Properties

Label 416.2.w.d.257.5
Level $416$
Weight $2$
Character 416.257
Analytic conductor $3.322$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [416,2,Mod(225,416)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(416, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("416.225");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 416 = 2^{5} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 416.w (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.32177672409\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: 12.0.18092737797525504.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 12x^{10} + 108x^{8} - 430x^{6} + 1284x^{4} - 36x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 2^{8} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 257.5
Root \(-2.19011 - 1.26446i\) of defining polynomial
Character \(\chi\) \(=\) 416.257
Dual form 416.2.w.d.225.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.13286 + 1.96217i) q^{3} -3.99777i q^{5} +(0.981633 + 0.566746i) q^{7} +(-1.06675 + 1.84766i) q^{9} +(0.981633 - 0.566746i) q^{11} +(3.59566 - 0.266835i) q^{13} +(7.84432 - 4.52892i) q^{15} +(-0.500000 + 0.866025i) q^{17} +(3.39858 + 1.96217i) q^{19} +2.56818i q^{21} +(-4.59696 - 7.96217i) q^{23} -10.9822 q^{25} +1.96327 q^{27} +(2.02892 + 3.51419i) q^{29} +9.05784i q^{31} +(2.22411 + 1.28409i) q^{33} +(2.26572 - 3.92434i) q^{35} +(2.16241 - 1.24847i) q^{37} +(4.59696 + 6.75302i) q^{39} +(-2.42434 + 1.39970i) q^{41} +(-3.24735 + 5.62458i) q^{43} +(7.38652 + 4.26461i) q^{45} +6.79085i q^{47} +(-2.85760 - 4.94950i) q^{49} -2.26572 q^{51} -8.92434 q^{53} +(-2.26572 - 3.92434i) q^{55} +8.89147i q^{57} +(-7.77880 - 4.49109i) q^{59} +(3.89543 - 6.74708i) q^{61} +(-2.09431 + 1.20915i) q^{63} +(-1.06675 - 14.3746i) q^{65} +(8.36352 - 4.82868i) q^{67} +(10.4154 - 18.0401i) q^{69} +(-6.86268 - 3.96217i) q^{71} +9.29410i q^{73} +(-12.4413 - 21.5489i) q^{75} +1.28480 q^{77} -12.9894 q^{79} +(5.42434 + 9.39524i) q^{81} +5.73302i q^{83} +(3.46217 + 1.99889i) q^{85} +(-4.59696 + 7.96217i) q^{87} +(12.1485 - 7.01391i) q^{89} +(3.68085 + 1.77589i) q^{91} +(-17.7730 + 10.2613i) q^{93} +(7.84432 - 13.5868i) q^{95} +(-7.70024 - 4.44573i) q^{97} +2.41830i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 12 q^{9} + 12 q^{13} - 6 q^{17} - 12 q^{25} - 6 q^{29} - 30 q^{33} - 6 q^{37} + 30 q^{41} + 24 q^{49} - 48 q^{53} + 18 q^{61} - 12 q^{65} + 6 q^{69} + 132 q^{77} + 6 q^{81} + 12 q^{85} + 30 q^{89}+ \cdots - 90 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/416\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(287\) \(353\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.13286 + 1.96217i 0.654057 + 1.13286i 0.982129 + 0.188208i \(0.0602678\pi\)
−0.328072 + 0.944653i \(0.606399\pi\)
\(4\) 0 0
\(5\) 3.99777i 1.78786i −0.448209 0.893929i \(-0.647938\pi\)
0.448209 0.893929i \(-0.352062\pi\)
\(6\) 0 0
\(7\) 0.981633 + 0.566746i 0.371022 + 0.214210i 0.673905 0.738818i \(-0.264616\pi\)
−0.302883 + 0.953028i \(0.597949\pi\)
\(8\) 0 0
\(9\) −1.06675 + 1.84766i −0.355582 + 0.615886i
\(10\) 0 0
\(11\) 0.981633 0.566746i 0.295973 0.170880i −0.344659 0.938728i \(-0.612006\pi\)
0.640633 + 0.767848i \(0.278672\pi\)
\(12\) 0 0
\(13\) 3.59566 0.266835i 0.997258 0.0740067i
\(14\) 0 0
\(15\) 7.84432 4.52892i 2.02539 1.16936i
\(16\) 0 0
\(17\) −0.500000 + 0.866025i −0.121268 + 0.210042i −0.920268 0.391289i \(-0.872029\pi\)
0.799000 + 0.601331i \(0.205363\pi\)
\(18\) 0 0
\(19\) 3.39858 + 1.96217i 0.779688 + 0.450153i 0.836320 0.548242i \(-0.184703\pi\)
−0.0566316 + 0.998395i \(0.518036\pi\)
\(20\) 0 0
\(21\) 2.56818i 0.560422i
\(22\) 0 0
\(23\) −4.59696 7.96217i −0.958533 1.66023i −0.726068 0.687623i \(-0.758654\pi\)
−0.232465 0.972605i \(-0.574679\pi\)
\(24\) 0 0
\(25\) −10.9822 −2.19644
\(26\) 0 0
\(27\) 1.96327 0.377831
\(28\) 0 0
\(29\) 2.02892 + 3.51419i 0.376761 + 0.652569i 0.990589 0.136871i \(-0.0437046\pi\)
−0.613828 + 0.789440i \(0.710371\pi\)
\(30\) 0 0
\(31\) 9.05784i 1.62684i 0.581680 + 0.813418i \(0.302396\pi\)
−0.581680 + 0.813418i \(0.697604\pi\)
\(32\) 0 0
\(33\) 2.22411 + 1.28409i 0.387167 + 0.223531i
\(34\) 0 0
\(35\) 2.26572 3.92434i 0.382977 0.663335i
\(36\) 0 0
\(37\) 2.16241 1.24847i 0.355498 0.205247i −0.311606 0.950211i \(-0.600867\pi\)
0.667104 + 0.744964i \(0.267534\pi\)
\(38\) 0 0
\(39\) 4.59696 + 6.75302i 0.736103 + 1.08135i
\(40\) 0 0
\(41\) −2.42434 + 1.39970i −0.378619 + 0.218596i −0.677217 0.735783i \(-0.736814\pi\)
0.298598 + 0.954379i \(0.403481\pi\)
\(42\) 0 0
\(43\) −3.24735 + 5.62458i −0.495217 + 0.857741i −0.999985 0.00551436i \(-0.998245\pi\)
0.504768 + 0.863255i \(0.331578\pi\)
\(44\) 0 0
\(45\) 7.38652 + 4.26461i 1.10112 + 0.635730i
\(46\) 0 0
\(47\) 6.79085i 0.990548i 0.868737 + 0.495274i \(0.164932\pi\)
−0.868737 + 0.495274i \(0.835068\pi\)
\(48\) 0 0
\(49\) −2.85760 4.94950i −0.408228 0.707072i
\(50\) 0 0
\(51\) −2.26572 −0.317264
\(52\) 0 0
\(53\) −8.92434 −1.22585 −0.612926 0.790140i \(-0.710008\pi\)
−0.612926 + 0.790140i \(0.710008\pi\)
\(54\) 0 0
\(55\) −2.26572 3.92434i −0.305510 0.529158i
\(56\) 0 0
\(57\) 8.89147i 1.17770i
\(58\) 0 0
\(59\) −7.77880 4.49109i −1.01271 0.584690i −0.100728 0.994914i \(-0.532117\pi\)
−0.911985 + 0.410224i \(0.865451\pi\)
\(60\) 0 0
