Properties

Label 425.2.b.f.324.2
Level 425425
Weight 22
Character 425.324
Analytic conductor 3.3943.394
Analytic rank 00
Dimension 1010
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [425,2,Mod(324,425)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(425, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("425.324");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 425=5217 425 = 5^{2} \cdot 17
Weight: k k == 2 2
Character orbit: [χ][\chi] == 425.b (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 3.393642085903.39364208590
Analytic rank: 00
Dimension: 1010
Coefficient field: 10.0.229451239931904.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x102x7+64x630x5+2x4+136x3+324x2+180x+50 x^{10} - 2x^{7} + 64x^{6} - 30x^{5} + 2x^{4} + 136x^{3} + 324x^{2} + 180x + 50 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 22 2^{2}
Twist minimal: yes
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

Embedding invariants

Embedding label 324.2
Root 0.328166+0.328166i-0.328166 + 0.328166i of defining polynomial
Character χ\chi == 425.324
Dual form 425.2.b.f.324.9

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q2.60242iq2+1.18219iq34.77260q4+3.07656q6+3.53650iq7+7.21549iq8+1.60242q9+2.94609q115.64213iq124.01064iq13+9.20348q14+9.23255q161.00000iq174.17018iq18+6.97745q194.18083q217.66698iq22+6.12692iq238.53009q2410.4374q26+5.44095iq2716.8783iq285.30040q29+6.49485q319.59601iq32+3.48284iq332.60242q347.64773q36+3.43224iq3718.1583iq38+4.74135q39+4.61307q41+10.8803iq4210.2901iq4314.0605q44+15.9448q46+3.67705iq47+10.9146iq485.50686q49+1.18219q51+19.1412iq52+6.77260iq53+14.1596q5425.5176q56+8.24868iq57+13.7939iq589.92573q592.36438q6116.9024iq62+5.66698iq636.50778q64+9.06383q669.56650iq67+4.77260iq687.24319q69+5.51248q71+11.5623iq722.00515iq73+8.93214q7433.3006q76+10.4189iq7712.3390iq7810.5803q791.62497q8112.0052iq829.07301iq83+19.9534q8426.7792q866.26609iq87+21.2575iq882.63321q89+14.1837q9129.2414iq92+7.67816iq93+9.56923q94+11.3443q96+5.86816iq97+14.3312iq98+4.72088q99+O(q100)q-2.60242i q^{2} +1.18219i q^{3} -4.77260 q^{4} +3.07656 q^{6} +3.53650i q^{7} +7.21549i q^{8} +1.60242 q^{9} +2.94609 q^{11} -5.64213i q^{12} -4.01064i q^{13} +9.20348 q^{14} +9.23255 q^{16} -1.00000i q^{17} -4.17018i q^{18} +6.97745 q^{19} -4.18083 q^{21} -7.66698i q^{22} +6.12692i q^{23} -8.53009 q^{24} -10.4374 q^{26} +5.44095i q^{27} -16.8783i q^{28} -5.30040 q^{29} +6.49485 q^{31} -9.59601i q^{32} +3.48284i q^{33} -2.60242 q^{34} -7.64773 q^{36} +3.43224i q^{37} -18.1583i q^{38} +4.74135 q^{39} +4.61307 q^{41} +10.8803i q^{42} -10.2901i q^{43} -14.0605 q^{44} +15.9448 q^{46} +3.67705i q^{47} +10.9146i q^{48} -5.50686 q^{49} +1.18219 q^{51} +19.1412i q^{52} +6.77260i q^{53} +14.1596 q^{54} -25.5176 q^{56} +8.24868i q^{57} +13.7939i q^{58} -9.92573 q^{59} -2.36438 q^{61} -16.9024i q^{62} +5.66698i q^{63} -6.50778 q^{64} +9.06383 q^{66} -9.56650i q^{67} +4.77260i q^{68} -7.24319 q^{69} +5.51248 q^{71} +11.5623i q^{72} -2.00515i q^{73} +8.93214 q^{74} -33.3006 q^{76} +10.4189i q^{77} -12.3390i q^{78} -10.5803 q^{79} -1.62497 q^{81} -12.0052i q^{82} -9.07301i q^{83} +19.9534 q^{84} -26.7792 q^{86} -6.26609i q^{87} +21.2575i q^{88} -2.63321 q^{89} +14.1837 q^{91} -29.2414i q^{92} +7.67816i q^{93} +9.56923 q^{94} +11.3443 q^{96} +5.86816i q^{97} +14.3312i q^{98} +4.72088 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 10q22q4+6q612q9+8q11+14q14+54q1612q1910q21+38q2410q264q29+42q31+2q34+44q3646q3916q41+8q4412q46++28q99+O(q100) 10 q - 22 q^{4} + 6 q^{6} - 12 q^{9} + 8 q^{11} + 14 q^{14} + 54 q^{16} - 12 q^{19} - 10 q^{21} + 38 q^{24} - 10 q^{26} - 4 q^{29} + 42 q^{31} + 2 q^{34} + 44 q^{36} - 46 q^{39} - 16 q^{41} + 8 q^{44} - 12 q^{46}+ \cdots + 28 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/425Z)×\left(\mathbb{Z}/425\mathbb{Z}\right)^\times.

nn 5252 326326
χ(n)\chi(n) 1-1 11

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 − 2.60242i − 1.84019i −0.391694 0.920095i 0.628111π-0.628111\pi
0.391694 0.920095i 0.371889π-0.371889\pi
33 1.18219i 0.682539i 0.939966 + 0.341269i 0.110857π0.110857\pi
−0.939966 + 0.341269i 0.889143π0.889143\pi
44 −4.77260 −2.38630
55 0 0
66 3.07656 1.25600
77 3.53650i 1.33667i 0.743859 + 0.668337i 0.232993π0.232993\pi
−0.743859 + 0.668337i 0.767007π0.767007\pi
88 7.21549i 2.55106i
99 1.60242 0.534141
1010 0 0
1111 2.94609 0.888280 0.444140 0.895957i 0.353509π-0.353509\pi
0.444140 + 0.895957i 0.353509π0.353509\pi
1212 − 5.64213i − 1.62874i
1313 − 4.01064i − 1.11235i −0.831064 0.556176i 0.812268π-0.812268\pi
0.831064 0.556176i 0.187732π-0.187732\pi
1414 9.20348 2.45973
1515 0 0
1616 9.23255 2.30814
1717 − 1.00000i − 0.242536i
1818 − 4.17018i − 0.982921i
1919 6.97745 1.60074 0.800368 0.599508i 0.204637π-0.204637\pi
0.800368 + 0.599508i 0.204637π0.204637\pi
2020 0 0
2121 −4.18083 −0.912331
2222 − 7.66698i − 1.63460i
2323 6.12692i 1.27755i 0.769393 + 0.638775i 0.220559π0.220559\pi
−0.769393 + 0.638775i 0.779441π0.779441\pi
2424 −8.53009 −1.74120
2525 0 0
2626 −10.4374 −2.04694
2727 5.44095i 1.04711i
2828 − 16.8783i − 3.18971i
2929 −5.30040 −0.984260 −0.492130 0.870522i 0.663782π-0.663782\pi
−0.492130 + 0.870522i 0.663782π0.663782\pi
3030 0 0
