Properties

Label 4160.2.a.bi.1.1
Level $4160$
Weight $2$
Character 4160.1
Self dual yes
Analytic conductor $33.218$
Analytic rank $1$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4160,2,Mod(1,4160)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4160, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4160.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4160 = 2^{6} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4160.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(33.2177672409\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{8})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 2080)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.41421\) of defining polynomial
Character \(\chi\) \(=\) 4160.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.41421 q^{3} +1.00000 q^{5} -1.00000 q^{9} +4.24264 q^{11} -1.00000 q^{13} -1.41421 q^{15} -2.00000 q^{17} -4.24264 q^{19} +1.41421 q^{23} +1.00000 q^{25} +5.65685 q^{27} -1.41421 q^{31} -6.00000 q^{33} -4.00000 q^{37} +1.41421 q^{39} -10.0000 q^{41} +9.89949 q^{43} -1.00000 q^{45} -11.3137 q^{47} -7.00000 q^{49} +2.82843 q^{51} +10.0000 q^{53} +4.24264 q^{55} +6.00000 q^{57} -1.41421 q^{59} +4.00000 q^{61} -1.00000 q^{65} -2.82843 q^{67} -2.00000 q^{69} +7.07107 q^{71} -4.00000 q^{73} -1.41421 q^{75} +8.48528 q^{79} -5.00000 q^{81} +5.65685 q^{83} -2.00000 q^{85} -18.0000 q^{89} +2.00000 q^{93} -4.24264 q^{95} -18.0000 q^{97} -4.24264 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{5} - 2 q^{9} - 2 q^{13} - 4 q^{17} + 2 q^{25} - 12 q^{33} - 8 q^{37} - 20 q^{41} - 2 q^{45} - 14 q^{49} + 20 q^{53} + 12 q^{57} + 8 q^{61} - 2 q^{65} - 4 q^{69} - 8 q^{73} - 10 q^{81} - 4 q^{85}+ \cdots - 36 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.41421 −0.816497 −0.408248 0.912871i \(-0.633860\pi\)
−0.408248 + 0.912871i \(0.633860\pi\)
\(4\) 0 0
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(8\) 0 0
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) 4.24264 1.27920 0.639602 0.768706i \(-0.279099\pi\)
0.639602 + 0.768706i \(0.279099\pi\)
\(12\) 0 0
\(13\) −1.00000 −0.277350
\(14\) 0 0
\(15\) −1.41421 −0.365148
\(16\) 0 0
\(17\) −2.00000 −0.485071 −0.242536 0.970143i \(-0.577979\pi\)
−0.242536 + 0.970143i \(0.577979\pi\)
\(18\) 0 0
\(19\) −4.24264 −0.973329 −0.486664 0.873589i \(-0.661786\pi\)
−0.486664 + 0.873589i \(0.661786\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 1.41421 0.294884 0.147442 0.989071i \(-0.452896\pi\)
0.147442 + 0.989071i \(0.452896\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 5.65685 1.08866
\(28\) 0 0
\(29\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(30\) 0 0
\(31\) −1.41421 −0.254000 −0.127000 0.991903i \(-0.540535\pi\)
−0.127000 + 0.991903i \(0.540535\pi\)
\(32\) 0 0
\(33\) −6.00000 −1.04447
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −4.00000 −0.657596 −0.328798 0.944400i \(-0.606644\pi\)
−0.328798 + 0.944400i \(0.606644\pi\)
\(38\) 0 0
\(39\) 1.41421 0.226455
\(40\) 0 0
\(41\) −10.0000 −1.56174 −0.780869 0.624695i \(-0.785223\pi\)
−0.780869 + 0.624695i \(0.785223\pi\)
\(42\) 0 0
\(43\) 9.89949 1.50966 0.754829 0.655921i \(-0.227720\pi\)
0.754829 + 0.655921i \(0.227720\pi\)
\(44\) 0 0
\(45\) −1.00000 −0.149071
\(46\) 0 0
\(47\) −11.3137 −1.65027 −0.825137 0.564933i \(-0.808902\pi\)
−0.825137 + 0.564933i \(0.808902\pi\)
\(48\) 0 0
\(49\) −7.00000 −1.00000
\(50\) 0 0
\(51\) 2.82843 0.396059
\(52\) 0 0
\(53\) 10.0000 1.37361 0.686803 0.726844i \(-0.259014\pi\)
0.686803 + 0.726844i \(0.259014\pi\)
\(54\) 0 0
\(55\) 4.24264 0.572078
\(56\) 0 0
\(57\) 6.00000 0.794719
\(58\) 0 0
\(59\) −1.41421 −0.184115 −0.0920575 0.995754i \(-0.529344\pi\)
−0.0920575 + 0.995754i \(0.529344\pi\)
\(60\) 0 0
\(61\) 4.00000 0.512148 0.256074 0.966657i \(-0.417571\pi\)
0.256074 + 0.966657i \(0.417571\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −1.00000 −0.124035
\(66\) 0 0
\(67\) −2.82843 −0.345547 −0.172774 0.984962i \(-0.555273\pi\)
−0.172774 + 0.984962i \(0.555273\pi\)
