10.4516i 1.13364 + 1.13364i
\(86\) 0 0
\(87\) 6.37660i 0.683643i
\(88\) 0 0
\(89\) −11.3583 + 11.3583i −1.20397 + 1.20397i −0.231027 + 0.972947i \(0.574209\pi\)
−0.972947 + 0.231027i \(0.925791\pi\)
\(90\) 0 0
\(91\) 0.632373 0.139953i 0.0662907 0.0146710i
\(92\) 0 0
\(93\) 1.49500 1.49500i 0.155025 0.155025i
\(94\) 0 0
\(95\) 23.9497 2.45718
\(96\) 0 0
\(97\) 3.31375 + 3.31375i 0.336461 + 0.336461i 0.855034 0.518573i \(-0.173536\pi\)
−0.518573 + 0.855034i \(0.673536\pi\)
\(98\) 0 0
\(99\) −2.82506 + 2.82506i −0.283929 + 0.283929i
\(100\) 0 0
\(101\) −19.0522 −1.89577 −0.947884 0.318617i \(-0.896782\pi\)
−0.947884 + 0.318617i \(0.896782\pi\)
\(102\) 0 0
\(103\) −13.3555 −1.31596 −0.657978 0.753037i \(-0.728588\pi\)
−0.657978 + 0.753037i \(0.728588\pi\)
\(104\) 0 0
\(105\) 0.849384 0.0828914
\(106\) 0 0
\(107\) 1.78249 0.172320 0.0861601 0.996281i \(-0.472540\pi\)
0.0861601 + 0.996281i \(0.472540\pi\)
\(108\) 0 0
\(109\) −10.3367 + 10.3367i −0.990079 + 0.990079i −0.999951 0.00987275i \(-0.996857\pi\)
0.00987275 + 0.999951i \(0.496857\pi\)
\(110\) 0 0
\(111\) 3.40768 + 3.40768i 0.323443 + 0.323443i
\(112\) 0 0
\(113\) 11.9787 1.12686 0.563429 0.826164i \(-0.309482\pi\)
0.563429 + 0.826164i \(0.309482\pi\)
\(114\) 0 0
\(115\) 9.60383 9.60383i 0.895562 0.895562i
\(116\) 0 0
\(117\) −2.08025 + 3.26273i −0.192319 + 0.301639i
\(118\) 0 0
\(119\) 0.551148 0.551148i 0.0505236 0.0505236i
\(120\) 0 0
\(121\) 2.85877i 0.259888i
\(122\) 0 0
\(123\) −0.538709 0.538709i −0.0485737 0.0485737i
\(124\) 0 0
\(125\) 3.86317 + 3.86317i 0.345532 + 0.345532i
\(126\) 0 0
\(127\) −1.46123 −0.129663 −0.0648316 0.997896i \(-0.520651\pi\)
−0.0648316 + 0.997896i \(0.520651\pi\)
\(128\) 0 0
\(129\) 6.97404i 0.614030i
\(130\) 0 0
\(131\) −3.75944 −0.328464 −0.164232 0.986422i \(-0.552515\pi\)
−0.164232 + 0.986422i \(0.552515\pi\)
\(132\) 0 0
\(133\) 1.26294i 0.109511i
\(134\) 0 0
\(135\) −13.6188 + 13.6188i −1.17212 + 1.17212i
\(136\) 0 0
\(137\) 6.09739 6.09739i 0.520935 0.520935i −0.396919 0.917854i \(-0.629921\pi\)
0.917854 + 0.396919i \(0.129921\pi\)
\(138\) 0 0
\(139\) −19.3362 −1.64007 −0.820036 0.572311i \(-0.806047\pi\)
−0.820036 + 0.572311i \(0.806047\pi\)
\(140\) 0 0
\(141\) 1.39303 + 1.39303i 0.117315 + 0.117315i
\(142\) 0 0
\(143\) −2.90041 13.1054i −0.242544 1.09593i
\(144\) 0 0
\(145\) −11.0651 11.0651i −0.918908 0.918908i
\(146\) 0 0
\(147\) 9.67186i 0.797721i
\(148\) 0 0
\(149\) 5.83926 5.83926i 0.478371 0.478371i −0.426240 0.904610i \(-0.640162\pi\)
0.904610 + 0.426240i \(0.140162\pi\)
\(150\) 0 0
\(151\) 13.5924 + 13.5924i 1.10613 + 1.10613i 0.993654 + 0.112479i \(0.0358791\pi\)
0.112479 + 0.993654i \(0.464121\pi\)
\(152\) 0 0
\(153\) 4.65670i 0.376472i
\(154\) 0 0
\(155\) 5.18847i 0.416748i
\(156\) 0 0
\(157\) 3.22500i 0.257383i −0.991685 0.128691i \(-0.958922\pi\)
0.991685 0.128691i \(-0.0410777\pi\)
\(158\) 0 0
\(159\) 2.55301i 0.202467i
\(160\) 0 0
\(161\) −0.506441 0.506441i −0.0399131 0.0399131i
\(162\) 0 0
\(163\) 12.2685 12.2685i 0.960941 0.960941i −0.0383247 0.999265i \(-0.512202\pi\)
0.999265 + 0.0383247i \(0.0122021\pi\)
\(164\) 0 0
\(165\) 17.6028i 1.37038i
\(166\) 0 0
\(167\) −7.73367 7.73367i −0.598450 0.598450i 0.341450 0.939900i \(-0.389082\pi\)
−0.939900 + 0.341450i \(0.889082\pi\)
\(168\) 0 0
\(169\) −5.48548 11.7860i −0.421960 0.906614i
\(170\) 0 0
\(171\) 5.33536 + 5.33536i 0.408005 + 0.408005i
\(172\) 0 0
\(173\) 13.2073 1.00413 0.502066 0.864829i \(-0.332573\pi\)
0.502066 + 0.864829i \(0.332573\pi\)
\(174\) 0 0
\(175\) 0.838814 0.838814i 0.0634084 0.0634084i
\(176\) 0 0
\(177\) 8.72604 8.72604i 0.655889 0.655889i
\(178\) 0 0
\(179\) 5.24686i 0.392169i 0.980587 + 0.196085i \(0.0628227\pi\)
−0.980587 + 0.196085i \(0.937177\pi\)
\(180\) 0 0
\(181\) −3.49698 −0.259928 −0.129964 0.991519i \(-0.541486\pi\)
−0.129964 + 0.991519i \(0.541486\pi\)
\(182\) 0 0
\(183\) 14.6884i 1.08580i
\(184\) 0 0
\(185\) 11.8265 0.869502
\(186\) 0 0
\(187\) −11.4221 11.4221i −0.835266 0.835266i
\(188\) 0 0
\(189\) 0.718165 + 0.718165i 0.0522388 + 0.0522388i
\(190\) 0 0
\(191\) 9.17512i 0.663888i −0.943299 0.331944i \(-0.892295\pi\)
0.943299 0.331944i \(-0.107705\pi\)
\(192\) 0 0
\(193\) 0.0825862 0.0825862i 0.00594469 0.00594469i −0.704128 0.710073i \(-0.748662\pi\)
0.710073 + 0.704128i \(0.248662\pi\)
\(194\) 0 0
\(195\) −3.68397 16.6459i −0.263814 1.19204i