3131 6.49485 1.16651 0.583255 0.812289i 0.301779π-0.301779\pi
0.583255 + 0.812289i 0.301779π0.301779\pi
3232 − 9.59601i − 1.69635i
3333 3.48284i 0.606285i
3434 −2.60242 −0.446312
3535 0 0
3636 −7.64773 −1.27462
3737 3.43224i 0.564257i 0.959377 + 0.282128i 0.0910404π0.0910404\pi
−0.959377 + 0.282128i 0.908960π0.908960\pi
3838 − 18.1583i − 2.94566i
3939 4.74135 0.759224
4040 0 0
4141 4.61307 0.720440 0.360220 0.932867i 0.382702π-0.382702\pi
0.360220 + 0.932867i 0.382702π0.382702\pi
4242 10.8803i 1.67886i
4343 − 10.2901i − 1.56923i −0.619985 0.784614i 0.712861π-0.712861\pi
0.619985 0.784614i 0.287139π-0.287139\pi
4444 −14.0605 −2.11970
4545 0 0
4646 15.9448 2.35094
4747 3.67705i 0.536352i 0.963370 + 0.268176i 0.0864209π0.0864209\pi
−0.963370 + 0.268176i 0.913579π0.913579\pi
4848 10.9146i 1.57539i
4949 −5.50686 −0.786695
5050 0 0
5151 1.18219 0.165540
5252 19.1412i 2.65441i
5353 6.77260i 0.930289i 0.885235 + 0.465144i 0.153998π0.153998\pi
−0.885235 + 0.465144i 0.846002π0.846002\pi
5454 14.1596 1.92688
5555 0 0
5656 −25.5176 −3.40993
5757 8.24868i 1.09256i
5858 13.7939i 1.81123i
5959 −9.92573 −1.29222 −0.646110 0.763244i 0.723605π-0.723605\pi
−0.646110 + 0.763244i 0.723605π0.723605\pi
6060 0 0
6161 −2.36438 −0.302728 −0.151364 0.988478i 0.548367π-0.548367\pi
−0.151364 + 0.988478i 0.548367π0.548367\pi
6262 − 16.9024i − 2.14660i
6363 5.66698i 0.713972i
6464 −6.50778 −0.813473
6565 0 0
6666 9.06383 1.11568
6767 − 9.56650i − 1.16873i −0.811490 0.584367i 0.801343π-0.801343\pi
0.811490 0.584367i 0.198657π-0.198657\pi
6868 4.77260i 0.578763i
6969 −7.24319 −0.871978
7070 0 0
7171 5.51248 0.654212 0.327106 0.944988i 0.393927π-0.393927\pi
0.327106 + 0.944988i 0.393927π0.393927\pi
7272 11.5623i 1.36263i
7373 − 2.00515i − 0.234685i −0.993091 0.117343i 0.962562π-0.962562\pi
0.993091 0.117343i 0.0374376π-0.0374376\pi
7474 8.93214 1.03834
7575 0 0
7676 −33.3006 −3.81984
7777 10.4189i 1.18734i
7878 − 12.3390i − 1.39712i
7979 −10.5803 −1.19038 −0.595191 0.803584i 0.702924π-0.702924\pi
−0.595191 + 0.803584i 0.702924π0.702924\pi
8080 0 0
8181 −1.62497 −0.180552
8282 − 12.0052i − 1.32575i
8383 − 9.07301i − 0.995892i −0.867208 0.497946i 0.834088π-0.834088\pi
0.867208 0.497946i 0.165912π-0.165912\pi
8484 19.9534 2.17710
8585 0 0
8686 −26.7792 −2.88768
8787 − 6.26609i − 0.671796i
8888 21.2575i 2.26606i
8989 −2.63321 −0.279119 −0.139560 0.990214i 0.544569π-0.544569\pi
−0.139560 + 0.990214i 0.544569π0.544569\pi
9090 0 0
9191 14.1837 1.48685
9292 − 29.2414i − 3.04862i
9393 7.67816i 0.796188i
9494 9.56923 0.986991
9595 0 0
9696 11.3443 1.15783
9797 5.86816i 0.595822i 0.954594 + 0.297911i 0.0962898π0.0962898\pi
−0.954594 + 0.297911i 0.903710π0.903710\pi
9898 14.3312i 1.44767i
9999 4.72088 0.474467
100100 0 0
101101 −7.90283 −0.786361 −0.393180 0.919461i 0.628625π-0.628625\pi
−0.393180 + 0.919461i 0.628625π0.628625\pi
102102 − 3.07656i − 0.304625i
103103 6.36826i 0.627483i 0.949508 + 0.313742i 0.101583π0.101583\pi
−0.949508 + 0.313742i 0.898417π0.898417\pi
104104 28.9388 2.83768
105105 0 0
106106 17.6252 1.71191
107107 6.85432i 0.662632i 0.943520 + 0.331316i 0.107493π0.107493\pi
−0.943520 + 0.331316i 0.892507π0.892507\pi
108108 − 25.9675i − 2.49872i
109109 14.6758 1.40569 0.702843 0.711345i 0.251914π-0.251914\pi
0.702843 + 0.711345i 0.251914π0.251914\pi
110110 0 0
111111 −4.05757 −0.385127
112112 32.6509i 3.08522i
113113 − 13.3994i − 1.26051i −0.776388 0.630255i 0.782950π-0.782950\pi
0.776388 0.630255i 0.217050π-0.217050\pi
114114 21.4666 2.01053
115115 0 0
116116 25.2967 2.34874
117117 − 6.42675i − 0.594153i
118118 25.8309i 2.37793i
119119 3.53650 0.324191
120120 0 0
121121 −2.32055 −0.210959
122122 6.15313i 0.557078i
123123 5.45353i 0.491728i
124124 −30.9974 −2.78365
125125 0 0
126126 14.7479 1.31384
127127 4.63321i 0.411131i 0.978643 + 0.205565i 0.0659033π0.0659033\pi
−0.978643 + 0.205565i 0.934097π0.934097\pi
128128 − 2.25602i − 0.199405i
129129 12.1649 1.07106
130130 0 0
131131 −12.1496 −1.06151 −0.530757 0.847524i 0.678092π-0.678092\pi
−0.530757 + 0.847524i 0.678092π0.678092\pi
132132 − 16.6222i − 1.44678i
133133 24.6758i 2.13966i
134134 −24.8961 −2.15069
135135 0 0
136136 7.21549 0.618723
137137 − 8.86852i − 0.757689i −0.925460 0.378844i 0.876322π-0.876322\pi
0.925460 0.378844i 0.123678π-0.123678\pi
138138 18.8498i 1.60461i
139139 −7.32306 −0.621134 −0.310567 0.950552i 0.600519π-0.600519\pi
−0.310567 + 0.950552i 0.600519π0.600519\pi
140140 0 0
141141 −4.34697 −0.366081
142142 − 14.3458i − 1.20387i
143143 − 11.8157i − 0.988081i
144144 14.7944 1.23287
145145 0 0
146146 −5.21825 −0.431866
147147 − 6.51017i − 0.536950i
148148 − 16.3807i − 1.34649i
149149 −13.9059 −1.13922 −0.569608 0.821916i 0.692905π-0.692905\pi
−0.569608 + 0.821916i 0.692905π0.692905\pi
150150 0 0
151151 14.3884 1.17091 0.585456 0.810704i 0.300916π-0.300916\pi
0.585456 + 0.810704i 0.300916π0.300916\pi
152152 50.3457i 4.08358i
153153 − 1.60242i − 0.129548i
154154 27.1143 2.18493
155155 0 0
156156 −22.6286 −1.81174
157157 − 8.68608i − 0.693224i −0.938009 0.346612i 0.887332π-0.887332\pi
0.938009 0.346612i 0.112668π-0.112668\pi
158158 27.5345i 2.19053i
159159 −8.00652 −0.634958
160160 0 0
161161 −21.6679 −1.70767
162162 4.22887i 0.332251i
