Properties

Label 420.4.a.i
Level $420$
Weight $4$
Character orbit 420.a
Self dual yes
Analytic conductor $24.781$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [420,4,Mod(1,420)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(420, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("420.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 420 = 2^{2} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 420.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(24.7808022024\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{421}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 105 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 2\sqrt{421}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 3 q^{3} - 5 q^{5} - 7 q^{7} + 9 q^{9} + ( - \beta - 6) q^{11} + (\beta + 20) q^{13} - 15 q^{15} + (2 \beta + 50) q^{17} + ( - 3 \beta + 18) q^{19} - 21 q^{21} + (2 \beta + 88) q^{23} + 25 q^{25} + 27 q^{27}+ \cdots + ( - 9 \beta - 54) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 6 q^{3} - 10 q^{5} - 14 q^{7} + 18 q^{9} - 12 q^{11} + 40 q^{13} - 30 q^{15} + 100 q^{17} + 36 q^{19} - 42 q^{21} + 176 q^{23} + 50 q^{25} + 54 q^{27} + 356 q^{29} + 132 q^{31} - 36 q^{33} + 70 q^{35}+ \cdots - 108 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
10.7591
−9.75914
0 3.00000 0 −5.00000 0 −7.00000 0 9.00000 0
1.2 0 3.00000 0 −5.00000 0 −7.00000 0 9.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)
\(5\) \( +1 \)
\(7\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 420.4.a.i 2
3.b odd 2 1 1260.4.a.n 2
4.b odd 2 1 1680.4.a.bc 2
5.b even 2 1 2100.4.a.o 2
5.c odd 4 2 2100.4.k.l 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
420.4.a.i 2 1.a even 1 1 trivial
1260.4.a.n 2 3.b odd 2 1
1680.4.a.bc 2 4.b odd 2 1
2100.4.a.o 2 5.b even 2 1
2100.4.k.l 4 5.c odd 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(420))\):

\( T_{11}^{2} + 12T_{11} - 1648 \) Copy content Toggle raw display
\( T_{17}^{2} - 100T_{17} - 4236 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( (T - 3)^{2} \) Copy content Toggle raw display
$5$ \( (T + 5)^{2} \) Copy content Toggle raw display
$7$ \( (T + 7)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 12T - 1648 \) Copy content Toggle raw display
$13$ \( T^{2} - 40T - 1284 \) Copy content Toggle raw display
$17$ \( T^{2} - 100T - 4236 \) Copy content Toggle raw display
$19$ \( T^{2} - 36T - 14832 \) Copy content Toggle raw display
$23$ \( T^{2} - 176T + 1008 \) Copy content Toggle raw display
$29$ \( T^{2} - 356T + 24948 \) Copy content Toggle raw display
$31$ \( T^{2} - 132T + 2672 \) Copy content Toggle raw display
$37$ \( (T - 158)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} - 204T - 97372 \) Copy content Toggle raw display
$43$ \( T^{2} - 120T - 23344 \) Copy content Toggle raw display
$47$ \( T^{2} - 192T - 98560 \) Copy content Toggle raw display
$53$ \( T^{2} + 224T - 2612 \) Copy content Toggle raw display
$59$ \( T^{2} - 976T + 177520 \) Copy content Toggle raw display
$61$ \( T^{2} + 476T - 273420 \) Copy content Toggle raw display
$67$ \( T^{2} - 48T - 60048 \) Copy content Toggle raw display
$71$ \( T^{2} - 316T + 23280 \) Copy content Toggle raw display
$73$ \( T^{2} + 568T - 406020 \) Copy content Toggle raw display
$79$ \( T^{2} + 472T - 489920 \) Copy content Toggle raw display
$83$ \( T^{2} - 1184 T - 195152 \) Copy content Toggle raw display
$89$ \( T^{2} - 876T + 84068 \) Copy content Toggle raw display
$97$ \( T^{2} - 2896 T + 1960300 \) Copy content Toggle raw display
show more
show less