\(196\) 0 0
\(197\) 8.65184 8.65184i 0.616418 0.616418i −0.328193 0.944611i \(-0.606439\pi\)
0.944611 + 0.328193i \(0.106439\pi\)
\(198\) 0 0
\(199\) −16.3536 −1.15927 −0.579637 0.814875i \(-0.696806\pi\)
−0.579637 + 0.814875i \(0.696806\pi\)
\(200\) 0 0
\(201\) −5.84824 5.84824i −0.412503 0.412503i
\(202\) 0 0
\(203\) −0.583499 + 0.583499i −0.0409536 + 0.0409536i
\(204\) 0 0
\(205\) −1.86961 −0.130579
\(206\) 0 0
\(207\) 4.27897 0.297409
\(208\) 0 0
\(209\) −26.1734 −1.81046
\(210\) 0 0
\(211\) 12.7723 0.879283 0.439642 0.898173i \(-0.355105\pi\)
0.439642 + 0.898173i \(0.355105\pi\)
\(212\) 0 0
\(213\) −3.60509 + 3.60509i −0.247017 + 0.247017i
\(214\) 0 0
\(215\) 12.1018 + 12.1018i 0.825339 + 0.825339i
\(216\) 0 0
\(217\) −0.273605 −0.0185735
\(218\) 0 0
\(219\) 0.538709 0.538709i 0.0364026 0.0364026i
\(220\) 0 0
\(221\) −13.1916 8.41073i −0.887365 0.565767i
\(222\) 0 0
\(223\) 12.8482 12.8482i 0.860380 0.860380i −0.131002 0.991382i \(-0.541819\pi\)
0.991382 + 0.131002i \(0.0418194\pi\)
\(224\) 0 0
\(225\) 7.08722i 0.472481i
\(226\) 0 0
\(227\) 10.2863 + 10.2863i 0.682729 + 0.682729i 0.960614 0.277885i \(-0.0896335\pi\)
−0.277885 + 0.960614i \(0.589634\pi\)
\(228\) 0 0
\(229\) −2.44653 2.44653i −0.161671 0.161671i 0.621635 0.783307i \(-0.286469\pi\)
−0.783307 + 0.621635i \(0.786469\pi\)
\(230\) 0 0
\(231\) −0.928252 −0.0610745
\(232\) 0 0
\(233\) 6.36599i 0.417050i 0.978017 + 0.208525i \(0.0668663\pi\)
−0.978017 + 0.208525i \(0.933134\pi\)
\(234\) 0 0
\(235\) 4.83458 0.315373
\(236\) 0 0
\(237\) 21.3505i 1.38687i
\(238\) 0 0
\(239\) −12.2196 + 12.2196i −0.790418 + 0.790418i −0.981562 0.191144i \(-0.938780\pi\)
0.191144 + 0.981562i \(0.438780\pi\)
\(240\) 0 0
\(241\) 10.9752 10.9752i 0.706973 0.706973i −0.258924 0.965898i \(-0.583368\pi\)
0.965898 + 0.258924i \(0.0833680\pi\)
\(242\) 0 0
\(243\) −10.5369 −0.675945
\(244\) 0 0
\(245\) 16.7833 + 16.7833i 1.07225 + 1.07225i
\(246\) 0 0
\(247\) −24.7507 + 5.47766i −1.57485 + 0.348535i
\(248\) 0 0
\(249\) −3.42167 3.42167i −0.216839 0.216839i
\(250\) 0 0
\(251\) 0.692187i 0.0436905i 0.999761 + 0.0218452i \(0.00695411\pi\)
−0.999761 + 0.0218452i \(0.993046\pi\)
\(252\) 0 0
\(253\) −10.4956 + 10.4956i −0.659851 + 0.659851i
\(254\) 0 0
\(255\) −14.5078 14.5078i −0.908515 0.908515i
\(256\) 0 0
\(257\) 16.5622i 1.03312i −0.856251 0.516560i \(-0.827212\pi\)
0.856251 0.516560i \(-0.172788\pi\)
\(258\) 0 0
\(259\) 0.623650i 0.0387517i
\(260\) 0 0
\(261\) 4.93004i 0.305162i
\(262\) 0 0
\(263\) 3.54818i 0.218790i 0.993998 + 0.109395i \(0.0348914\pi\)
−0.993998 + 0.109395i \(0.965109\pi\)
\(264\) 0 0
\(265\) −4.43016 4.43016i −0.272143 0.272143i
\(266\) 0 0
\(267\) 15.7663 15.7663i 0.964884 0.964884i
\(268\) 0 0
\(269\) 12.6310i 0.770127i −0.922890 0.385063i \(-0.874180\pi\)
0.922890 0.385063i \(-0.125820\pi\)
\(270\) 0 0
\(271\) 15.0265 + 15.0265i 0.912795 + 0.912795i 0.996491 0.0836966i \(-0.0266727\pi\)
−0.0836966 + 0.996491i \(0.526673\pi\)
\(272\) 0 0
\(273\) −0.877792 + 0.194267i −0.0531264 + 0.0117576i
\(274\) 0 0
\(275\) −17.3837 17.3837i −1.04828 1.04828i
\(276\) 0 0
\(277\) 11.4437 0.687585 0.343793 0.939046i \(-0.388288\pi\)
0.343793 + 0.939046i \(0.388288\pi\)
\(278\) 0 0
\(279\) 1.15586 1.15586i 0.0691993 0.0691993i
\(280\) 0 0
\(281\) 0.709295 0.709295i 0.0423130 0.0423130i −0.685634 0.727947i \(-0.740475\pi\)
0.727947 + 0.685634i \(0.240475\pi\)
\(282\) 0 0
\(283\) 4.12466i 0.245185i −0.992457 0.122593i \(-0.960879\pi\)
0.992457 0.122593i \(-0.0391209\pi\)
\(284\) 0 0
\(285\) −33.2443 −1.96922
\(286\) 0 0
\(287\) 0.0985906i 0.00581962i
\(288\) 0 0
\(289\) −1.82764 −0.107508
\(290\) 0 0
\(291\) −4.59980 4.59980i −0.269645 0.269645i
\(292\) 0 0
\(293\) −3.00083 3.00083i −0.175310 0.175310i 0.613998 0.789308i \(-0.289560\pi\)
−0.789308 + 0.613998i \(0.789560\pi\)
\(294\) 0 0
\(295\) 30.2841i 1.76321i
\(296\) 0 0
\(297\) 14.8834 14.8834i 0.863621 0.863621i
\(298\) 0 0
\(299\) −7.72848 + 12.1216i −0.446950 + 0.701009i
\(300\) 0 0
\(301\) 0.638169 0.638169i 0.0367835 0.0367835i
\(302\) 0 0
\(303\) 26.4463 1.51930
\(304\) 0 0
\(305\) 25.4883 + 25.4883i 1.45946 + 1.45946i
\(306\) 0 0
\(307\) 2.76089 2.76089i 0.157572 0.157572i −0.623918 0.781490i \(-0.714460\pi\)
0.781490 + 0.623918i \(0.214460\pi\)
\(308\) 0 0
\(309\) 18.5387 1.05463
\(310\) 0 0