163163 − 8.95868i − 0.701698i −0.936432 0.350849i 0.885893π-0.885893\pi
0.936432 0.350849i 0.114107π-0.114107\pi
164164 −22.0163 −1.71919
165165 0 0
166166 −23.6118 −1.83263
167167 − 4.37318i − 0.338407i −0.985581 0.169203i 0.945881π-0.945881\pi
0.985581 0.169203i 0.0541195π-0.0541195\pi
168168 − 30.1667i − 2.32741i
169169 −3.08527 −0.237328
170170 0 0
171171 11.1808 0.855019
172172 49.1106i 3.74465i
173173 8.82433i 0.670901i 0.942058 + 0.335451i 0.108889π0.108889\pi
−0.942058 + 0.335451i 0.891111π0.891111\pi
174174 −16.3070 −1.23623
175175 0 0
176176 27.1999 2.05027
177177 − 11.7341i − 0.881990i
178178 6.85272i 0.513633i
179179 −9.42951 −0.704795 −0.352397 0.935850i 0.614633π-0.614633\pi
−0.352397 + 0.935850i 0.614633π0.614633\pi
180180 0 0
181181 −11.7939 −0.876633 −0.438317 0.898821i 0.644425π-0.644425\pi
−0.438317 + 0.898821i 0.644425π0.644425\pi
182182 − 36.9119i − 2.73609i
183183 − 2.79515i − 0.206624i
184184 −44.2087 −3.25911
185185 0 0
186186 19.9818 1.46514
187187 − 2.94609i − 0.215440i
188188 − 17.5491i − 1.27990i
189189 −19.2419 −1.39964
190190 0 0
191191 5.19969 0.376237 0.188118 0.982146i 0.439761π-0.439761\pi
0.188118 + 0.982146i 0.439761π0.439761\pi
192192 − 7.69345i − 0.555227i
193193 − 14.3936i − 1.03607i −0.855359 0.518035i 0.826664π-0.826664\pi
0.855359 0.518035i 0.173336π-0.173336\pi
194194 15.2714 1.09643
195195 0 0
196196 26.2821 1.87729
197197 − 16.0840i − 1.14594i −0.819577 0.572969i 0.805792π-0.805792\pi
0.819577 0.572969i 0.194208π-0.194208\pi
198198 − 12.2857i − 0.873109i
199199 −18.1750 −1.28839 −0.644194 0.764862i 0.722807π-0.722807\pi
−0.644194 + 0.764862i 0.722807π0.722807\pi
200200 0 0
201201 11.3094 0.797706
202202 20.5665i 1.44705i
203203 − 18.7449i − 1.31563i
204204 −5.64213 −0.395028
205205 0 0
206206 16.5729 1.15469
207207 9.81791i 0.682392i
208208 − 37.0285i − 2.56746i
209209 20.5562 1.42190
210210 0 0
211211 −8.40614 −0.578702 −0.289351 0.957223i 0.593440π-0.593440\pi
−0.289351 + 0.957223i 0.593440π0.593440\pi
212212 − 32.3230i − 2.21995i
213213 6.51681i 0.446525i
214214 17.8378 1.21937
215215 0 0
216216 −39.2591 −2.67124
217217 22.9691i 1.55924i
218218 − 38.1926i − 2.58673i
219219 2.37047 0.160182
220220 0 0
221221 −4.01064 −0.269785
222222 10.5595i 0.708708i
223223 2.90591i 0.194594i 0.995255 + 0.0972971i 0.0310197π0.0310197\pi
−0.995255 + 0.0972971i 0.968980π0.968980\pi
224224 33.9363 2.26747
225225 0 0
226226 −34.8709 −2.31958
227227 − 15.8127i − 1.04952i −0.851249 0.524762i 0.824154π-0.824154\pi
0.851249 0.524762i 0.175846π-0.175846\pi
228228 − 39.3677i − 2.60719i
229229 23.1302 1.52849 0.764244 0.644927i 0.223112π-0.223112\pi
0.764244 + 0.644927i 0.223112π0.223112\pi
230230 0 0
231231 −12.3171 −0.810405
232232 − 38.2450i − 2.51091i
233233 14.5265i 0.951665i 0.879536 + 0.475833i 0.157853π0.157853\pi
−0.879536 + 0.475833i 0.842147π0.842147\pi
234234 −16.7251 −1.09336
235235 0 0
236236 47.3716 3.08363
237237 − 12.5080i − 0.812481i
238238 − 9.20348i − 0.596573i
239239 −3.56923 −0.230874 −0.115437 0.993315i 0.536827π-0.536827\pi
−0.115437 + 0.993315i 0.536827π0.536827\pi
240240 0 0
241241 −17.7990 −1.14654 −0.573269 0.819367i 0.694325π-0.694325\pi
−0.573269 + 0.819367i 0.694325π0.694325\pi
242242 6.03904i 0.388204i
243243 14.4018i 0.923876i
244244 11.2843 0.722401
245245 0 0
246246 14.1924 0.904874
247247 − 27.9841i − 1.78058i
248248 46.8636i 2.97584i
249249 10.7260 0.679735
250250 0 0
251251 7.45480 0.470543 0.235271 0.971930i 0.424402π-0.424402\pi
0.235271 + 0.971930i 0.424402π0.424402\pi
252252 − 27.0462i − 1.70375i
253253 18.0505i 1.13482i
254254 12.0576 0.756559
255255 0 0
256256 −18.8867 −1.18042
257257 26.4740i 1.65140i 0.564106 + 0.825702i 0.309221π0.309221\pi
−0.564106 + 0.825702i 0.690779π0.690779\pi
258258 − 31.6582i − 1.97095i
259259 −12.1381 −0.754227
260260 0 0
261261 −8.49349 −0.525734
262262 31.6183i 1.95339i
263263 − 12.4974i − 0.770621i −0.922787 0.385310i 0.874094π-0.874094\pi
0.922787 0.385310i 0.125906π-0.125906\pi
264264 −25.1304 −1.54667
265265 0 0
266266 64.2168 3.93739
267267 − 3.11296i − 0.190510i
268268 45.6571i 2.78895i
269269 −2.83773 −0.173020 −0.0865098 0.996251i 0.527571π-0.527571\pi
−0.0865098 + 0.996251i 0.527571π0.527571\pi
270270 0 0
271271 −7.60005 −0.461670 −0.230835 0.972993i 0.574146π-0.574146\pi
−0.230835 + 0.972993i 0.574146π0.574146\pi
272272 − 9.23255i − 0.559805i
273273 16.7678i 1.01483i
274274 −23.0796 −1.39429
275275 0 0
276276 34.5689 2.08080
277277 − 30.4187i − 1.82768i −0.406070 0.913842i 0.633101π-0.633101\pi
0.406070 0.913842i 0.366899π-0.366899\pi
278278 19.0577i 1.14300i
279279 10.4075 0.623081
280280 0 0
281281 −20.5944 −1.22856 −0.614279 0.789089i 0.710553π-0.710553\pi
−0.614279 + 0.789089i 0.710553π0.710553\pi
282282 11.3127i 0.673659i
283283 4.14433i 0.246355i 0.992385 + 0.123177i 0.0393084π0.0393084\pi
−0.992385 + 0.123177i 0.960692π0.960692\pi
284284 −26.3089 −1.56115
285285 0 0
286286 −30.7495 −1.81826
287287 16.3141i 0.962993i
288288 − 15.3769i − 0.906091i
289289 −1.00000 −0.0588235
290290 0 0
291291 −6.93729 −0.406671
292292 9.56980i 0.560030i
293293 7.85031i 0.458620i 0.973353 + 0.229310i 0.0736470π0.0736470\pi
−0.973353 + 0.229310i 0.926353π0.926353\pi
294294 −16.9422 −0.988090
295295 0 0
296296 −24.7653 −1.43945
