Properties

Label 42.8.a.a
Level 4242
Weight 88
Character orbit 42.a
Self dual yes
Analytic conductor 13.12013.120
Analytic rank 00
Dimension 11
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [42,8,Mod(1,42)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(42, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("42.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: N N == 42=237 42 = 2 \cdot 3 \cdot 7
Weight: k k == 8 8
Character orbit: [χ][\chi] == 42.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 13.120171070313.1201710703
Analytic rank: 00
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: yes
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q8q227q3+64q4410q5+216q6343q7512q8+729q9+3280q105548q111728q121698q13+2744q14+11070q15+4096q16+9506q17+4044492q99+O(q100) q - 8 q^{2} - 27 q^{3} + 64 q^{4} - 410 q^{5} + 216 q^{6} - 343 q^{7} - 512 q^{8} + 729 q^{9} + 3280 q^{10} - 5548 q^{11} - 1728 q^{12} - 1698 q^{13} + 2744 q^{14} + 11070 q^{15} + 4096 q^{16} + 9506 q^{17}+ \cdots - 4044492 q^{99}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
0
−8.00000 −27.0000 64.0000 −410.000 216.000 −343.000 −512.000 729.000 3280.00
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 +1 +1
33 +1 +1
77 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 42.8.a.a 1
3.b odd 2 1 126.8.a.h 1
4.b odd 2 1 336.8.a.g 1
7.b odd 2 1 294.8.a.j 1
7.c even 3 2 294.8.e.r 2
7.d odd 6 2 294.8.e.g 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
42.8.a.a 1 1.a even 1 1 trivial
126.8.a.h 1 3.b odd 2 1
294.8.a.j 1 7.b odd 2 1
294.8.e.g 2 7.d odd 6 2
294.8.e.r 2 7.c even 3 2
336.8.a.g 1 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T5+410 T_{5} + 410 acting on S8new(Γ0(42))S_{8}^{\mathrm{new}}(\Gamma_0(42)). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T+8 T + 8 Copy content Toggle raw display
33 T+27 T + 27 Copy content Toggle raw display
55 T+410 T + 410 Copy content Toggle raw display
77 T+343 T + 343 Copy content Toggle raw display
1111 T+5548 T + 5548 Copy content Toggle raw display
1313 T+1698 T + 1698 Copy content Toggle raw display
1717 T9506 T - 9506 Copy content Toggle raw display
1919 T57620 T - 57620 Copy content Toggle raw display
2323 T59192 T - 59192 Copy content Toggle raw display
2929 T27190 T - 27190 Copy content Toggle raw display
3131 T+252288 T + 252288 Copy content Toggle raw display
3737 T524126 T - 524126 Copy content Toggle raw display
4141 T+463638 T + 463638 Copy content Toggle raw display
4343 T96212 T - 96212 Copy content Toggle raw display
4747 T+1068864 T + 1068864 Copy content Toggle raw display
5353 T125262 T - 125262 Copy content Toggle raw display
5959 T932620 T - 932620 Copy content Toggle raw display
6161 T546942 T - 546942 Copy content Toggle raw display
6767 T3472396 T - 3472396 Copy content Toggle raw display
7171 T+33928 T + 33928 Copy content Toggle raw display
7373 T+3640838 T + 3640838 Copy content Toggle raw display
7979 T4272960 T - 4272960 Copy content Toggle raw display
8383 T9841172 T - 9841172 Copy content Toggle raw display
8989 T+1681590 T + 1681590 Copy content Toggle raw display
9797 T+10813454 T + 10813454 Copy content Toggle raw display
show more
show less