Properties

Label 425.2.a.i.1.4
Level $425$
Weight $2$
Character 425.1
Self dual yes
Analytic conductor $3.394$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [425,2,Mod(1,425)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(425, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("425.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 425 = 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 425.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(3.39364208590\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: 5.5.1893456.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 10x^{3} + 10x^{2} + 23x - 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(1.66068\) of defining polynomial
Character \(\chi\) \(=\) 425.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.24214 q^{2} +1.66068 q^{3} -0.457096 q^{4} +2.06279 q^{6} +4.35698 q^{7} -3.05205 q^{8} -0.242137 q^{9} +0.760798 q^{11} -0.759092 q^{12} +3.53632 q^{13} +5.41196 q^{14} -2.87687 q^{16} +1.00000 q^{17} -0.300767 q^{18} +0.972823 q^{19} +7.23556 q^{21} +0.945015 q^{22} -7.47476 q^{23} -5.06848 q^{24} +4.39260 q^{26} -5.38416 q^{27} -1.99156 q^{28} -5.25686 q^{29} +8.62336 q^{31} +2.53063 q^{32} +1.26344 q^{33} +1.24214 q^{34} +0.110680 q^{36} -5.94137 q^{37} +1.20838 q^{38} +5.87271 q^{39} -4.29419 q^{41} +8.98755 q^{42} -3.98985 q^{43} -0.347758 q^{44} -9.28467 q^{46} -6.28404 q^{47} -4.77756 q^{48} +11.9833 q^{49} +1.66068 q^{51} -1.61644 q^{52} +1.54290 q^{53} -6.68786 q^{54} -13.2977 q^{56} +1.61555 q^{57} -6.52974 q^{58} +2.66849 q^{59} -3.32136 q^{61} +10.7114 q^{62} -1.05498 q^{63} +8.89713 q^{64} +1.56937 q^{66} -15.9868 q^{67} -0.457096 q^{68} -12.4132 q^{69} -11.0768 q^{71} +0.739013 q^{72} +15.3340 q^{73} -7.37999 q^{74} -0.444674 q^{76} +3.31478 q^{77} +7.29470 q^{78} -4.45680 q^{79} -8.21496 q^{81} -5.33397 q^{82} +6.71396 q^{83} -3.30735 q^{84} -4.95594 q^{86} -8.72998 q^{87} -2.32199 q^{88} +12.3839 q^{89} +15.4077 q^{91} +3.41669 q^{92} +14.3207 q^{93} -7.80564 q^{94} +4.20258 q^{96} +7.19823 q^{97} +14.8849 q^{98} -0.184217 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - q^{2} + q^{3} + 11 q^{4} + 3 q^{6} + q^{7} - 9 q^{8} + 6 q^{9} + 4 q^{11} + 17 q^{12} - 3 q^{13} - 7 q^{14} + 27 q^{16} + 5 q^{17} - 22 q^{18} + 6 q^{19} - 5 q^{21} + 18 q^{22} + 4 q^{23} - 19 q^{24}+ \cdots - 14 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.24214 0.878323 0.439162 0.898408i \(-0.355276\pi\)
0.439162 + 0.898408i \(0.355276\pi\)
\(3\) 1.66068 0.958795 0.479397 0.877598i \(-0.340855\pi\)
0.479397 + 0.877598i \(0.340855\pi\)
\(4\) −0.457096 −0.228548
\(5\) 0 0
\(6\) 2.06279 0.842132
\(7\) 4.35698 1.64678 0.823392 0.567473i \(-0.192079\pi\)
0.823392 + 0.567473i \(0.192079\pi\)
\(8\) −3.05205 −1.07906
\(9\) −0.242137 −0.0807122
\(10\) 0 0
\(11\) 0.760798 0.229389 0.114695 0.993401i \(-0.463411\pi\)
0.114695 + 0.993401i \(0.463411\pi\)
\(12\) −0.759092 −0.219131
\(13\) 3.53632 0.980800 0.490400 0.871498i \(-0.336851\pi\)
0.490400 + 0.871498i \(0.336851\pi\)
\(14\) 5.41196 1.44641
\(15\) 0 0
\(16\) −2.87687 −0.719217
\(17\) 1.00000 0.242536
\(18\) −0.300767 −0.0708914
\(19\) 0.972823 0.223181 0.111590 0.993754i \(-0.464406\pi\)
0.111590 + 0.993754i \(0.464406\pi\)
\(20\) 0 0
\(21\) 7.23556 1.57893
\(22\) 0.945015 0.201478
\(23\) −7.47476 −1.55859 −0.779297 0.626654i \(-0.784424\pi\)
−0.779297 + 0.626654i \(0.784424\pi\)
\(24\) −5.06848 −1.03460
\(25\) 0 0
\(26\) 4.39260 0.861459
\(27\) −5.38416 −1.03618
\(28\) −1.99156 −0.376370
\(29\) −5.25686 −0.976175 −0.488087 0.872795i \(-0.662305\pi\)
−0.488087 + 0.872795i \(0.662305\pi\)
\(30\) 0 0
\(31\) 8.62336 1.54880 0.774400 0.632696i \(-0.218052\pi\)
0.774400 + 0.632696i \(0.218052\pi\)
\(32\) 2.53063 0.447357
\(33\) 1.26344 0.219937
\(34\) 1.24214 0.213025
\(35\) 0 0
\(36\) 0.110680 0.0184466
\(37\) −5.94137 −0.976755 −0.488378 0.872632i \(-0.662411\pi\)
−0.488378 + 0.872632i \(0.662411\pi\)
\(38\) 1.20838 0.196025
\(39\) 5.87271 0.940386
\(40\) 0 0
\(41\) −4.29419 −0.670639 −0.335320 0.942104i \(-0.608844\pi\)
−0.335320 + 0.942104i \(0.608844\pi\)
\(42\) 8.98755 1.38681
\(43\) −3.98985 −0.608447 −0.304223 0.952601i \(-0.598397\pi\)
−0.304223 + 0.952601i \(0.598397\pi\)
\(44\) −0.347758 −0.0524265
\(45\) 0 0
\(46\) −9.28467 −1.36895
\(47\) −6.28404 −0.916621 −0.458311 0.888792i \(-0.651545\pi\)
−0.458311 + 0.888792i \(0.651545\pi\)
\(48\) −4.77756 −0.689582
\(49\) 11.9833 1.71190
\(50\) 0 0
\(51\) 1.66068 0.232542
\(52\) −1.61644 −0.224160
\(53\) 1.54290 0.211934 0.105967 0.994370i \(-0.466206\pi\)
0.105967 + 0.994370i \(0.466206\pi\)
\(54\) −6.68786 −0.910102
\(55\) 0 0
\(56\) −13.2977 −1.77698
\(57\) 1.61555 0.213985
\(58\) −6.52974 −0.857397
\(59\) 2.66849 0.347408 0.173704 0.984798i \(-0.444426\pi\)
0.173704 + 0.984798i \(0.444426\pi\)
\(60\) 0 0