\(68\) 0 0
\(69\) −2.00000 −0.240772
\(70\) 0 0
\(71\) 7.07107 0.839181 0.419591 0.907713i \(-0.362174\pi\)
0.419591 + 0.907713i \(0.362174\pi\)
\(72\) 0 0
\(73\) −4.00000 −0.468165 −0.234082 0.972217i \(-0.575209\pi\)
−0.234082 + 0.972217i \(0.575209\pi\)
\(74\) 0 0
\(75\) −1.41421 −0.163299
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 8.48528 0.954669 0.477334 0.878722i \(-0.341603\pi\)
0.477334 + 0.878722i \(0.341603\pi\)
\(80\) 0 0
\(81\) −5.00000 −0.555556
\(82\) 0 0
\(83\) 5.65685 0.620920 0.310460 0.950586i \(-0.399517\pi\)
0.310460 + 0.950586i \(0.399517\pi\)
\(84\) 0 0
\(85\) −2.00000 −0.216930
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −18.0000 −1.90800 −0.953998 0.299813i \(-0.903076\pi\)
−0.953998 + 0.299813i \(0.903076\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 2.00000 0.207390
\(94\) 0 0
\(95\) −4.24264 −0.435286
\(96\) 0 0
\(97\) −18.0000 −1.82762 −0.913812 0.406138i \(-0.866875\pi\)
−0.913812 + 0.406138i \(0.866875\pi\)
\(98\) 0 0
\(99\) −4.24264 −0.426401
\(100\) 0 0
\(101\) −10.0000 −0.995037 −0.497519 0.867453i \(-0.665755\pi\)
−0.497519 + 0.867453i \(0.665755\pi\)
\(102\) 0 0
\(103\) 15.5563 1.53281 0.766406 0.642356i \(-0.222043\pi\)
0.766406 + 0.642356i \(0.222043\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −7.07107 −0.683586 −0.341793 0.939775i \(-0.611034\pi\)
−0.341793 + 0.939775i \(0.611034\pi\)
\(108\) 0 0
\(109\) −2.00000 −0.191565 −0.0957826 0.995402i \(-0.530535\pi\)
−0.0957826 + 0.995402i \(0.530535\pi\)
\(110\) 0 0
\(111\) 5.65685 0.536925
\(112\) 0 0
\(113\) −6.00000 −0.564433 −0.282216 0.959351i \(-0.591070\pi\)
−0.282216 + 0.959351i \(0.591070\pi\)
\(114\) 0 0
\(115\) 1.41421 0.131876
\(116\) 0 0
\(117\) 1.00000 0.0924500
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 7.00000 0.636364
\(122\) 0 0
\(123\) 14.1421 1.27515
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) 18.3848 1.63139 0.815693 0.578486i \(-0.196356\pi\)
0.815693 + 0.578486i \(0.196356\pi\)
\(128\) 0 0
\(129\) −14.0000 −1.23263
\(130\) 0 0
\(131\) −11.3137 −0.988483 −0.494242 0.869325i \(-0.664554\pi\)
−0.494242 + 0.869325i \(0.664554\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 5.65685 0.486864
\(136\) 0 0
\(137\) 10.0000 0.854358 0.427179 0.904167i \(-0.359507\pi\)
0.427179 + 0.904167i \(0.359507\pi\)
\(138\) 0 0
\(139\) −8.48528 −0.719712 −0.359856 0.933008i \(-0.617174\pi\)
−0.359856 + 0.933008i \(0.617174\pi\)
\(140\) 0 0
\(141\) 16.0000 1.34744
\(142\) 0 0
\(143\) −4.24264 −0.354787
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 9.89949 0.816497
\(148\) 0 0
\(149\) 10.0000 0.819232 0.409616 0.912258i \(-0.365663\pi\)
0.409616 + 0.912258i \(0.365663\pi\)
\(150\) 0 0
\(151\) −18.3848 −1.49613 −0.748066 0.663624i \(-0.769017\pi\)
−0.748066 + 0.663624i \(0.769017\pi\)
\(152\) 0 0
\(153\) 2.00000 0.161690
\(154\) 0 0
\(155\) −1.41421 −0.113592
\(156\) 0 0
\(157\) −14.0000 −1.11732 −0.558661 0.829396i \(-0.688685\pi\)
−0.558661 + 0.829396i \(0.688685\pi\)
\(158\) 0 0
\(159\) −14.1421 −1.12154
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 8.48528 0.664619 0.332309 0.943170i \(-0.392172\pi\)
0.332309 + 0.943170i \(0.392172\pi\)
\(164\) 0 0
\(165\) −6.00000 −0.467099
\(166\) 0 0
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 0 0
\(171\) 4.24264 0.324443
\(172\) 0 0
\(173\) 6.00000 0.456172 0.228086 0.973641i \(-0.426753\pi\)
0.228086 + 0.973641i \(0.426753\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 2.00000 0.150329
\(178\) 0 0
\(179\) −16.9706 −1.26844 −0.634220 0.773153i \(-0.718679\pi\)
−0.634220 + 0.773153i \(0.718679\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(182\) 0 0
\(183\) −5.65685 −0.418167
\(184\) 0 0
\(185\) −4.00000 −0.294086
\(186\) 0 0
\(187\) −8.48528 −0.620505
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −11.3137 −0.818631 −0.409316 0.912393i \(-0.634232\pi\)
−0.409316 + 0.912393i \(0.634232\pi\)
\(192\) 0 0
\(193\) 2.00000 0.143963 0.0719816 0.997406i \(-0.477068\pi\)