\(61\) 3.89543 6.74708i 0.498758 0.863875i −0.501241 0.865308i \(-0.667123\pi\)
0.999999 + 0.00143332i \(0.000456240\pi\)
\(62\) 0 0
\(63\) −2.09431 + 1.20915i −0.263858 + 0.152338i
\(64\) 0 0
\(65\) −1.06675 14.3746i −0.132314 1.78296i
\(66\) 0 0
\(67\) 8.36352 4.82868i 1.02177 0.589917i 0.107151 0.994243i \(-0.465827\pi\)
0.914615 + 0.404326i \(0.132494\pi\)
\(68\) 0 0
\(69\) 10.4154 18.0401i 1.25387 2.17177i
\(70\) 0 0
\(71\) −6.86268 3.96217i −0.814451 0.470223i 0.0340484 0.999420i \(-0.489160\pi\)
−0.848499 + 0.529197i \(0.822493\pi\)
\(72\) 0 0
\(73\) 9.29410i 1.08779i 0.839153 + 0.543896i \(0.183051\pi\)
−0.839153 + 0.543896i \(0.816949\pi\)
\(74\) 0 0
\(75\) −12.4413 21.5489i −1.43660 2.48826i
\(76\) 0 0
\(77\) 1.28480 0.146417
\(78\) 0 0
\(79\) −12.9894 −1.46142 −0.730712 0.682686i \(-0.760812\pi\)
−0.730712 + 0.682686i \(0.760812\pi\)
\(80\) 0 0
\(81\) 5.42434 + 9.39524i 0.602705 + 1.04392i
\(82\) 0 0
\(83\) 5.73302i 0.629280i 0.949211 + 0.314640i \(0.101884\pi\)
−0.949211 + 0.314640i \(0.898116\pi\)
\(84\) 0 0
\(85\) 3.46217 + 1.99889i 0.375525 + 0.216810i
\(86\) 0 0
\(87\) −4.59696 + 7.96217i −0.492846 + 0.853634i
\(88\) 0 0
\(89\) 12.1485 7.01391i 1.28773 0.743473i 0.309484 0.950905i \(-0.399844\pi\)
0.978250 + 0.207432i \(0.0665105\pi\)
\(90\) 0 0
\(91\) 3.68085 + 1.77589i 0.385858 + 0.186164i
\(92\) 0 0
\(93\) −17.7730 + 10.2613i −1.84298 + 1.06404i
\(94\) 0 0
\(95\) 7.84432 13.5868i 0.804810 1.39397i
\(96\) 0 0
\(97\) −7.70024 4.44573i −0.781841 0.451396i 0.0552415 0.998473i \(-0.482407\pi\)
−0.837082 + 0.547077i \(0.815740\pi\)
\(98\) 0 0
\(99\) 2.41830i 0.243048i
\(100\) 0 0
\(101\) −4.02892 6.97829i −0.400892 0.694366i 0.592942 0.805246i \(-0.297967\pi\)
−0.993834 + 0.110880i \(0.964633\pi\)
\(102\) 0 0
\(103\) −6.36367 −0.627031 −0.313515 0.949583i \(-0.601507\pi\)
−0.313515 + 0.949583i \(0.601507\pi\)
\(104\) 0 0
\(105\) 10.2670 1.00196
\(106\) 0 0
\(107\) 5.66430 + 9.81086i 0.547589 + 0.948452i 0.998439 + 0.0558520i \(0.0177875\pi\)
−0.450850 + 0.892600i \(0.648879\pi\)
\(108\) 0 0
\(109\) 11.4596i 1.09763i −0.835942 0.548817i \(-0.815078\pi\)
0.835942 0.548817i \(-0.184922\pi\)
\(110\) 0 0
\(111\) 4.89942 + 2.82868i 0.465032 + 0.268486i
\(112\) 0 0
\(113\) −2.23302 + 3.86770i −0.210064 + 0.363842i −0.951734 0.306923i \(-0.900701\pi\)
0.741670 + 0.670765i \(0.234034\pi\)
\(114\) 0 0
\(115\) −31.8309 + 18.3776i −2.96825 + 1.71372i
\(116\) 0 0
\(117\) −3.34264 + 6.92820i −0.309027 + 0.640513i
\(118\) 0 0
\(119\) −0.981633 + 0.566746i −0.0899861 + 0.0519535i
\(120\) 0 0
\(121\) −4.85760 + 8.41361i −0.441600 + 0.764873i
\(122\) 0 0
\(123\) −5.49289 3.17132i −0.495277 0.285948i
\(124\) 0 0
\(125\) 23.9154i 2.13906i
\(126\) 0 0
\(127\) 1.89775 + 3.28699i 0.168398 + 0.291673i 0.937857 0.347023i \(-0.112807\pi\)
−0.769459 + 0.638696i \(0.779474\pi\)
\(128\) 0 0
\(129\) −14.7152 −1.29560
\(130\) 0 0
\(131\) 4.83390 0.422340 0.211170 0.977449i \(-0.432273\pi\)
0.211170 + 0.977449i \(0.432273\pi\)
\(132\) 0 0
\(133\) 2.22411 + 3.85226i 0.192854 + 0.334034i
\(134\) 0 0
\(135\) 7.84869i 0.675508i
\(136\) 0 0
\(137\) 3.74916 + 2.16458i 0.320313 + 0.184933i 0.651532 0.758621i \(-0.274127\pi\)
−0.331219 + 0.943554i \(0.607460\pi\)
\(138\) 0 0
\(139\) −7.90984 + 13.7002i −0.670904 + 1.16204i 0.306745 + 0.951792i \(0.400760\pi\)
−0.977648 + 0.210247i \(0.932573\pi\)
\(140\) 0 0
\(141\) −13.3248 + 7.69309i −1.12215 + 0.647875i
\(142\) 0 0
\(143\) 3.37839 2.29976i 0.282515 0.192316i
\(144\) 0 0
\(145\) 14.0489 8.11115i 1.16670 0.673594i
\(146\) 0 0
\(147\) 6.47452 11.2142i 0.534009 0.924931i
\(148\) 0 0
\(149\) 4.23807 + 2.44685i 0.347196 + 0.200454i 0.663450 0.748221i \(-0.269092\pi\)
−0.316254 + 0.948675i \(0.602425\pi\)
\(150\) 0 0
\(151\) 9.05784i 0.737116i 0.929605 + 0.368558i \(0.120148\pi\)
−0.929605 + 0.368558i \(0.879852\pi\)
\(152\) 0 0
\(153\) −1.06675 1.84766i −0.0862413 0.149374i
\(154\) 0 0
\(155\) 36.2112 2.90855
\(156\) 0 0
\(157\) −9.19133 −0.733548 −0.366774 0.930310i \(-0.619538\pi\)
−0.366774 + 0.930310i \(0.619538\pi\)
\(158\) 0 0
\(159\) −10.1100 17.5111i −0.801778 1.38872i
\(160\) 0 0
\(161\) 10.4212i 0.821309i
\(162\) 0 0
\(163\) 5.94657 + 3.43325i 0.465771 + 0.268913i 0.714468 0.699668i \(-0.246669\pi\)
−0.248697 + 0.968581i \(0.580002\pi\)
\(164\) 0 0
\(165\) 5.13349 8.89147i 0.399642 0.692200i
\(166\) 0 0
\(167\) 9.61102 5.54893i 0.743723 0.429389i −0.0796983 0.996819i \(-0.525396\pi\)
0.823421 + 0.567430i \(0.192062\pi\)
\(168\) 0 0
\(169\) 12.8576 1.91890i 0.989046 0.147608i
\(170\) 0 0
\(171\) −7.25085 + 4.18628i −0.554486 + 0.320133i
\(172\) 0 0
\(173\) −9.75807 + 16.9015i −0.741893 + 1.28500i 0.209740 + 0.977757i \(0.432738\pi\)
−0.951633 + 0.307238i \(0.900595\pi\)
\(174\) 0 0
\(175\) −10.7805 6.22411i −0.814927 0.470498i
\(176\) 0 0
\(177\) 20.3511i 1.52968i
\(178\) 0 0
\(179\) −3.68085 6.37542i −0.275120 0.476521i 0.695046 0.718966i \(-0.255384\pi\)
−0.970165 + 0.242444i \(0.922051\pi\)
\(180\) 0 0
\(181\) −5.19133 −0.385868 −0.192934 0.981212i \(-0.561800\pi\)
−0.192934 + 0.981212i \(0.561800\pi\)
\(182\) 0 0
\(183\) 17.6519 1.30487
\(184\) 0 0
\(185\) −4.99109 8.64482i −0.366952 0.635580i
\(186\) 0 0
\(187\) 1.13349i 0.0828891i
\(188\) 0 0
\(189\) 1.92721 + 1.11267i 0.140184 + 0.0809350i
\(190\) 0 0
