Properties

Label 42.6.e.b
Level $42$
Weight $6$
Character orbit 42.e
Analytic conductor $6.736$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [42,6,Mod(25,42)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(42, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("42.25");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 42 = 2 \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 42.e (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.73612043215\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - 4 \zeta_{6} + 4) q^{2} + 9 \zeta_{6} q^{3} - 16 \zeta_{6} q^{4} + (86 \zeta_{6} - 86) q^{5} + 36 q^{6} + (147 \zeta_{6} - 49) q^{7} - 64 q^{8} + (81 \zeta_{6} - 81) q^{9} + 344 \zeta_{6} q^{10} + \cdots + 2754 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 4 q^{2} + 9 q^{3} - 16 q^{4} - 86 q^{5} + 72 q^{6} + 49 q^{7} - 128 q^{8} - 81 q^{9} + 344 q^{10} - 34 q^{11} + 144 q^{12} - 6 q^{13} + 980 q^{14} - 1548 q^{15} - 256 q^{16} + 1904 q^{17} + 324 q^{18}+ \cdots + 5508 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/42\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(31\)
\(\chi(n)\) \(1\) \(-1 + \zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
25.1
0.500000 0.866025i
0.500000 + 0.866025i
2.00000 + 3.46410i 4.50000 7.79423i −8.00000 + 13.8564i −43.0000 74.4782i 36.0000 24.5000 127.306i −64.0000 −40.5000 70.1481i 172.000 297.913i
37.1 2.00000 3.46410i 4.50000 + 7.79423i −8.00000 13.8564i −43.0000 + 74.4782i 36.0000 24.5000 + 127.306i −64.0000 −40.5000 + 70.1481i 172.000 + 297.913i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 42.6.e.b 2
3.b odd 2 1 126.6.g.b 2
4.b odd 2 1 336.6.q.a 2
7.b odd 2 1 294.6.e.m 2
7.c even 3 1 inner 42.6.e.b 2
7.c even 3 1 294.6.a.d 1
7.d odd 6 1 294.6.a.e 1
7.d odd 6 1 294.6.e.m 2
21.g even 6 1 882.6.a.y 1
21.h odd 6 1 126.6.g.b 2
21.h odd 6 1 882.6.a.m 1
28.g odd 6 1 336.6.q.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
42.6.e.b 2 1.a even 1 1 trivial
42.6.e.b 2 7.c even 3 1 inner
126.6.g.b 2 3.b odd 2 1
126.6.g.b 2 21.h odd 6 1
294.6.a.d 1 7.c even 3 1
294.6.a.e 1 7.d odd 6 1
294.6.e.m 2 7.b odd 2 1
294.6.e.m 2 7.d odd 6 1
336.6.q.a 2 4.b odd 2 1
336.6.q.a 2 28.g odd 6 1
882.6.a.m 1 21.h odd 6 1
882.6.a.y 1 21.g even 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{2} + 86T_{5} + 7396 \) acting on \(S_{6}^{\mathrm{new}}(42, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} - 4T + 16 \) Copy content Toggle raw display
$3$ \( T^{2} - 9T + 81 \) Copy content Toggle raw display
$5$ \( T^{2} + 86T + 7396 \) Copy content Toggle raw display
$7$ \( T^{2} - 49T + 16807 \) Copy content Toggle raw display
$11$ \( T^{2} + 34T + 1156 \) Copy content Toggle raw display
$13$ \( (T + 3)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} - 1904 T + 3625216 \) Copy content Toggle raw display
$19$ \( T^{2} - 1489 T + 2217121 \) Copy content Toggle raw display
$23$ \( T^{2} - 224T + 50176 \) Copy content Toggle raw display
$29$ \( (T + 6508)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} + 1731 T + 2996361 \) Copy content Toggle raw display
$37$ \( T^{2} - 7633 T + 58262689 \) Copy content Toggle raw display
$41$ \( (T - 15414)^{2} \) Copy content Toggle raw display
$43$ \( (T - 18491)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} + 18462 T + 340845444 \) Copy content Toggle raw display
$53$ \( T^{2} - 19956 T + 398241936 \) Copy content Toggle raw display
$59$ \( T^{2} + \cdots + 1013021584 \) Copy content Toggle raw display
$61$ \( T^{2} + \cdots + 3323983716 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots + 3667876969 \) Copy content Toggle raw display
$71$ \( (T + 44834)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 20821 T + 433514041 \) Copy content Toggle raw display
$79$ \( T^{2} - 30531 T + 932141961 \) Copy content Toggle raw display
$83$ \( (T - 110602)^{2} \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots + 3480056064 \) Copy content Toggle raw display
$97$ \( (T + 119846)^{2} \) Copy content Toggle raw display
show more
show less