\(61\) −3.32136 −0.425257 −0.212628 0.977133i \(-0.568202\pi\)
−0.212628 + 0.977133i \(0.568202\pi\)
\(62\) 10.7114 1.36035
\(63\) −1.05498 −0.132916
\(64\) 8.89713 1.11214
\(65\) 0 0
\(66\) 1.56937 0.193176
\(67\) −15.9868 −1.95310 −0.976552 0.215283i \(-0.930932\pi\)
−0.976552 + 0.215283i \(0.930932\pi\)
\(68\) −0.457096 −0.0554311
\(69\) −12.4132 −1.49437
\(70\) 0 0
\(71\) −11.0768 −1.31458 −0.657288 0.753640i \(-0.728296\pi\)
−0.657288 + 0.753640i \(0.728296\pi\)
\(72\) 0.739013 0.0870935
\(73\) 15.3340 1.79471 0.897353 0.441314i \(-0.145488\pi\)
0.897353 + 0.441314i \(0.145488\pi\)
\(74\) −7.37999 −0.857907
\(75\) 0 0
\(76\) −0.444674 −0.0510076
\(77\) 3.31478 0.377755
\(78\) 7.29470 0.825963
\(79\) −4.45680 −0.501429 −0.250715 0.968061i \(-0.580666\pi\)
−0.250715 + 0.968061i \(0.580666\pi\)
\(80\) 0 0
\(81\) −8.21496 −0.912773
\(82\) −5.33397 −0.589038
\(83\) 6.71396 0.736953 0.368476 0.929637i \(-0.379880\pi\)
0.368476 + 0.929637i \(0.379880\pi\)
\(84\) −3.30735 −0.360861
\(85\) 0 0
\(86\) −4.95594 −0.534413
\(87\) −8.72998 −0.935952
\(88\) −2.32199 −0.247525
\(89\) 12.3839 1.31269 0.656343 0.754462i \(-0.272102\pi\)
0.656343 + 0.754462i \(0.272102\pi\)
\(90\) 0 0
\(91\) 15.4077 1.61516
\(92\) 3.41669 0.356214
\(93\) 14.3207 1.48498
\(94\) −7.80564 −0.805090
\(95\) 0 0
\(96\) 4.20258 0.428924
\(97\) 7.19823 0.730870 0.365435 0.930837i \(-0.380920\pi\)
0.365435 + 0.930837i \(0.380920\pi\)
\(98\) 14.8849 1.50360
\(99\) −0.184217 −0.0185145
\(100\) 0 0
\(101\) 4.01473 0.399480 0.199740 0.979849i \(-0.435990\pi\)
0.199740 + 0.979849i \(0.435990\pi\)
\(102\) 2.06279 0.204247
\(103\) −2.63686 −0.259817 −0.129909 0.991526i \(-0.541468\pi\)
−0.129909 + 0.991526i \(0.541468\pi\)
\(104\) −10.7930 −1.05834
\(105\) 0 0
\(106\) 1.91650 0.186147
\(107\) 16.7283 1.61718 0.808591 0.588371i \(-0.200230\pi\)
0.808591 + 0.588371i \(0.200230\pi\)
\(108\) 2.46108 0.236817
\(109\) 5.76143 0.551845 0.275922 0.961180i \(-0.411017\pi\)
0.275922 + 0.961180i \(0.411017\pi\)
\(110\) 0 0
\(111\) −9.86672 −0.936508
\(112\) −12.5345 −1.18440
\(113\) −12.2153 −1.14912 −0.574558 0.818464i \(-0.694826\pi\)
−0.574558 + 0.818464i \(0.694826\pi\)
\(114\) 2.00673 0.187948
\(115\) 0 0
\(116\) 2.40289 0.223103
\(117\) −0.856273 −0.0791625
\(118\) 3.31463 0.305136
\(119\) 4.35698 0.399404
\(120\) 0 0
\(121\) −10.4212 −0.947381
\(122\) −4.12559 −0.373513
\(123\) −7.13128 −0.643006
\(124\) −3.94171 −0.353976
\(125\) 0 0
\(126\) −1.31044 −0.116743
\(127\) −14.3839 −1.27636 −0.638181 0.769887i \(-0.720313\pi\)
−0.638181 + 0.769887i \(0.720313\pi\)
\(128\) 5.99019 0.529463
\(129\) −6.62588 −0.583376
\(130\) 0 0
\(131\) 4.65117 0.406374 0.203187 0.979140i \(-0.434870\pi\)
0.203187 + 0.979140i \(0.434870\pi\)
\(132\) −0.577516 −0.0502663
\(133\) 4.23857 0.367531
\(134\) −19.8578 −1.71546
\(135\) 0 0
\(136\) −3.05205 −0.261711
\(137\) −7.48784 −0.639729 −0.319865 0.947463i \(-0.603637\pi\)
−0.319865 + 0.947463i \(0.603637\pi\)
\(138\) −15.4189 −1.31254
\(139\) −6.43327 −0.545663 −0.272831 0.962062i \(-0.587960\pi\)
−0.272831 + 0.962062i \(0.587960\pi\)
\(140\) 0 0
\(141\) −10.4358 −0.878852
\(142\) −13.7589 −1.15462
\(143\) 2.69043 0.224985
\(144\) 0.696596 0.0580496
\(145\) 0 0
\(146\) 19.0469 1.57633
\(147\) 19.9004 1.64136
\(148\) 2.71578 0.223236
\(149\) 22.4881 1.84230 0.921150 0.389207i \(-0.127251\pi\)
0.921150 + 0.389207i \(0.127251\pi\)
\(150\) 0 0
\(151\) 24.0412 1.95644 0.978222 0.207560i \(-0.0665523\pi\)
0.978222 + 0.207560i \(0.0665523\pi\)
\(152\) −2.96910 −0.240826
\(153\) −0.242137 −0.0195756
\(154\) 4.11741 0.331791
\(155\) 0 0
\(156\) −2.68439 −0.214923
\(157\) −16.0081 −1.27759 −0.638795 0.769377i \(-0.720567\pi\)
−0.638795 + 0.769377i \(0.720567\pi\)
\(158\) −5.53596 −0.440417
\(159\) 2.56227 0.203201
\(160\) 0 0
\(161\) −32.5674 −2.56667
\(162\) −10.2041 −0.801710
\(163\) 5.75463 0.450738 0.225369 0.974274i \(-0.427641\pi\)
0.225369 + 0.974274i \(0.427641\pi\)
\(164\) 1.96286 0.153273
\(165\) 0 0
\(166\) 8.33966 0.647283
\(167\) 22.0361 1.70521 0.852604 0.522558i \(-0.175022\pi\)
0.852604 + 0.522558i \(0.175022\pi\)
\(168\) −22.0833 −1.70376
\(169\) −0.494420 −0.0380323
\(170\) 0 0
\(171\) −0.235556 −0.0180134
\(172\) 1.82375 0.139059
\(173\) 2.90159 0.220604 0.110302 0.993898i \(-0.464818\pi\)
0.110302 + 0.993898i \(0.464818\pi\)
\(174\) −10.8438 −0.822068
\(175\) 0 0
\(176\) −2.18872 −0.164981
\(177\) 4.43151 0.333093
\(178\) 15.3825 1.15296
\(179\) −11.8511 −0.885793 −0.442897 0.896573i \(-0.646049\pi\)
−0.442897 + 0.896573i \(0.646049\pi\)
\(180\) 0 0
\(181\) 8.52974 0.634011 0.317005 0.948424i \(-0.397323\pi\)
0.317005 + 0.948424i \(0.397323\pi\)
\(182\) 19.1385 1.41864
\(183\) −5.51573 −0.407734
\(184\) 22.8133 1.68182
\(185\) 0 0
\(186\) 17.7882 1.30429
\(187\) 0.760798 0.0556351
\(188\) 2.87241 0.209492
\(189\) −23.4587 −1.70637
\(190\) 0 0