\(191\) −2.63370 + 4.56170i −0.190568 + 0.330073i −0.945438 0.325801i \(-0.894366\pi\)
0.754871 + 0.655873i \(0.227700\pi\)
\(192\) 0 0
\(193\) 4.90048 2.82929i 0.352744 0.203657i −0.313149 0.949704i \(-0.601384\pi\)
0.665893 + 0.746047i \(0.268051\pi\)
\(194\) 0 0
\(195\) 26.9970 18.3776i 1.93330 1.31605i
\(196\) 0 0
\(197\) 12.1485 7.01391i 0.865541 0.499720i −0.000322751 1.00000i \(-0.500103\pi\)
0.865864 + 0.500279i \(0.166769\pi\)
\(198\) 0 0
\(199\) 2.63370 4.56170i 0.186698 0.323370i −0.757450 0.652894i \(-0.773555\pi\)
0.944147 + 0.329524i \(0.106888\pi\)
\(200\) 0 0
\(201\) 18.9494 + 10.9404i 1.33659 + 0.771679i
\(202\) 0 0
\(203\) 4.59952i 0.322823i
\(204\) 0 0
\(205\) 5.59566 + 9.69197i 0.390818 + 0.676917i
\(206\) 0 0
\(207\) 19.6152 1.36335
\(208\) 0 0
\(209\) 4.44821 0.307689
\(210\) 0 0
\(211\) −6.09780 10.5617i −0.419790 0.727097i 0.576128 0.817359i \(-0.304563\pi\)
−0.995918 + 0.0902621i \(0.971230\pi\)
\(212\) 0 0
\(213\) 17.9544i 1.23021i
\(214\) 0 0
\(215\) 22.4858 + 12.9822i 1.53352 + 0.885377i
\(216\) 0 0
\(217\) −5.13349 + 8.89147i −0.348484 + 0.603592i
\(218\) 0 0
\(219\) −18.2366 + 10.5289i −1.23232 + 0.711478i
\(220\) 0 0
\(221\) −1.56675 + 3.24735i −0.105391 + 0.218441i
\(222\) 0 0
\(223\) −8.69491 + 5.02001i −0.582254 + 0.336165i −0.762029 0.647543i \(-0.775797\pi\)
0.179775 + 0.983708i \(0.442463\pi\)
\(224\) 0 0
\(225\) 11.7152 20.2913i 0.781013 1.35275i
\(226\) 0 0
\(227\) −6.53129 3.77084i −0.433497 0.250280i 0.267338 0.963603i \(-0.413856\pi\)
−0.700835 + 0.713323i \(0.747189\pi\)
\(228\) 0 0
\(229\) 6.66612i 0.440510i −0.975442 0.220255i \(-0.929311\pi\)
0.975442 0.220255i \(-0.0706889\pi\)
\(230\) 0 0
\(231\) 1.45550 + 2.52101i 0.0957651 + 0.165870i
\(232\) 0 0
\(233\) 2.38266 0.156093 0.0780465 0.996950i \(-0.475132\pi\)
0.0780465 + 0.996950i \(0.475132\pi\)
\(234\) 0 0
\(235\) 27.1483 1.77096
\(236\) 0 0
\(237\) −14.7152 25.4875i −0.955855 1.65559i
\(238\) 0 0
\(239\) 21.4304i 1.38622i 0.720833 + 0.693108i \(0.243759\pi\)
−0.720833 + 0.693108i \(0.756241\pi\)
\(240\) 0 0
\(241\) −0.175180 0.101140i −0.0112844 0.00651502i 0.494347 0.869265i \(-0.335407\pi\)
−0.505632 + 0.862750i \(0.668740\pi\)
\(242\) 0 0
\(243\) −9.34515 + 16.1863i −0.599492 + 1.03835i
\(244\) 0 0
\(245\) −19.7870 + 11.4240i −1.26414 + 0.729854i
\(246\) 0 0
\(247\) 12.7437 + 6.14845i 0.810864 + 0.391217i
\(248\) 0 0
\(249\) −11.2492 + 6.49471i −0.712887 + 0.411585i
\(250\) 0 0
\(251\) 10.6292 18.4104i 0.670912 1.16205i −0.306734 0.951795i \(-0.599236\pi\)
0.977646 0.210258i \(-0.0674304\pi\)
\(252\) 0 0
\(253\) −9.02506 5.21062i −0.567401 0.327589i
\(254\) 0 0
\(255\) 9.05784i 0.567224i
\(256\) 0 0
\(257\) 8.15736 + 14.1290i 0.508842 + 0.881340i 0.999948 + 0.0102403i \(0.00325965\pi\)
−0.491105 + 0.871100i \(0.663407\pi\)
\(258\) 0 0
\(259\) 2.83026 0.175864
\(260\) 0 0
\(261\) −8.65736 −0.535877
\(262\) 0 0
\(263\) −3.54981 6.14845i −0.218891 0.379130i 0.735578 0.677440i \(-0.236910\pi\)
−0.954469 + 0.298310i \(0.903577\pi\)
\(264\) 0 0
\(265\) 35.6775i 2.19165i
\(266\) 0 0
\(267\) 27.5250 + 15.8916i 1.68450 + 0.972548i
\(268\) 0 0
\(269\) 3.64240 6.30883i 0.222081 0.384656i −0.733359 0.679842i \(-0.762048\pi\)
0.955440 + 0.295186i \(0.0953817\pi\)
\(270\) 0 0
\(271\) −6.07761 + 3.50891i −0.369189 + 0.213151i −0.673104 0.739548i \(-0.735039\pi\)
0.303915 + 0.952699i \(0.401706\pi\)
\(272\) 0 0
\(273\) 0.685280 + 9.23430i 0.0414750 + 0.558885i
\(274\) 0 0
\(275\) −10.7805 + 6.22411i −0.650087 + 0.375328i
\(276\) 0 0
\(277\) −6.55279 + 11.3498i −0.393719 + 0.681941i −0.992937 0.118645i \(-0.962145\pi\)
0.599218 + 0.800586i \(0.295478\pi\)
\(278\) 0 0
\(279\) −16.7358 9.66241i −1.00195 0.578473i
\(280\) 0 0
\(281\) 24.6803i 1.47230i −0.676817 0.736151i \(-0.736641\pi\)
0.676817 0.736151i \(-0.263359\pi\)
\(282\) 0 0
\(283\) 3.24735 + 5.62458i 0.193035 + 0.334347i 0.946255 0.323423i \(-0.104834\pi\)
−0.753219 + 0.657769i \(0.771500\pi\)
\(284\) 0 0
\(285\) 35.5461 2.10557
\(286\) 0 0
\(287\) −3.17309 −0.187301
\(288\) 0 0
\(289\) 8.00000 + 13.8564i 0.470588 + 0.815083i
\(290\) 0 0
\(291\) 20.1456i 1.18096i
\(292\) 0 0
\(293\) 17.6863 + 10.2112i 1.03324 + 0.596543i 0.917912 0.396784i \(-0.129874\pi\)
0.115331 + 0.993327i \(0.463207\pi\)
\(294\) 0 0
\(295\) −17.9544 + 31.0979i −1.04534 + 1.81059i
\(296\) 0 0
\(297\) 1.92721 1.11267i 0.111828 0.0645638i
\(298\) 0 0
\(299\) −18.6537 27.4027i −1.07877 1.58474i
\(300\) 0 0
\(301\) −6.37542 + 3.68085i −0.367473 + 0.212161i
\(302\) 0 0
\(303\) 9.12840 15.8109i 0.524413 0.908310i
\(304\) 0 0
\(305\) −26.9733 15.5730i −1.54448 0.891709i
\(306\) 0 0
\(307\) 13.0578i 0.745250i −0.927982 0.372625i \(-0.878458\pi\)
0.927982 0.372625i \(-0.121542\pi\)
\(308\) 0 0
\(309\) −7.20915 12.4866i −0.410114 0.710338i
\(310\) 0 0
\(311\) 3.30413 0.187360 0.0936799 0.995602i \(-0.470137\pi\)
0.0936799 + 0.995602i \(0.470137\pi\)
\(312\) 0 0
\(313\) 5.31472 0.300406 0.150203 0.988655i \(-0.452007\pi\)
0.150203 + 0.988655i \(0.452007\pi\)
\(314\) 0 0
\(315\) 4.83390 + 8.37256i 0.272359 + 0.471740i
\(316\) 0 0
\(317\) 28.1848i 1.58301i 0.611160 + 0.791507i \(0.290703\pi\)
−0.611160 + 0.791507i \(0.709297\pi\)
\(318\) 0 0
\(319\) 3.98330 + 2.29976i 0.223022 + 0.128762i
\(320\) 0 0
\(321\) −12.8337 + 22.2287i −0.716309 + 1.24068i
\(322\) 0 0