0.0719816 + 0.997406i \(0.477068\pi\)
\(194\) 0 0
\(195\) 1.41421 0.101274
\(196\) 0 0
\(197\) −6.00000 −0.427482 −0.213741 0.976890i \(-0.568565\pi\)
−0.213741 + 0.976890i \(0.568565\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(200\) 0 0
\(201\) 4.00000 0.282138
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −10.0000 −0.698430
\(206\) 0 0
\(207\) −1.41421 −0.0982946
\(208\) 0 0
\(209\) −18.0000 −1.24509
\(210\) 0 0
\(211\) −5.65685 −0.389434 −0.194717 0.980859i \(-0.562379\pi\)
−0.194717 + 0.980859i \(0.562379\pi\)
\(212\) 0 0
\(213\) −10.0000 −0.685189
\(214\) 0 0
\(215\) 9.89949 0.675140
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 5.65685 0.382255
\(220\) 0 0
\(221\) 2.00000 0.134535
\(222\) 0 0
\(223\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(224\) 0 0
\(225\) −1.00000 −0.0666667
\(226\) 0 0
\(227\) −25.4558 −1.68956 −0.844782 0.535111i \(-0.820270\pi\)
−0.844782 + 0.535111i \(0.820270\pi\)
\(228\) 0 0
\(229\) −6.00000 −0.396491 −0.198246 0.980152i \(-0.563524\pi\)
−0.198246 + 0.980152i \(0.563524\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −6.00000 −0.393073 −0.196537 0.980497i \(-0.562969\pi\)
−0.196537 + 0.980497i \(0.562969\pi\)
\(234\) 0 0
\(235\) −11.3137 −0.738025
\(236\) 0 0
\(237\) −12.0000 −0.779484
\(238\) 0 0
\(239\) 7.07107 0.457389 0.228695 0.973498i \(-0.426554\pi\)
0.228695 + 0.973498i \(0.426554\pi\)
\(240\) 0 0
\(241\) −10.0000 −0.644157 −0.322078 0.946713i \(-0.604381\pi\)
−0.322078 + 0.946713i \(0.604381\pi\)
\(242\) 0 0
\(243\) −9.89949 −0.635053
\(244\) 0 0
\(245\) −7.00000 −0.447214
\(246\) 0 0
\(247\) 4.24264 0.269953
\(248\) 0 0
\(249\) −8.00000 −0.506979
\(250\) 0 0
\(251\) −25.4558 −1.60676 −0.803379 0.595468i \(-0.796967\pi\)
−0.803379 + 0.595468i \(0.796967\pi\)
\(252\) 0 0
\(253\) 6.00000 0.377217
\(254\) 0 0
\(255\) 2.82843 0.177123
\(256\) 0 0
\(257\) 6.00000 0.374270 0.187135 0.982334i \(-0.440080\pi\)
0.187135 + 0.982334i \(0.440080\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −26.8701 −1.65688 −0.828439 0.560079i \(-0.810771\pi\)
−0.828439 + 0.560079i \(0.810771\pi\)
\(264\) 0 0
\(265\) 10.0000 0.614295
\(266\) 0 0
\(267\) 25.4558 1.55787
\(268\) 0 0
\(269\) 18.0000 1.09748 0.548740 0.835993i \(-0.315108\pi\)
0.548740 + 0.835993i \(0.315108\pi\)
\(270\) 0 0
\(271\) −29.6985 −1.80405 −0.902027 0.431679i \(-0.857921\pi\)
−0.902027 + 0.431679i \(0.857921\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 4.24264 0.255841
\(276\) 0 0
\(277\) −26.0000 −1.56219 −0.781094 0.624413i \(-0.785338\pi\)
−0.781094 + 0.624413i \(0.785338\pi\)
\(278\) 0 0
\(279\) 1.41421 0.0846668
\(280\) 0 0
\(281\) −10.0000 −0.596550 −0.298275 0.954480i \(-0.596411\pi\)
−0.298275 + 0.954480i \(0.596411\pi\)
\(282\) 0 0
\(283\) −1.41421 −0.0840663 −0.0420331 0.999116i \(-0.513384\pi\)
−0.0420331 + 0.999116i \(0.513384\pi\)
\(284\) 0 0
\(285\) 6.00000 0.355409
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −13.0000 −0.764706
\(290\) 0 0
\(291\) 25.4558 1.49225
\(292\) 0 0
\(293\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(294\) 0 0
\(295\) −1.41421 −0.0823387
\(296\) 0 0
\(297\) 24.0000 1.39262
\(298\) 0 0
\(299\) −1.41421 −0.0817861
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 14.1421 0.812444
\(304\) 0 0
\(305\) 4.00000 0.229039
\(306\) 0 0
\(307\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(308\) 0 0
\(309\) −22.0000 −1.25154
\(310\) 0 0
\(311\) 8.48528 0.481156 0.240578 0.970630i \(-0.422663\pi\)
0.240578 + 0.970630i \(0.422663\pi\)
\(312\) 0 0
\(313\) 14.0000 0.791327 0.395663 0.918396i \(-0.370515\pi\)
0.395663 + 0.918396i \(0.370515\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −8.00000 −0.449325 −0.224662 0.974437i \(-0.572128\pi\)
−0.224662 + 0.974437i \(0.572128\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 10.0000 0.558146
\(322\) 0 0
\(323\) 8.48528 0.472134
\(324\) 0 0
\(325\) −1.00000 −0.0554700
\(326\) 0 0
\(327\) 2.82843 0.156412
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −4.24264 −0.233197 −0.116598 0.993179i \(-0.537199\pi\)