\(191\) 19.8182 1.43400 0.716999 0.697074i \(-0.245515\pi\)
0.716999 + 0.697074i \(0.245515\pi\)
\(192\) 14.7753 1.06632
\(193\) −6.70723 −0.482797 −0.241398 0.970426i \(-0.577606\pi\)
−0.241398 + 0.970426i \(0.577606\pi\)
\(194\) 8.94119 0.641940
\(195\) 0 0
\(196\) −5.47751 −0.391251
\(197\) −10.5399 −0.750936 −0.375468 0.926835i \(-0.622518\pi\)
−0.375468 + 0.926835i \(0.622518\pi\)
\(198\) −0.228823 −0.0162617
\(199\) 21.9649 1.55705 0.778525 0.627613i \(-0.215968\pi\)
0.778525 + 0.627613i \(0.215968\pi\)
\(200\) 0 0
\(201\) −26.5490 −1.87263
\(202\) 4.98684 0.350873
\(203\) −22.9040 −1.60755
\(204\) −0.759092 −0.0531471
\(205\) 0 0
\(206\) −3.27534 −0.228203
\(207\) 1.80991 0.125798
\(208\) −10.1735 −0.705408
\(209\) 0.740122 0.0511953
\(210\) 0 0
\(211\) 11.8082 0.812910 0.406455 0.913671i \(-0.366765\pi\)
0.406455 + 0.913671i \(0.366765\pi\)
\(212\) −0.705256 −0.0484372
\(213\) −18.3951 −1.26041
\(214\) 20.7788 1.42041
\(215\) 0 0
\(216\) 16.4327 1.11810
\(217\) 37.5718 2.55054
\(218\) 7.15648 0.484698
\(219\) 25.4648 1.72075
\(220\) 0 0
\(221\) 3.53632 0.237879
\(222\) −12.2558 −0.822557
\(223\) 11.4881 0.769303 0.384651 0.923062i \(-0.374322\pi\)
0.384651 + 0.923062i \(0.374322\pi\)
\(224\) 11.0259 0.736700
\(225\) 0 0
\(226\) −15.1730 −1.00929
\(227\) 2.25207 0.149475 0.0747375 0.997203i \(-0.476188\pi\)
0.0747375 + 0.997203i \(0.476188\pi\)
\(228\) −0.738462 −0.0489058
\(229\) 13.9788 0.923748 0.461874 0.886946i \(-0.347177\pi\)
0.461874 + 0.886946i \(0.347177\pi\)
\(230\) 0 0
\(231\) 5.50480 0.362189
\(232\) 16.0442 1.05335
\(233\) −13.8452 −0.907032 −0.453516 0.891248i \(-0.649830\pi\)
−0.453516 + 0.891248i \(0.649830\pi\)
\(234\) −1.06361 −0.0695303
\(235\) 0 0
\(236\) −1.21976 −0.0793995
\(237\) −7.40133 −0.480768
\(238\) 5.41196 0.350806
\(239\) 1.80564 0.116797 0.0583985 0.998293i \(-0.481401\pi\)
0.0583985 + 0.998293i \(0.481401\pi\)
\(240\) 0 0
\(241\) 19.8637 1.27953 0.639767 0.768569i \(-0.279031\pi\)
0.639767 + 0.768569i \(0.279031\pi\)
\(242\) −12.9445 −0.832106
\(243\) 2.51004 0.161019
\(244\) 1.51818 0.0971917
\(245\) 0 0
\(246\) −8.85802 −0.564767
\(247\) 3.44022 0.218896
\(248\) −26.3189 −1.67125
\(249\) 11.1497 0.706587
\(250\) 0 0
\(251\) −12.5070 −0.789436 −0.394718 0.918802i \(-0.629158\pi\)
−0.394718 + 0.918802i \(0.629158\pi\)
\(252\) 0.482230 0.0303776
\(253\) −5.68678 −0.357525
\(254\) −17.8667 −1.12106
\(255\) 0 0
\(256\) −10.3536 −0.647102
\(257\) −29.2572 −1.82501 −0.912506 0.409063i \(-0.865855\pi\)
−0.912506 + 0.409063i \(0.865855\pi\)
\(258\) −8.23024 −0.512393
\(259\) −25.8864 −1.60850
\(260\) 0 0
\(261\) 1.27288 0.0787893
\(262\) 5.77738 0.356928
\(263\) 7.23110 0.445889 0.222944 0.974831i \(-0.428433\pi\)
0.222944 + 0.974831i \(0.428433\pi\)
\(264\) −3.85609 −0.237326
\(265\) 0 0
\(266\) 5.26488 0.322811
\(267\) 20.5657 1.25860
\(268\) 7.30753 0.446378
\(269\) −24.6296 −1.50169 −0.750846 0.660478i \(-0.770354\pi\)
−0.750846 + 0.660478i \(0.770354\pi\)
\(270\) 0 0
\(271\) 20.8399 1.26594 0.632968 0.774178i \(-0.281836\pi\)
0.632968 + 0.774178i \(0.281836\pi\)
\(272\) −2.87687 −0.174436
\(273\) 25.5873 1.54861
\(274\) −9.30092 −0.561889
\(275\) 0 0
\(276\) 5.67403 0.341536
\(277\) −2.32364 −0.139614 −0.0698070 0.997561i \(-0.522238\pi\)
−0.0698070 + 0.997561i \(0.522238\pi\)
\(278\) −7.99100 −0.479268
\(279\) −2.08803 −0.125007
\(280\) 0 0
\(281\) 6.22523 0.371366 0.185683 0.982610i \(-0.440550\pi\)
0.185683 + 0.982610i \(0.440550\pi\)
\(282\) −12.9627 −0.771916
\(283\) −14.5892 −0.867237 −0.433618 0.901097i \(-0.642763\pi\)
−0.433618 + 0.901097i \(0.642763\pi\)
\(284\) 5.06317 0.300444
\(285\) 0 0
\(286\) 3.34188 0.197609
\(287\) −18.7097 −1.10440
\(288\) −0.612759 −0.0361072
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) 11.9540 0.700754
\(292\) −7.00910 −0.410177
\(293\) 27.0877 1.58248 0.791239 0.611506i \(-0.209436\pi\)
0.791239 + 0.611506i \(0.209436\pi\)
\(294\) 24.7190 1.44164
\(295\) 0 0
\(296\) 18.1334 1.05398
\(297\) −4.09626 −0.237689
\(298\) 27.9333 1.61814
\(299\) −26.4332 −1.52867
\(300\) 0 0
\(301\) −17.3837 −1.00198
\(302\) 29.8624 1.71839
\(303\) 6.66718 0.383020
\(304\) −2.79869 −0.160516
\(305\) 0 0
\(306\) −0.300767 −0.0171937
\(307\) 27.9509 1.59524 0.797622 0.603158i \(-0.206091\pi\)
0.797622 + 0.603158i \(0.206091\pi\)
\(308\) −1.51518 −0.0863351
\(309\) −4.37898 −0.249111
\(310\) 0 0
\(311\) −5.02081 −0.284704 −0.142352 0.989816i \(-0.545467\pi\)
−0.142352 + 0.989816i \(0.545467\pi\)
\(312\) −17.9238 −1.01473
\(313\) 0.909917 0.0514315 0.0257158 0.999669i \(-0.491814\pi\)
0.0257158 + 0.999669i \(0.491814\pi\)
\(314\) −19.8843 −1.12214
\(315\) 0 0
\(316\) 2.03719 0.114601
\(317\) 13.8870 0.779973 0.389986 0.920821i \(-0.372480\pi\)
0.389986 + 0.920821i \(0.372480\pi\)
\(318\) 3.18269 0.178476
\(319\) −3.99941 −0.223924
\(320\) 0 0
\(321\) 27.7803 1.55055