\(311\) 4.27897 0.242638 0.121319 0.992614i \(-0.461288\pi\)
0.121319 + 0.992614i \(0.461288\pi\)
\(312\) 0 0
\(313\) −3.68528 −0.208304 −0.104152 0.994561i \(-0.533213\pi\)
−0.104152 + 0.994561i \(0.533213\pi\)
\(314\) 0 0
\(315\) 0.656698 0.0370007
\(316\) 0 0
\(317\) 2.94735 2.94735i 0.165540 0.165540i −0.619476 0.785016i \(-0.712655\pi\)
0.785016 + 0.619476i \(0.212655\pi\)
\(318\) 0 0
\(319\) 12.0925 + 12.0925i 0.677053 + 0.677053i
\(320\) 0 0
\(321\) −2.47427 −0.138100
\(322\) 0 0
\(323\) −21.5716 + 21.5716i −1.20027 + 1.20027i
\(324\) 0 0
\(325\) −20.0769 12.8006i −1.11366 0.710051i
\(326\) 0 0
\(327\) 14.3483 14.3483i 0.793464 0.793464i
\(328\) 0 0
\(329\) 0.254943i 0.0140555i
\(330\) 0 0
\(331\) −8.72345 8.72345i −0.479484 0.479484i 0.425482 0.904967i \(-0.360104\pi\)
−0.904967 + 0.425482i \(0.860104\pi\)
\(332\) 0 0
\(333\) 2.63464 + 2.63464i 0.144377 + 0.144377i
\(334\) 0 0
\(335\) −20.2966 −1.10892
\(336\) 0 0
\(337\) 7.00939i 0.381826i 0.981607 + 0.190913i \(0.0611448\pi\)
−0.981607 + 0.190913i \(0.938855\pi\)
\(338\) 0 0
\(339\) −16.6275 −0.903082
\(340\) 0 0
\(341\) 5.67023i 0.307060i
\(342\) 0 0
\(343\) 1.77417 1.77417i 0.0957963 0.0957963i
\(344\) 0 0
\(345\) −13.3310 + 13.3310i −0.717717 + 0.717717i
\(346\) 0 0
\(347\) 33.5948 1.80346 0.901730 0.432299i \(-0.142297\pi\)
0.901730 + 0.432299i \(0.142297\pi\)
\(348\) 0 0
\(349\) 14.5137 + 14.5137i 0.776901 + 0.776901i 0.979303 0.202401i \(-0.0648745\pi\)
−0.202401 + 0.979303i \(0.564875\pi\)
\(350\) 0 0
\(351\) 10.9595 17.1892i 0.584973 0.917489i
\(352\) 0 0
\(353\) −5.02174 5.02174i −0.267280 0.267280i 0.560723 0.828003i \(-0.310523\pi\)
−0.828003 + 0.560723i \(0.810523\pi\)
\(354\) 0 0
\(355\) 12.5116i 0.664047i
\(356\) 0 0
\(357\) −0.765044 + 0.765044i −0.0404904 + 0.0404904i
\(358\) 0 0
\(359\) 15.4781 + 15.4781i 0.816903 + 0.816903i 0.985658 0.168755i \(-0.0539746\pi\)
−0.168755 + 0.985658i \(0.553975\pi\)
\(360\) 0 0
\(361\) 30.4307i 1.60162i
\(362\) 0 0
\(363\) 3.96824i 0.208279i
\(364\) 0 0
\(365\) 1.86961i 0.0978599i
\(366\) 0 0
\(367\) 29.4166i 1.53553i −0.640729 0.767767i \(-0.721368\pi\)
0.640729 0.767767i \(-0.278632\pi\)
\(368\) 0 0
\(369\) −0.416501 0.416501i −0.0216822 0.0216822i
\(370\) 0 0
\(371\) −0.233617 + 0.233617i −0.0121288 + 0.0121288i
\(372\) 0 0
\(373\) 2.12493i 0.110025i 0.998486 + 0.0550123i \(0.0175198\pi\)
−0.998486 + 0.0550123i \(0.982480\pi\)
\(374\) 0 0
\(375\) −5.36244 5.36244i −0.276915 0.276915i
\(376\) 0 0
\(377\) 13.9660 + 8.90443i 0.719284 + 0.458601i
\(378\) 0 0
\(379\) 9.31054 + 9.31054i 0.478250 + 0.478250i 0.904572 0.426321i \(-0.140191\pi\)
−0.426321 + 0.904572i \(0.640191\pi\)
\(380\) 0 0
\(381\) 2.02832 0.103914
\(382\) 0 0
\(383\) −24.0746 + 24.0746i −1.23015 + 1.23015i −0.266249 + 0.963904i \(0.585784\pi\)
−0.963904 + 0.266249i \(0.914216\pi\)
\(384\) 0 0
\(385\) −1.61077 + 1.61077i −0.0820923 + 0.0820923i
\(386\) 0 0
\(387\) 5.39195i 0.274088i
\(388\) 0 0
\(389\) −20.8431 −1.05679 −0.528394 0.848999i \(-0.677206\pi\)
−0.528394 + 0.848999i \(0.677206\pi\)
\(390\) 0 0
\(391\) 17.3004i 0.874920i
\(392\) 0 0
\(393\) 5.21846 0.263236
\(394\) 0 0
\(395\) 37.0490 + 37.0490i 1.86414 + 1.86414i
\(396\) 0 0
\(397\) 16.7224 + 16.7224i 0.839273 + 0.839273i 0.988763 0.149490i \(-0.0477633\pi\)
−0.149490 + 0.988763i \(0.547763\pi\)
\(398\) 0 0
\(399\) 1.75308i 0.0877638i
\(400\) 0 0
\(401\) −19.8319 + 19.8319i −0.990359 + 0.990359i −0.999954 0.00959526i \(-0.996946\pi\)
0.00959526 + 0.999954i \(0.496946\pi\)
\(402\) 0 0
\(403\) 1.18668 + 5.36200i 0.0591129 + 0.267100i
\(404\) 0 0
\(405\) 11.1491 11.1491i 0.554003 0.554003i
\(406\) 0 0
\(407\) −12.9246 −0.640650
\(408\) 0 0
\(409\) −10.6165 10.6165i −0.524954 0.524954i 0.394109 0.919064i \(-0.371053\pi\)
−0.919064 + 0.394109i \(0.871053\pi\)
\(410\) 0 0
\(411\) −8.46374 + 8.46374i −0.417485 + 0.417485i
\(412\) 0 0
\(413\) −1.59698 −0.0785821
\(414\) 0 0
\(415\) −11.8750 −0.582923
\(416\) 0 0
\(417\) 26.8404 1.31438
\(418\) 0 0
\(419\) −19.6570 −0.960308 −0.480154 0.877184i \(-0.659419\pi\)
−0.480154 + 0.877184i \(0.659419\pi\)
\(420\) 0 0
\(421\) −2.77602 + 2.77602i −0.135295 + 0.135295i −0.771511 0.636216i \(-0.780499\pi\)
0.636216 + 0.771511i \(0.280499\pi\)
\(422\) 0 0
\(423\) 1.07702 + 1.07702i 0.0523665 + 0.0523665i
\(424\) 0 0
\(425\) −28.6546 −1.38995
\(426\) 0 0
\(427\) 1.34408 1.34408i 0.0650447 0.0650447i