−0.116598 + 0.993179i \(0.537199\pi\)
\(332\) 0 0
\(333\) 4.00000 0.219199
\(334\) 0 0
\(335\) −2.82843 −0.154533
\(336\) 0 0
\(337\) 18.0000 0.980522 0.490261 0.871576i \(-0.336901\pi\)
0.490261 + 0.871576i \(0.336901\pi\)
\(338\) 0 0
\(339\) 8.48528 0.460857
\(340\) 0 0
\(341\) −6.00000 −0.324918
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −2.00000 −0.107676
\(346\) 0 0
\(347\) 1.41421 0.0759190 0.0379595 0.999279i \(-0.487914\pi\)
0.0379595 + 0.999279i \(0.487914\pi\)
\(348\) 0 0
\(349\) −10.0000 −0.535288 −0.267644 0.963518i \(-0.586245\pi\)
−0.267644 + 0.963518i \(0.586245\pi\)
\(350\) 0 0
\(351\) −5.65685 −0.301941
\(352\) 0 0
\(353\) −24.0000 −1.27739 −0.638696 0.769460i \(-0.720526\pi\)
−0.638696 + 0.769460i \(0.720526\pi\)
\(354\) 0 0
\(355\) 7.07107 0.375293
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 18.3848 0.970311 0.485156 0.874428i \(-0.338763\pi\)
0.485156 + 0.874428i \(0.338763\pi\)
\(360\) 0 0
\(361\) −1.00000 −0.0526316
\(362\) 0 0
\(363\) −9.89949 −0.519589
\(364\) 0 0
\(365\) −4.00000 −0.209370
\(366\) 0 0
\(367\) −29.6985 −1.55025 −0.775124 0.631809i \(-0.782313\pi\)
−0.775124 + 0.631809i \(0.782313\pi\)
\(368\) 0 0
\(369\) 10.0000 0.520579
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 10.0000 0.517780 0.258890 0.965907i \(-0.416643\pi\)
0.258890 + 0.965907i \(0.416643\pi\)
\(374\) 0 0
\(375\) −1.41421 −0.0730297
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 38.1838 1.96137 0.980684 0.195598i \(-0.0626648\pi\)
0.980684 + 0.195598i \(0.0626648\pi\)
\(380\) 0 0
\(381\) −26.0000 −1.33202
\(382\) 0 0
\(383\) 22.6274 1.15621 0.578103 0.815963i \(-0.303793\pi\)
0.578103 + 0.815963i \(0.303793\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −9.89949 −0.503220
\(388\) 0 0
\(389\) −18.0000 −0.912636 −0.456318 0.889817i \(-0.650832\pi\)
−0.456318 + 0.889817i \(0.650832\pi\)
\(390\) 0 0
\(391\) −2.82843 −0.143040
\(392\) 0 0
\(393\) 16.0000 0.807093
\(394\) 0 0
\(395\) 8.48528 0.426941
\(396\) 0 0
\(397\) −4.00000 −0.200754 −0.100377 0.994949i \(-0.532005\pi\)
−0.100377 + 0.994949i \(0.532005\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −10.0000 −0.499376 −0.249688 0.968326i \(-0.580328\pi\)
−0.249688 + 0.968326i \(0.580328\pi\)
\(402\) 0 0
\(403\) 1.41421 0.0704470
\(404\) 0 0
\(405\) −5.00000 −0.248452
\(406\) 0 0
\(407\) −16.9706 −0.841200
\(408\) 0 0
\(409\) −26.0000 −1.28562 −0.642809 0.766027i \(-0.722231\pi\)
−0.642809 + 0.766027i \(0.722231\pi\)
\(410\) 0 0
\(411\) −14.1421 −0.697580
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 5.65685 0.277684
\(416\) 0 0
\(417\) 12.0000 0.587643
\(418\) 0 0
\(419\) 31.1127 1.51995 0.759977 0.649950i \(-0.225210\pi\)
0.759977 + 0.649950i \(0.225210\pi\)
\(420\) 0 0
\(421\) −2.00000 −0.0974740 −0.0487370 0.998812i \(-0.515520\pi\)
−0.0487370 + 0.998812i \(0.515520\pi\)
\(422\) 0 0
\(423\) 11.3137 0.550091
\(424\) 0 0
\(425\) −2.00000 −0.0970143
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 6.00000 0.289683
\(430\) 0 0
\(431\) −12.7279 −0.613082 −0.306541 0.951857i \(-0.599172\pi\)
−0.306541 + 0.951857i \(0.599172\pi\)
\(432\) 0 0
\(433\) 26.0000 1.24948 0.624740 0.780833i \(-0.285205\pi\)
0.624740 + 0.780833i \(0.285205\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −6.00000 −0.287019
\(438\) 0 0
\(439\) −16.9706 −0.809961 −0.404980 0.914325i \(-0.632722\pi\)
−0.404980 + 0.914325i \(0.632722\pi\)
\(440\) 0 0
\(441\) 7.00000 0.333333
\(442\) 0 0
\(443\) 21.2132 1.00787 0.503935 0.863742i \(-0.331885\pi\)
0.503935 + 0.863742i \(0.331885\pi\)
\(444\) 0 0
\(445\) −18.0000 −0.853282
\(446\) 0 0
\(447\) −14.1421 −0.668900
\(448\) 0 0
\(449\) −22.0000 −1.03824 −0.519122 0.854700i \(-0.673741\pi\)
−0.519122 + 0.854700i \(0.673741\pi\)
\(450\) 0 0
\(451\) −42.4264 −1.99778
\(452\) 0 0
\(453\) 26.0000 1.22159
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 6.00000 0.280668 0.140334 0.990104i \(-0.455182\pi\)
0.140334 + 0.990104i \(0.455182\pi\)