\(322\) −40.4531 −2.25436
\(323\) 0.972823 0.0541293
\(324\) 3.75503 0.208613
\(325\) 0 0
\(326\) 7.14804 0.395893
\(327\) 9.56790 0.529106
\(328\) 13.1061 0.723662
\(329\) −27.3794 −1.50948
\(330\) 0 0
\(331\) −21.1851 −1.16444 −0.582218 0.813032i \(-0.697815\pi\)
−0.582218 + 0.813032i \(0.697815\pi\)
\(332\) −3.06893 −0.168429
\(333\) 1.43862 0.0788361
\(334\) 27.3719 1.49772
\(335\) 0 0
\(336\) −20.8158 −1.13559
\(337\) 4.11972 0.224415 0.112208 0.993685i \(-0.464208\pi\)
0.112208 + 0.993685i \(0.464208\pi\)
\(338\) −0.614137 −0.0334046
\(339\) −20.2857 −1.10177
\(340\) 0 0
\(341\) 6.56064 0.355278
\(342\) −0.292593 −0.0158216
\(343\) 21.7120 1.17234
\(344\) 12.1772 0.656552
\(345\) 0 0
\(346\) 3.60417 0.193761
\(347\) −9.86542 −0.529603 −0.264802 0.964303i \(-0.585306\pi\)
−0.264802 + 0.964303i \(0.585306\pi\)
\(348\) 3.99044 0.213910
\(349\) 0.00227611 0.000121837 0 6.09187e−5 1.00000i \(-0.499981\pi\)
6.09187e−5 1.00000i \(0.499981\pi\)
\(350\) 0 0
\(351\) −19.0401 −1.01629
\(352\) 1.92530 0.102619
\(353\) −13.5739 −0.722468 −0.361234 0.932475i \(-0.617645\pi\)
−0.361234 + 0.932475i \(0.617645\pi\)
\(354\) 5.50454 0.292563
\(355\) 0 0
\(356\) −5.66062 −0.300012
\(357\) 7.23556 0.382946
\(358\) −14.7207 −0.778013
\(359\) 15.2378 0.804222 0.402111 0.915591i \(-0.368277\pi\)
0.402111 + 0.915591i \(0.368277\pi\)
\(360\) 0 0
\(361\) −18.0536 −0.950190
\(362\) 10.5951 0.556866
\(363\) −17.3063 −0.908344
\(364\) −7.04280 −0.369143
\(365\) 0 0
\(366\) −6.85129 −0.358122
\(367\) 7.78199 0.406217 0.203108 0.979156i \(-0.434896\pi\)
0.203108 + 0.979156i \(0.434896\pi\)
\(368\) 21.5039 1.12097
\(369\) 1.03978 0.0541288
\(370\) 0 0
\(371\) 6.72240 0.349010
\(372\) −6.54592 −0.339390
\(373\) −13.8234 −0.715747 −0.357874 0.933770i \(-0.616498\pi\)
−0.357874 + 0.933770i \(0.616498\pi\)
\(374\) 0.945015 0.0488656
\(375\) 0 0
\(376\) 19.1792 0.989092
\(377\) −18.5900 −0.957432
\(378\) −29.1389 −1.49874
\(379\) 11.2337 0.577035 0.288517 0.957475i \(-0.406838\pi\)
0.288517 + 0.957475i \(0.406838\pi\)
\(380\) 0 0
\(381\) −23.8870 −1.22377
\(382\) 24.6170 1.25951
\(383\) −6.55464 −0.334927 −0.167463 0.985878i \(-0.553558\pi\)
−0.167463 + 0.985878i \(0.553558\pi\)
\(384\) 9.94779 0.507646
\(385\) 0 0
\(386\) −8.33129 −0.424052
\(387\) 0.966090 0.0491091
\(388\) −3.29029 −0.167039
\(389\) −29.9290 −1.51746 −0.758731 0.651404i \(-0.774180\pi\)
−0.758731 + 0.651404i \(0.774180\pi\)
\(390\) 0 0
\(391\) −7.47476 −0.378015
\(392\) −36.5735 −1.84724
\(393\) 7.72411 0.389630
\(394\) −13.0920 −0.659565
\(395\) 0 0
\(396\) 0.0842050 0.00423146
\(397\) −15.5987 −0.782876 −0.391438 0.920204i \(-0.628022\pi\)
−0.391438 + 0.920204i \(0.628022\pi\)
\(398\) 27.2834 1.36759
\(399\) 7.03892 0.352387
\(400\) 0 0
\(401\) −16.0024 −0.799123 −0.399562 0.916706i \(-0.630838\pi\)
−0.399562 + 0.916706i \(0.630838\pi\)
\(402\) −32.9775 −1.64477
\(403\) 30.4950 1.51906
\(404\) −1.83512 −0.0913005
\(405\) 0 0
\(406\) −28.4500 −1.41195
\(407\) −4.52018 −0.224057
\(408\) −5.06848 −0.250927
\(409\) −8.18867 −0.404904 −0.202452 0.979292i \(-0.564891\pi\)
−0.202452 + 0.979292i \(0.564891\pi\)
\(410\) 0 0
\(411\) −12.4349 −0.613369
\(412\) 1.20530 0.0593808
\(413\) 11.6266 0.572106
\(414\) 2.24816 0.110491
\(415\) 0 0
\(416\) 8.94914 0.438768
\(417\) −10.6836 −0.523179
\(418\) 0.919333 0.0449660
\(419\) 0.547404 0.0267424 0.0133712 0.999911i \(-0.495744\pi\)
0.0133712 + 0.999911i \(0.495744\pi\)
\(420\) 0 0
\(421\) −11.1506 −0.543449 −0.271724 0.962375i \(-0.587594\pi\)
−0.271724 + 0.962375i \(0.587594\pi\)
\(422\) 14.6674 0.713998
\(423\) 1.52160 0.0739826
\(424\) −4.70902 −0.228690
\(425\) 0 0
\(426\) −22.8492 −1.10705
\(427\) −14.4711 −0.700306
\(428\) −7.64643 −0.369604
\(429\) 4.46794 0.215714
\(430\) 0 0
\(431\) 22.0900 1.06404 0.532019 0.846732i \(-0.321433\pi\)
0.532019 + 0.846732i \(0.321433\pi\)
\(432\) 15.4895 0.745240
\(433\) −18.3983 −0.884165 −0.442083 0.896974i \(-0.645760\pi\)
−0.442083 + 0.896974i \(0.645760\pi\)
\(434\) 46.6693 2.24020
\(435\) 0 0
\(436\) −2.63353 −0.126123
\(437\) −7.27162 −0.347849
\(438\) 31.6308 1.51138
\(439\) 20.6254 0.984397 0.492198 0.870483i \(-0.336193\pi\)
0.492198 + 0.870483i \(0.336193\pi\)
\(440\) 0 0
\(441\) −2.90159 −0.138171
\(442\) 4.39260 0.208935
\(443\) −24.8065 −1.17859 −0.589296 0.807917i \(-0.700595\pi\)
−0.589296 + 0.807917i \(0.700595\pi\)
\(444\) 4.51004 0.214037
\(445\) 0 0
\(446\) 14.2698 0.675697
\(447\) 37.3456 1.76639
\(448\) 38.7646 1.83146
\(449\) −1.43136 −0.0675502 −0.0337751 0.999429i \(-0.510753\pi\)
−0.0337751 + 0.999429i \(0.510753\pi\)
\(450\) 0 0
\(451\) −3.26701 −0.153837
\(452\) 5.58355 0.262628
\(453\) 39.9248 1.87583
\(454\) 2.79738 0.131287
\(455\) 0 0
\(456\) −4.93074 −0.230903
\(457\) 3.35940 0.157146 0.0785730 0.996908i \(-0.474964\pi\)
0.0785730 + 0.996908i \(0.474964\pi\)