\(323\) −3.39858 + 1.96217i −0.189102 + 0.109178i
\(324\) 0 0
\(325\) −39.4882 + 2.93043i −2.19041 + 0.162551i
\(326\) 0 0
\(327\) 22.4858 12.9822i 1.24347 0.717916i
\(328\) 0 0
\(329\) −3.84869 + 6.66612i −0.212185 + 0.367515i
\(330\) 0 0
\(331\) −16.6703 9.62458i −0.916281 0.529015i −0.0338340 0.999427i \(-0.510772\pi\)
−0.882447 + 0.470413i \(0.844105\pi\)
\(332\) 0 0
\(333\) 5.32719i 0.291928i
\(334\) 0 0
\(335\) −19.3040 33.4354i −1.05469 1.82677i
\(336\) 0 0
\(337\) 31.4126 1.71115 0.855576 0.517677i \(-0.173203\pi\)
0.855576 + 0.517677i \(0.173203\pi\)
\(338\) 0 0
\(339\) −10.1188 −0.549577
\(340\) 0 0
\(341\) 5.13349 + 8.89147i 0.277994 + 0.481500i
\(342\) 0 0
\(343\) 14.4126i 0.778206i
\(344\) 0 0
\(345\) −72.1200 41.6385i −3.88281 2.24174i
\(346\) 0 0
\(347\) 7.93002 13.7352i 0.425706 0.737344i −0.570780 0.821103i \(-0.693359\pi\)
0.996486 + 0.0837586i \(0.0266925\pi\)
\(348\) 0 0
\(349\) 30.1986 17.4351i 1.61649 0.933282i 0.628674 0.777669i \(-0.283598\pi\)
0.987818 0.155613i \(-0.0497354\pi\)
\(350\) 0 0
\(351\) 7.05924 0.523868i 0.376795 0.0279620i
\(352\) 0 0
\(353\) 4.27303 2.46704i 0.227431 0.131307i −0.381956 0.924181i \(-0.624749\pi\)
0.609386 + 0.792874i \(0.291416\pi\)
\(354\) 0 0
\(355\) −15.8399 + 27.4354i −0.840692 + 1.45612i
\(356\) 0 0
\(357\) −2.22411 1.28409i −0.117712 0.0679612i
\(358\) 0 0
\(359\) 8.15131i 0.430210i 0.976591 + 0.215105i \(0.0690093\pi\)
−0.976591 + 0.215105i \(0.930991\pi\)
\(360\) 0 0
\(361\) −1.79976 3.11728i −0.0947243 0.164067i
\(362\) 0 0
\(363\) −22.0119 −1.15533
\(364\) 0 0
\(365\) 37.1557 1.94482
\(366\) 0 0
\(367\) −0.0655200 0.113484i −0.00342012 0.00592382i 0.864310 0.502959i \(-0.167755\pi\)
−0.867730 + 0.497035i \(0.834422\pi\)
\(368\) 0 0
\(369\) 5.97248i 0.310915i
\(370\) 0 0
\(371\) −8.76043 5.05784i −0.454819 0.262590i
\(372\) 0 0
\(373\) 3.83759 6.64690i 0.198703 0.344163i −0.749405 0.662112i \(-0.769660\pi\)
0.948108 + 0.317948i \(0.102994\pi\)
\(374\) 0 0
\(375\) −46.9261 + 27.0928i −2.42325 + 1.39907i
\(376\) 0 0
\(377\) 8.23302 + 12.0945i 0.424022 + 0.622896i
\(378\) 0 0
\(379\) 8.49456 4.90434i 0.436336 0.251919i −0.265706 0.964054i \(-0.585605\pi\)
0.702042 + 0.712135i \(0.252272\pi\)
\(380\) 0 0
\(381\) −4.29976 + 7.44741i −0.220283 + 0.381542i
\(382\) 0 0
\(383\) −27.3940 15.8159i −1.39977 0.808155i −0.405398 0.914140i \(-0.632867\pi\)
−0.994368 + 0.105985i \(0.966200\pi\)
\(384\) 0 0
\(385\) 5.13635i 0.261773i
\(386\) 0 0
\(387\) −6.92820 12.0000i −0.352180 0.609994i
\(388\) 0 0
\(389\) 12.7730 0.647618 0.323809 0.946122i \(-0.395036\pi\)
0.323809 + 0.946122i \(0.395036\pi\)
\(390\) 0 0
\(391\) 9.19392 0.464957
\(392\) 0 0
\(393\) 5.47613 + 9.48494i 0.276234 + 0.478452i
\(394\) 0 0
\(395\) 51.9287i 2.61282i
\(396\) 0 0
\(397\) 20.7480 + 11.9788i 1.04131 + 0.601201i 0.920204 0.391438i \(-0.128022\pi\)
0.121107 + 0.992640i \(0.461356\pi\)
\(398\) 0 0
\(399\) −5.03920 + 8.72816i −0.252276 + 0.436954i
\(400\) 0 0
\(401\) −2.82482 + 1.63091i −0.141065 + 0.0814438i −0.568871 0.822427i \(-0.692620\pi\)
0.427807 + 0.903870i \(0.359286\pi\)
\(402\) 0 0
\(403\) 2.41695 + 32.5689i 0.120397 + 1.62237i
\(404\) 0 0
\(405\) 37.5600 21.6853i 1.86637 1.07755i
\(406\) 0 0
\(407\) 1.41513 2.45107i 0.0701453 0.121495i
\(408\) 0 0
\(409\) −11.5979 6.69602i −0.573477 0.331097i 0.185060 0.982727i \(-0.440752\pi\)
−0.758537 + 0.651630i \(0.774085\pi\)
\(410\) 0 0
\(411\) 9.80867i 0.483826i
\(412\) 0 0
\(413\) −5.09061 8.81720i −0.250493 0.433866i
\(414\) 0 0
\(415\) 22.9193 1.12506
\(416\) 0 0
\(417\) −35.8430 −1.75524
\(418\) 0 0
\(419\) −2.66263 4.61181i −0.130078 0.225302i 0.793628 0.608403i \(-0.208189\pi\)
−0.923706 + 0.383101i \(0.874856\pi\)
\(420\) 0 0
\(421\) 5.52754i 0.269396i 0.990887 + 0.134698i \(0.0430064\pi\)
−0.990887 + 0.134698i \(0.956994\pi\)
\(422\) 0 0
\(423\) −12.5472 7.24411i −0.610064 0.352221i
\(424\) 0 0
\(425\) 5.49109 9.51085i 0.266357 0.461344i
\(426\) 0 0
\(427\) 7.64776 4.41543i 0.370101 0.213678i
\(428\) 0 0
\(429\) 8.33978 + 4.02368i 0.402648 + 0.194265i
\(430\) 0 0
\(431\) −23.4674 + 13.5489i −1.13039 + 0.652629i −0.944032 0.329854i \(-0.893001\pi\)
−0.186354 + 0.982483i \(0.559667\pi\)
\(432\) 0 0
\(433\) 6.57566 11.3894i 0.316006 0.547338i −0.663645 0.748048i \(-0.730991\pi\)
0.979651 + 0.200710i \(0.0643247\pi\)
\(434\) 0 0
\(435\) 31.8309 + 18.3776i 1.52618 + 0.881139i
\(436\) 0 0
\(437\) 36.0801i 1.72595i
\(438\) 0 0
\(439\) −10.0445 17.3976i −0.479399 0.830343i 0.520322 0.853970i \(-0.325812\pi\)
−0.999721 + 0.0236272i \(0.992479\pi\)
\(440\) 0 0
\(441\) 12.1933 0.580635
\(442\) 0 0
\(443\) −40.4401 −1.92137 −0.960685 0.277642i \(-0.910447\pi\)
−0.960685 + 0.277642i \(0.910447\pi\)
\(444\) 0 0
\(445\) −28.0400 48.5667i −1.32922 2.30228i
\(446\) 0 0
\(447\) 11.0878i 0.524433i
\(448\) 0 0
\(449\) −18.9494 10.9404i −0.894278 0.516311i −0.0189383 0.999821i \(-0.506029\pi\)
−0.875339 + 0.483509i \(0.839362\pi\)
\(450\) 0 0
\(451\) −1.58654 + 2.74797i −0.0747074 + 0.129397i
\(452\) 0 0
\(453\) −17.7730 + 10.2613i −0.835050 + 0.482116i
\(454\) 0 0
\(455\) 7.09962 14.7152i 0.332835 0.689859i
\(456\) 0 0
\(457\) 7.50000 4.33013i 0.350835 0.202555i −0.314218 0.949351i \(-0.601742\pi\)
0.665053 + 0.746796i \(0.268409\pi\)
\(458\) 0 0
\(459\) −0.981633 + 1.70024i −0.0458187 + 0.0793603i
\(460\) 0 0