\(458\) 0 0
\(459\) −11.3137 −0.528079
\(460\) 0 0
\(461\) 30.0000 1.39724 0.698620 0.715493i \(-0.253798\pi\)
0.698620 + 0.715493i \(0.253798\pi\)
\(462\) 0 0
\(463\) −14.1421 −0.657241 −0.328620 0.944462i \(-0.606584\pi\)
−0.328620 + 0.944462i \(0.606584\pi\)
\(464\) 0 0
\(465\) 2.00000 0.0927478
\(466\) 0 0
\(467\) −7.07107 −0.327210 −0.163605 0.986526i \(-0.552312\pi\)
−0.163605 + 0.986526i \(0.552312\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 19.7990 0.912289
\(472\) 0 0
\(473\) 42.0000 1.93116
\(474\) 0 0
\(475\) −4.24264 −0.194666
\(476\) 0 0
\(477\) −10.0000 −0.457869
\(478\) 0 0
\(479\) 41.0122 1.87389 0.936947 0.349470i \(-0.113638\pi\)
0.936947 + 0.349470i \(0.113638\pi\)
\(480\) 0 0
\(481\) 4.00000 0.182384
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −18.0000 −0.817338
\(486\) 0 0
\(487\) −25.4558 −1.15351 −0.576757 0.816916i \(-0.695682\pi\)
−0.576757 + 0.816916i \(0.695682\pi\)
\(488\) 0 0
\(489\) −12.0000 −0.542659
\(490\) 0 0
\(491\) 19.7990 0.893516 0.446758 0.894655i \(-0.352579\pi\)
0.446758 + 0.894655i \(0.352579\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) −4.24264 −0.190693
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −32.5269 −1.45610 −0.728052 0.685522i \(-0.759574\pi\)
−0.728052 + 0.685522i \(0.759574\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −18.3848 −0.819737 −0.409868 0.912145i \(-0.634425\pi\)
−0.409868 + 0.912145i \(0.634425\pi\)
\(504\) 0 0
\(505\) −10.0000 −0.444994
\(506\) 0 0
\(507\) −1.41421 −0.0628074
\(508\) 0 0
\(509\) −2.00000 −0.0886484 −0.0443242 0.999017i \(-0.514113\pi\)
−0.0443242 + 0.999017i \(0.514113\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −24.0000 −1.05963
\(514\) 0 0
\(515\) 15.5563 0.685495
\(516\) 0 0
\(517\) −48.0000 −2.11104
\(518\) 0 0
\(519\) −8.48528 −0.372463
\(520\) 0 0
\(521\) 32.0000 1.40195 0.700973 0.713188i \(-0.252749\pi\)
0.700973 + 0.713188i \(0.252749\pi\)
\(522\) 0 0
\(523\) −7.07107 −0.309196 −0.154598 0.987977i \(-0.549408\pi\)
−0.154598 + 0.987977i \(0.549408\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 2.82843 0.123208
\(528\) 0 0
\(529\) −21.0000 −0.913043
\(530\) 0 0
\(531\) 1.41421 0.0613716
\(532\) 0 0
\(533\) 10.0000 0.433148
\(534\) 0 0
\(535\) −7.07107 −0.305709
\(536\) 0 0
\(537\) 24.0000 1.03568
\(538\) 0 0
\(539\) −29.6985 −1.27920
\(540\) 0 0
\(541\) −14.0000 −0.601907 −0.300954 0.953639i \(-0.597305\pi\)
−0.300954 + 0.953639i \(0.597305\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −2.00000 −0.0856706
\(546\) 0 0
\(547\) −7.07107 −0.302337 −0.151169 0.988508i \(-0.548304\pi\)
−0.151169 + 0.988508i \(0.548304\pi\)
\(548\) 0 0
\(549\) −4.00000 −0.170716
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 5.65685 0.240120
\(556\) 0 0
\(557\) 20.0000 0.847427 0.423714 0.905796i \(-0.360726\pi\)
0.423714 + 0.905796i \(0.360726\pi\)
\(558\) 0 0
\(559\) −9.89949 −0.418704
\(560\) 0 0
\(561\) 12.0000 0.506640
\(562\) 0 0
\(563\) −18.3848 −0.774826 −0.387413 0.921906i \(-0.626631\pi\)
−0.387413 + 0.921906i \(0.626631\pi\)
\(564\) 0 0
\(565\) −6.00000 −0.252422
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(570\) 0 0
\(571\) −2.82843 −0.118366 −0.0591830 0.998247i \(-0.518850\pi\)
−0.0591830 + 0.998247i \(0.518850\pi\)
\(572\) 0 0
\(573\) 16.0000 0.668410
\(574\) 0 0
\(575\) 1.41421 0.0589768
\(576\) 0 0
\(577\) 44.0000 1.83174 0.915872 0.401470i \(-0.131501\pi\)
0.915872 + 0.401470i \(0.131501\pi\)
\(578\) 0 0
\(579\) −2.82843 −0.117545
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 42.4264 1.75712
\(584\) 0 0
\(585\) 1.00000 0.0413449
\(586\) 0 0
\(587\) −14.1421 −0.583708 −0.291854 0.956463i \(-0.594272\pi\)
−0.291854 + 0.956463i \(0.594272\pi\)
\(588\) 0 0
\(589\) 6.00000 0.247226
\(590\) 0 0
\(591\) 8.48528 0.349038
\(592\) 0 0
\(593\) −18.0000 −0.739171 −0.369586 0.929197i \(-0.620500\pi\)
−0.369586 + 0.929197i \(0.620500\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −2.82843 −0.115566 −0.0577832 0.998329i \(-0.518403\pi\)