297297 16.0295i 0.930127i
298298 36.1891i 2.09638i
299299 24.5729 1.42109
300300 0 0
301301 36.3910 2.09754
302302 − 37.4447i − 2.15470i
303303 − 9.34266i − 0.536722i
304304 64.4196 3.69472
305305 0 0
306306 −4.17018 −0.238393
307307 0.473348i 0.0270154i 0.999909 + 0.0135077i 0.00429977π0.00429977\pi
−0.999909 + 0.0135077i 0.995700π0.995700\pi
308308 − 49.7251i − 2.83335i
309309 −7.52851 −0.428282
310310 0 0
311311 18.3062 1.03805 0.519023 0.854760i 0.326296π-0.326296\pi
0.519023 + 0.854760i 0.326296π0.326296\pi
312312 34.2112i 1.93683i
313313 3.84193i 0.217159i 0.994088 + 0.108579i 0.0346302π0.0346302\pi
−0.994088 + 0.108579i 0.965370π0.965370\pi
314314 −22.6048 −1.27567
315315 0 0
316316 50.4958 2.84061
317317 4.52266i 0.254018i 0.991902 + 0.127009i 0.0405377π0.0405377\pi
−0.991902 + 0.127009i 0.959462π0.959462\pi
318318 20.8363i 1.16844i
319319 −15.6155 −0.874299
320320 0 0
321321 −8.10312 −0.452272
322322 56.3890i 3.14243i
323323 − 6.97745i − 0.388236i
324324 7.75535 0.430853
325325 0 0
326326 −23.3143 −1.29126
327327 17.3496i 0.959435i
328328 33.2855i 1.83789i
329329 −13.0039 −0.716928
330330 0 0
331331 17.4347 0.958296 0.479148 0.877734i 0.340946π-0.340946\pi
0.479148 + 0.877734i 0.340946π0.340946\pi
332332 43.3019i 2.37650i
333333 5.49990i 0.301393i
334334 −11.3809 −0.622733
335335 0 0
336336 −38.5997 −2.10578
337337 0.943903i 0.0514177i 0.999669 + 0.0257088i 0.00818428π0.00818428\pi
−0.999669 + 0.0257088i 0.991816π0.991816\pi
338338 8.02917i 0.436729i
339339 15.8407 0.860347
340340 0 0
341341 19.1344 1.03619
342342 − 29.0972i − 1.57340i
343343 5.28048i 0.285119i
344344 74.2482 4.00320
345345 0 0
346346 22.9646 1.23459
347347 − 19.2108i − 1.03129i −0.856802 0.515645i 0.827552π-0.827552\pi
0.856802 0.515645i 0.172448π-0.172448\pi
348348 29.9056i 1.60311i
349349 31.7831 1.70131 0.850655 0.525724i 0.176205π-0.176205\pi
0.850655 + 0.525724i 0.176205π0.176205\pi
350350 0 0
351351 21.8217 1.16476
352352 − 28.2707i − 1.50683i
353353 − 15.4511i − 0.822380i −0.911550 0.411190i 0.865113π-0.865113\pi
0.911550 0.411190i 0.134887π-0.134887\pi
354354 −30.5371 −1.62303
355355 0 0
356356 12.5673 0.666064
357357 4.18083i 0.221273i
358358 24.5396i 1.29696i
359359 27.9639 1.47588 0.737940 0.674866i 0.235799π-0.235799\pi
0.737940 + 0.674866i 0.235799π0.235799\pi
360360 0 0
361361 29.6848 1.56236
362362 30.6927i 1.61317i
363363 − 2.74333i − 0.143987i
364364 −67.6930 −3.54808
365365 0 0
366366 −7.27417 −0.380227
367367 − 22.7225i − 1.18610i −0.805165 0.593051i 0.797923π-0.797923\pi
0.805165 0.593051i 0.202077π-0.202077\pi
368368 56.5671i 2.94876i
369369 7.39208 0.384817
370370 0 0
371371 −23.9513 −1.24349
372372 − 36.6448i − 1.89995i
373373 − 35.5230i − 1.83931i −0.392725 0.919656i 0.628468π-0.628468\pi
0.392725 0.919656i 0.371532π-0.371532\pi
374374 −7.66698 −0.396450
375375 0 0
376376 −26.5317 −1.36827
377377 21.2580i 1.09484i
378378 50.0756i 2.57561i
379379 30.4727 1.56528 0.782640 0.622475i 0.213873π-0.213873\pi
0.782640 + 0.622475i 0.213873π0.213873\pi
380380 0 0
381381 −5.47734 −0.280613
382382 − 13.5318i − 0.692347i
383383 − 25.9667i − 1.32683i −0.748250 0.663417i 0.769105π-0.769105\pi
0.748250 0.663417i 0.230895π-0.230895\pi
384384 2.66704 0.136102
385385 0 0
386386 −37.4581 −1.90657
387387 − 16.4891i − 0.838189i
388388 − 28.0064i − 1.42181i
389389 −6.37729 −0.323342 −0.161671 0.986845i 0.551688π-0.551688\pi
−0.161671 + 0.986845i 0.551688π0.551688\pi
390390 0 0
391391 6.12692 0.309852
392392 − 39.7347i − 2.00691i
393393 − 14.3631i − 0.724524i
394394 −41.8574 −2.10874
395395 0 0
396396 −22.5309 −1.13222
397397 13.1874i 0.661858i 0.943656 + 0.330929i 0.107362π0.107362\pi
−0.943656 + 0.330929i 0.892638π0.892638\pi
398398 47.2989i 2.37088i
399399 −29.1715 −1.46040
400400 0 0
401401 −28.2411 −1.41030 −0.705148 0.709061i 0.749119π-0.749119\pi
−0.705148 + 0.709061i 0.749119π0.749119\pi
402402 − 29.4319i − 1.46793i
403403 − 26.0486i − 1.29757i
404404 37.7171 1.87649
405405 0 0
406406 −48.7822 −2.42102
407407 10.1117i 0.501218i
408408 8.53009i 0.422302i
409409 21.0374 1.04023 0.520117 0.854095i 0.325888π-0.325888\pi
0.520117 + 0.854095i 0.325888π0.325888\pi
410410 0 0
411411 10.4843 0.517152
412412 − 30.3932i − 1.49737i
413413 − 35.1024i − 1.72728i
414414 25.5504 1.25573
415415 0 0
416416 −38.4862 −1.88694
417417 − 8.65726i − 0.423948i
418418 − 53.4959i − 2.61657i
419419 28.1482 1.37513 0.687565 0.726123i 0.258680π-0.258680\pi
0.687565 + 0.726123i 0.258680π0.258680\pi
420420 0 0
421421 −16.6639 −0.812147 −0.406074 0.913840i 0.633102π-0.633102\pi
−0.406074 + 0.913840i 0.633102π0.633102\pi
422422 21.8763i 1.06492i
423423 5.89218i 0.286488i
424424 −48.8677 −2.37322
425425 0 0
426426 16.9595 0.821691
427427 − 8.36165i − 0.404649i
428428 − 32.7130i − 1.58124i
429429 13.9685 0.674403
430430 0 0
431431 −11.1833 −0.538682 −0.269341 0.963045i 0.586806π-0.586806\pi
−0.269341 + 0.963045i 0.586806π0.586806\pi
432432 50.2338i 2.41687i
433433 11.0440i 0.530743i 0.964146 + 0.265372i 0.0854946π0.0854946\pi
−0.964146 + 0.265372i 0.914505π0.914505\pi
434434 59.7753 2.86930
435435 0 0
436436 −70.0417 −3.35439
437437 42.7503i 2.04502i
438438 − 6.16897i − 0.294765i
439439 5.34654 0.255176 0.127588 0.991827i 0.459276π-0.459276\pi