\(428\) 0 0
\(429\) 4.02603 + 18.1915i 0.194379 + 0.878295i
\(430\) 0 0
\(431\) −24.6412 + 24.6412i −1.18692 + 1.18692i −0.209009 + 0.977914i \(0.567024\pi\)
−0.977914 + 0.209009i \(0.932976\pi\)
\(432\) 0 0
\(433\) 1.73076i 0.0831752i 0.999135 + 0.0415876i \(0.0132416\pi\)
−0.999135 + 0.0415876i \(0.986758\pi\)
\(434\) 0 0
\(435\) 15.3594 + 15.3594i 0.736427 + 0.736427i
\(436\) 0 0
\(437\) 19.8218 + 19.8218i 0.948204 + 0.948204i
\(438\) 0 0
\(439\) 25.0521 1.19567 0.597836 0.801618i \(-0.296027\pi\)
0.597836 + 0.801618i \(0.296027\pi\)
\(440\) 0 0
\(441\) 7.47776i 0.356084i
\(442\) 0 0
\(443\) 11.4098 0.542098 0.271049 0.962566i \(-0.412630\pi\)
0.271049 + 0.962566i \(0.412630\pi\)
\(444\) 0 0
\(445\) 54.7177i 2.59387i
\(446\) 0 0
\(447\) −8.10543 + 8.10543i −0.383374 + 0.383374i
\(448\) 0 0
\(449\) −1.05015 + 1.05015i −0.0495596 + 0.0495596i −0.731452 0.681893i \(-0.761157\pi\)
0.681893 + 0.731452i \(0.261157\pi\)
\(450\) 0 0
\(451\) 2.04321 0.0962110
\(452\) 0 0
\(453\) −18.8675 18.8675i −0.886473 0.886473i
\(454\) 0 0
\(455\) −1.18610 + 1.86031i −0.0556052 + 0.0872128i
\(456\) 0 0
\(457\) 26.4630 + 26.4630i 1.23789 + 1.23789i 0.960863 + 0.277025i \(0.0893484\pi\)
0.277025 + 0.960863i \(0.410652\pi\)
\(458\) 0 0
\(459\) 24.5331i 1.14511i
\(460\) 0 0
\(461\) 15.0134 15.0134i 0.699243 0.699243i −0.265004 0.964247i \(-0.585373\pi\)
0.964247 + 0.265004i \(0.0853734\pi\)
\(462\) 0 0
\(463\) 4.90869 + 4.90869i 0.228126 + 0.228126i 0.811909 0.583783i \(-0.198428\pi\)
−0.583783 + 0.811909i \(0.698428\pi\)
\(464\) 0 0
\(465\) 7.20207i 0.333988i
\(466\) 0 0
\(467\) 15.5284i 0.718566i 0.933229 + 0.359283i \(0.116979\pi\)
−0.933229 + 0.359283i \(0.883021\pi\)
\(468\) 0 0
\(469\) 1.07030i 0.0494220i
\(470\) 0 0
\(471\) 4.47660i 0.206271i
\(472\) 0 0
\(473\) −13.2255 13.2255i −0.608111 0.608111i
\(474\) 0 0
\(475\) −32.8306 + 32.8306i −1.50637 + 1.50637i
\(476\) 0 0
\(477\) 1.97385i 0.0903764i
\(478\) 0 0
\(479\) 13.9271 + 13.9271i 0.636345 + 0.636345i 0.949652 0.313307i \(-0.101437\pi\)
−0.313307 + 0.949652i \(0.601437\pi\)
\(480\) 0 0
\(481\) −12.2220 + 2.70491i −0.557277 + 0.123333i
\(482\) 0 0
\(483\) 0.702987 + 0.702987i 0.0319870 + 0.0319870i
\(484\) 0 0
\(485\) −15.9638 −0.724878
\(486\) 0 0
\(487\) 10.2416 10.2416i 0.464092 0.464092i −0.435902 0.899994i \(-0.643571\pi\)
0.899994 + 0.435902i \(0.143571\pi\)
\(488\) 0 0
\(489\) −17.0298 + 17.0298i −0.770113 + 0.770113i
\(490\) 0 0
\(491\) 38.4981i 1.73740i −0.495341 0.868698i \(-0.664957\pi\)
0.495341 0.868698i \(-0.335043\pi\)
\(492\) 0 0
\(493\) 19.9328 0.897728
\(494\) 0 0
\(495\) 13.6095i 0.611703i
\(496\) 0 0
\(497\) 0.659778 0.0295951
\(498\) 0 0
\(499\) −7.83831 7.83831i −0.350891 0.350891i 0.509550 0.860441i \(-0.329812\pi\)
−0.860441 + 0.509550i \(0.829812\pi\)
\(500\) 0 0
\(501\) 10.7351 + 10.7351i 0.479607 + 0.479607i
\(502\) 0 0
\(503\) 30.2373i 1.34822i −0.738633 0.674108i \(-0.764528\pi\)
0.738633 0.674108i \(-0.235472\pi\)
\(504\) 0 0
\(505\) 45.8914 45.8914i 2.04214 2.04214i
\(506\) 0 0
\(507\) 7.61436 + 16.3600i 0.338165 + 0.726575i
\(508\) 0 0
\(509\) 8.49635 8.49635i 0.376594 0.376594i −0.493278 0.869872i \(-0.664201\pi\)
0.869872 + 0.493278i \(0.164201\pi\)
\(510\) 0 0
\(511\) −0.0985906 −0.00436139
\(512\) 0 0
\(513\) −28.1085 28.1085i −1.24102 1.24102i
\(514\) 0 0
\(515\) 32.1696 32.1696i 1.41756 1.41756i
\(516\) 0 0
\(517\) −5.28349 −0.232368
\(518\) 0 0
\(519\) −18.3329 −0.804727
\(520\) 0 0
\(521\) 22.8258 1.00002 0.500008 0.866021i \(-0.333330\pi\)
0.500008 + 0.866021i \(0.333330\pi\)
\(522\) 0 0
\(523\) −29.2368 −1.27844 −0.639219 0.769025i \(-0.720742\pi\)
−0.639219 + 0.769025i \(0.720742\pi\)
\(524\) 0 0
\(525\) −1.16435 + 1.16435i −0.0508165 + 0.0508165i
\(526\) 0 0
\(527\) 4.67328 + 4.67328i 0.203571 + 0.203571i
\(528\) 0 0
\(529\) −7.10292 −0.308822
\(530\) 0 0
\(531\) 6.74650 6.74650i 0.292773 0.292773i
\(532\) 0 0
\(533\) 1.93214 0.427609i 0.0836903 0.0185218i
\(534\) 0 0
\(535\) −4.29352 + 4.29352i −0.185625 + 0.185625i
\(536\) 0 0
\(537\) 7.28313i 0.314290i
\(538\) 0 0
\(539\) −18.3417 18.3417i −0.790032 0.790032i
\(540\) 0 0
\(541\) −4.53575 4.53575i −0.195007 0.195007i 0.602849 0.797856i \(-0.294032\pi\)
−0.797856 + 0.602849i \(0.794032\pi\)
\(542\) 0 0
\(543\) 4.85413 0.208311
\(544\) 0 0
\(545\) 49.7965i 2.13305i
\(546\) 0 0
