Properties

Label 416.2.w.a
Level 416416
Weight 22
Character orbit 416.w
Analytic conductor 3.3223.322
Analytic rank 00
Dimension 44
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [416,2,Mod(225,416)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(416, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("416.225");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 416=2513 416 = 2^{5} \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 416.w (of order 66, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 3.321776724093.32177672409
Analytic rank: 00
Dimension: 44
Relative dimension: 22 over Q(ζ6)\Q(\zeta_{6})
Coefficient field: Q(ζ12)\Q(\zeta_{12})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4x2+1 x^{4} - x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a11]\Z[a_1, \ldots, a_{11}]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C6]\mathrm{SU}(2)[C_{6}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ12\zeta_{12}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(ζ123ζ12)q3+(4ζ1222)q53ζ12q7+(5ζ123+5ζ12)q11+(4ζ122+1)q13+(6ζ123+6ζ12)q15++(5ζ122+5)q97+O(q100) q + ( - \zeta_{12}^{3} - \zeta_{12}) q^{3} + (4 \zeta_{12}^{2} - 2) q^{5} - 3 \zeta_{12} q^{7} + ( - 5 \zeta_{12}^{3} + 5 \zeta_{12}) q^{11} + ( - 4 \zeta_{12}^{2} + 1) q^{13} + ( - 6 \zeta_{12}^{3} + 6 \zeta_{12}) q^{15} + \cdots + (5 \zeta_{12}^{2} + 5) q^{97} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q4q13+14q1728q25+10q2930q33+18q376q41+4q49+16q536q61+48q6518q6960q77+18q81+84q85+6q8912q93++30q97+O(q100) 4 q - 4 q^{13} + 14 q^{17} - 28 q^{25} + 10 q^{29} - 30 q^{33} + 18 q^{37} - 6 q^{41} + 4 q^{49} + 16 q^{53} - 6 q^{61} + 48 q^{65} - 18 q^{69} - 60 q^{77} + 18 q^{81} + 84 q^{85} + 6 q^{89} - 12 q^{93}+ \cdots + 30 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/416Z)×\left(\mathbb{Z}/416\mathbb{Z}\right)^\times.

nn 261261 287287 353353
χ(n)\chi(n) 11 11 1ζ1221 - \zeta_{12}^{2}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
225.1
0.866025 0.500000i
−0.866025 + 0.500000i
0.866025 + 0.500000i
−0.866025 0.500000i
0 −0.866025 + 1.50000i 0 3.46410i 0 −2.59808 + 1.50000i 0 0 0
225.2 0 0.866025 1.50000i 0 3.46410i 0 2.59808 1.50000i 0 0 0
257.1 0 −0.866025 1.50000i 0 3.46410i 0 −2.59808 1.50000i 0 0 0
257.2 0 0.866025 + 1.50000i 0 3.46410i 0 2.59808 + 1.50000i 0 0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner
13.e even 6 1 inner
52.i odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 416.2.w.a 4
4.b odd 2 1 inner 416.2.w.a 4
8.b even 2 1 832.2.w.e 4
8.d odd 2 1 832.2.w.e 4
13.e even 6 1 inner 416.2.w.a 4
13.f odd 12 1 5408.2.a.u 2
13.f odd 12 1 5408.2.a.z 2
52.i odd 6 1 inner 416.2.w.a 4
52.l even 12 1 5408.2.a.u 2
52.l even 12 1 5408.2.a.z 2
104.p odd 6 1 832.2.w.e 4
104.s even 6 1 832.2.w.e 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
416.2.w.a 4 1.a even 1 1 trivial
416.2.w.a 4 4.b odd 2 1 inner
416.2.w.a 4 13.e even 6 1 inner
416.2.w.a 4 52.i odd 6 1 inner
832.2.w.e 4 8.b even 2 1
832.2.w.e 4 8.d odd 2 1
832.2.w.e 4 104.p odd 6 1
832.2.w.e 4 104.s even 6 1
5408.2.a.u 2 13.f odd 12 1
5408.2.a.u 2 52.l even 12 1
5408.2.a.z 2 13.f odd 12 1
5408.2.a.z 2 52.l even 12 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T34+3T32+9 T_{3}^{4} + 3T_{3}^{2} + 9 acting on S2new(416,[χ])S_{2}^{\mathrm{new}}(416, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4 T^{4} Copy content Toggle raw display
33 T4+3T2+9 T^{4} + 3T^{2} + 9 Copy content Toggle raw display
55 (T2+12)2 (T^{2} + 12)^{2} Copy content Toggle raw display
77 T49T2+81 T^{4} - 9T^{2} + 81 Copy content Toggle raw display
1111 T425T2+625 T^{4} - 25T^{2} + 625 Copy content Toggle raw display
1313 (T2+2T+13)2 (T^{2} + 2 T + 13)^{2} Copy content Toggle raw display
1717 (T27T+49)2 (T^{2} - 7 T + 49)^{2} Copy content Toggle raw display
1919 T425T2+625 T^{4} - 25T^{2} + 625 Copy content Toggle raw display
2323 T4+27T2+729 T^{4} + 27T^{2} + 729 Copy content Toggle raw display
2929 (T25T+25)2 (T^{2} - 5 T + 25)^{2} Copy content Toggle raw display
3131 (T2+4)2 (T^{2} + 4)^{2} Copy content Toggle raw display
3737 (T29T+27)2 (T^{2} - 9 T + 27)^{2} Copy content Toggle raw display
4141 (T2+3T+3)2 (T^{2} + 3 T + 3)^{2} Copy content Toggle raw display
4343 T4+27T2+729 T^{4} + 27T^{2} + 729 Copy content Toggle raw display
4747 (T2+16)2 (T^{2} + 16)^{2} Copy content Toggle raw display
5353 (T4)4 (T - 4)^{4} Copy content Toggle raw display
5959 T449T2+2401 T^{4} - 49T^{2} + 2401 Copy content Toggle raw display
6161 (T2+3T+9)2 (T^{2} + 3 T + 9)^{2} Copy content Toggle raw display
6767 T49T2+81 T^{4} - 9T^{2} + 81 Copy content Toggle raw display
7171 T449T2+2401 T^{4} - 49T^{2} + 2401 Copy content Toggle raw display
7373 (T2+12)2 (T^{2} + 12)^{2} Copy content Toggle raw display
7979 (T212)2 (T^{2} - 12)^{2} Copy content Toggle raw display
8383 (T2+196)2 (T^{2} + 196)^{2} Copy content Toggle raw display
8989 (T23T+3)2 (T^{2} - 3 T + 3)^{2} Copy content Toggle raw display
9797 (T215T+75)2 (T^{2} - 15 T + 75)^{2} Copy content Toggle raw display
show more
show less