0.127588 + 0.991827i 0.459276π0.459276\pi
440440 0 0
441441 −8.82433 −0.420206
442442 10.4374i 0.496456i
443443 16.5863i 0.788040i 0.919102 + 0.394020i 0.128916π0.128916\pi
−0.919102 + 0.394020i 0.871084π0.871084\pi
444444 19.3652 0.919030
445445 0 0
446446 7.56241 0.358091
447447 − 16.4395i − 0.777559i
448448 − 23.0148i − 1.08735i
449449 −35.2901 −1.66544 −0.832722 0.553691i 0.813219π-0.813219\pi
−0.832722 + 0.553691i 0.813219π0.813219\pi
450450 0 0
451451 13.5905 0.639952
452452 63.9500i 3.00796i
453453 17.0098i 0.799192i
454454 −41.1513 −1.93132
455455 0 0
456456 −59.5183 −2.78720
457457 − 9.73794i − 0.455522i −0.973717 0.227761i 0.926860π-0.926860\pi
0.973717 0.227761i 0.0731404π-0.0731404\pi
458458 − 60.1947i − 2.81271i
459459 5.44095 0.253962
460460 0 0
461461 −16.4097 −0.764276 −0.382138 0.924105i 0.624812π-0.624812\pi
−0.382138 + 0.924105i 0.624812π0.624812\pi
462462 32.0543i 1.49130i
463463 16.9720i 0.788755i 0.918948 + 0.394378i 0.129040π0.129040\pi
−0.918948 + 0.394378i 0.870960π0.870960\pi
464464 −48.9362 −2.27181
465465 0 0
466466 37.8042 1.75125
467467 23.2884i 1.07766i 0.842416 + 0.538828i 0.181133π0.181133\pi
−0.842416 + 0.538828i 0.818867π0.818867\pi
468468 30.6723i 1.41783i
469469 33.8320 1.56221
470470 0 0
471471 10.2686 0.473152
472472 − 71.6190i − 3.29653i
473473 − 30.3156i − 1.39391i
474474 −32.5511 −1.49512
475475 0 0
476476 −16.8783 −0.773617
477477 10.8526i 0.496905i
478478 9.28864i 0.424853i
479479 −2.30406 −0.105275 −0.0526376 0.998614i 0.516763π-0.516763\pi
−0.0526376 + 0.998614i 0.516763π0.516763\pi
480480 0 0
481481 13.7655 0.627653
482482 46.3206i 2.10985i
483483 − 25.6156i − 1.16555i
484484 11.0750 0.503411
485485 0 0
486486 37.4796 1.70011
487487 14.0889i 0.638430i 0.947682 + 0.319215i 0.103419π0.103419\pi
−0.947682 + 0.319215i 0.896581π0.896581\pi
488488 − 17.0602i − 0.772278i
489489 10.5909 0.478936
490490 0 0
491491 21.0485 0.949905 0.474953 0.880011i 0.342465π-0.342465\pi
0.474953 + 0.880011i 0.342465π0.342465\pi
492492 − 26.0275i − 1.17341i
493493 5.30040i 0.238718i
494494 −72.8264 −3.27661
495495 0 0
496496 59.9640 2.69247
497497 19.4949i 0.874467i
498498 − 27.9137i − 1.25084i
499499 −27.6747 −1.23889 −0.619446 0.785039i 0.712643π-0.712643\pi
−0.619446 + 0.785039i 0.712643π0.712643\pi
500500 0 0
501501 5.16994 0.230976
502502 − 19.4005i − 0.865889i
503503 31.0855i 1.38603i 0.720921 + 0.693017i 0.243719π0.243719\pi
−0.720921 + 0.693017i 0.756281π0.756281\pi
504504 −40.8900 −1.82139
505505 0 0
506506 46.9749 2.08829
507507 − 3.64738i − 0.161986i
508508 − 22.1125i − 0.981082i
509509 20.5481 0.910781 0.455390 0.890292i 0.349500π-0.349500\pi
0.455390 + 0.890292i 0.349500π0.349500\pi
510510 0 0
511511 7.09123 0.313697
512512 44.6391i 1.97279i
513513 37.9639i 1.67615i
514514 68.8966 3.03890
515515 0 0
516516 −58.0582 −2.55587
517517 10.8329i 0.476431i
518518 31.5886i 1.38792i
519519 −10.4320 −0.457916
520520 0 0
521521 −27.9505 −1.22453 −0.612267 0.790651i 0.709742π-0.709742\pi
−0.612267 + 0.790651i 0.709742π0.709742\pi
522522 22.1037i 0.967450i
523523 − 0.0826499i − 0.00361403i −0.999998 0.00180701i 0.999425π-0.999425\pi
0.999998 0.00180701i 0.000575191π-0.000575191\pi
524524 57.9851 2.53309
525525 0 0
526526 −32.5234 −1.41809
527527 − 6.49485i − 0.282920i
528528 32.1555i 1.39939i
529529 −14.5391 −0.632136
530530 0 0
531531 −15.9052 −0.690228
532532 − 117.768i − 5.10588i
533533 − 18.5014i − 0.801383i
534534 −8.10123 −0.350574
535535 0 0
536536 69.0270 2.98151
537537 − 11.1475i − 0.481050i
538538 7.38498i 0.318389i
539539 −16.2237 −0.698805
540540 0 0
541541 −10.7378 −0.461654 −0.230827 0.972995i 0.574143π-0.574143\pi
−0.230827 + 0.972995i 0.574143π0.574143\pi
542542 19.7785i 0.849561i
543543 − 13.9426i − 0.598336i
544544 −9.59601 −0.411426
545545 0 0
546546 43.6369 1.86749
547547 − 36.8538i − 1.57576i −0.615832 0.787878i 0.711180π-0.711180\pi
0.615832 0.787878i 0.288820π-0.288820\pi
548548 42.3259i 1.80807i
549549 −3.78874 −0.161700
550550 0 0
551551 −36.9833 −1.57554
552552 − 52.2632i − 2.22447i
553553 − 37.4174i − 1.59115i
554554 −79.1624 −3.36329
555555 0 0
556556 34.9501 1.48221
557557 2.41625i 0.102380i 0.998689 + 0.0511899i 0.0163014π0.0163014\pi
−0.998689 + 0.0511899i 0.983699π0.983699\pi
558558 − 27.0847i − 1.14659i
559559 −41.2700 −1.74553
560560 0 0
561561 3.48284 0.147046
562562 53.5953i 2.26078i
563563 − 4.74857i − 0.200129i −0.994981 0.100064i 0.968095π-0.968095\pi
0.994981 0.100064i 0.0319048π-0.0319048\pi
564564 20.7464 0.873580
565565 0 0
566566 10.7853 0.453340
567567 − 5.74672i − 0.241340i
568568 39.7753i 1.66893i
569569 −46.0041 −1.92859 −0.964296 0.264827i 0.914685π-0.914685\pi
−0.964296 + 0.264827i 0.914685π0.914685\pi
570570 0 0
571571 9.95720 0.416696 0.208348 0.978055i 0.433191π-0.433191\pi
0.208348 + 0.978055i 0.433191π0.433191\pi
572572 56.3918i 2.35786i
573573 6.14704i 0.256796i
574574 42.4563 1.77209
575575 0 0
576576 −10.4282 −0.434509
577577 18.8669i 0.785439i 0.919658 + 0.392720i 0.128466π0.128466\pi
−0.919658 + 0.392720i 0.871534π0.871534\pi
578578 2.60242i 0.108247i
579579 17.0159 0.707158
580580 0 0
581581 32.0867 1.33118
582582 18.0538i 0.748353i
583583 19.9527i 0.826357i
584584 14.4682 0.598696
