Properties

Label 42.6.e.b
Level 4242
Weight 66
Character orbit 42.e
Analytic conductor 6.7366.736
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [42,6,Mod(25,42)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(42, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("42.25");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: N N == 42=237 42 = 2 \cdot 3 \cdot 7
Weight: k k == 6 6
Character orbit: [χ][\chi] == 42.e (of order 33, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 6.736120432156.73612043215
Analytic rank: 00
Dimension: 22
Coefficient field: Q(3)\Q(\sqrt{-3})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2x+1 x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ6\zeta_{6}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(4ζ6+4)q2+9ζ6q316ζ6q4+(86ζ686)q5+36q6+(147ζ649)q764q8+(81ζ681)q9+344ζ6q10++2754q99+O(q100) q + ( - 4 \zeta_{6} + 4) q^{2} + 9 \zeta_{6} q^{3} - 16 \zeta_{6} q^{4} + (86 \zeta_{6} - 86) q^{5} + 36 q^{6} + (147 \zeta_{6} - 49) q^{7} - 64 q^{8} + (81 \zeta_{6} - 81) q^{9} + 344 \zeta_{6} q^{10} + \cdots + 2754 q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+4q2+9q316q486q5+72q6+49q7128q881q9+344q1034q11+144q126q13+980q141548q15256q16+1904q17+324q18++5508q99+O(q100) 2 q + 4 q^{2} + 9 q^{3} - 16 q^{4} - 86 q^{5} + 72 q^{6} + 49 q^{7} - 128 q^{8} - 81 q^{9} + 344 q^{10} - 34 q^{11} + 144 q^{12} - 6 q^{13} + 980 q^{14} - 1548 q^{15} - 256 q^{16} + 1904 q^{17} + 324 q^{18}+ \cdots + 5508 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/42Z)×\left(\mathbb{Z}/42\mathbb{Z}\right)^\times.

nn 2929 3131
χ(n)\chi(n) 11 1+ζ6-1 + \zeta_{6}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
25.1
0.500000 0.866025i
0.500000 + 0.866025i
2.00000 + 3.46410i 4.50000 7.79423i −8.00000 + 13.8564i −43.0000 74.4782i 36.0000 24.5000 127.306i −64.0000 −40.5000 70.1481i 172.000 297.913i
37.1 2.00000 3.46410i 4.50000 + 7.79423i −8.00000 13.8564i −43.0000 + 74.4782i 36.0000 24.5000 + 127.306i −64.0000 −40.5000 + 70.1481i 172.000 + 297.913i
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 42.6.e.b 2
3.b odd 2 1 126.6.g.b 2
4.b odd 2 1 336.6.q.a 2
7.b odd 2 1 294.6.e.m 2
7.c even 3 1 inner 42.6.e.b 2
7.c even 3 1 294.6.a.d 1
7.d odd 6 1 294.6.a.e 1
7.d odd 6 1 294.6.e.m 2
21.g even 6 1 882.6.a.y 1
21.h odd 6 1 126.6.g.b 2
21.h odd 6 1 882.6.a.m 1
28.g odd 6 1 336.6.q.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
42.6.e.b 2 1.a even 1 1 trivial
42.6.e.b 2 7.c even 3 1 inner
126.6.g.b 2 3.b odd 2 1
126.6.g.b 2 21.h odd 6 1
294.6.a.d 1 7.c even 3 1
294.6.a.e 1 7.d odd 6 1
294.6.e.m 2 7.b odd 2 1
294.6.e.m 2 7.d odd 6 1
336.6.q.a 2 4.b odd 2 1
336.6.q.a 2 28.g odd 6 1
882.6.a.m 1 21.h odd 6 1
882.6.a.y 1 21.g even 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T52+86T5+7396 T_{5}^{2} + 86T_{5} + 7396 acting on S6new(42,[χ])S_{6}^{\mathrm{new}}(42, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T24T+16 T^{2} - 4T + 16 Copy content Toggle raw display
33 T29T+81 T^{2} - 9T + 81 Copy content Toggle raw display
55 T2+86T+7396 T^{2} + 86T + 7396 Copy content Toggle raw display
77 T249T+16807 T^{2} - 49T + 16807 Copy content Toggle raw display
1111 T2+34T+1156 T^{2} + 34T + 1156 Copy content Toggle raw display
1313 (T+3)2 (T + 3)^{2} Copy content Toggle raw display
1717 T21904T+3625216 T^{2} - 1904 T + 3625216 Copy content Toggle raw display
1919 T21489T+2217121 T^{2} - 1489 T + 2217121 Copy content Toggle raw display
2323 T2224T+50176 T^{2} - 224T + 50176 Copy content Toggle raw display
2929 (T+6508)2 (T + 6508)^{2} Copy content Toggle raw display
3131 T2+1731T+2996361 T^{2} + 1731 T + 2996361 Copy content Toggle raw display
3737 T27633T+58262689 T^{2} - 7633 T + 58262689 Copy content Toggle raw display
4141 (T15414)2 (T - 15414)^{2} Copy content Toggle raw display
4343 (T18491)2 (T - 18491)^{2} Copy content Toggle raw display
4747 T2+18462T+340845444 T^{2} + 18462 T + 340845444 Copy content Toggle raw display
5353 T219956T+398241936 T^{2} - 19956 T + 398241936 Copy content Toggle raw display
5959 T2++1013021584 T^{2} + \cdots + 1013021584 Copy content Toggle raw display
6161 T2++3323983716 T^{2} + \cdots + 3323983716 Copy content Toggle raw display
6767 T2++3667876969 T^{2} + \cdots + 3667876969 Copy content Toggle raw display
7171 (T+44834)2 (T + 44834)^{2} Copy content Toggle raw display
7373 T2+20821T+433514041 T^{2} + 20821 T + 433514041 Copy content Toggle raw display
7979 T230531T+932141961 T^{2} - 30531 T + 932141961 Copy content Toggle raw display
8383 (T110602)2 (T - 110602)^{2} Copy content Toggle raw display
8989 T2++3480056064 T^{2} + \cdots + 3480056064 Copy content Toggle raw display
9797 (T+119846)2 (T + 119846)^{2} Copy content Toggle raw display
show more
show less