Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [42,6,Mod(25,42)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(42, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([0, 4]))
N = Newforms(chi, 6, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("42.25");
S:= CuspForms(chi, 6);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 42.e (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a primitive root of unity . We also show the integral -expansion of the trace form.
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
25.1 |
|
2.00000 | + | 3.46410i | 4.50000 | − | 7.79423i | −8.00000 | + | 13.8564i | −43.0000 | − | 74.4782i | 36.0000 | 24.5000 | − | 127.306i | −64.0000 | −40.5000 | − | 70.1481i | 172.000 | − | 297.913i | ||||||||||
37.1 | 2.00000 | − | 3.46410i | 4.50000 | + | 7.79423i | −8.00000 | − | 13.8564i | −43.0000 | + | 74.4782i | 36.0000 | 24.5000 | + | 127.306i | −64.0000 | −40.5000 | + | 70.1481i | 172.000 | + | 297.913i | |||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
7.c | even | 3 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 42.6.e.b | ✓ | 2 |
3.b | odd | 2 | 1 | 126.6.g.b | 2 | ||
4.b | odd | 2 | 1 | 336.6.q.a | 2 | ||
7.b | odd | 2 | 1 | 294.6.e.m | 2 | ||
7.c | even | 3 | 1 | inner | 42.6.e.b | ✓ | 2 |
7.c | even | 3 | 1 | 294.6.a.d | 1 | ||
7.d | odd | 6 | 1 | 294.6.a.e | 1 | ||
7.d | odd | 6 | 1 | 294.6.e.m | 2 | ||
21.g | even | 6 | 1 | 882.6.a.y | 1 | ||
21.h | odd | 6 | 1 | 126.6.g.b | 2 | ||
21.h | odd | 6 | 1 | 882.6.a.m | 1 | ||
28.g | odd | 6 | 1 | 336.6.q.a | 2 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
42.6.e.b | ✓ | 2 | 1.a | even | 1 | 1 | trivial |
42.6.e.b | ✓ | 2 | 7.c | even | 3 | 1 | inner |
126.6.g.b | 2 | 3.b | odd | 2 | 1 | ||
126.6.g.b | 2 | 21.h | odd | 6 | 1 | ||
294.6.a.d | 1 | 7.c | even | 3 | 1 | ||
294.6.a.e | 1 | 7.d | odd | 6 | 1 | ||
294.6.e.m | 2 | 7.b | odd | 2 | 1 | ||
294.6.e.m | 2 | 7.d | odd | 6 | 1 | ||
336.6.q.a | 2 | 4.b | odd | 2 | 1 | ||
336.6.q.a | 2 | 28.g | odd | 6 | 1 | ||
882.6.a.m | 1 | 21.h | odd | 6 | 1 | ||
882.6.a.y | 1 | 21.g | even | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
acting on .