585585 0 0
586586 20.4298 0.843949
587587 − 23.8851i − 0.985843i −0.870074 0.492921i 0.835929π-0.835929\pi
0.870074 0.492921i 0.164071π-0.164071\pi
588588 31.0705i 1.28132i
589589 45.3175 1.86728
590590 0 0
591591 19.0144 0.782147
592592 31.6883i 1.30238i
593593 37.9019i 1.55644i 0.627989 + 0.778222i 0.283878π0.283878\pi
−0.627989 + 0.778222i 0.716122π0.716122\pi
594594 41.7156 1.71161
595595 0 0
596596 66.3674 2.71852
597597 − 21.4863i − 0.879375i
598598 − 63.9490i − 2.61507i
599599 −17.8049 −0.727488 −0.363744 0.931499i 0.618502π-0.618502\pi
−0.363744 + 0.931499i 0.618502π0.618502\pi
600600 0 0
601601 33.6532 1.37274 0.686372 0.727251i 0.259202π-0.259202\pi
0.686372 + 0.727251i 0.259202π0.259202\pi
602602 − 94.7049i − 3.85988i
603603 − 15.3296i − 0.624269i
604604 −68.6702 −2.79415
605605 0 0
606606 −24.3135 −0.987670
607607 5.89699i 0.239351i 0.992813 + 0.119676i 0.0381855π0.0381855\pi
−0.992813 + 0.119676i 0.961815π0.961815\pi
608608 − 66.9557i − 2.71541i
609609 22.1601 0.897971
610610 0 0
611611 14.7473 0.596613
612612 7.64773i 0.309141i
613613 − 7.04143i − 0.284401i −0.989838 0.142200i 0.954582π-0.954582\pi
0.989838 0.142200i 0.0454177π-0.0454177\pi
614614 1.23185 0.0497135
615615 0 0
616616 −75.1772 −3.02898
617617 6.04823i 0.243492i 0.992561 + 0.121746i 0.0388494π0.0388494\pi
−0.992561 + 0.121746i 0.961151π0.961151\pi
618618 19.5924i 0.788120i
619619 34.0992 1.37056 0.685282 0.728278i 0.259679π-0.259679\pi
0.685282 + 0.728278i 0.259679π0.259679\pi
620620 0 0
621621 −33.3362 −1.33774
622622 − 47.6404i − 1.91020i
623623 − 9.31235i − 0.373092i
624624 43.7747 1.75239
625625 0 0
626626 9.99833 0.399614
627627 24.3014i 0.970504i
628628 41.4552i 1.65424i
629629 3.43224 0.136852
630630 0 0
631631 18.9841 0.755743 0.377872 0.925858i 0.376656π-0.376656\pi
0.377872 + 0.925858i 0.376656π0.376656\pi
632632 − 76.3424i − 3.03674i
633633 − 9.93767i − 0.394987i
634634 11.7699 0.467441
635635 0 0
636636 38.2119 1.51520
637637 22.0861i 0.875082i
638638 40.6381i 1.60888i
639639 8.83333 0.349441
640640 0 0
641641 −16.3869 −0.647245 −0.323623 0.946186i 0.604901π-0.604901\pi
−0.323623 + 0.946186i 0.604901π0.604901\pi
642642 21.0877i 0.832267i
643643 30.8332i 1.21594i 0.793958 + 0.607972i 0.208017π0.208017\pi
−0.793958 + 0.607972i 0.791983π0.791983\pi
644644 103.412 4.07501
645645 0 0
646646 −18.1583 −0.714428
647647 15.8642i 0.623684i 0.950134 + 0.311842i 0.100946π0.100946\pi
−0.950134 + 0.311842i 0.899054π0.899054\pi
648648 − 11.7250i − 0.460600i
649649 −29.2421 −1.14785
650650 0 0
651651 −27.1539 −1.06424
652652 42.7562i 1.67446i
653653 − 7.51669i − 0.294151i −0.989125 0.147075i 0.953014π-0.953014\pi
0.989125 0.147075i 0.0469860π-0.0469860\pi
654654 45.1510 1.76554
655655 0 0
656656 42.5904 1.66287
657657 − 3.21310i − 0.125355i
658658 33.8416i 1.31928i
659659 3.89783 0.151838 0.0759190 0.997114i 0.475811π-0.475811\pi
0.0759190 + 0.997114i 0.475811π0.475811\pi
660660 0 0
661661 −16.6761 −0.648625 −0.324313 0.945950i 0.605133π-0.605133\pi
−0.324313 + 0.945950i 0.605133π0.605133\pi
662662 − 45.3724i − 1.76345i
663663 − 4.74135i − 0.184139i
664664 65.4662 2.54058
665665 0 0
666666 14.3131 0.554620
667667 − 32.4751i − 1.25744i
668668 20.8715i 0.807541i
669669 −3.43534 −0.132818
670670 0 0
671671 −6.96569 −0.268907
672672 40.1193i 1.54763i
673673 − 39.2465i − 1.51284i −0.654086 0.756420i 0.726946π-0.726946\pi
0.654086 0.756420i 0.273054π-0.273054\pi
674674 2.45644 0.0946184
675675 0 0
676676 14.7248 0.566337
677677 15.3340i 0.589332i 0.955600 + 0.294666i 0.0952083π0.0952083\pi
−0.955600 + 0.294666i 0.904792π0.904792\pi
678678 − 41.2241i − 1.58320i
679679 −20.7528 −0.796419
680680 0 0
681681 18.6936 0.716341
682682 − 49.7959i − 1.90678i
683683 15.0386i 0.575435i 0.957715 + 0.287717i 0.0928964π0.0928964\pi
−0.957715 + 0.287717i 0.907104π0.907104\pi
684684 −53.3617 −2.04033
685685 0 0
686686 13.7420 0.524674
687687 27.3444i 1.04325i
688688 − 95.0040i − 3.62199i
689689 27.1625 1.03481
690690 0 0
691691 0.735679 0.0279866 0.0139933 0.999902i 0.495546π-0.495546\pi
0.0139933 + 0.999902i 0.495546π0.495546\pi
692692 − 42.1150i − 1.60097i
693693 16.6954i 0.634207i
694694 −49.9947 −1.89777
695695 0 0
696696 45.2129 1.71379
697697 − 4.61307i − 0.174732i
698698 − 82.7131i − 3.13074i
699699 −17.1732 −0.649548
700700 0 0
701701 −16.8115 −0.634962 −0.317481 0.948265i 0.602837π-0.602837\pi
−0.317481 + 0.948265i 0.602837π0.602837\pi
702702 − 56.7893i − 2.14337i
703703 23.9483i 0.903227i
704704 −19.1725 −0.722592
705705 0 0
706706 −40.2104 −1.51334
707707 − 27.9484i − 1.05111i
708708 56.0023i 2.10470i
709709 −15.0110 −0.563750 −0.281875 0.959451i 0.590956π-0.590956\pi
−0.281875 + 0.959451i 0.590956π0.590956\pi
710710 0 0
711711 −16.9542 −0.635832
712712 − 18.9999i − 0.712051i
713713 39.7934i 1.49028i
714714 10.8803 0.407184
715715 0 0
716716 45.0033 1.68185
717717 − 4.21951i − 0.157581i
718718 − 72.7740i − 2.71590i
719719 −37.4098 −1.39515 −0.697575 0.716512i 0.745738π-0.745738\pi
−0.697575 + 0.716512i 0.745738π0.745738\pi
720720 0 0
721721 −22.5214 −0.838740
722722 − 77.2524i − 2.87504i
723723 − 21.0419i − 0.782556i
724724 56.2876 2.09191
725725 0 0
726726 −7.13930 −0.264964
727727 − 6.76798i − 0.251011i −0.992093 0.125505i 0.959945π-0.959945\pi