\(547\) 11.5183 0.492488 0.246244 0.969208i \(-0.420803\pi\)
0.246244 + 0.969208i \(0.420803\pi\)
\(548\) 0 0
\(549\) 11.3563i 0.484674i
\(550\) 0 0
\(551\) 22.8378 22.8378i 0.972923 0.972923i
\(552\) 0 0
\(553\) 1.95371 1.95371i 0.0830803 0.0830803i
\(554\) 0 0
\(555\) −16.4163 −0.696832
\(556\) 0 0
\(557\) −21.7184 21.7184i −0.920237 0.920237i 0.0768092 0.997046i \(-0.475527\pi\)
−0.997046 + 0.0768092i \(0.975527\pi\)
\(558\) 0 0
\(559\) −15.2745 9.73871i −0.646042 0.411904i
\(560\) 0 0
\(561\) 15.8549 + 15.8549i 0.669395 + 0.669395i
\(562\) 0 0
\(563\) 22.2920i 0.939494i −0.882801 0.469747i \(-0.844345\pi\)
0.882801 0.469747i \(-0.155655\pi\)
\(564\) 0 0
\(565\) −28.8532 + 28.8532i −1.21386 + 1.21386i
\(566\) 0 0
\(567\) −0.587928 0.587928i −0.0246907 0.0246907i
\(568\) 0 0
\(569\) 9.56035i 0.400791i −0.979715 0.200395i \(-0.935777\pi\)
0.979715 0.200395i \(-0.0642226\pi\)
\(570\) 0 0
\(571\) 13.1869i 0.551854i −0.961179 0.275927i \(-0.911015\pi\)
0.961179 0.275927i \(-0.0889848\pi\)
\(572\) 0 0
\(573\) 12.7359i 0.532050i
\(574\) 0 0
\(575\) 26.3302i 1.09805i
\(576\) 0 0
\(577\) 21.0017 + 21.0017i 0.874313 + 0.874313i 0.992939 0.118626i \(-0.0378489\pi\)
−0.118626 + 0.992939i \(0.537849\pi\)
\(578\) 0 0
\(579\) −0.114637 + 0.114637i −0.00476416 + 0.00476416i
\(580\) 0 0
\(581\) 0.626209i 0.0259795i
\(582\) 0 0
\(583\) 4.84152 + 4.84152i 0.200515 + 0.200515i
\(584\) 0 0
\(585\) −2.84824 12.8697i −0.117760 0.532097i
\(586\) 0 0
\(587\) −17.6365 17.6365i −0.727938 0.727938i 0.242271 0.970209i \(-0.422108\pi\)
−0.970209 + 0.242271i \(0.922108\pi\)
\(588\) 0 0
\(589\) 10.7087 0.441245
\(590\) 0 0
\(591\) −12.0096 + 12.0096i −0.494007 + 0.494007i
\(592\) 0 0
\(593\) −8.59997 + 8.59997i −0.353158 + 0.353158i −0.861283 0.508125i \(-0.830339\pi\)
0.508125 + 0.861283i \(0.330339\pi\)
\(594\) 0 0
\(595\) 2.65512i 0.108849i
\(596\) 0 0
\(597\) 22.7003 0.929061
\(598\) 0 0
\(599\) 30.9851i 1.26602i −0.774145 0.633009i \(-0.781820\pi\)
0.774145 0.633009i \(-0.218180\pi\)
\(600\) 0 0
\(601\) −27.5087 −1.12210 −0.561052 0.827781i \(-0.689603\pi\)
−0.561052 + 0.827781i \(0.689603\pi\)
\(602\) 0 0
\(603\) −4.52155 4.52155i −0.184132 0.184132i
\(604\) 0 0
\(605\) 6.88597 + 6.88597i 0.279954 + 0.279954i
\(606\) 0 0
\(607\) 24.3086i 0.986655i 0.869844 + 0.493328i \(0.164220\pi\)
−0.869844 + 0.493328i \(0.835780\pi\)
\(608\) 0 0
\(609\) 0.809951 0.809951i 0.0328209 0.0328209i
\(610\) 0 0
\(611\) −4.99628 + 1.10574i −0.202128 + 0.0447336i
\(612\) 0 0
\(613\) −18.8428 + 18.8428i −0.761053 + 0.761053i −0.976513 0.215460i \(-0.930875\pi\)
0.215460 + 0.976513i \(0.430875\pi\)
\(614\) 0 0
\(615\) 2.59519 0.104648
\(616\) 0 0
\(617\) −17.2326 17.2326i −0.693759 0.693759i 0.269298 0.963057i \(-0.413208\pi\)
−0.963057 + 0.269298i \(0.913208\pi\)
\(618\) 0 0
\(619\) −3.52674 + 3.52674i −0.141752 + 0.141752i −0.774422 0.632670i \(-0.781959\pi\)
0.632670 + 0.774422i \(0.281959\pi\)
\(620\) 0 0
\(621\) −22.5431 −0.904622
\(622\) 0 0
\(623\) −2.88544 −0.115603
\(624\) 0 0
\(625\) 14.4086 0.576344
\(626\) 0 0
\(627\) 36.3312 1.45093
\(628\) 0 0
\(629\) −10.6522 + 10.6522i −0.424730 + 0.424730i
\(630\) 0 0
\(631\) −6.65131 6.65131i −0.264784 0.264784i 0.562210 0.826994i \(-0.309951\pi\)
−0.826994 + 0.562210i \(0.809951\pi\)
\(632\) 0 0
\(633\) −17.7292 −0.704671
\(634\) 0 0
\(635\) 3.51969 3.51969i 0.139675 0.139675i
\(636\) 0 0
\(637\) −21.1832 13.5060i −0.839309 0.535128i
\(638\) 0 0
\(639\) −2.78726 + 2.78726i −0.110262 + 0.110262i
\(640\) 0 0
\(641\) 27.4814i 1.08545i −0.839910 0.542725i \(-0.817393\pi\)
0.839910 0.542725i \(-0.182607\pi\)
\(642\) 0 0
\(643\) 8.78571 + 8.78571i 0.346475 + 0.346475i 0.858795 0.512320i \(-0.171214\pi\)
−0.512320 + 0.858795i \(0.671214\pi\)
\(644\) 0 0
\(645\) −16.7985 16.7985i −0.661440 0.661440i
\(646\) 0 0
\(647\) −5.55484 −0.218383 −0.109192 0.994021i \(-0.534826\pi\)
−0.109192 + 0.994021i \(0.534826\pi\)
\(648\) 0 0
\(649\) 33.0960i 1.29913i
\(650\) 0 0
\(651\) 0.379789 0.0148851
\(652\) 0 0
\(653\) 20.7670i 0.812675i 0.913723 + 0.406338i \(0.133194\pi\)
−0.913723 + 0.406338i \(0.866806\pi\)
\(654\) 0 0
\(655\) 9.05543 9.05543i 0.353825 0.353825i
\(656\) 0 0
\(657\) 0.416501 0.416501i 0.0162492 0.0162492i
\(658\) 0 0
\(659\) 42.9802 1.67427 0.837135 0.546997i \(-0.184229\pi\)
0.837135 + 0.546997i \(0.184229\pi\)
\(660\) 0 0