\(458\) 17.3636 0.811349
\(459\) −5.38416 −0.251311
\(460\) 0 0
\(461\) −10.9685 −0.510856 −0.255428 0.966828i \(-0.582216\pi\)
−0.255428 + 0.966828i \(0.582216\pi\)
\(462\) 6.83771 0.318119
\(463\) −38.5578 −1.79193 −0.895966 0.444123i \(-0.853515\pi\)
−0.895966 + 0.444123i \(0.853515\pi\)
\(464\) 15.1233 0.702082
\(465\) 0 0
\(466\) −17.1977 −0.796667
\(467\) 21.7749 1.00762 0.503810 0.863814i \(-0.331931\pi\)
0.503810 + 0.863814i \(0.331931\pi\)
\(468\) 0.391400 0.0180925
\(469\) −69.6543 −3.21634
\(470\) 0 0
\(471\) −26.5844 −1.22495
\(472\) −8.14437 −0.374875
\(473\) −3.03547 −0.139571
\(474\) −9.19346 −0.422270
\(475\) 0 0
\(476\) −1.99156 −0.0912830
\(477\) −0.373594 −0.0171057
\(478\) 2.24285 0.102585
\(479\) −4.62934 −0.211520 −0.105760 0.994392i \(-0.533728\pi\)
−0.105760 + 0.994392i \(0.533728\pi\)
\(480\) 0 0
\(481\) −21.0106 −0.958001
\(482\) 24.6734 1.12384
\(483\) −54.0840 −2.46091
\(484\) 4.76349 0.216522
\(485\) 0 0
\(486\) 3.11781 0.141427
\(487\) −14.1331 −0.640432 −0.320216 0.947345i \(-0.603755\pi\)
−0.320216 + 0.947345i \(0.603755\pi\)
\(488\) 10.1370 0.458879
\(489\) 9.55662 0.432165
\(490\) 0 0
\(491\) −19.1530 −0.864365 −0.432182 0.901786i \(-0.642256\pi\)
−0.432182 + 0.901786i \(0.642256\pi\)
\(492\) 3.25968 0.146958
\(493\) −5.25686 −0.236757
\(494\) 4.27322 0.192261
\(495\) 0 0
\(496\) −24.8083 −1.11392
\(497\) −48.2614 −2.16482
\(498\) 13.8495 0.620611
\(499\) 29.8400 1.33582 0.667912 0.744241i \(-0.267188\pi\)
0.667912 + 0.744241i \(0.267188\pi\)
\(500\) 0 0
\(501\) 36.5950 1.63494
\(502\) −15.5354 −0.693380
\(503\) −16.5014 −0.735760 −0.367880 0.929873i \(-0.619916\pi\)
−0.367880 + 0.929873i \(0.619916\pi\)
\(504\) 3.21987 0.143424
\(505\) 0 0
\(506\) −7.06376 −0.314022
\(507\) −0.821074 −0.0364652
\(508\) 6.57481 0.291710
\(509\) −11.5798 −0.513266 −0.256633 0.966509i \(-0.582613\pi\)
−0.256633 + 0.966509i \(0.582613\pi\)
\(510\) 0 0
\(511\) 66.8098 2.95549
\(512\) −24.8410 −1.09783
\(513\) −5.23783 −0.231256
\(514\) −36.3414 −1.60295
\(515\) 0 0
\(516\) 3.02866 0.133330
\(517\) −4.78089 −0.210263
\(518\) −32.1545 −1.41279
\(519\) 4.81862 0.211514
\(520\) 0 0
\(521\) −6.29332 −0.275715 −0.137858 0.990452i \(-0.544022\pi\)
−0.137858 + 0.990452i \(0.544022\pi\)
\(522\) 1.58109 0.0692024
\(523\) −29.5093 −1.29035 −0.645175 0.764035i \(-0.723216\pi\)
−0.645175 + 0.764035i \(0.723216\pi\)
\(524\) −2.12603 −0.0928761
\(525\) 0 0
\(526\) 8.98201 0.391634
\(527\) 8.62336 0.375639
\(528\) −3.63476 −0.158183
\(529\) 32.8720 1.42922
\(530\) 0 0
\(531\) −0.646139 −0.0280401
\(532\) −1.93744 −0.0839985
\(533\) −15.1856 −0.657763
\(534\) 25.5454 1.10546
\(535\) 0 0
\(536\) 48.7926 2.10752
\(537\) −19.6809 −0.849294
\(538\) −30.5933 −1.31897
\(539\) 9.11685 0.392691
\(540\) 0 0
\(541\) 14.6495 0.629829 0.314915 0.949120i \(-0.398024\pi\)
0.314915 + 0.949120i \(0.398024\pi\)
\(542\) 25.8861 1.11190
\(543\) 14.1652 0.607886
\(544\) 2.53063 0.108500
\(545\) 0 0
\(546\) 31.7829 1.36018
\(547\) −2.44752 −0.104648 −0.0523242 0.998630i \(-0.516663\pi\)
−0.0523242 + 0.998630i \(0.516663\pi\)
\(548\) 3.42267 0.146209
\(549\) 0.804224 0.0343234
\(550\) 0 0
\(551\) −5.11400 −0.217864
\(552\) 37.8857 1.61252
\(553\) −19.4182 −0.825746
\(554\) −2.88628 −0.122626
\(555\) 0 0
\(556\) 2.94063 0.124710
\(557\) −21.6889 −0.918988 −0.459494 0.888181i \(-0.651969\pi\)
−0.459494 + 0.888181i \(0.651969\pi\)
\(558\) −2.59362 −0.109797
\(559\) −14.1094 −0.596765
\(560\) 0 0
\(561\) 1.26344 0.0533426
\(562\) 7.73259 0.326179
\(563\) −21.2443 −0.895340 −0.447670 0.894199i \(-0.647746\pi\)
−0.447670 + 0.894199i \(0.647746\pi\)
\(564\) 4.77016 0.200860
\(565\) 0 0
\(566\) −18.1218 −0.761714
\(567\) −35.7924 −1.50314
\(568\) 33.8070 1.41851
\(569\) 13.7433 0.576150 0.288075 0.957608i \(-0.406985\pi\)
0.288075 + 0.957608i \(0.406985\pi\)
\(570\) 0 0
\(571\) −5.50164 −0.230237 −0.115118 0.993352i \(-0.536725\pi\)
−0.115118 + 0.993352i \(0.536725\pi\)
\(572\) −1.22979 −0.0514199
\(573\) 32.9118 1.37491
\(574\) −23.2400 −0.970018
\(575\) 0 0
\(576\) −2.15432 −0.0897634
\(577\) 17.2437 0.717865 0.358932 0.933364i \(-0.383141\pi\)
0.358932 + 0.933364i \(0.383141\pi\)
\(578\) 1.24214 0.0516661
\(579\) −11.1386 −0.462903
\(580\) 0 0
\(581\) 29.2526 1.21360
\(582\) 14.8485 0.615489
\(583\) 1.17384 0.0486154
\(584\) −46.8000 −1.93660
\(585\) 0 0
\(586\) 33.6466 1.38993
\(587\) −10.0319 −0.414061 −0.207031 0.978334i \(-0.566380\pi\)
−0.207031 + 0.978334i \(0.566380\pi\)
\(588\) −9.09640 −0.375129
\(589\) 8.38900 0.345663
\(590\) 0 0
\(591\) −17.5034 −0.719994
\(592\) 17.0925 0.702499
\(593\) 30.0714 1.23488 0.617442 0.786616i \(-0.288169\pi\)
0.617442 + 0.786616i \(0.288169\pi\)
\(594\) −5.08811 −0.208768
\(595\) 0 0
\(596\) −10.2793 −0.421055
\(597\) 36.4767 1.49289
\(598\) −32.8336 −1.34267
\(599\) 17.0655 0.697279 0.348640 0.937257i \(-0.386644\pi\)