0.992093 0.125505i 0.0400552π-0.0400552\pi
728728 102.342i 3.79305i
729729 −21.9006 −0.811134
730730 0 0
731731 −10.2901 −0.380594
732732 13.3402i 0.493067i
733733 18.3230i 0.676774i 0.941007 + 0.338387i 0.109881π0.109881\pi
−0.941007 + 0.338387i 0.890119π0.890119\pi
734734 −59.1334 −2.18266
735735 0 0
736736 58.7940 2.16717
737737 − 28.1838i − 1.03816i
738738 − 19.2373i − 0.708136i
739739 0.240801 0.00885802 0.00442901 0.999990i 0.498590π-0.498590\pi
0.00442901 + 0.999990i 0.498590π0.498590\pi
740740 0 0
741741 33.0825 1.21532
742742 62.3315i 2.28826i
743743 38.0128i 1.39455i 0.716801 + 0.697277i 0.245605π0.245605\pi
−0.716801 + 0.697277i 0.754395π0.754395\pi
744744 −55.4017 −2.03113
745745 0 0
746746 −92.4459 −3.38468
747747 − 14.5388i − 0.531947i
748748 14.0605i 0.514104i
749749 −24.2403 −0.885722
750750 0 0
751751 51.5263 1.88022 0.940111 0.340868i 0.110721π-0.110721\pi
0.940111 + 0.340868i 0.110721π0.110721\pi
752752 33.9485i 1.23797i
753753 8.81301i 0.321164i
754754 55.3224 2.01472
755755 0 0
756756 91.8341 3.33997
757757 − 0.984558i − 0.0357844i −0.999840 0.0178922i 0.994304π-0.994304\pi
0.999840 0.0178922i 0.00569556π-0.00569556\pi
758758 − 79.3029i − 2.88041i
759759 −21.3391 −0.774560
760760 0 0
761761 −25.8638 −0.937563 −0.468781 0.883314i 0.655307π-0.655307\pi
−0.468781 + 0.883314i 0.655307π0.655307\pi
762762 14.2544i 0.516381i
763763 51.9010i 1.87894i
764764 −24.8161 −0.897814
765765 0 0
766766 −67.5762 −2.44163
767767 39.8086i 1.43740i
768768 − 22.3277i − 0.805680i
769769 −47.2099 −1.70243 −0.851216 0.524816i 0.824134π-0.824134\pi
−0.851216 + 0.524816i 0.824134π0.824134\pi
770770 0 0
771771 −31.2974 −1.12715
772772 68.6947i 2.47238i
773773 1.18874i 0.0427560i 0.999771 + 0.0213780i 0.00680535π0.00680535\pi
−0.999771 + 0.0213780i 0.993195π0.993195\pi
774774 −42.9116 −1.54243
775775 0 0
776776 −42.3417 −1.51998
777777 − 14.3496i − 0.514789i
778778 16.5964i 0.595010i
779779 32.1874 1.15323
780780 0 0
781781 16.2403 0.581123
782782 − 15.9448i − 0.570186i
783783 − 28.8392i − 1.03063i
784784 −50.8424 −1.81580
785785 0 0
786786 −37.3789 −1.33326
787787 38.6087i 1.37625i 0.725592 + 0.688125i 0.241566π0.241566\pi
−0.725592 + 0.688125i 0.758434π0.758434\pi
788788 76.7626i 2.73455i
789789 14.7743 0.525978
790790 0 0
791791 47.3870 1.68489
792792 34.0635i 1.21039i
793793 9.48270i 0.336741i
794794 34.3193 1.21795
795795 0 0
796796 86.7419 3.07448
797797 7.77134i 0.275275i 0.990483 + 0.137638i 0.0439509π0.0439509\pi
−0.990483 + 0.137638i 0.956049π0.956049\pi
798798 75.9166i 2.68742i
799799 3.67705 0.130085
800800 0 0
801801 −4.21951 −0.149089
802802 73.4954i 2.59521i
803803 − 5.90736i − 0.208466i
804804 −53.9755 −1.90357
805805 0 0
806806 −67.7893 −2.38778
807807 − 3.35474i − 0.118093i
808808 − 57.0228i − 2.00605i
809809 52.6740 1.85192 0.925960 0.377621i 0.123258π-0.123258\pi
0.925960 + 0.377621i 0.123258π0.123258\pi
810810 0 0
811811 −38.0502 −1.33612 −0.668062 0.744105i 0.732876π-0.732876\pi
−0.668062 + 0.744105i 0.732876π0.732876\pi
812812 89.4620i 3.13950i
813813 − 8.98471i − 0.315108i
814814 26.3149 0.922337
815815 0 0
816816 10.9146 0.382089
817817 − 71.7988i − 2.51192i
818818 − 54.7483i − 1.91423i
819819 22.7282 0.794188
820820 0 0
821821 22.8093 0.796051 0.398026 0.917374i 0.369695π-0.369695\pi
0.398026 + 0.917374i 0.369695π0.369695\pi
822822 − 27.2845i − 0.951658i
823823 − 26.6089i − 0.927530i −0.885958 0.463765i 0.846498π-0.846498\pi
0.885958 0.463765i 0.153502π-0.153502\pi
824824 −45.9501 −1.60075
825825 0 0
826826 −91.3513 −3.17852
827827 − 0.707585i − 0.0246052i −0.999924 0.0123026i 0.996084π-0.996084\pi
0.999924 0.0123026i 0.00391613π-0.00391613\pi
828828 − 46.8570i − 1.62839i
829829 −39.7559 −1.38078 −0.690390 0.723437i 0.742561π-0.742561\pi
−0.690390 + 0.723437i 0.742561π0.742561\pi
830830 0 0
831831 35.9608 1.24746
832832 26.1004i 0.904869i
833833 5.50686i 0.190802i
834834 −22.5298 −0.780145
835835 0 0
836836 −98.1067 −3.39309
837837 35.3382i 1.22147i
838838 − 73.2535i − 2.53050i
839839 −15.4254 −0.532542 −0.266271 0.963898i 0.585792π-0.585792\pi
−0.266271 + 0.963898i 0.585792π0.585792\pi
840840 0 0
841841 −0.905714 −0.0312315
842842 43.3664i 1.49451i
843843 − 24.3465i − 0.838539i
844844 40.1192 1.38096
845845 0 0
846846 15.3340 0.527192
847847 − 8.20662i − 0.281983i
848848 62.5284i 2.14723i
849849 −4.89939 −0.168147
850850 0 0
851851 −21.0291 −0.720867
852852 − 31.1022i − 1.06554i
853853 50.0605i 1.71404i 0.515284 + 0.857020i 0.327686π0.327686\pi
−0.515284 + 0.857020i 0.672314π0.672314\pi
854854 −21.7606 −0.744631
855855 0 0
856856 −49.4573 −1.69041
857857 − 46.0441i − 1.57284i −0.617695 0.786418i 0.711933π-0.711933\pi
0.617695 0.786418i 0.288067π-0.288067\pi
858858 − 36.3518i − 1.24103i
859859 37.1872 1.26881 0.634406 0.773000i 0.281245π-0.281245\pi
0.634406 + 0.773000i 0.281245π0.281245\pi
860860 0 0
861861 −19.2864 −0.657280
862862 29.1038i 0.991279i
863863 − 48.2016i − 1.64080i −0.571788 0.820401i 0.693750π-0.693750\pi
0.571788 0.820401i 0.306250π-0.306250\pi
864864 52.2114 1.77627
865865 0 0
866866 28.7413 0.976668
867867 − 1.18219i − 0.0401493i
868868 − 109.622i − 3.72083i
869869 −31.1707 −1.05739
870870 0 0
871871 −38.3678 −1.30004
