Properties

Label 4232.2.a.s
Level 42324232
Weight 22
Character orbit 4232.a
Self dual yes
Analytic conductor 33.79333.793
Analytic rank 11
Dimension 44
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4232,2,Mod(1,4232)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4232, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4232.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 4232=23232 4232 = 2^{3} \cdot 23^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 4232.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 33.792690135433.7926901354
Analytic rank: 11
Dimension: 44
Coefficient field: Q(ζ24)+\Q(\zeta_{24})^+
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x44x2+1 x^{4} - 4x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 1 1
Twist minimal: yes
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β3+β1)q3+(β12)q5+(β21)q7q9+(β2+1)q11+(2β31)q13+(2β3+β22β1+1)q15+(β3β1+4)q17++(β21)q99+O(q100) q + (\beta_{3} + \beta_1) q^{3} + (\beta_1 - 2) q^{5} + ( - \beta_{2} - 1) q^{7} - q^{9} + (\beta_{2} + 1) q^{11} + ( - 2 \beta_{3} - 1) q^{13} + ( - 2 \beta_{3} + \beta_{2} - 2 \beta_1 + 1) q^{15} + (\beta_{3} - \beta_1 + 4) q^{17}+ \cdots + ( - \beta_{2} - 1) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q8q54q74q9+4q114q13+4q15+16q17+4q19+4q258q298q31+8q35+24q378q394q41+8q458q4712q49+4q99+O(q100) 4 q - 8 q^{5} - 4 q^{7} - 4 q^{9} + 4 q^{11} - 4 q^{13} + 4 q^{15} + 16 q^{17} + 4 q^{19} + 4 q^{25} - 8 q^{29} - 8 q^{31} + 8 q^{35} + 24 q^{37} - 8 q^{39} - 4 q^{41} + 8 q^{45} - 8 q^{47} - 12 q^{49}+ \cdots - 4 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of ν=ζ24+ζ241\nu = \zeta_{24} + \zeta_{24}^{-1}:

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== ν22 \nu^{2} - 2 Copy content Toggle raw display
β3\beta_{3}== ν34ν \nu^{3} - 4\nu Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β2+2 \beta_{2} + 2 Copy content Toggle raw display
ν3\nu^{3}== β3+4β1 \beta_{3} + 4\beta_1 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
−1.93185
0.517638
−0.517638
1.93185
0 −1.41421 0 −3.93185 0 −2.73205 0 −1.00000 0
1.2 0 −1.41421 0 −1.48236 0 0.732051 0 −1.00000 0
1.3 0 1.41421 0 −2.51764 0 0.732051 0 −1.00000 0
1.4 0 1.41421 0 −0.0681483 0 −2.73205 0 −1.00000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 +1 +1
2323 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4232.2.a.s 4
4.b odd 2 1 8464.2.a.bl 4
23.b odd 2 1 4232.2.a.u yes 4
92.b even 2 1 8464.2.a.bn 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
4232.2.a.s 4 1.a even 1 1 trivial
4232.2.a.u yes 4 23.b odd 2 1
8464.2.a.bl 4 4.b odd 2 1
8464.2.a.bn 4 92.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(Γ0(4232))S_{2}^{\mathrm{new}}(\Gamma_0(4232)):

T322 T_{3}^{2} - 2 Copy content Toggle raw display
T54+8T53+20T52+16T5+1 T_{5}^{4} + 8T_{5}^{3} + 20T_{5}^{2} + 16T_{5} + 1 Copy content Toggle raw display
T72+2T72 T_{7}^{2} + 2T_{7} - 2 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4 T^{4} Copy content Toggle raw display
33 (T22)2 (T^{2} - 2)^{2} Copy content Toggle raw display
55 T4+8T3++1 T^{4} + 8 T^{3} + \cdots + 1 Copy content Toggle raw display
77 (T2+2T2)2 (T^{2} + 2 T - 2)^{2} Copy content Toggle raw display
1111 (T22T2)2 (T^{2} - 2 T - 2)^{2} Copy content Toggle raw display
1313 T4+4T3++1 T^{4} + 4 T^{3} + \cdots + 1 Copy content Toggle raw display
1717 (T28T+10)2 (T^{2} - 8 T + 10)^{2} Copy content Toggle raw display
1919 T44T3++4 T^{4} - 4 T^{3} + \cdots + 4 Copy content Toggle raw display
2323 T4 T^{4} Copy content Toggle raw display
2929 T4+8T3+479 T^{4} + 8 T^{3} + \cdots - 479 Copy content Toggle raw display
3131 T4+8T3++16 T^{4} + 8 T^{3} + \cdots + 16 Copy content Toggle raw display
3737 T424T3+1916 T^{4} - 24 T^{3} + \cdots - 1916 Copy content Toggle raw display
4141 (T2+2T11)2 (T^{2} + 2 T - 11)^{2} Copy content Toggle raw display
4343 T4144T2+576 T^{4} - 144T^{2} + 576 Copy content Toggle raw display
4747 T4+8T3+956 T^{4} + 8 T^{3} + \cdots - 956 Copy content Toggle raw display
5353 T4148T2++2137 T^{4} - 148 T^{2} + \cdots + 2137 Copy content Toggle raw display
5959 T4+8T3++772 T^{4} + 8 T^{3} + \cdots + 772 Copy content Toggle raw display
6161 T436T2++9 T^{4} - 36 T^{2} + \cdots + 9 Copy content Toggle raw display
6767 T432T3+4976 T^{4} - 32 T^{3} + \cdots - 4976 Copy content Toggle raw display
7171 T4148T2++292 T^{4} - 148 T^{2} + \cdots + 292 Copy content Toggle raw display
7373 T4118T2+743 T^{4} - 118 T^{2} + \cdots - 743 Copy content Toggle raw display
7979 T4+32T3+1136 T^{4} + 32 T^{3} + \cdots - 1136 Copy content Toggle raw display
8383 T4+8T3++6016 T^{4} + 8 T^{3} + \cdots + 6016 Copy content Toggle raw display
8989 T416T3+7751 T^{4} - 16 T^{3} + \cdots - 7751 Copy content Toggle raw display
9797 T4+16T3+6143 T^{4} + 16 T^{3} + \cdots - 6143 Copy content Toggle raw display
show more
show less