Properties

Label 416.2.w.a
Level $416$
Weight $2$
Character orbit 416.w
Analytic conductor $3.322$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [416,2,Mod(225,416)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(416, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("416.225");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 416 = 2^{5} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 416.w (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.32177672409\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{12}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \zeta_{12}^{3} - \zeta_{12}) q^{3} + (4 \zeta_{12}^{2} - 2) q^{5} - 3 \zeta_{12} q^{7} + ( - 5 \zeta_{12}^{3} + 5 \zeta_{12}) q^{11} + ( - 4 \zeta_{12}^{2} + 1) q^{13} + ( - 6 \zeta_{12}^{3} + 6 \zeta_{12}) q^{15} + \cdots + (5 \zeta_{12}^{2} + 5) q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{13} + 14 q^{17} - 28 q^{25} + 10 q^{29} - 30 q^{33} + 18 q^{37} - 6 q^{41} + 4 q^{49} + 16 q^{53} - 6 q^{61} + 48 q^{65} - 18 q^{69} - 60 q^{77} + 18 q^{81} + 84 q^{85} + 6 q^{89} - 12 q^{93}+ \cdots + 30 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/416\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(287\) \(353\)
\(\chi(n)\) \(1\) \(1\) \(1 - \zeta_{12}^{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
225.1
0.866025 0.500000i
−0.866025 + 0.500000i
0.866025 + 0.500000i
−0.866025 0.500000i
0 −0.866025 + 1.50000i 0 3.46410i 0 −2.59808 + 1.50000i 0 0 0
225.2 0 0.866025 1.50000i 0 3.46410i 0 2.59808 1.50000i 0 0 0
257.1 0 −0.866025 1.50000i 0 3.46410i 0 −2.59808 1.50000i 0 0 0
257.2 0 0.866025 + 1.50000i 0 3.46410i 0 2.59808 + 1.50000i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner
13.e even 6 1 inner
52.i odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 416.2.w.a 4
4.b odd 2 1 inner 416.2.w.a 4
8.b even 2 1 832.2.w.e 4
8.d odd 2 1 832.2.w.e 4
13.e even 6 1 inner 416.2.w.a 4
13.f odd 12 1 5408.2.a.u 2
13.f odd 12 1 5408.2.a.z 2
52.i odd 6 1 inner 416.2.w.a 4
52.l even 12 1 5408.2.a.u 2
52.l even 12 1 5408.2.a.z 2
104.p odd 6 1 832.2.w.e 4
104.s even 6 1 832.2.w.e 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
416.2.w.a 4 1.a even 1 1 trivial
416.2.w.a 4 4.b odd 2 1 inner
416.2.w.a 4 13.e even 6 1 inner
416.2.w.a 4 52.i odd 6 1 inner
832.2.w.e 4 8.b even 2 1
832.2.w.e 4 8.d odd 2 1
832.2.w.e 4 104.p odd 6 1
832.2.w.e 4 104.s even 6 1
5408.2.a.u 2 13.f odd 12 1
5408.2.a.u 2 52.l even 12 1
5408.2.a.z 2 13.f odd 12 1
5408.2.a.z 2 52.l even 12 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{4} + 3T_{3}^{2} + 9 \) acting on \(S_{2}^{\mathrm{new}}(416, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} + 3T^{2} + 9 \) Copy content Toggle raw display
$5$ \( (T^{2} + 12)^{2} \) Copy content Toggle raw display
$7$ \( T^{4} - 9T^{2} + 81 \) Copy content Toggle raw display
$11$ \( T^{4} - 25T^{2} + 625 \) Copy content Toggle raw display
$13$ \( (T^{2} + 2 T + 13)^{2} \) Copy content Toggle raw display
$17$ \( (T^{2} - 7 T + 49)^{2} \) Copy content Toggle raw display
$19$ \( T^{4} - 25T^{2} + 625 \) Copy content Toggle raw display
$23$ \( T^{4} + 27T^{2} + 729 \) Copy content Toggle raw display
$29$ \( (T^{2} - 5 T + 25)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} + 4)^{2} \) Copy content Toggle raw display
$37$ \( (T^{2} - 9 T + 27)^{2} \) Copy content Toggle raw display
$41$ \( (T^{2} + 3 T + 3)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} + 27T^{2} + 729 \) Copy content Toggle raw display
$47$ \( (T^{2} + 16)^{2} \) Copy content Toggle raw display
$53$ \( (T - 4)^{4} \) Copy content Toggle raw display
$59$ \( T^{4} - 49T^{2} + 2401 \) Copy content Toggle raw display
$61$ \( (T^{2} + 3 T + 9)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} - 9T^{2} + 81 \) Copy content Toggle raw display
$71$ \( T^{4} - 49T^{2} + 2401 \) Copy content Toggle raw display
$73$ \( (T^{2} + 12)^{2} \) Copy content Toggle raw display
$79$ \( (T^{2} - 12)^{2} \) Copy content Toggle raw display
$83$ \( (T^{2} + 196)^{2} \) Copy content Toggle raw display
$89$ \( (T^{2} - 3 T + 3)^{2} \) Copy content Toggle raw display
$97$ \( (T^{2} - 15 T + 75)^{2} \) Copy content Toggle raw display
show more
show less