\(661\) 24.6988 + 24.6988i 0.960674 + 0.960674i 0.999255 0.0385817i \(-0.0122840\pi\)
−0.0385817 + 0.999255i \(0.512284\pi\)
\(662\) 0 0
\(663\) 18.3112 + 11.6749i 0.711148 + 0.453414i
\(664\) 0 0
\(665\) 3.04207 + 3.04207i 0.117966 + 0.117966i
\(666\) 0 0
\(667\) 18.3159i 0.709196i
\(668\) 0 0
\(669\) −17.8345 + 17.8345i −0.689522 + 0.689522i
\(670\) 0 0
\(671\) −27.8550 27.8550i −1.07533 1.07533i
\(672\) 0 0
\(673\) 0.630317i 0.0242969i 0.999926 + 0.0121485i \(0.00386707\pi\)
−0.999926 + 0.0121485i \(0.996133\pi\)
\(674\) 0 0
\(675\) 37.3379i 1.43714i
\(676\) 0 0
\(677\) 19.4398i 0.747132i −0.927604 0.373566i \(-0.878135\pi\)
0.927604 0.373566i \(-0.121865\pi\)
\(678\) 0 0
\(679\) 0.841822i 0.0323062i
\(680\) 0 0
\(681\) −14.2784 14.2784i −0.547150 0.547150i
\(682\) 0 0
\(683\) −23.5885 + 23.5885i −0.902590 + 0.902590i −0.995660 0.0930695i \(-0.970332\pi\)
0.0930695 + 0.995660i \(0.470332\pi\)
\(684\) 0 0
\(685\) 29.3738i 1.12231i
\(686\) 0 0
\(687\) 3.39601 + 3.39601i 0.129566 + 0.129566i
\(688\) 0 0
\(689\) 5.59158 + 3.56508i 0.213022 + 0.135819i
\(690\) 0 0
\(691\) −10.6764 10.6764i −0.406149 0.406149i 0.474244 0.880393i \(-0.342721\pi\)
−0.880393 + 0.474244i \(0.842721\pi\)
\(692\) 0 0
\(693\) −0.717674 −0.0272622
\(694\) 0 0
\(695\) 46.5754 46.5754i 1.76670 1.76670i
\(696\) 0 0
\(697\) 1.68397 1.68397i 0.0637848 0.0637848i
\(698\) 0 0
\(699\) 8.83659i 0.334230i
\(700\) 0 0
\(701\) 28.6855 1.08344 0.541718 0.840560i \(-0.317774\pi\)
0.541718 + 0.840560i \(0.317774\pi\)
\(702\) 0 0
\(703\) 24.4092i 0.920612i
\(704\) 0 0
\(705\) −6.71085 −0.252745
\(706\) 0 0
\(707\) −2.42000 2.42000i −0.0910135 0.0910135i
\(708\) 0 0
\(709\) −32.5813 32.5813i −1.22362 1.22362i −0.966337 0.257279i \(-0.917174\pi\)
−0.257279 0.966337i \(-0.582826\pi\)
\(710\) 0 0
\(711\) 16.5071i 0.619064i
\(712\) 0 0
\(713\) 4.29420 4.29420i 0.160819 0.160819i
\(714\) 0 0
\(715\) 38.5535 + 24.5809i 1.44182 + 0.919275i
\(716\) 0 0
\(717\) 16.9619 16.9619i 0.633454 0.633454i
\(718\) 0 0
\(719\) −13.6202 −0.507948 −0.253974 0.967211i \(-0.581738\pi\)
−0.253974 + 0.967211i \(0.581738\pi\)
\(720\) 0 0
\(721\) −1.69641 1.69641i −0.0631775 0.0631775i
\(722\) 0 0
\(723\) −15.2346 + 15.2346i −0.566580 + 0.566580i
\(724\) 0 0
\(725\) 30.3366 1.12667
\(726\) 0 0
\(727\) 6.72700 0.249491 0.124745 0.992189i \(-0.460189\pi\)
0.124745 + 0.992189i \(0.460189\pi\)
\(728\) 0 0
\(729\) 28.5122 1.05601
\(730\) 0 0
\(731\) −21.8004 −0.806316
\(732\) 0 0
\(733\) 14.0245 14.0245i 0.518008 0.518008i −0.398961 0.916968i \(-0.630629\pi\)
0.916968 + 0.398961i \(0.130629\pi\)
\(734\) 0 0
\(735\) −23.2968 23.2968i −0.859314 0.859314i
\(736\) 0 0
\(737\) 22.1812 0.817054
\(738\) 0 0
\(739\) −23.8579 + 23.8579i −0.877627 + 0.877627i −0.993289 0.115661i \(-0.963101\pi\)
0.115661 + 0.993289i \(0.463101\pi\)
\(740\) 0 0
\(741\) 34.3562 7.60350i 1.26211 0.279322i
\(742\) 0 0
\(743\) 17.6669 17.6669i 0.648137 0.648137i −0.304406 0.952542i \(-0.598458\pi\)
0.952542 + 0.304406i \(0.0984579\pi\)
\(744\) 0 0
\(745\) 28.1302i 1.03061i
\(746\) 0 0
\(747\) −2.64545 2.64545i −0.0967920 0.0967920i
\(748\) 0 0
\(749\) 0.226411 + 0.226411i 0.00827289 + 0.00827289i
\(750\) 0 0
\(751\) −21.8413 −0.797002 −0.398501 0.917168i \(-0.630469\pi\)
−0.398501 + 0.917168i \(0.630469\pi\)
\(752\) 0 0
\(753\) 0.960820i 0.0350142i
\(754\) 0 0
\(755\) −65.4804 −2.38308
\(756\) 0 0
\(757\) 4.18475i 0.152097i −0.997104 0.0760486i \(-0.975770\pi\)
0.997104 0.0760486i \(-0.0242304\pi\)
\(758\) 0 0
\(759\) 14.5688 14.5688i 0.528815 0.528815i
\(760\) 0 0
\(761\) 7.52046 7.52046i 0.272617 0.272617i −0.557536 0.830153i \(-0.688253\pi\)
0.830153 + 0.557536i \(0.188253\pi\)
\(762\) 0 0
\(763\) −2.62593 −0.0950650
\(764\) 0 0
\(765\) −11.2167 11.2167i −0.405539 0.405539i
\(766\) 0 0
\(767\) 6.92644 + 31.2969i 0.250099 + 1.13007i
\(768\) 0 0
\(769\) −9.42965 9.42965i −0.340042 0.340042i 0.516341 0.856383i \(-0.327294\pi\)
−0.856383 + 0.516341i \(0.827294\pi\)
\(770\) 0 0
\(771\) 22.9898i 0.827959i
\(772\) 0 0
\(773\) 22.5741 22.5741i 0.811933 0.811933i −0.172990 0.984924i \(-0.555343\pi\)
0.984924 + 0.172990i \(0.0553429\pi\)
\(774\) 0 0
\(775\) 7.11245 + 7.11245i 0.255487 + 0.255487i
\(776\) 0 0
\(777\) 0.865684i 0.0310562i
\(778\) 0 0
\(779\) 3.85877i 0.138255i
\(780\) 0 0
\(781\) 13.6733i 0.489271i
\(782\) 0 0