\(461\) −6.21015 3.58543i −0.289235 0.166990i 0.348362 0.937360i \(-0.386738\pi\)
−0.637597 + 0.770370i \(0.720071\pi\)
\(462\) 0 0
\(463\) 5.73302i 0.266436i −0.991087 0.133218i \(-0.957469\pi\)
0.991087 0.133218i \(-0.0425310\pi\)
\(464\) 0 0
\(465\) 41.0222 + 71.0525i 1.90236 + 3.29498i
\(466\) 0 0
\(467\) −5.13635 −0.237682 −0.118841 0.992913i \(-0.537918\pi\)
−0.118841 + 0.992913i \(0.537918\pi\)
\(468\) 0 0
\(469\) 10.9465 0.505464
\(470\) 0 0
\(471\) −10.4125 18.0350i −0.479782 0.831007i
\(472\) 0 0
\(473\) 7.36170i 0.338491i
\(474\) 0 0
\(475\) −37.3238 21.5489i −1.71253 0.988733i
\(476\) 0 0
\(477\) 9.52001 16.4891i 0.435891 0.754986i
\(478\) 0 0
\(479\) 23.4587 13.5439i 1.07185 0.618835i 0.143167 0.989699i \(-0.454271\pi\)
0.928688 + 0.370863i \(0.120938\pi\)
\(480\) 0 0
\(481\) 7.44216 5.06608i 0.339333 0.230993i
\(482\) 0 0
\(483\) 20.4483 11.8058i 0.930428 0.537183i
\(484\) 0 0
\(485\) −17.7730 + 30.7838i −0.807032 + 1.39782i
\(486\) 0 0
\(487\) 30.1336 + 17.3976i 1.36548 + 0.788361i 0.990347 0.138609i \(-0.0442632\pi\)
0.375134 + 0.926970i \(0.377597\pi\)
\(488\) 0 0
\(489\) 15.5576i 0.703539i
\(490\) 0 0
\(491\) −10.4780 18.1485i −0.472866 0.819028i 0.526652 0.850081i \(-0.323447\pi\)
−0.999518 + 0.0310531i \(0.990114\pi\)
\(492\) 0 0
\(493\) −4.05784 −0.182756
\(494\) 0 0
\(495\) 9.66780 0.434535
\(496\) 0 0
\(497\) −4.49109 7.77880i −0.201453 0.348927i
\(498\) 0 0
\(499\) 25.2892i 1.13210i −0.824371 0.566050i \(-0.808471\pi\)
0.824371 0.566050i \(-0.191529\pi\)
\(500\) 0 0
\(501\) 21.7759 + 12.5723i 0.972875 + 0.561690i
\(502\) 0 0
\(503\) 14.4045 24.9494i 0.642267 1.11244i −0.342659 0.939460i \(-0.611327\pi\)
0.984926 0.172979i \(-0.0553392\pi\)
\(504\) 0 0
\(505\) −27.8976 + 16.1067i −1.24143 + 0.716739i
\(506\) 0 0
\(507\) 18.3311 + 23.0550i 0.814112 + 1.02391i
\(508\) 0 0
\(509\) −8.91325 + 5.14607i −0.395073 + 0.228095i −0.684356 0.729148i \(-0.739916\pi\)
0.289283 + 0.957244i \(0.406583\pi\)
\(510\) 0 0
\(511\) −5.26739 + 9.12339i −0.233016 + 0.403595i
\(512\) 0 0
\(513\) 6.67232 + 3.85226i 0.294590 + 0.170082i
\(514\) 0 0
\(515\) 25.4405i 1.12104i
\(516\) 0 0
\(517\) 3.84869 + 6.66612i 0.169265 + 0.293176i
\(518\) 0 0
\(519\) −44.2181 −1.94096
\(520\) 0 0
\(521\) 12.7831 0.560039 0.280020 0.959994i \(-0.409659\pi\)
0.280020 + 0.959994i \(0.409659\pi\)
\(522\) 0 0
\(523\) −10.4780 18.1485i −0.458171 0.793576i 0.540693 0.841220i \(-0.318162\pi\)
−0.998864 + 0.0476437i \(0.984829\pi\)
\(524\) 0 0
\(525\) 28.2042i 1.23093i
\(526\) 0 0
\(527\) −7.84432 4.52892i −0.341704 0.197283i
\(528\) 0 0
\(529\) −30.7641 + 53.2850i −1.33757 + 2.31674i
\(530\) 0 0
\(531\) 16.5960 9.58170i 0.720205 0.415811i
\(532\) 0 0
\(533\) −8.34364 + 5.67974i −0.361403 + 0.246017i
\(534\) 0 0
\(535\) 39.2216 22.6446i 1.69570 0.979011i
\(536\) 0 0
\(537\) 8.33978 14.4449i 0.359888 0.623344i
\(538\) 0 0
\(539\) −5.61022 3.23906i −0.241649 0.139516i
\(540\) 0 0
\(541\) 24.9827i 1.07409i −0.843553 0.537046i \(-0.819540\pi\)
0.843553 0.537046i \(-0.180460\pi\)
\(542\) 0 0
\(543\) −5.88105 10.1863i −0.252380 0.437135i
\(544\) 0 0
\(545\) −45.8130 −1.96242
\(546\) 0 0
\(547\) 21.1449 0.904092 0.452046 0.891995i \(-0.350694\pi\)
0.452046 + 0.891995i \(0.350694\pi\)
\(548\) 0 0
\(549\) 8.31086 + 14.3948i 0.354699 + 0.614356i
\(550\) 0 0
\(551\) 15.9243i 0.678400i
\(552\) 0 0
\(553\) −12.7508 7.36170i −0.542221 0.313051i
\(554\) 0 0
\(555\) 11.3084 19.5868i 0.480016 0.831411i
\(556\) 0 0
\(557\) −20.1624 + 11.6408i −0.854309 + 0.493235i −0.862102 0.506734i \(-0.830853\pi\)
0.00779359 + 0.999970i \(0.497519\pi\)
\(558\) 0 0
\(559\) −10.1756 + 21.0906i −0.430380 + 0.892038i
\(560\) 0 0
\(561\) −2.22411 + 1.28409i −0.0939018 + 0.0542142i
\(562\) 0 0
\(563\) 14.4045 24.9494i 0.607079 1.05149i −0.384640 0.923067i \(-0.625674\pi\)
0.991719 0.128425i \(-0.0409922\pi\)
\(564\) 0 0
\(565\) 15.4622 + 8.92709i 0.650498 + 0.375565i
\(566\) 0 0
\(567\) 12.2969i 0.516421i
\(568\) 0 0
\(569\) −8.54893 14.8072i −0.358390 0.620749i 0.629302 0.777161i \(-0.283341\pi\)
−0.987692 + 0.156412i \(0.950007\pi\)
\(570\) 0 0
\(571\) 22.3144 0.933828 0.466914 0.884303i \(-0.345366\pi\)
0.466914 + 0.884303i \(0.345366\pi\)
\(572\) 0 0
\(573\) −11.9344 −0.498569
\(574\) 0 0
\(575\) 50.4847 + 87.4420i 2.10536 + 3.64658i
\(576\) 0 0
\(577\) 2.36590i 0.0984935i 0.998787 + 0.0492468i \(0.0156821\pi\)
−0.998787 + 0.0492468i \(0.984318\pi\)
\(578\) 0 0
\(579\) 11.1031 + 6.41038i 0.461430 + 0.266406i
\(580\) 0 0
\(581\) −3.24916 + 5.62772i −0.134798 + 0.233477i
\(582\) 0 0
\(583\) −8.76043 + 5.05784i −0.362820 + 0.209474i
\(584\) 0 0
\(585\) 27.6974 + 13.3631i 1.14515 + 0.552497i
\(586\) 0 0
\(587\) 23.4674 13.5489i 0.968604 0.559224i 0.0697939 0.997561i \(-0.477766\pi\)
0.898810 + 0.438337i \(0.144432\pi\)
\(588\) 0 0
\(589\) −17.7730 + 30.7838i −0.732325 + 1.26842i
\(590\) 0 0
\(591\) 27.5250 + 15.8916i 1.13223 + 0.653692i
\(592\) 0 0
\(593\) 23.2930i 0.956528i −0.878216 0.478264i \(-0.841266\pi\)
0.878216 0.478264i \(-0.158734\pi\)
\(594\) 0 0
\(595\) 2.26572 + 3.92434i 0.0928855 + 0.160882i
\(596\) 0 0
\(597\) 11.9344 0.488444
\(598\) 0 0
\(599\) −38.6079 −1.57748 −0.788738 0.614729i \(-0.789265\pi\)
−0.788738 + 0.614729i \(0.789265\pi\)
\(600\) 0 0