0.348640 + 0.937257i \(0.386644\pi\)
\(600\) 0 0
\(601\) 5.26575 0.214794 0.107397 0.994216i \(-0.465748\pi\)
0.107397 + 0.994216i \(0.465748\pi\)
\(602\) −21.5929 −0.880063
\(603\) 3.87100 0.157639
\(604\) −10.9891 −0.447142
\(605\) 0 0
\(606\) 8.28155 0.336415
\(607\) −30.6311 −1.24328 −0.621639 0.783304i \(-0.713533\pi\)
−0.621639 + 0.783304i \(0.713533\pi\)
\(608\) 2.46186 0.0998416
\(609\) −38.0363 −1.54131
\(610\) 0 0
\(611\) −22.2224 −0.899022
\(612\) 0.110680 0.00447397
\(613\) −10.6054 −0.428348 −0.214174 0.976796i \(-0.568706\pi\)
−0.214174 + 0.976796i \(0.568706\pi\)
\(614\) 34.7189 1.40114
\(615\) 0 0
\(616\) −10.1169 −0.407621
\(617\) 25.7600 1.03706 0.518529 0.855060i \(-0.326480\pi\)
0.518529 + 0.855060i \(0.326480\pi\)
\(618\) −5.43929 −0.218800
\(619\) 0.534831 0.0214967 0.0107483 0.999942i \(-0.496579\pi\)
0.0107483 + 0.999942i \(0.496579\pi\)
\(620\) 0 0
\(621\) 40.2453 1.61499
\(622\) −6.23653 −0.250062
\(623\) 53.9562 2.16171
\(624\) −16.8950 −0.676342
\(625\) 0 0
\(626\) 1.13024 0.0451735
\(627\) 1.22911 0.0490858
\(628\) 7.31727 0.291991
\(629\) −5.94137 −0.236898
\(630\) 0 0
\(631\) 24.8614 0.989718 0.494859 0.868973i \(-0.335220\pi\)
0.494859 + 0.868973i \(0.335220\pi\)
\(632\) 13.6024 0.541074
\(633\) 19.6097 0.779414
\(634\) 17.2496 0.685068
\(635\) 0 0
\(636\) −1.17121 −0.0464413
\(637\) 42.3767 1.67903
\(638\) −4.96782 −0.196678
\(639\) 2.68210 0.106102
\(640\) 0 0
\(641\) 5.12703 0.202505 0.101253 0.994861i \(-0.467715\pi\)
0.101253 + 0.994861i \(0.467715\pi\)
\(642\) 34.5070 1.36188
\(643\) 0.0459139 0.00181067 0.000905334 1.00000i \(-0.499712\pi\)
0.000905334 1.00000i \(0.499712\pi\)
\(644\) 14.8864 0.586608
\(645\) 0 0
\(646\) 1.20838 0.0475430
\(647\) 13.6150 0.535259 0.267630 0.963522i \(-0.413760\pi\)
0.267630 + 0.963522i \(0.413760\pi\)
\(648\) 25.0725 0.984939
\(649\) 2.03018 0.0796917
\(650\) 0 0
\(651\) 62.3948 2.44544
\(652\) −2.63042 −0.103015
\(653\) 43.7700 1.71285 0.856426 0.516269i \(-0.172680\pi\)
0.856426 + 0.516269i \(0.172680\pi\)
\(654\) 11.8846 0.464726
\(655\) 0 0
\(656\) 12.3538 0.482335
\(657\) −3.71292 −0.144855
\(658\) −34.0090 −1.32581
\(659\) 2.09312 0.0815364 0.0407682 0.999169i \(-0.487019\pi\)
0.0407682 + 0.999169i \(0.487019\pi\)
\(660\) 0 0
\(661\) −30.7363 −1.19550 −0.597751 0.801682i \(-0.703939\pi\)
−0.597751 + 0.801682i \(0.703939\pi\)
\(662\) −26.3148 −1.02275
\(663\) 5.87271 0.228077
\(664\) −20.4913 −0.795218
\(665\) 0 0
\(666\) 1.78697 0.0692436
\(667\) 39.2938 1.52146
\(668\) −10.0726 −0.389722
\(669\) 19.0781 0.737604
\(670\) 0 0
\(671\) −2.52689 −0.0975494
\(672\) 18.3105 0.706345
\(673\) −17.7912 −0.685801 −0.342900 0.939372i \(-0.611409\pi\)
−0.342900 + 0.939372i \(0.611409\pi\)
\(674\) 5.11725 0.197109
\(675\) 0 0
\(676\) 0.225997 0.00869221
\(677\) −1.89003 −0.0726398 −0.0363199 0.999340i \(-0.511564\pi\)
−0.0363199 + 0.999340i \(0.511564\pi\)
\(678\) −25.1976 −0.967707
\(679\) 31.3626 1.20358
\(680\) 0 0
\(681\) 3.73997 0.143316
\(682\) 8.14921 0.312049
\(683\) 27.6707 1.05879 0.529394 0.848376i \(-0.322419\pi\)
0.529394 + 0.848376i \(0.322419\pi\)
\(684\) 0.107672 0.00411694
\(685\) 0 0
\(686\) 26.9693 1.02969
\(687\) 23.2144 0.885685
\(688\) 11.4783 0.437606
\(689\) 5.45621 0.207865
\(690\) 0 0
\(691\) −35.1592 −1.33752 −0.668759 0.743479i \(-0.733174\pi\)
−0.668759 + 0.743479i \(0.733174\pi\)
\(692\) −1.32631 −0.0504186
\(693\) −0.802630 −0.0304894
\(694\) −12.2542 −0.465163
\(695\) 0 0
\(696\) 26.6443 1.00995
\(697\) −4.29419 −0.162654
\(698\) 0.00282724 0.000107013 0
\(699\) −22.9925 −0.869657
\(700\) 0 0
\(701\) 0.521416 0.0196936 0.00984680 0.999952i \(-0.496866\pi\)
0.00984680 + 0.999952i \(0.496866\pi\)
\(702\) −23.6504 −0.892628
\(703\) −5.77990 −0.217993
\(704\) 6.76892 0.255113
\(705\) 0 0
\(706\) −16.8607 −0.634561
\(707\) 17.4921 0.657857
\(708\) −2.02563 −0.0761278
\(709\) 4.17407 0.156761 0.0783803 0.996924i \(-0.475025\pi\)
0.0783803 + 0.996924i \(0.475025\pi\)
\(710\) 0 0
\(711\) 1.07916 0.0404715
\(712\) −37.7962 −1.41647
\(713\) −64.4575 −2.41395
\(714\) 8.98755 0.336351
\(715\) 0 0
\(716\) 5.41710 0.202446
\(717\) 2.99859 0.111984
\(718\) 18.9275 0.706367
\(719\) 20.8193 0.776429 0.388215 0.921569i \(-0.373092\pi\)
0.388215 + 0.921569i \(0.373092\pi\)
\(720\) 0 0
\(721\) −11.4887 −0.427863
\(722\) −22.4251 −0.834574
\(723\) 32.9873 1.22681
\(724\) −3.89892 −0.144902
\(725\) 0 0
\(726\) −21.4968 −0.797819
\(727\) 31.0761 1.15255 0.576275 0.817256i \(-0.304506\pi\)
0.576275 + 0.817256i \(0.304506\pi\)
\(728\) −47.0250 −1.74286
\(729\) 28.8133 1.06716
\(730\) 0 0
\(731\) −3.98985 −0.147570
\(732\) 2.52122 0.0931869
\(733\) −14.7053 −0.543151 −0.271576 0.962417i \(-0.587545\pi\)
−0.271576 + 0.962417i \(0.587545\pi\)
\(734\) 9.66630 0.356790
\(735\) 0 0
\(736\) −18.9159 −0.697248
\(737\) −12.1628 −0.448021