\(783\) 25.9731i 0.928204i
\(784\) 0 0
\(785\) 7.76811 + 7.76811i 0.277256 + 0.277256i
\(786\) 0 0
\(787\) 28.3997 28.3997i 1.01234 1.01234i 0.0124163 0.999923i \(-0.496048\pi\)
0.999923 0.0124163i \(-0.00395233\pi\)
\(788\) 0 0
\(789\) 4.92521i 0.175342i
\(790\) 0 0
\(791\) 1.52152 + 1.52152i 0.0540992 + 0.0540992i
\(792\) 0 0
\(793\) −32.1704 20.5112i −1.14240 0.728375i
\(794\) 0 0
\(795\) 6.14948 + 6.14948i 0.218099 + 0.218099i
\(796\) 0 0
\(797\) −49.1622 −1.74142 −0.870708 0.491800i \(-0.836339\pi\)
−0.870708 + 0.491800i \(0.836339\pi\)
\(798\) 0 0
\(799\) −4.35453 + 4.35453i −0.154052 + 0.154052i
\(800\) 0 0
\(801\) 12.1897 12.1897i 0.430701 0.430701i
\(802\) 0 0
\(803\) 2.04321i 0.0721033i
\(804\) 0 0
\(805\) 2.43974 0.0859897
\(806\) 0 0
\(807\) 17.5330i 0.617192i
\(808\) 0 0
\(809\) 11.8224 0.415652 0.207826 0.978166i \(-0.433361\pi\)
0.207826 + 0.978166i \(0.433361\pi\)
\(810\) 0 0
\(811\) 24.6297 + 24.6297i 0.864866 + 0.864866i 0.991899 0.127033i \(-0.0405453\pi\)
−0.127033 + 0.991899i \(0.540545\pi\)
\(812\) 0 0
\(813\) −20.8582 20.8582i −0.731528 0.731528i
\(814\) 0 0
\(815\) 59.1025i 2.07027i
\(816\) 0 0
\(817\) −24.9775 + 24.9775i −0.873853 + 0.873853i
\(818\) 0 0
\(819\) −0.678661 + 0.150197i −0.0237144 + 0.00524831i
\(820\) 0 0
\(821\) −25.0256 + 25.0256i −0.873400 + 0.873400i −0.992841 0.119441i \(-0.961890\pi\)
0.119441 + 0.992841i \(0.461890\pi\)
\(822\) 0 0
\(823\) −32.0560 −1.11740 −0.558702 0.829369i \(-0.688700\pi\)
−0.558702 + 0.829369i \(0.688700\pi\)
\(824\) 0 0
\(825\) 24.1302 + 24.1302i 0.840107 + 0.840107i
\(826\) 0 0
\(827\) 12.2989 12.2989i 0.427674 0.427674i −0.460162 0.887835i \(-0.652208\pi\)
0.887835 + 0.460162i \(0.152208\pi\)
\(828\) 0 0
\(829\) 44.2580 1.53714 0.768572 0.639763i \(-0.220967\pi\)
0.768572 + 0.639763i \(0.220967\pi\)
\(830\) 0 0
\(831\) −15.8849 −0.551042
\(832\) 0 0
\(833\) −30.2336 −1.04753
\(834\) 0 0
\(835\) 37.2564 1.28931
\(836\) 0 0
\(837\) −6.08944 + 6.08944i −0.210482 + 0.210482i
\(838\) 0 0
\(839\) −11.5850 11.5850i −0.399960 0.399960i 0.478259 0.878219i \(-0.341268\pi\)
−0.878219 + 0.478259i \(0.841268\pi\)
\(840\) 0 0
\(841\) 7.89716 0.272316
\(842\) 0 0
\(843\) −0.984567 + 0.984567i −0.0339103 + 0.0339103i
\(844\) 0 0
\(845\) 41.6021 + 15.1761i 1.43115 + 0.522075i
\(846\) 0 0
\(847\) 0.363119 0.363119i 0.0124769 0.0124769i
\(848\) 0 0
\(849\) 5.72541i 0.196495i
\(850\) 0 0
\(851\) 9.78812 + 9.78812i 0.335533 + 0.335533i
\(852\) 0 0
\(853\) 15.7316 + 15.7316i 0.538640 + 0.538640i 0.923129 0.384490i \(-0.125623\pi\)
−0.384490 + 0.923129i \(0.625623\pi\)
\(854\) 0 0
\(855\) −25.7027 −0.879015
\(856\) 0 0
\(857\) 5.28481i 0.180526i −0.995918 0.0902628i \(-0.971229\pi\)
0.995918 0.0902628i \(-0.0287707\pi\)
\(858\) 0 0
\(859\) 25.4764 0.869242 0.434621 0.900613i \(-0.356882\pi\)
0.434621 + 0.900613i \(0.356882\pi\)
\(860\) 0 0
\(861\) 0.136853i 0.00466393i
\(862\) 0 0
\(863\) −12.9386 + 12.9386i −0.440434 + 0.440434i −0.892158 0.451724i \(-0.850809\pi\)
0.451724 + 0.892158i \(0.350809\pi\)
\(864\) 0 0
\(865\) −31.8126 + 31.8126i −1.08166 + 1.08166i
\(866\) 0 0
\(867\) 2.53694 0.0861589
\(868\) 0 0
\(869\) −40.4891 40.4891i −1.37350 1.37350i
\(870\) 0 0
\(871\) 20.9754 4.64214i 0.710724 0.157293i
\(872\) 0 0
\(873\) −3.55632 3.55632i −0.120363 0.120363i
\(874\) 0 0
\(875\) 0.981394i 0.0331772i
\(876\) 0 0
\(877\) 16.5941 16.5941i 0.560342 0.560342i −0.369063 0.929404i \(-0.620321\pi\)
0.929404 + 0.369063i \(0.120321\pi\)
\(878\) 0 0
\(879\) 4.16543 + 4.16543i 0.140496 + 0.140496i
\(880\) 0 0
\(881\) 2.69158i 0.0906818i 0.998972 + 0.0453409i \(0.0144374\pi\)
−0.998972 + 0.0453409i \(0.985563\pi\)
\(882\) 0 0
\(883\) 48.9980i 1.64892i 0.565924 + 0.824458i \(0.308520\pi\)
−0.565924 + 0.824458i \(0.691480\pi\)
\(884\) 0 0
\(885\) 42.0371i 1.41306i
\(886\) 0 0
\(887\) 18.5664i 0.623399i −0.950181 0.311699i \(-0.899102\pi\)
0.950181 0.311699i \(-0.100898\pi\)
\(888\) 0 0
\(889\) −0.185605 0.185605i −0.00622498 0.00622498i
\(890\) 0 0
\(891\) −12.1843 + 12.1843i −0.408190 + 0.408190i
\(892\) 0 0
\(893\) 9.97831i 0.333911i
\(894\) 0 0
\(895\) −12.6382 12.6382i −0.422449 0.422449i
\(896\) 0 0
\(897\) 10.7279 16.8259i 0.358193 0.561800i
\(898\) 0 0
\(899\) −4.94759 4.94759i −0.165011 0.165011i
\(900\) 0 0
\(901\) 7.98054 0.265870
\(902\) 0 0
\(903\) −0.885838 + 0.885838i −0.0294789 + 0.0294789i
