Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [416,2,Mod(225,416)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(416, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([0, 0, 1]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("416.225");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 416.w (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Relative dimension: | over |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a primitive root of unity . We also show the integral -expansion of the trace form.
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
225.1 |
|
0 | −0.866025 | + | 1.50000i | 0 | − | 3.46410i | 0 | −2.59808 | + | 1.50000i | 0 | 0 | 0 | |||||||||||||||||||||||||
225.2 | 0 | 0.866025 | − | 1.50000i | 0 | − | 3.46410i | 0 | 2.59808 | − | 1.50000i | 0 | 0 | 0 | ||||||||||||||||||||||||||
257.1 | 0 | −0.866025 | − | 1.50000i | 0 | 3.46410i | 0 | −2.59808 | − | 1.50000i | 0 | 0 | 0 | |||||||||||||||||||||||||||
257.2 | 0 | 0.866025 | + | 1.50000i | 0 | 3.46410i | 0 | 2.59808 | + | 1.50000i | 0 | 0 | 0 | |||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
4.b | odd | 2 | 1 | inner |
13.e | even | 6 | 1 | inner |
52.i | odd | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 416.2.w.a | ✓ | 4 |
4.b | odd | 2 | 1 | inner | 416.2.w.a | ✓ | 4 |
8.b | even | 2 | 1 | 832.2.w.e | 4 | ||
8.d | odd | 2 | 1 | 832.2.w.e | 4 | ||
13.e | even | 6 | 1 | inner | 416.2.w.a | ✓ | 4 |
13.f | odd | 12 | 1 | 5408.2.a.u | 2 | ||
13.f | odd | 12 | 1 | 5408.2.a.z | 2 | ||
52.i | odd | 6 | 1 | inner | 416.2.w.a | ✓ | 4 |
52.l | even | 12 | 1 | 5408.2.a.u | 2 | ||
52.l | even | 12 | 1 | 5408.2.a.z | 2 | ||
104.p | odd | 6 | 1 | 832.2.w.e | 4 | ||
104.s | even | 6 | 1 | 832.2.w.e | 4 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
416.2.w.a | ✓ | 4 | 1.a | even | 1 | 1 | trivial |
416.2.w.a | ✓ | 4 | 4.b | odd | 2 | 1 | inner |
416.2.w.a | ✓ | 4 | 13.e | even | 6 | 1 | inner |
416.2.w.a | ✓ | 4 | 52.i | odd | 6 | 1 | inner |
832.2.w.e | 4 | 8.b | even | 2 | 1 | ||
832.2.w.e | 4 | 8.d | odd | 2 | 1 | ||
832.2.w.e | 4 | 104.p | odd | 6 | 1 | ||
832.2.w.e | 4 | 104.s | even | 6 | 1 | ||
5408.2.a.u | 2 | 13.f | odd | 12 | 1 | ||
5408.2.a.u | 2 | 52.l | even | 12 | 1 | ||
5408.2.a.z | 2 | 13.f | odd | 12 | 1 | ||
5408.2.a.z | 2 | 52.l | even | 12 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
acting on .