\(601\) −17.9405 31.0738i −0.731808 1.26753i −0.956110 0.293009i \(-0.905343\pi\)
0.224302 0.974520i \(-0.427990\pi\)
\(602\) 0 0
\(603\) 20.6039i 0.839056i
\(604\) 0 0
\(605\) 33.6357 + 19.4196i 1.36748 + 0.789518i
\(606\) 0 0
\(607\) 15.3207 26.5362i 0.621846 1.07707i −0.367295 0.930104i \(-0.619716\pi\)
0.989142 0.146965i \(-0.0469505\pi\)
\(608\) 0 0
\(609\) −9.02506 + 5.21062i −0.365714 + 0.211145i
\(610\) 0 0
\(611\) 1.81204 + 24.4176i 0.0733072 + 0.987831i
\(612\) 0 0
\(613\) 12.8376 7.41179i 0.518505 0.299359i −0.217818 0.975990i \(-0.569894\pi\)
0.736323 + 0.676630i \(0.236560\pi\)
\(614\) 0 0
\(615\) −12.6782 + 21.9593i −0.511235 + 0.885485i
\(616\) 0 0
\(617\) 31.4465 + 18.1557i 1.26599 + 0.730920i 0.974227 0.225571i \(-0.0724247\pi\)
0.291763 + 0.956491i \(0.405758\pi\)
\(618\) 0 0
\(619\) 6.03564i 0.242593i −0.992616 0.121296i \(-0.961295\pi\)
0.992616 0.121296i \(-0.0387052\pi\)
\(620\) 0 0
\(621\) −9.02506 15.6319i −0.362163 0.627285i
\(622\) 0 0
\(623\) 15.9004 0.637037
\(624\) 0 0
\(625\) 40.6974 1.62790
\(626\) 0 0
\(627\) 5.03920 + 8.72816i 0.201246 + 0.348569i
\(628\) 0 0
\(629\) 2.49694i 0.0995594i
\(630\) 0 0
\(631\) −4.24538 2.45107i −0.169006 0.0975757i 0.413111 0.910681i \(-0.364442\pi\)
−0.582117 + 0.813105i \(0.697775\pi\)
\(632\) 0 0
\(633\) 13.8159 23.9299i 0.549133 0.951126i
\(634\) 0 0
\(635\) 13.1406 7.58675i 0.521471 0.301071i
\(636\) 0 0
\(637\) −11.5957 17.0342i −0.459437 0.674922i
\(638\) 0 0
\(639\) 14.6415 8.45326i 0.579208 0.334406i
\(640\) 0 0
\(641\) 18.5578 32.1431i 0.732990 1.26958i −0.222609 0.974908i \(-0.571457\pi\)
0.955599 0.294669i \(-0.0952094\pi\)
\(642\) 0 0
\(643\) −18.7646 10.8337i −0.740002 0.427241i 0.0820678 0.996627i \(-0.473848\pi\)
−0.822070 + 0.569386i \(0.807181\pi\)
\(644\) 0 0
\(645\) 58.8280i 2.31635i
\(646\) 0 0
\(647\) 12.7525 + 22.0879i 0.501352 + 0.868367i 0.999999 + 0.00156154i \(0.000497053\pi\)
−0.498647 + 0.866805i \(0.666170\pi\)
\(648\) 0 0
\(649\) −10.1812 −0.399648
\(650\) 0 0
\(651\) −23.2621 −0.911714
\(652\) 0 0
\(653\) −2.09061 3.62105i −0.0818121 0.141703i 0.822216 0.569175i \(-0.192737\pi\)
−0.904028 + 0.427473i \(0.859404\pi\)
\(654\) 0 0
\(655\) 19.3248i 0.755083i
\(656\) 0 0
\(657\) −17.1723 9.91444i −0.669956 0.386799i
\(658\) 0 0
\(659\) −15.9343 + 27.5990i −0.620713 + 1.07511i 0.368641 + 0.929572i \(0.379823\pi\)
−0.989353 + 0.145534i \(0.953510\pi\)
\(660\) 0 0
\(661\) 28.5350 16.4747i 1.10988 0.640790i 0.171083 0.985257i \(-0.445273\pi\)
0.938799 + 0.344466i \(0.111940\pi\)
\(662\) 0 0
\(663\) −8.14677 + 0.604574i −0.316394 + 0.0234797i
\(664\) 0 0
\(665\) 15.4005 8.89147i 0.597205 0.344796i
\(666\) 0 0
\(667\) 18.6537 32.3092i 0.722275 1.25102i
\(668\) 0 0
\(669\) −19.7002 11.3739i −0.761655 0.439742i
\(670\) 0 0
\(671\) 8.83087i 0.340912i
\(672\) 0 0
\(673\) −17.3309 30.0179i −0.668056 1.15711i −0.978447 0.206498i \(-0.933793\pi\)
0.310391 0.950609i \(-0.399540\pi\)
\(674\) 0 0
\(675\) −21.5609 −0.829881
\(676\) 0 0
\(677\) −30.6140 −1.17659 −0.588296 0.808646i \(-0.700201\pi\)
−0.588296 + 0.808646i \(0.700201\pi\)
\(678\) 0 0
\(679\) −5.03920 8.72816i −0.193387 0.334956i
\(680\) 0 0
\(681\) 17.0874i 0.654789i
\(682\) 0 0
\(683\) 26.0154 + 15.0200i 0.995452 + 0.574725i 0.906900 0.421347i \(-0.138442\pi\)
0.0885527 + 0.996071i \(0.471776\pi\)
\(684\) 0 0
\(685\) 8.65350 14.9883i 0.330633 0.572674i
\(686\) 0 0
\(687\) 13.0801 7.55179i 0.499036 0.288119i
\(688\) 0 0
\(689\) −32.0889 + 2.38133i −1.22249 + 0.0907214i
\(690\) 0 0
\(691\) 32.0968 18.5311i 1.22102 0.704956i 0.255885 0.966707i \(-0.417633\pi\)
0.965136 + 0.261751i \(0.0842998\pi\)
\(692\) 0 0
\(693\) −1.37056 + 2.37388i −0.0520632 + 0.0901762i
\(694\) 0 0
\(695\) 54.7704 + 31.6217i 2.07756 + 1.19948i
\(696\) 0 0
\(697\) 2.79939i 0.106035i
\(698\) 0 0
\(699\) 2.69922 + 4.67518i 0.102094 + 0.176832i
\(700\) 0 0
\(701\) 8.03564 0.303502 0.151751 0.988419i \(-0.451509\pi\)
0.151751 + 0.988419i \(0.451509\pi\)
\(702\) 0 0
\(703\) 9.79884 0.369570
\(704\) 0 0
\(705\) 30.7552 + 53.2696i 1.15831 + 2.00625i
\(706\) 0 0
\(707\) 9.13349i 0.343500i
\(708\) 0 0
\(709\) 8.96336 + 5.17500i 0.336626 + 0.194351i 0.658779 0.752336i \(-0.271073\pi\)
−0.322153 + 0.946688i \(0.604407\pi\)
\(710\) 0 0
\(711\) 13.8564 24.0000i 0.519656 0.900070i
\(712\) 0 0
\(713\) 72.1200 41.6385i 2.70092 1.55938i
\(714\) 0 0
\(715\) −9.19392 13.5060i −0.343833 0.505098i
\(716\) 0 0
\(717\) −42.0501 + 24.2776i −1.57039 + 0.906665i
\(718\) 0 0
\(719\) −5.51307 + 9.54893i −0.205603 + 0.356115i −0.950325 0.311260i \(-0.899249\pi\)
0.744722 + 0.667375i \(0.232582\pi\)
\(720\) 0 0
\(721\) −6.24678 3.60658i −0.232642 0.134316i
\(722\) 0 0
\(723\) 0.458312i 0.0170448i
\(724\) 0 0
\(725\) −22.2819 38.5935i −0.827531 1.43332i
\(726\) 0 0
\(727\) 8.45797 0.313689 0.156844 0.987623i \(-0.449868\pi\)
0.156844 + 0.987623i \(0.449868\pi\)
\(728\) 0 0
\(729\) −9.80095 −0.362998
\(730\) 0 0
\(731\) −3.24735 5.62458i −0.120108 0.208033i
\(732\) 0 0
\(733\) 23.9154i 0.883335i −0.897179 0.441668i \(-0.854387\pi\)
0.897179 0.441668i \(-0.145613\pi\)
\(734\) 0 0
\(735\) −44.8318 25.8837i −1.65365 0.954733i
\(736\) 0 0
\(737\) 5.47327 9.47998i 0.201610 0.349200i
\(738\) 0 0
\(739\) 6.87143 3.96722i 0.252770 0.145937i −0.368262 0.929722i \(-0.620047\pi\)
0.621032 + 0.783785i \(0.286714\pi\)
\(740\) 0 0