−0.0577832 + 0.998329i \(0.518403\pi\)
\(600\) 0 0
\(601\) 14.0000 0.571072 0.285536 0.958368i \(-0.407828\pi\)
0.285536 + 0.958368i \(0.407828\pi\)
\(602\) 0 0
\(603\) 2.82843 0.115182
\(604\) 0 0
\(605\) 7.00000 0.284590
\(606\) 0 0
\(607\) 29.6985 1.20542 0.602712 0.797959i \(-0.294087\pi\)
0.602712 + 0.797959i \(0.294087\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 11.3137 0.457704
\(612\) 0 0
\(613\) −26.0000 −1.05013 −0.525065 0.851062i \(-0.675959\pi\)
−0.525065 + 0.851062i \(0.675959\pi\)
\(614\) 0 0
\(615\) 14.1421 0.570266
\(616\) 0 0
\(617\) 26.0000 1.04672 0.523360 0.852111i \(-0.324678\pi\)
0.523360 + 0.852111i \(0.324678\pi\)
\(618\) 0 0
\(619\) 15.5563 0.625262 0.312631 0.949875i \(-0.398790\pi\)
0.312631 + 0.949875i \(0.398790\pi\)
\(620\) 0 0
\(621\) 8.00000 0.321029
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 25.4558 1.01661
\(628\) 0 0
\(629\) 8.00000 0.318981
\(630\) 0 0
\(631\) 29.6985 1.18228 0.591139 0.806570i \(-0.298678\pi\)
0.591139 + 0.806570i \(0.298678\pi\)
\(632\) 0 0
\(633\) 8.00000 0.317971
\(634\) 0 0
\(635\) 18.3848 0.729578
\(636\) 0 0
\(637\) 7.00000 0.277350
\(638\) 0 0
\(639\) −7.07107 −0.279727
\(640\) 0 0
\(641\) 14.0000 0.552967 0.276483 0.961019i \(-0.410831\pi\)
0.276483 + 0.961019i \(0.410831\pi\)
\(642\) 0 0
\(643\) −39.5980 −1.56159 −0.780796 0.624786i \(-0.785186\pi\)
−0.780796 + 0.624786i \(0.785186\pi\)
\(644\) 0 0
\(645\) −14.0000 −0.551249
\(646\) 0 0
\(647\) 35.3553 1.38996 0.694981 0.719028i \(-0.255413\pi\)
0.694981 + 0.719028i \(0.255413\pi\)
\(648\) 0 0
\(649\) −6.00000 −0.235521
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 30.0000 1.17399 0.586995 0.809590i \(-0.300311\pi\)
0.586995 + 0.809590i \(0.300311\pi\)
\(654\) 0 0
\(655\) −11.3137 −0.442063
\(656\) 0 0
\(657\) 4.00000 0.156055
\(658\) 0 0
\(659\) 2.82843 0.110180 0.0550899 0.998481i \(-0.482455\pi\)
0.0550899 + 0.998481i \(0.482455\pi\)
\(660\) 0 0
\(661\) −2.00000 −0.0777910 −0.0388955 0.999243i \(-0.512384\pi\)
−0.0388955 + 0.999243i \(0.512384\pi\)
\(662\) 0 0
\(663\) −2.82843 −0.109847
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 16.9706 0.655141
\(672\) 0 0
\(673\) 6.00000 0.231283 0.115642 0.993291i \(-0.463108\pi\)
0.115642 + 0.993291i \(0.463108\pi\)
\(674\) 0 0
\(675\) 5.65685 0.217732
\(676\) 0 0
\(677\) 2.00000 0.0768662 0.0384331 0.999261i \(-0.487763\pi\)
0.0384331 + 0.999261i \(0.487763\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 36.0000 1.37952
\(682\) 0 0
\(683\) −2.82843 −0.108227 −0.0541134 0.998535i \(-0.517233\pi\)
−0.0541134 + 0.998535i \(0.517233\pi\)
\(684\) 0 0
\(685\) 10.0000 0.382080
\(686\) 0 0
\(687\) 8.48528 0.323734
\(688\) 0 0
\(689\) −10.0000 −0.380970
\(690\) 0 0
\(691\) 41.0122 1.56018 0.780089 0.625669i \(-0.215174\pi\)
0.780089 + 0.625669i \(0.215174\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −8.48528 −0.321865
\(696\) 0 0
\(697\) 20.0000 0.757554
\(698\) 0 0
\(699\) 8.48528 0.320943
\(700\) 0 0
\(701\) 50.0000 1.88847 0.944237 0.329267i \(-0.106802\pi\)
0.944237 + 0.329267i \(0.106802\pi\)
\(702\) 0 0
\(703\) 16.9706 0.640057
\(704\) 0 0
\(705\) 16.0000 0.602595
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −30.0000 −1.12667 −0.563337 0.826227i \(-0.690483\pi\)
−0.563337 + 0.826227i \(0.690483\pi\)
\(710\) 0 0
\(711\) −8.48528 −0.318223
\(712\) 0 0
\(713\) −2.00000 −0.0749006
\(714\) 0 0
\(715\) −4.24264 −0.158666
\(716\) 0 0
\(717\) −10.0000 −0.373457
\(718\) 0 0
\(719\) −39.5980 −1.47676 −0.738378 0.674387i \(-0.764408\pi\)
−0.738378 + 0.674387i \(0.764408\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 14.1421 0.525952
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 26.8701 0.996555 0.498278 0.867018i \(-0.333966\pi\)
0.498278 + 0.867018i \(0.333966\pi\)
\(728\) 0 0
\(729\) 29.0000 1.07407
\(730\) 0 0
\(731\) −19.7990 −0.732292
\(732\) 0 0
\(733\) 2.00000 0.0738717 0.0369358 0.999318i \(-0.488240\pi\)
0.0369358 + 0.999318i \(0.488240\pi\)
\(734\) 0 0
\(735\) 9.89949 0.365148