\(904\) 0 0
\(905\) 8.42322 8.42322i 0.279997 0.279997i
\(906\) 0 0
\(907\) 4.12839i 0.137081i 0.997648 + 0.0685404i \(0.0218342\pi\)
−0.997648 + 0.0685404i \(0.978166\pi\)
\(908\) 0 0
\(909\) 20.4468 0.678178
\(910\) 0 0
\(911\) 14.8565i 0.492218i −0.969242 0.246109i \(-0.920848\pi\)
0.969242 0.246109i \(-0.0791522\pi\)
\(912\) 0 0
\(913\) 12.9777 0.429498
\(914\) 0 0
\(915\) −35.3802 35.3802i −1.16963 1.16963i
\(916\) 0 0
\(917\) −0.477522 0.477522i −0.0157692 0.0157692i
\(918\) 0 0
\(919\) 3.47888i 0.114758i 0.998352 + 0.0573788i \(0.0182743\pi\)
−0.998352 + 0.0573788i \(0.981726\pi\)
\(920\) 0 0
\(921\) −3.83237 + 3.83237i −0.126281 + 0.126281i
\(922\) 0 0
\(923\) −2.86160 12.9301i −0.0941907 0.425598i
\(924\) 0 0
\(925\) −16.2120 + 16.2120i −0.533047 + 0.533047i
\(926\) 0 0
\(927\) 14.3331 0.470761
\(928\) 0 0
\(929\) 8.41692 + 8.41692i 0.276150 + 0.276150i 0.831570 0.555420i \(-0.187442\pi\)
−0.555420 + 0.831570i \(0.687442\pi\)
\(930\) 0 0
\(931\) −34.6398 + 34.6398i −1.13527 + 1.13527i
\(932\) 0 0
\(933\) −5.93960 −0.194454
\(934\) 0 0
\(935\) 55.0251 1.79951
\(936\) 0 0
\(937\) −22.6059 −0.738503 −0.369251 0.929330i \(-0.620386\pi\)
−0.369251 + 0.929330i \(0.620386\pi\)
\(938\) 0 0
\(939\) 5.11550 0.166938
\(940\) 0 0
\(941\) −24.2984 + 24.2984i −0.792105 + 0.792105i −0.981836 0.189731i \(-0.939238\pi\)
0.189731 + 0.981836i \(0.439238\pi\)
\(942\) 0 0
\(943\) −1.54737 1.54737i −0.0503893 0.0503893i
\(944\) 0 0
\(945\) −3.45971 −0.112544
\(946\) 0 0
\(947\) −11.1576 + 11.1576i −0.362572 + 0.362572i −0.864759 0.502187i \(-0.832529\pi\)
0.502187 + 0.864759i \(0.332529\pi\)
\(948\) 0 0
\(949\) 0.427609 + 1.93214i 0.0138808 + 0.0627199i
\(950\) 0 0
\(951\) −4.09119 + 4.09119i −0.132666 + 0.132666i
\(952\) 0 0
\(953\) 59.6199i 1.93128i 0.259888 + 0.965639i \(0.416314\pi\)
−0.259888 + 0.965639i \(0.583686\pi\)
\(954\) 0 0
\(955\) 22.1003 + 22.1003i 0.715147 + 0.715147i
\(956\) 0 0
\(957\) −16.7856 16.7856i −0.542601 0.542601i
\(958\) 0 0
\(959\) 1.54897 0.0500189
\(960\) 0 0
\(961\) 28.6801i 0.925163i
\(962\) 0 0
\(963\) −1.91297 −0.0616446
\(964\) 0 0
\(965\) 0.397854i 0.0128074i
\(966\) 0 0
\(967\) 15.0331 15.0331i 0.483433 0.483433i −0.422793 0.906226i \(-0.638950\pi\)
0.906226 + 0.422793i \(0.138950\pi\)
\(968\) 0 0
\(969\) 29.9433 29.9433i 0.961918 0.961918i
\(970\) 0 0
\(971\) 11.8204 0.379336 0.189668 0.981848i \(-0.439259\pi\)
0.189668 + 0.981848i \(0.439259\pi\)
\(972\) 0 0
\(973\) −2.45607 2.45607i −0.0787379 0.0787379i
\(974\) 0 0
\(975\) 27.8686 + 17.7685i 0.892508 + 0.569046i
\(976\) 0 0
\(977\) 3.25802 + 3.25802i 0.104233 + 0.104233i 0.757300 0.653067i \(-0.226518\pi\)
−0.653067 + 0.757300i \(0.726518\pi\)
\(978\) 0 0
\(979\) 59.7984i 1.91117i
\(980\) 0 0
\(981\) 11.0934 11.0934i 0.354184 0.354184i
\(982\) 0 0
\(983\) −26.9767 26.9767i −0.860422 0.860422i 0.130965 0.991387i \(-0.458192\pi\)
−0.991387 + 0.130965i \(0.958192\pi\)
\(984\) 0 0
\(985\) 41.6797i 1.32802i
\(986\) 0 0
\(987\) 0.353885i 0.0112643i
\(988\) 0 0
\(989\) 20.0320i 0.636981i
\(990\) 0 0
\(991\) 51.6574i 1.64095i −0.571681 0.820476i \(-0.693709\pi\)
0.571681 0.820476i \(-0.306291\pi\)
\(992\) 0 0
\(993\) 12.1090 + 12.1090i 0.384266 + 0.384266i
\(994\) 0 0
\(995\) 39.3911 39.3911i 1.24878 1.24878i
\(996\) 0 0
\(997\) 25.6944i 0.813749i 0.913484 + 0.406874i \(0.133381\pi\)
−0.913484 + 0.406874i \(0.866619\pi\)
\(998\) 0 0
\(999\) −13.8802 13.8802i −0.439149 0.439149i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 416.2.u.b.47.3 20
4.3 odd 2 104.2.m.b.99.8 yes 20
8.3 odd 2 inner 416.2.u.b.47.4 20
8.5 even 2 104.2.m.b.99.3 yes 20
12.11 even 2 936.2.w.h.307.3 20
13.5 odd 4 inner 416.2.u.b.239.4 20
24.5 odd 2 936.2.w.h.307.8 20
52.31 even 4 104.2.m.b.83.3 20
104.5 odd 4 104.2.m.b.83.8 yes 20
104.83 even 4 inner 416.2.u.b.239.3 20
156.83 odd 4 936.2.w.h.811.8 20
312.5 even 4 936.2.w.h.811.3 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
104.2.m.b.83.3 20 52.31 even 4
104.2.m.b.83.8 yes 20 104.5 odd 4
104.2.m.b.99.3 yes 20 8.5 even 2
104.2.m.b.99.8 yes 20 4.3 odd 2
416.2.u.b.47.3 20 1.1 even 1 trivial
416.2.u.b.47.4 20 8.3 odd 2 inner
416.2.u.b.239.3 20 104.83 even 4 inner
416.2.u.b.239.4 20 13.5 odd 4 inner
936.2.w.h.307.3 20 12.11 even 2
936.2.w.h.307.8 20 24.5 odd 2
936.2.w.h.811.3 20 312.5 even 4
936.2.w.h.811.8 20 156.83 odd 4