\(741\) 2.37256 + 31.9707i 0.0871580 + 1.17447i
\(742\) 0 0
\(743\) −30.3956 + 17.5489i −1.11511 + 0.643808i −0.940147 0.340768i \(-0.889313\pi\)
−0.174960 + 0.984576i \(0.555980\pi\)
\(744\) 0 0
\(745\) 9.78194 16.9428i 0.358383 0.620737i
\(746\) 0 0
\(747\) −10.5927 6.11567i −0.387565 0.223761i
\(748\) 0 0
\(749\) 12.8409i 0.469196i
\(750\) 0 0
\(751\) 6.07761 + 10.5267i 0.221775 + 0.384126i 0.955347 0.295486i \(-0.0954816\pi\)
−0.733572 + 0.679612i \(0.762148\pi\)
\(752\) 0 0
\(753\) 48.1658 1.75526
\(754\) 0 0
\(755\) 36.2112 1.31786
\(756\) 0 0
\(757\) 15.7581 + 27.2938i 0.572737 + 0.992009i 0.996283 + 0.0861351i \(0.0274517\pi\)
−0.423547 + 0.905874i \(0.639215\pi\)
\(758\) 0 0
\(759\) 23.6116i 0.857048i
\(760\) 0 0
\(761\) −0.602386 0.347788i −0.0218365 0.0126073i 0.489042 0.872260i \(-0.337346\pi\)
−0.510879 + 0.859653i \(0.670680\pi\)
\(762\) 0 0
\(763\) 6.49471 11.2492i 0.235124 0.407247i
\(764\) 0 0
\(765\) −7.38652 + 4.26461i −0.267060 + 0.154187i
\(766\) 0 0
\(767\) −29.1683 14.0728i −1.05321 0.508139i
\(768\) 0 0
\(769\) −38.7981 + 22.4001i −1.39909 + 0.807768i −0.994298 0.106639i \(-0.965991\pi\)
−0.404797 + 0.914407i \(0.632658\pi\)
\(770\) 0 0
\(771\) −18.4823 + 32.0123i −0.665624 + 1.15289i
\(772\) 0 0
\(773\) −8.27422 4.77712i −0.297603 0.171821i 0.343763 0.939057i \(-0.388298\pi\)
−0.641366 + 0.767235i \(0.721632\pi\)
\(774\) 0 0
\(775\) 99.4748i 3.57324i
\(776\) 0 0
\(777\) 3.20629 + 5.55345i 0.115025 + 0.199229i
\(778\) 0 0
\(779\) −10.9858 −0.393606
\(780\) 0 0
\(781\) −8.98218 −0.321408
\(782\) 0 0
\(783\) 3.98330 + 6.89929i 0.142352 + 0.246560i
\(784\) 0 0
\(785\) 36.7448i 1.31148i
\(786\) 0 0
\(787\) 11.1206 + 6.42048i 0.396407 + 0.228866i 0.684932 0.728607i \(-0.259832\pi\)
−0.288526 + 0.957472i \(0.593165\pi\)
\(788\) 0 0
\(789\) 8.04288 13.9307i 0.286334 0.495945i
\(790\) 0 0
\(791\) −4.38400 + 2.53111i −0.155877 + 0.0899958i
\(792\) 0 0
\(793\) 12.2063 25.2997i 0.433458 0.898417i
\(794\) 0 0
\(795\) −70.0054 + 40.4176i −2.48283 + 1.43347i
\(796\) 0 0
\(797\) 14.8916 25.7929i 0.527486 0.913633i −0.472000 0.881598i \(-0.656468\pi\)
0.999487 0.0320348i \(-0.0101987\pi\)
\(798\) 0 0
\(799\) −5.88105 3.39543i −0.208057 0.120122i
\(800\) 0 0
\(801\) 29.9282i 1.05746i
\(802\) 0 0
\(803\) 5.26739 + 9.12339i 0.185882 + 0.321958i
\(804\) 0 0
\(805\) −41.6617 −1.46838
\(806\) 0 0
\(807\) 16.5053 0.581015
\(808\) 0 0
\(809\) 13.1974 + 22.8585i 0.463995 + 0.803663i 0.999156 0.0410874i \(-0.0130822\pi\)
−0.535161 + 0.844750i \(0.679749\pi\)
\(810\) 0 0
\(811\) 29.9543i 1.05184i 0.850535 + 0.525918i \(0.176278\pi\)
−0.850535 + 0.525918i \(0.823722\pi\)
\(812\) 0 0
\(813\) −13.7702 7.95021i −0.482941 0.278826i
\(814\) 0 0
\(815\) 13.7254 23.7730i 0.480779 0.832733i
\(816\) 0 0
\(817\) −22.0728 + 12.7437i −0.772229 + 0.445847i
\(818\) 0 0
\(819\) −7.20778 + 4.90652i −0.251860 + 0.171448i
\(820\) 0 0
\(821\) −26.0473 + 15.0384i −0.909055 + 0.524843i −0.880127 0.474738i \(-0.842543\pi\)
−0.0289283 + 0.999581i \(0.509209\pi\)
\(822\) 0 0
\(823\) −26.1666 + 45.3220i −0.912112 + 1.57982i −0.101036 + 0.994883i \(0.532216\pi\)
−0.811076 + 0.584941i \(0.801117\pi\)
\(824\) 0 0
\(825\) −24.4255 14.1021i −0.850388 0.490972i
\(826\) 0 0
\(827\) 42.7297i 1.48586i 0.669371 + 0.742928i \(0.266564\pi\)
−0.669371 + 0.742928i \(0.733436\pi\)
\(828\) 0 0
\(829\) 5.77975 + 10.0108i 0.200739 + 0.347690i 0.948767 0.315977i \(-0.102332\pi\)
−0.748028 + 0.663668i \(0.768999\pi\)
\(830\) 0 0
\(831\) −29.6936 −1.03006
\(832\) 0 0
\(833\) 5.71520 0.198020
\(834\) 0 0
\(835\) −22.1833 38.4227i −0.767686 1.32967i
\(836\) 0 0
\(837\) 17.7829i 0.614668i
\(838\) 0 0
\(839\) −24.1215 13.9265i −0.832765 0.480797i 0.0220332 0.999757i \(-0.492986\pi\)
−0.854799 + 0.518960i \(0.826319\pi\)
\(840\) 0 0
\(841\) 6.26698 10.8547i 0.216103 0.374301i
\(842\) 0 0
\(843\) 48.4269 27.9593i 1.66791 0.962970i
\(844\) 0 0
\(845\) −7.67132 51.4017i −0.263901 1.76827i
\(846\) 0 0
\(847\) −9.53676 + 5.50605i −0.327687 + 0.189190i
\(848\) 0 0
\(849\) −7.35760 + 12.7437i −0.252512 + 0.437364i
\(850\) 0 0
\(851\) −19.8810 11.4783i −0.681513 0.393472i
\(852\) 0 0
\(853\) 31.0439i 1.06292i 0.847082 + 0.531462i \(0.178357\pi\)
−0.847082 + 0.531462i \(0.821643\pi\)
\(854\) 0 0
\(855\) 16.7358 + 28.9872i 0.572352 + 0.991342i
\(856\) 0 0
\(857\) −44.9943 −1.53698 −0.768488 0.639865i \(-0.778990\pi\)
−0.768488 + 0.639865i \(0.778990\pi\)
\(858\) 0 0
\(859\) −27.1483 −0.926287 −0.463144 0.886283i \(-0.653279\pi\)
−0.463144 + 0.886283i \(0.653279\pi\)
\(860\) 0 0
\(861\) −3.59467 6.22614i −0.122506 0.212186i
\(862\) 0 0
\(863\) 13.4506i 0.457863i 0.973442 + 0.228932i \(0.0735233\pi\)
−0.973442 + 0.228932i \(0.926477\pi\)
\(864\) 0 0
\(865\) 67.5683 + 39.0106i 2.29739 + 1.32640i
\(866\) 0 0
\(867\) −18.1258 + 31.3948i −0.615583 + 1.06622i
\(868\) 0 0
\(869\) −12.7508 + 7.36170i −0.432542 + 0.249729i
\(870\) 0 0
\(871\) 28.7839 19.5940i 0.975307 0.663917i
\(872\) 0 0
\(873\) 16.4284 9.48494i 0.556017 0.321017i
\(874\) 0 0
\(875\) −13.5540 + 23.4761i −0.458207 + 0.793638i
\(876\) 0 0
\(877\) 42.0333 + 24.2679i 1.41936 + 0.819470i 0.996243 0.0866035i \(-0.0276013\pi\)
0.423121 + 0.906073i \(0.360935\pi\)
\(878\) 0 0
\(879\) 46.2714i 1.56069i
\(880\) 0 0
\(881\) 10.5757 + 18.3176i 0.356303 + 0.617135i 0.987340 0.158618i \(-0.0507038\pi\)