\(736\) 0 0
\(737\) −12.0000 −0.442026
\(738\) 0 0
\(739\) −4.24264 −0.156068 −0.0780340 0.996951i \(-0.524864\pi\)
−0.0780340 + 0.996951i \(0.524864\pi\)
\(740\) 0 0
\(741\) −6.00000 −0.220416
\(742\) 0 0
\(743\) −5.65685 −0.207530 −0.103765 0.994602i \(-0.533089\pi\)
−0.103765 + 0.994602i \(0.533089\pi\)
\(744\) 0 0
\(745\) 10.0000 0.366372
\(746\) 0 0
\(747\) −5.65685 −0.206973
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −25.4558 −0.928897 −0.464448 0.885600i \(-0.653747\pi\)
−0.464448 + 0.885600i \(0.653747\pi\)
\(752\) 0 0
\(753\) 36.0000 1.31191
\(754\) 0 0
\(755\) −18.3848 −0.669091
\(756\) 0 0
\(757\) 22.0000 0.799604 0.399802 0.916602i \(-0.369079\pi\)
0.399802 + 0.916602i \(0.369079\pi\)
\(758\) 0 0
\(759\) −8.48528 −0.307996
\(760\) 0 0
\(761\) −54.0000 −1.95750 −0.978749 0.205061i \(-0.934261\pi\)
−0.978749 + 0.205061i \(0.934261\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 2.00000 0.0723102
\(766\) 0 0
\(767\) 1.41421 0.0510643
\(768\) 0 0
\(769\) −30.0000 −1.08183 −0.540914 0.841078i \(-0.681921\pi\)
−0.540914 + 0.841078i \(0.681921\pi\)
\(770\) 0 0
\(771\) −8.48528 −0.305590
\(772\) 0 0
\(773\) 28.0000 1.00709 0.503545 0.863969i \(-0.332029\pi\)
0.503545 + 0.863969i \(0.332029\pi\)
\(774\) 0 0
\(775\) −1.41421 −0.0508001
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 42.4264 1.52008
\(780\) 0 0
\(781\) 30.0000 1.07348
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −14.0000 −0.499681
\(786\) 0 0
\(787\) 39.5980 1.41152 0.705758 0.708453i \(-0.250607\pi\)
0.705758 + 0.708453i \(0.250607\pi\)
\(788\) 0 0
\(789\) 38.0000 1.35284
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −4.00000 −0.142044
\(794\) 0 0
\(795\) −14.1421 −0.501570
\(796\) 0 0
\(797\) 18.0000 0.637593 0.318796 0.947823i \(-0.396721\pi\)
0.318796 + 0.947823i \(0.396721\pi\)
\(798\) 0 0
\(799\) 22.6274 0.800500
\(800\) 0 0
\(801\) 18.0000 0.635999
\(802\) 0 0
\(803\) −16.9706 −0.598878
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −25.4558 −0.896088
\(808\) 0 0
\(809\) −12.0000 −0.421898 −0.210949 0.977497i \(-0.567655\pi\)
−0.210949 + 0.977497i \(0.567655\pi\)
\(810\) 0 0
\(811\) −4.24264 −0.148979 −0.0744896 0.997222i \(-0.523733\pi\)
−0.0744896 + 0.997222i \(0.523733\pi\)
\(812\) 0 0
\(813\) 42.0000 1.47300
\(814\) 0 0
\(815\) 8.48528 0.297226
\(816\) 0 0
\(817\) −42.0000 −1.46939
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −6.00000 −0.209401 −0.104701 0.994504i \(-0.533388\pi\)
−0.104701 + 0.994504i \(0.533388\pi\)
\(822\) 0 0
\(823\) 21.2132 0.739446 0.369723 0.929142i \(-0.379453\pi\)
0.369723 + 0.929142i \(0.379453\pi\)
\(824\) 0 0
\(825\) −6.00000 −0.208893
\(826\) 0 0
\(827\) −16.9706 −0.590124 −0.295062 0.955478i \(-0.595340\pi\)
−0.295062 + 0.955478i \(0.595340\pi\)
\(828\) 0 0
\(829\) −28.0000 −0.972480 −0.486240 0.873825i \(-0.661632\pi\)
−0.486240 + 0.873825i \(0.661632\pi\)
\(830\) 0 0
\(831\) 36.7696 1.27552
\(832\) 0 0
\(833\) 14.0000 0.485071
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −8.00000 −0.276520
\(838\) 0 0
\(839\) −52.3259 −1.80649 −0.903245 0.429124i \(-0.858822\pi\)
−0.903245 + 0.429124i \(0.858822\pi\)
\(840\) 0 0
\(841\) −29.0000 −1.00000
\(842\) 0 0
\(843\) 14.1421 0.487081
\(844\) 0 0
\(845\) 1.00000 0.0344010
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 2.00000 0.0686398
\(850\) 0 0
\(851\) −5.65685 −0.193914
\(852\) 0 0
\(853\) 16.0000 0.547830 0.273915 0.961754i \(-0.411681\pi\)
0.273915 + 0.961754i \(0.411681\pi\)
\(854\) 0 0
\(855\) 4.24264 0.145095
\(856\) 0 0
\(857\) 54.0000 1.84460 0.922302 0.386469i \(-0.126305\pi\)
0.922302 + 0.386469i \(0.126305\pi\)
\(858\) 0 0
\(859\) 53.7401 1.83359 0.916795 0.399359i \(-0.130767\pi\)
0.916795 + 0.399359i \(0.130767\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 28.2843 0.962808 0.481404 0.876499i \(-0.340127\pi\)
0.481404 + 0.876499i \(0.340127\pi\)
\(864\) 0 0
\(865\) 6.00000 0.204006
\(866\) 0 0
\(867\) 18.3848 0.624380
\(868\) 0 0
\(869\) 36.0000 1.22122
\(870\) 0 0