\(738\) 1.29155 0.0475426
\(739\) 16.0741 0.591294 0.295647 0.955297i \(-0.404465\pi\)
0.295647 + 0.955297i \(0.404465\pi\)
\(740\) 0 0
\(741\) 5.71310 0.209876
\(742\) 8.35014 0.306543
\(743\) −18.5224 −0.679521 −0.339760 0.940512i \(-0.610346\pi\)
−0.339760 + 0.940512i \(0.610346\pi\)
\(744\) −43.7073 −1.60239
\(745\) 0 0
\(746\) −17.1705 −0.628658
\(747\) −1.62570 −0.0594811
\(748\) −0.347758 −0.0127153
\(749\) 72.8847 2.66315
\(750\) 0 0
\(751\) 36.7405 1.34068 0.670340 0.742054i \(-0.266148\pi\)
0.670340 + 0.742054i \(0.266148\pi\)
\(752\) 18.0784 0.659250
\(753\) −20.7702 −0.756908
\(754\) −23.0913 −0.840935
\(755\) 0 0
\(756\) 10.7229 0.389987
\(757\) 22.5807 0.820709 0.410354 0.911926i \(-0.365405\pi\)
0.410354 + 0.911926i \(0.365405\pi\)
\(758\) 13.9538 0.506823
\(759\) −9.44394 −0.342793
\(760\) 0 0
\(761\) 30.7466 1.11456 0.557281 0.830324i \(-0.311845\pi\)
0.557281 + 0.830324i \(0.311845\pi\)
\(762\) −29.6709 −1.07486
\(763\) 25.1024 0.908769
\(764\) −9.05885 −0.327738
\(765\) 0 0
\(766\) −8.14176 −0.294174
\(767\) 9.43664 0.340737
\(768\) −17.1941 −0.620438
\(769\) −22.2798 −0.803429 −0.401714 0.915765i \(-0.631586\pi\)
−0.401714 + 0.915765i \(0.631586\pi\)
\(770\) 0 0
\(771\) −48.5868 −1.74981
\(772\) 3.06585 0.110342
\(773\) −41.5644 −1.49497 −0.747483 0.664281i \(-0.768738\pi\)
−0.747483 + 0.664281i \(0.768738\pi\)
\(774\) 1.20002 0.0431337
\(775\) 0 0
\(776\) −21.9694 −0.788654
\(777\) −42.9891 −1.54223
\(778\) −37.1760 −1.33282
\(779\) −4.17748 −0.149674
\(780\) 0 0
\(781\) −8.42722 −0.301550
\(782\) −9.28467 −0.332019
\(783\) 28.3038 1.01149
\(784\) −34.4743 −1.23123
\(785\) 0 0
\(786\) 9.59440 0.342221
\(787\) 44.0006 1.56845 0.784226 0.620475i \(-0.213060\pi\)
0.784226 + 0.620475i \(0.213060\pi\)
\(788\) 4.81775 0.171625
\(789\) 12.0086 0.427516
\(790\) 0 0
\(791\) −53.2217 −1.89234
\(792\) 0.562240 0.0199783
\(793\) −11.7454 −0.417092
\(794\) −19.3757 −0.687618
\(795\) 0 0
\(796\) −10.0401 −0.355861
\(797\) 20.5026 0.726238 0.363119 0.931743i \(-0.381712\pi\)
0.363119 + 0.931743i \(0.381712\pi\)
\(798\) 8.74330 0.309509
\(799\) −6.28404 −0.222313
\(800\) 0 0
\(801\) −2.99859 −0.105950
\(802\) −19.8772 −0.701888
\(803\) 11.6661 0.411686
\(804\) 12.1355 0.427985
\(805\) 0 0
\(806\) 37.8789 1.33423
\(807\) −40.9019 −1.43981
\(808\) −12.2531 −0.431064
\(809\) 36.9474 1.29900 0.649500 0.760362i \(-0.274978\pi\)
0.649500 + 0.760362i \(0.274978\pi\)
\(810\) 0 0
\(811\) 31.3337 1.10028 0.550138 0.835074i \(-0.314575\pi\)
0.550138 + 0.835074i \(0.314575\pi\)
\(812\) 10.4694 0.367402
\(813\) 34.6085 1.21377
\(814\) −5.61469 −0.196795
\(815\) 0 0
\(816\) −4.77756 −0.167248
\(817\) −3.88142 −0.135794
\(818\) −10.1715 −0.355637
\(819\) −3.73077 −0.130364
\(820\) 0 0
\(821\) −19.1104 −0.666958 −0.333479 0.942757i \(-0.608223\pi\)
−0.333479 + 0.942757i \(0.608223\pi\)
\(822\) −15.4459 −0.538736
\(823\) −3.72559 −0.129866 −0.0649330 0.997890i \(-0.520683\pi\)
−0.0649330 + 0.997890i \(0.520683\pi\)
\(824\) 8.04782 0.280359
\(825\) 0 0
\(826\) 14.4418 0.502494
\(827\) −52.6665 −1.83139 −0.915697 0.401868i \(-0.868361\pi\)
−0.915697 + 0.401868i \(0.868361\pi\)
\(828\) −0.827305 −0.0287508
\(829\) 2.65690 0.0922780 0.0461390 0.998935i \(-0.485308\pi\)
0.0461390 + 0.998935i \(0.485308\pi\)
\(830\) 0 0
\(831\) −3.85882 −0.133861
\(832\) 31.4631 1.09079
\(833\) 11.9833 0.415196
\(834\) −13.2705 −0.459520
\(835\) 0 0
\(836\) −0.338307 −0.0117006
\(837\) −46.4295 −1.60484
\(838\) 0.679950 0.0234885
\(839\) 34.0348 1.17501 0.587506 0.809220i \(-0.300110\pi\)
0.587506 + 0.809220i \(0.300110\pi\)
\(840\) 0 0
\(841\) −1.36539 −0.0470824
\(842\) −13.8506 −0.477324
\(843\) 10.3381 0.356064
\(844\) −5.39749 −0.185789
\(845\) 0 0
\(846\) 1.89003 0.0649806
\(847\) −45.4049 −1.56013
\(848\) −4.43873 −0.152427
\(849\) −24.2280 −0.831502
\(850\) 0 0
\(851\) 44.4103 1.52237
\(852\) 8.40831 0.288064
\(853\) 57.3607 1.96399 0.981997 0.188896i \(-0.0604909\pi\)
0.981997 + 0.188896i \(0.0604909\pi\)
\(854\) −17.9751 −0.615095
\(855\) 0 0
\(856\) −51.0555 −1.74504
\(857\) −13.8195 −0.472065 −0.236033 0.971745i \(-0.575847\pi\)
−0.236033 + 0.971745i \(0.575847\pi\)
\(858\) 5.54980 0.189467
\(859\) −44.4717 −1.51736 −0.758678 0.651466i \(-0.774154\pi\)
−0.758678 + 0.651466i \(0.774154\pi\)
\(860\) 0 0
\(861\) −31.0708 −1.05889
\(862\) 27.4388 0.934570
\(863\) 24.4487 0.832242 0.416121 0.909309i \(-0.363389\pi\)
0.416121 + 0.909309i \(0.363389\pi\)
\(864\) −13.6253 −0.463543
\(865\) 0 0
\(866\) −22.8532 −0.776583
\(867\) 1.66068 0.0563997
\(868\) −17.1739 −0.582921
\(869\) −3.39073 −0.115023
\(870\) 0 0
\(871\) −56.5346 −1.91560
\(872\) −17.5842 −0.595475
\(873\) −1.74296 −0.0589901
\(874\) −9.03234 −0.305524
\(875\) 0 0
\(876\) −11.6399 −0.393275
\(877\) 41.8463 1.41305 0.706524 0.707689i \(-0.250262\pi\)
0.706524 + 0.707689i \(0.250262\pi\)