−0.631037 + 0.775753i \(0.717370\pi\)
\(882\) 0 0
\(883\) −26.0192 −0.875616 −0.437808 0.899068i \(-0.644245\pi\)
−0.437808 + 0.899068i \(0.644245\pi\)
\(884\) 0 0
\(885\) −81.3591 −2.73486
\(886\) 0 0
\(887\) −7.34530 12.7224i −0.246631 0.427178i 0.715958 0.698143i \(-0.245990\pi\)
−0.962589 + 0.270966i \(0.912657\pi\)
\(888\) 0 0
\(889\) 4.30216i 0.144290i
\(890\) 0 0
\(891\) 10.6494 + 6.14845i 0.356769 + 0.205981i
\(892\) 0 0
\(893\) −13.3248 + 23.0793i −0.445898 + 0.772318i
\(894\) 0 0
\(895\) −25.4875 + 14.7152i −0.851952 + 0.491875i
\(896\) 0 0
\(897\) 32.6367 67.6452i 1.08971 2.25861i
\(898\) 0 0
\(899\) −31.8309 + 18.3776i −1.06162 + 0.612927i
\(900\) 0 0
\(901\) 4.46217 7.72871i 0.148657 0.257481i
\(902\) 0 0
\(903\) −14.4449 8.33978i −0.480697 0.277530i
\(904\) 0 0
\(905\) 20.7537i 0.689878i
\(906\) 0 0
\(907\) 24.9393 + 43.1962i 0.828097 + 1.43431i 0.899529 + 0.436860i \(0.143910\pi\)
−0.0714325 + 0.997445i \(0.522757\pi\)
\(908\) 0 0
\(909\) 17.1913 0.570200
\(910\) 0 0
\(911\) 4.18861 0.138775 0.0693874 0.997590i \(-0.477896\pi\)
0.0693874 + 0.997590i \(0.477896\pi\)
\(912\) 0 0
\(913\) 3.24916 + 5.62772i 0.107532 + 0.186250i
\(914\) 0 0
\(915\) 70.5683i 2.33291i
\(916\) 0 0
\(917\) 4.74511 + 2.73959i 0.156697 + 0.0904693i
\(918\) 0 0
\(919\) −8.95699 + 15.5140i −0.295464 + 0.511758i −0.975093 0.221798i \(-0.928808\pi\)
0.679629 + 0.733556i \(0.262141\pi\)
\(920\) 0 0
\(921\) 25.6217 14.7927i 0.844264 0.487436i
\(922\) 0 0
\(923\) −25.7331 12.4154i −0.847017 0.408659i
\(924\) 0 0
\(925\) −23.7480 + 13.7109i −0.780829 + 0.450812i
\(926\) 0 0
\(927\) 6.78842 11.7579i 0.222961 0.386180i
\(928\) 0 0
\(929\) 4.90048 + 2.82929i 0.160779 + 0.0928260i 0.578231 0.815873i \(-0.303743\pi\)
−0.417451 + 0.908699i \(0.637077\pi\)
\(930\) 0 0
\(931\) 22.4284i 0.735061i
\(932\) 0 0
\(933\) 3.74312 + 6.48327i 0.122544 + 0.212253i
\(934\) 0 0
\(935\) 4.53144 0.148194
\(936\) 0 0
\(937\) −21.2969 −0.695739 −0.347870 0.937543i \(-0.613095\pi\)
−0.347870 + 0.937543i \(0.613095\pi\)
\(938\) 0 0
\(939\) 6.02084 + 10.4284i 0.196483 + 0.340318i
\(940\) 0 0
\(941\) 24.1291i 0.786587i −0.919413 0.393293i \(-0.871336\pi\)
0.919413 0.393293i \(-0.128664\pi\)
\(942\) 0 0
\(943\) 22.2892 + 12.8687i 0.725837 + 0.419062i
\(944\) 0 0
\(945\) 4.44821 7.70453i 0.144700 0.250628i
\(946\) 0 0
\(947\) 20.2567 11.6952i 0.658253 0.380043i −0.133358 0.991068i \(-0.542576\pi\)
0.791611 + 0.611025i \(0.209243\pi\)
\(948\) 0 0
\(949\) 2.47999 + 33.4185i 0.0805039 + 1.08481i
\(950\) 0 0
\(951\) −55.3033 + 31.9294i −1.79333 + 1.03538i
\(952\) 0 0
\(953\) −21.3398 + 36.9616i −0.691263 + 1.19730i 0.280161 + 0.959953i \(0.409612\pi\)
−0.971424 + 0.237350i \(0.923721\pi\)
\(954\) 0 0
\(955\) 18.2366 + 10.5289i 0.590123 + 0.340708i
\(956\) 0 0
\(957\) 10.4212i 0.336871i
\(958\) 0 0
\(959\) 2.45353 + 4.24965i 0.0792288 + 0.137228i
\(960\) 0 0
\(961\) −51.0444 −1.64659
\(962\) 0 0
\(963\) −24.1695 −0.778851
\(964\) 0 0
\(965\) −11.3109 19.5910i −0.364109 0.630656i
\(966\) 0 0
\(967\) 12.5239i 0.402740i −0.979515 0.201370i \(-0.935461\pi\)
0.979515 0.201370i \(-0.0645394\pi\)
\(968\) 0 0
\(969\) −7.70024 4.44573i −0.247367 0.142818i
\(970\) 0 0
\(971\) 1.86881 3.23688i 0.0599730 0.103876i −0.834480 0.551038i \(-0.814232\pi\)
0.894453 + 0.447162i \(0.147565\pi\)
\(972\) 0 0
\(973\) −15.5291 + 8.96574i −0.497840 + 0.287428i
\(974\) 0 0
\(975\) −50.4847 74.1629i −1.61680 2.37511i
\(976\) 0 0
\(977\) 11.7212 6.76726i 0.374996 0.216504i −0.300643 0.953737i \(-0.597201\pi\)
0.675639 + 0.737233i \(0.263868\pi\)
\(978\) 0 0
\(979\) 7.95021 13.7702i 0.254090 0.440097i
\(980\) 0 0
\(981\) 21.1735 + 12.2245i 0.676018 + 0.390299i
\(982\) 0 0
\(983\) 13.5918i 0.433511i −0.976226 0.216756i \(-0.930453\pi\)
0.976226 0.216756i \(-0.0695475\pi\)
\(984\) 0 0
\(985\) −28.0400 48.5667i −0.893429 1.54746i
\(986\) 0 0
\(987\) −17.4401 −0.555125
\(988\) 0 0
\(989\) 59.7119 1.89873
\(990\) 0 0
\(991\) −27.6473 47.8865i −0.878245 1.52117i −0.853265 0.521477i \(-0.825381\pi\)
−0.0249801 0.999688i \(-0.507952\pi\)
\(992\) 0 0
\(993\) 43.6132i 1.38402i
\(994\) 0 0
\(995\) −18.2366 10.5289i −0.578140 0.333789i
\(996\) 0 0
\(997\) 21.7441 37.6619i 0.688643 1.19276i −0.283634 0.958933i \(-0.591540\pi\)
0.972277 0.233832i \(-0.0751266\pi\)
\(998\) 0 0
\(999\) 4.24538 2.45107i 0.134318 0.0775486i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 416.2.w.d.257.5 yes 12
4.3 odd 2 inner 416.2.w.d.257.2 yes 12
8.3 odd 2 832.2.w.j.257.5 12
8.5 even 2 832.2.w.j.257.2 12
13.2 odd 12 5408.2.a.bn.1.2 6
13.4 even 6 inner 416.2.w.d.225.5 yes 12
13.11 odd 12 5408.2.a.bm.1.2 6
52.11 even 12 5408.2.a.bn.1.5 6
52.15 even 12 5408.2.a.bm.1.5 6
52.43 odd 6 inner 416.2.w.d.225.2 12
104.43 odd 6 832.2.w.j.641.5 12
104.69 even 6 832.2.w.j.641.2 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
416.2.w.d.225.2 12 52.43 odd 6 inner
416.2.w.d.225.5 yes 12 13.4 even 6 inner
416.2.w.d.257.2 yes 12 4.3 odd 2 inner
416.2.w.d.257.5 yes 12 1.1 even 1 trivial
832.2.w.j.257.2 12 8.5 even 2
832.2.w.j.257.5 12 8.3 odd 2
832.2.w.j.641.2 12 104.69 even 6
832.2.w.j.641.5 12 104.43 odd 6
5408.2.a.bm.1.2 6 13.11 odd 12
5408.2.a.bm.1.5 6 52.15 even 12
5408.2.a.bn.1.2 6 13.2 odd 12
5408.2.a.bn.1.5 6 52.11 even 12