\(871\) 2.82843 0.0958376
\(872\) 0 0
\(873\) 18.0000 0.609208
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 14.0000 0.472746 0.236373 0.971662i \(-0.424041\pi\)
0.236373 + 0.971662i \(0.424041\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 28.0000 0.943344 0.471672 0.881774i \(-0.343651\pi\)
0.471672 + 0.881774i \(0.343651\pi\)
\(882\) 0 0
\(883\) 26.8701 0.904249 0.452125 0.891955i \(-0.350666\pi\)
0.452125 + 0.891955i \(0.350666\pi\)
\(884\) 0 0
\(885\) 2.00000 0.0672293
\(886\) 0 0
\(887\) 32.5269 1.09215 0.546073 0.837737i \(-0.316122\pi\)
0.546073 + 0.837737i \(0.316122\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −21.2132 −0.710669
\(892\) 0 0
\(893\) 48.0000 1.60626
\(894\) 0 0
\(895\) −16.9706 −0.567263
\(896\) 0 0
\(897\) 2.00000 0.0667781
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) −20.0000 −0.666297
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −29.6985 −0.986122 −0.493061 0.869995i \(-0.664122\pi\)
−0.493061 + 0.869995i \(0.664122\pi\)
\(908\) 0 0
\(909\) 10.0000 0.331679
\(910\) 0 0
\(911\) 16.9706 0.562260 0.281130 0.959670i \(-0.409291\pi\)
0.281130 + 0.959670i \(0.409291\pi\)
\(912\) 0 0
\(913\) 24.0000 0.794284
\(914\) 0 0
\(915\) −5.65685 −0.187010
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −19.7990 −0.653108 −0.326554 0.945178i \(-0.605888\pi\)
−0.326554 + 0.945178i \(0.605888\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −7.07107 −0.232747
\(924\) 0 0
\(925\) −4.00000 −0.131519
\(926\) 0 0
\(927\) −15.5563 −0.510938
\(928\) 0 0
\(929\) −54.0000 −1.77168 −0.885841 0.463988i \(-0.846418\pi\)
−0.885841 + 0.463988i \(0.846418\pi\)
\(930\) 0 0
\(931\) 29.6985 0.973329
\(932\) 0 0
\(933\) −12.0000 −0.392862
\(934\) 0 0
\(935\) −8.48528 −0.277498
\(936\) 0 0
\(937\) 2.00000 0.0653372 0.0326686 0.999466i \(-0.489599\pi\)
0.0326686 + 0.999466i \(0.489599\pi\)
\(938\) 0 0
\(939\) −19.7990 −0.646116
\(940\) 0 0
\(941\) 2.00000 0.0651981 0.0325991 0.999469i \(-0.489622\pi\)
0.0325991 + 0.999469i \(0.489622\pi\)
\(942\) 0 0
\(943\) −14.1421 −0.460531
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 45.2548 1.47058 0.735292 0.677750i \(-0.237045\pi\)
0.735292 + 0.677750i \(0.237045\pi\)
\(948\) 0 0
\(949\) 4.00000 0.129845
\(950\) 0 0
\(951\) 11.3137 0.366872
\(952\) 0 0
\(953\) 14.0000 0.453504 0.226752 0.973952i \(-0.427189\pi\)
0.226752 + 0.973952i \(0.427189\pi\)
\(954\) 0 0
\(955\) −11.3137 −0.366103
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −29.0000 −0.935484
\(962\) 0 0
\(963\) 7.07107 0.227862
\(964\) 0 0
\(965\) 2.00000 0.0643823
\(966\) 0 0
\(967\) 48.0833 1.54625 0.773127 0.634252i \(-0.218692\pi\)
0.773127 + 0.634252i \(0.218692\pi\)
\(968\) 0 0
\(969\) −12.0000 −0.385496
\(970\) 0 0
\(971\) 45.2548 1.45230 0.726148 0.687538i \(-0.241309\pi\)
0.726148 + 0.687538i \(0.241309\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 1.41421 0.0452911
\(976\) 0 0
\(977\) −20.0000 −0.639857 −0.319928 0.947442i \(-0.603659\pi\)
−0.319928 + 0.947442i \(0.603659\pi\)
\(978\) 0 0
\(979\) −76.3675 −2.44072
\(980\) 0 0
\(981\) 2.00000 0.0638551
\(982\) 0 0
\(983\) 31.1127 0.992341 0.496170 0.868225i \(-0.334739\pi\)
0.496170 + 0.868225i \(0.334739\pi\)
\(984\) 0 0
\(985\) −6.00000 −0.191176
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 14.0000 0.445174
\(990\) 0 0
\(991\) −11.3137 −0.359392 −0.179696 0.983722i \(-0.557511\pi\)
−0.179696 + 0.983722i \(0.557511\pi\)
\(992\) 0 0
\(993\) 6.00000 0.190404
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 58.0000 1.83688 0.918439 0.395562i \(-0.129450\pi\)
0.918439 + 0.395562i \(0.129450\pi\)
\(998\) 0 0
\(999\) −22.6274 −0.715900
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4160.2.a.bi.1.1 2
4.3 odd 2 inner 4160.2.a.bi.1.2 2
8.3 odd 2 2080.2.a.g.1.1 2
8.5 even 2 2080.2.a.g.1.2 yes 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2080.2.a.g.1.1 2 8.3 odd 2
2080.2.a.g.1.2 yes 2 8.5 even 2
4160.2.a.bi.1.1 2 1.1 even 1 trivial
4160.2.a.bi.1.2 2 4.3 odd 2 inner