872872 105.893i 3.58599i
873873 9.40328i 0.318253i
874874 111.254 3.76323
875875 0 0
876876 −11.3133 −0.382242
877877 7.97840i 0.269411i 0.990886 + 0.134706i 0.0430089π0.0430089\pi
−0.990886 + 0.134706i 0.956991π0.956991\pi
878878 − 13.9139i − 0.469573i
879879 −9.28057 −0.313026
880880 0 0
881881 48.5755 1.63655 0.818276 0.574826i 0.194930π-0.194930\pi
0.818276 + 0.574826i 0.194930π0.194930\pi
882882 22.9646i 0.773259i
883883 − 42.6792i − 1.43627i −0.695905 0.718134i 0.744996π-0.744996\pi
0.695905 0.718134i 0.255004π-0.255004\pi
884884 19.1412 0.643789
885885 0 0
886886 43.1646 1.45014
887887 − 53.1721i − 1.78535i −0.450706 0.892673i 0.648828π-0.648828\pi
0.450706 0.892673i 0.351172π-0.351172\pi
888888 − 29.2773i − 0.982483i
889889 −16.3854 −0.549547
890890 0 0
891891 −4.78732 −0.160381
892892 − 13.8688i − 0.464361i
893893 25.6564i 0.858559i
894894 −42.7824 −1.43086
895895 0 0
896896 7.97841 0.266540
897897 29.0499i 0.969947i
898898 91.8398i 3.06473i
899899 −34.4254 −1.14815
900900 0 0
901901 6.77260 0.225628
902902 − 35.3683i − 1.17763i
903903 43.0212i 1.43166i
904904 96.6832 3.21564
905905 0 0
906906 44.2668 1.47067
907907 42.0949i 1.39774i 0.715250 + 0.698868i 0.246313π0.246313\pi
−0.715250 + 0.698868i 0.753687π0.753687\pi
908908 75.4676i 2.50448i
909909 −12.6637 −0.420027
910910 0 0
911911 −32.3227 −1.07090 −0.535450 0.844567i 0.679858π-0.679858\pi
−0.535450 + 0.844567i 0.679858π0.679858\pi
912912 76.1564i 2.52179i
913913 − 26.7299i − 0.884631i
914914 −25.3422 −0.838247
915915 0 0
916916 −110.391 −3.64744
917917 − 42.9670i − 1.41890i
918918 − 14.1596i − 0.467338i
919919 −20.8713 −0.688480 −0.344240 0.938882i 0.611863π-0.611863\pi
−0.344240 + 0.938882i 0.611863π0.611863\pi
920920 0 0
921921 −0.559588 −0.0184391
922922 42.7050i 1.40641i
923923 − 22.1086i − 0.727714i
924924 58.7846 1.93387
925925 0 0
926926 44.1683 1.45146
927927 10.2046i 0.335165i
928928 50.8627i 1.66965i
929929 −41.3293 −1.35597 −0.677985 0.735076i 0.737146π-0.737146\pi
−0.677985 + 0.735076i 0.737146π0.737146\pi
930930 0 0
931931 −38.4239 −1.25929
932932 − 69.3294i − 2.27096i
933933 21.6414i 0.708507i
934934 60.6061 1.98309
935935 0 0
936936 46.3721 1.51572
937937 − 24.3395i − 0.795138i −0.917572 0.397569i 0.869854π-0.869854\pi
0.917572 0.397569i 0.130146π-0.130146\pi
938938 − 88.0451i − 2.87477i
939939 −4.54190 −0.148219
940940 0 0
941941 −33.4007 −1.08883 −0.544415 0.838816i 0.683248π-0.683248\pi
−0.544415 + 0.838816i 0.683248π0.683248\pi
942942 − 26.7233i − 0.870691i
943943 28.2639i 0.920399i
944944 −91.6398 −2.98262
945945 0 0
946946 −78.8940 −2.56507
947947 − 14.7087i − 0.477969i −0.971023 0.238985i 0.923185π-0.923185\pi
0.971023 0.238985i 0.0768146π-0.0768146\pi
948948 59.6957i 1.93883i
949949 −8.04195 −0.261053
950950 0 0
951951 −5.34665 −0.173377
952952 25.5176i 0.827031i
953953 20.9652i 0.679128i 0.940583 + 0.339564i 0.110280π0.110280\pi
−0.940583 + 0.339564i 0.889720π0.889720\pi
954954 28.2430 0.914401
955955 0 0
956956 17.0345 0.550936
957957 − 18.4605i − 0.596743i
958958 5.99614i 0.193727i
959959 31.3635 1.01278
960960 0 0
961961 11.1831 0.360746
962962 − 35.8236i − 1.15500i
963963 10.9835i 0.353939i
964964 84.9478 2.73598
965965 0 0
966966 −66.6626 −2.14483
967967 31.1916i 1.00306i 0.865141 + 0.501528i 0.167229π0.167229\pi
−0.865141 + 0.501528i 0.832771π0.832771\pi
968968 − 16.7439i − 0.538168i
969969 8.24868 0.264986
970970 0 0
971971 3.55989 0.114242 0.0571211 0.998367i 0.481808π-0.481808\pi
0.0571211 + 0.998367i 0.481808π0.481808\pi
972972 − 68.7341i − 2.20465i
973973 − 25.8980i − 0.830253i
974974 36.6653 1.17483
975975 0 0
976976 −21.8293 −0.698738
977977 − 51.0404i − 1.63293i −0.577397 0.816463i 0.695932π-0.695932\pi
0.577397 0.816463i 0.304068π-0.304068\pi
978978 − 27.5619i − 0.881333i
979979 −7.75767 −0.247936
980980 0 0
981981 23.5168 0.750834
982982 − 54.7771i − 1.74801i
983983 43.4903i 1.38712i 0.720397 + 0.693562i 0.243960π0.243960\pi
−0.720397 + 0.693562i 0.756040π0.756040\pi
984984 −39.3499 −1.25443
985985 0 0
986986 13.7939 0.439287
987987 − 15.3731i − 0.489331i
988988 133.557i 4.24901i
989989 63.0467 2.00477
990990 0 0
991991 −20.5455 −0.652650 −0.326325 0.945258i 0.605810π-0.605810\pi
−0.326325 + 0.945258i 0.605810π0.605810\pi
992992 − 62.3247i − 1.97881i
993993 20.6111i 0.654074i
994994 50.7340 1.60919
995995 0 0
996996 −51.1911 −1.62205
997997 − 48.6107i − 1.53952i −0.638336 0.769758i 0.720377π-0.720377\pi
0.638336 0.769758i 0.279623π-0.279623\pi
998998 72.0214i 2.27980i
999999 −18.6746 −0.590839
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 425.2.b.f.324.2 10
5.2 odd 4 425.2.a.i.1.5 5
5.3 odd 4 425.2.a.j.1.1 yes 5
5.4 even 2 inner 425.2.b.f.324.9 10
15.2 even 4 3825.2.a.bq.1.1 5
15.8 even 4 3825.2.a.bl.1.5 5
20.3 even 4 6800.2.a.cd.1.3 5
20.7 even 4 6800.2.a.bz.1.3 5
85.33 odd 4 7225.2.a.y.1.1 5
85.67 odd 4 7225.2.a.x.1.5 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
425.2.a.i.1.5 5 5.2 odd 4
425.2.a.j.1.1 yes 5 5.3 odd 4
425.2.b.f.324.2 10 1.1 even 1 trivial
425.2.b.f.324.9 10 5.4 even 2 inner
3825.2.a.bl.1.5 5 15.8 even 4
3825.2.a.bq.1.1 5 15.2 even 4
6800.2.a.bz.1.3 5 20.7 even 4
6800.2.a.cd.1.3 5 20.3 even 4
7225.2.a.x.1.5 5 85.67 odd 4
7225.2.a.y.1.1 5 85.33 odd 4