\(878\) 25.6196 0.864619
\(879\) 44.9840 1.51727
\(880\) 0 0
\(881\) −34.7002 −1.16908 −0.584540 0.811365i \(-0.698725\pi\)
−0.584540 + 0.811365i \(0.698725\pi\)
\(882\) −3.60417 −0.121359
\(883\) 3.43890 0.115728 0.0578641 0.998324i \(-0.481571\pi\)
0.0578641 + 0.998324i \(0.481571\pi\)
\(884\) −1.61644 −0.0543668
\(885\) 0 0
\(886\) −30.8131 −1.03518
\(887\) 5.18772 0.174187 0.0870933 0.996200i \(-0.472242\pi\)
0.0870933 + 0.996200i \(0.472242\pi\)
\(888\) 30.1137 1.01055
\(889\) −62.6702 −2.10189
\(890\) 0 0
\(891\) −6.24993 −0.209380
\(892\) −5.25119 −0.175823
\(893\) −6.11326 −0.204572
\(894\) 46.3884 1.55146
\(895\) 0 0
\(896\) 26.0991 0.871911
\(897\) −43.8971 −1.46568
\(898\) −1.77795 −0.0593309
\(899\) −45.3318 −1.51190
\(900\) 0 0
\(901\) 1.54290 0.0514016
\(902\) −4.05807 −0.135119
\(903\) −28.8688 −0.960694
\(904\) 37.2816 1.23997
\(905\) 0 0
\(906\) 49.5920 1.64758
\(907\) −1.70414 −0.0565850 −0.0282925 0.999600i \(-0.509007\pi\)
−0.0282925 + 0.999600i \(0.509007\pi\)
\(908\) −1.02941 −0.0341623
\(909\) −0.972112 −0.0322429
\(910\) 0 0
\(911\) −5.77752 −0.191418 −0.0957089 0.995409i \(-0.530512\pi\)
−0.0957089 + 0.995409i \(0.530512\pi\)
\(912\) −4.64773 −0.153902
\(913\) 5.10797 0.169049
\(914\) 4.17283 0.138025
\(915\) 0 0
\(916\) −6.38968 −0.211121
\(917\) 20.2650 0.669210
\(918\) −6.68786 −0.220732
\(919\) −9.48267 −0.312804 −0.156402 0.987693i \(-0.549990\pi\)
−0.156402 + 0.987693i \(0.549990\pi\)
\(920\) 0 0
\(921\) 46.4176 1.52951
\(922\) −13.6244 −0.448697
\(923\) −39.1712 −1.28933
\(924\) −2.51622 −0.0827777
\(925\) 0 0
\(926\) −47.8940 −1.57390
\(927\) 0.638480 0.0209704
\(928\) −13.3032 −0.436699
\(929\) −42.7899 −1.40389 −0.701946 0.712230i \(-0.747685\pi\)
−0.701946 + 0.712230i \(0.747685\pi\)
\(930\) 0 0
\(931\) 11.6576 0.382063
\(932\) 6.32861 0.207300
\(933\) −8.33797 −0.272973
\(934\) 27.0474 0.885017
\(935\) 0 0
\(936\) 2.61339 0.0854213
\(937\) −33.6154 −1.09817 −0.549084 0.835767i \(-0.685023\pi\)
−0.549084 + 0.835767i \(0.685023\pi\)
\(938\) −86.5202 −2.82498
\(939\) 1.51108 0.0493123
\(940\) 0 0
\(941\) −24.8395 −0.809745 −0.404873 0.914373i \(-0.632684\pi\)
−0.404873 + 0.914373i \(0.632684\pi\)
\(942\) −33.0215 −1.07590
\(943\) 32.0980 1.04525
\(944\) −7.67690 −0.249862
\(945\) 0 0
\(946\) −3.77047 −0.122589
\(947\) 46.0481 1.49636 0.748181 0.663494i \(-0.230927\pi\)
0.748181 + 0.663494i \(0.230927\pi\)
\(948\) 3.38312 0.109879
\(949\) 54.2259 1.76025
\(950\) 0 0
\(951\) 23.0619 0.747834
\(952\) −13.2977 −0.430982
\(953\) 38.5949 1.25021 0.625106 0.780540i \(-0.285056\pi\)
0.625106 + 0.780540i \(0.285056\pi\)
\(954\) −0.464054 −0.0150243
\(955\) 0 0
\(956\) −0.825350 −0.0266937
\(957\) −6.64175 −0.214697
\(958\) −5.75027 −0.185783
\(959\) −32.6244 −1.05350
\(960\) 0 0
\(961\) 43.3623 1.39878
\(962\) −26.0980 −0.841435
\(963\) −4.05053 −0.130526
\(964\) −9.07963 −0.292435
\(965\) 0 0
\(966\) −67.1798 −2.16147
\(967\) −27.7170 −0.891318 −0.445659 0.895203i \(-0.647031\pi\)
−0.445659 + 0.895203i \(0.647031\pi\)
\(968\) 31.8060 1.02228
\(969\) 1.61555 0.0518989
\(970\) 0 0
\(971\) −35.8211 −1.14955 −0.574777 0.818310i \(-0.694911\pi\)
−0.574777 + 0.818310i \(0.694911\pi\)
\(972\) −1.14733 −0.0368006
\(973\) −28.0296 −0.898589
\(974\) −17.5552 −0.562506
\(975\) 0 0
\(976\) 9.55513 0.305852
\(977\) −21.1597 −0.676960 −0.338480 0.940974i \(-0.609913\pi\)
−0.338480 + 0.940974i \(0.609913\pi\)
\(978\) 11.8706 0.379581
\(979\) 9.42162 0.301116
\(980\) 0 0
\(981\) −1.39505 −0.0445406
\(982\) −23.7907 −0.759192
\(983\) 53.4481 1.70473 0.852364 0.522948i \(-0.175168\pi\)
0.852364 + 0.522948i \(0.175168\pi\)
\(984\) 21.7650 0.693843
\(985\) 0 0
\(986\) −6.52974 −0.207949
\(987\) −45.4685 −1.44728
\(988\) −1.57251 −0.0500282
\(989\) 29.8232 0.948322
\(990\) 0 0
\(991\) 23.3619 0.742115 0.371057 0.928610i \(-0.378995\pi\)
0.371057 + 0.928610i \(0.378995\pi\)
\(992\) 21.8226 0.692867
\(993\) −35.1817 −1.11646
\(994\) −59.9473 −1.90141
\(995\) 0 0
\(996\) −5.09651 −0.161489
\(997\) 19.9898 0.633084 0.316542 0.948578i \(-0.397478\pi\)
0.316542 + 0.948578i \(0.397478\pi\)
\(998\) 37.0654 1.17328
\(999\) 31.9893 1.01210
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 425.2.a.i.1.4 5
3.2 odd 2 3825.2.a.bq.1.2 5
4.3 odd 2 6800.2.a.bz.1.2 5
5.2 odd 4 425.2.b.f.324.7 10
5.3 odd 4 425.2.b.f.324.4 10
5.4 even 2 425.2.a.j.1.2 yes 5
15.14 odd 2 3825.2.a.bl.1.4 5
17.16 even 2 7225.2.a.x.1.4 5
20.19 odd 2 6800.2.a.cd.1.4 5
85.84 even 2 7225.2.a.y.1.2 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
425.2.a.i.1.4 5 1.1 even 1 trivial
425.2.a.j.1.2 yes 5 5.4 even 2
425.2.b.f.324.4 10 5.3 odd 4
425.2.b.f.324.7 10 5.2 odd 4
3825.2.a.bl.1.4 5 15.14 odd 2
3825.2.a.bq.1.2 5 3.2 odd 2
6800.2.a.bz.1.2 5 4.3 odd 2
6800.2.a.cd.1.4 5 20.19 odd 2
7225.2.a.x.1.4 5 17.16 even 2
7225.2.a.y.1.2 5 85.84 even 2