Properties

Label 4232.2.a.s
Level $4232$
Weight $2$
Character orbit 4232.a
Self dual yes
Analytic conductor $33.793$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4232,2,Mod(1,4232)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4232, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4232.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4232 = 2^{3} \cdot 23^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4232.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(33.7926901354\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{24})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 4x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{3} + \beta_1) q^{3} + (\beta_1 - 2) q^{5} + ( - \beta_{2} - 1) q^{7} - q^{9} + (\beta_{2} + 1) q^{11} + ( - 2 \beta_{3} - 1) q^{13} + ( - 2 \beta_{3} + \beta_{2} - 2 \beta_1 + 1) q^{15} + (\beta_{3} - \beta_1 + 4) q^{17}+ \cdots + ( - \beta_{2} - 1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 8 q^{5} - 4 q^{7} - 4 q^{9} + 4 q^{11} - 4 q^{13} + 4 q^{15} + 16 q^{17} + 4 q^{19} + 4 q^{25} - 8 q^{29} - 8 q^{31} + 8 q^{35} + 24 q^{37} - 8 q^{39} - 4 q^{41} + 8 q^{45} - 8 q^{47} - 12 q^{49}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of \(\nu = \zeta_{24} + \zeta_{24}^{-1}\):

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - 4\nu \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + 4\beta_1 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.93185
0.517638
−0.517638
1.93185
0 −1.41421 0 −3.93185 0 −2.73205 0 −1.00000 0
1.2 0 −1.41421 0 −1.48236 0 0.732051 0 −1.00000 0
1.3 0 1.41421 0 −2.51764 0 0.732051 0 −1.00000 0
1.4 0 1.41421 0 −0.0681483 0 −2.73205 0 −1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(23\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4232.2.a.s 4
4.b odd 2 1 8464.2.a.bl 4
23.b odd 2 1 4232.2.a.u yes 4
92.b even 2 1 8464.2.a.bn 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
4232.2.a.s 4 1.a even 1 1 trivial
4232.2.a.u yes 4 23.b odd 2 1
8464.2.a.bl 4 4.b odd 2 1
8464.2.a.bn 4 92.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(4232))\):

\( T_{3}^{2} - 2 \) Copy content Toggle raw display
\( T_{5}^{4} + 8T_{5}^{3} + 20T_{5}^{2} + 16T_{5} + 1 \) Copy content Toggle raw display
\( T_{7}^{2} + 2T_{7} - 2 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( (T^{2} - 2)^{2} \) Copy content Toggle raw display
$5$ \( T^{4} + 8 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$7$ \( (T^{2} + 2 T - 2)^{2} \) Copy content Toggle raw display
$11$ \( (T^{2} - 2 T - 2)^{2} \) Copy content Toggle raw display
$13$ \( T^{4} + 4 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$17$ \( (T^{2} - 8 T + 10)^{2} \) Copy content Toggle raw display
$19$ \( T^{4} - 4 T^{3} + \cdots + 4 \) Copy content Toggle raw display
$23$ \( T^{4} \) Copy content Toggle raw display
$29$ \( T^{4} + 8 T^{3} + \cdots - 479 \) Copy content Toggle raw display
$31$ \( T^{4} + 8 T^{3} + \cdots + 16 \) Copy content Toggle raw display
$37$ \( T^{4} - 24 T^{3} + \cdots - 1916 \) Copy content Toggle raw display
$41$ \( (T^{2} + 2 T - 11)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} - 144T^{2} + 576 \) Copy content Toggle raw display
$47$ \( T^{4} + 8 T^{3} + \cdots - 956 \) Copy content Toggle raw display
$53$ \( T^{4} - 148 T^{2} + \cdots + 2137 \) Copy content Toggle raw display
$59$ \( T^{4} + 8 T^{3} + \cdots + 772 \) Copy content Toggle raw display
$61$ \( T^{4} - 36 T^{2} + \cdots + 9 \) Copy content Toggle raw display
$67$ \( T^{4} - 32 T^{3} + \cdots - 4976 \) Copy content Toggle raw display
$71$ \( T^{4} - 148 T^{2} + \cdots + 292 \) Copy content Toggle raw display
$73$ \( T^{4} - 118 T^{2} + \cdots - 743 \) Copy content Toggle raw display
$79$ \( T^{4} + 32 T^{3} + \cdots - 1136 \) Copy content Toggle raw display
$83$ \( T^{4} + 8 T^{3} + \cdots + 6016 \) Copy content Toggle raw display
$89$ \( T^{4} - 16 T^{3} + \cdots - 7751 \) Copy content Toggle raw display
$97$ \( T^{4} + 16 T^{3} + \cdots - 6143 \) Copy content Toggle raw display
show more
show less