Properties

Label 425.2.b.f.324.2
Level $425$
Weight $2$
Character 425.324
Analytic conductor $3.394$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [425,2,Mod(324,425)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(425, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("425.324");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 425 = 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 425.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.39364208590\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: 10.0.229451239931904.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - 2x^{7} + 64x^{6} - 30x^{5} + 2x^{4} + 136x^{3} + 324x^{2} + 180x + 50 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 324.2
Root \(-0.328166 + 0.328166i\) of defining polynomial
Character \(\chi\) \(=\) 425.324
Dual form 425.2.b.f.324.9

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.60242i q^{2} +1.18219i q^{3} -4.77260 q^{4} +3.07656 q^{6} +3.53650i q^{7} +7.21549i q^{8} +1.60242 q^{9} +2.94609 q^{11} -5.64213i q^{12} -4.01064i q^{13} +9.20348 q^{14} +9.23255 q^{16} -1.00000i q^{17} -4.17018i q^{18} +6.97745 q^{19} -4.18083 q^{21} -7.66698i q^{22} +6.12692i q^{23} -8.53009 q^{24} -10.4374 q^{26} +5.44095i q^{27} -16.8783i q^{28} -5.30040 q^{29} +6.49485 q^{31} -9.59601i q^{32} +3.48284i q^{33} -2.60242 q^{34} -7.64773 q^{36} +3.43224i q^{37} -18.1583i q^{38} +4.74135 q^{39} +4.61307 q^{41} +10.8803i q^{42} -10.2901i q^{43} -14.0605 q^{44} +15.9448 q^{46} +3.67705i q^{47} +10.9146i q^{48} -5.50686 q^{49} +1.18219 q^{51} +19.1412i q^{52} +6.77260i q^{53} +14.1596 q^{54} -25.5176 q^{56} +8.24868i q^{57} +13.7939i q^{58} -9.92573 q^{59} -2.36438 q^{61} -16.9024i q^{62} +5.66698i q^{63} -6.50778 q^{64} +9.06383 q^{66} -9.56650i q^{67} +4.77260i q^{68} -7.24319 q^{69} +5.51248 q^{71} +11.5623i q^{72} -2.00515i q^{73} +8.93214 q^{74} -33.3006 q^{76} +10.4189i q^{77} -12.3390i q^{78} -10.5803 q^{79} -1.62497 q^{81} -12.0052i q^{82} -9.07301i q^{83} +19.9534 q^{84} -26.7792 q^{86} -6.26609i q^{87} +21.2575i q^{88} -2.63321 q^{89} +14.1837 q^{91} -29.2414i q^{92} +7.67816i q^{93} +9.56923 q^{94} +11.3443 q^{96} +5.86816i q^{97} +14.3312i q^{98} +4.72088 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 22 q^{4} + 6 q^{6} - 12 q^{9} + 8 q^{11} + 14 q^{14} + 54 q^{16} - 12 q^{19} - 10 q^{21} + 38 q^{24} - 10 q^{26} - 4 q^{29} + 42 q^{31} + 2 q^{34} + 44 q^{36} - 46 q^{39} - 16 q^{41} + 8 q^{44} - 12 q^{46}+ \cdots + 28 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/425\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(326\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 2.60242i − 1.84019i −0.391694 0.920095i \(-0.628111\pi\)
0.391694 0.920095i \(-0.371889\pi\)
\(3\) 1.18219i 0.682539i 0.939966 + 0.341269i \(0.110857\pi\)
−0.939966 + 0.341269i \(0.889143\pi\)
\(4\) −4.77260 −2.38630
\(5\) 0 0
\(6\) 3.07656 1.25600
\(7\) 3.53650i 1.33667i 0.743859 + 0.668337i \(0.232993\pi\)
−0.743859 + 0.668337i \(0.767007\pi\)
\(8\) 7.21549i 2.55106i
\(9\) 1.60242 0.534141
\(10\) 0 0
\(11\) 2.94609 0.888280 0.444140 0.895957i \(-0.353509\pi\)
0.444140 + 0.895957i \(0.353509\pi\)
\(12\) − 5.64213i − 1.62874i
\(13\) − 4.01064i − 1.11235i −0.831064 0.556176i \(-0.812268\pi\)
0.831064 0.556176i \(-0.187732\pi\)
\(14\) 9.20348 2.45973
\(15\) 0 0
\(16\) 9.23255 2.30814
\(17\) − 1.00000i − 0.242536i
\(18\) − 4.17018i − 0.982921i
\(19\) 6.97745 1.60074 0.800368 0.599508i \(-0.204637\pi\)
0.800368 + 0.599508i \(0.204637\pi\)
\(20\) 0 0
\(21\) −4.18083 −0.912331
\(22\) − 7.66698i − 1.63460i
\(23\) 6.12692i 1.27755i 0.769393 + 0.638775i \(0.220559\pi\)
−0.769393 + 0.638775i \(0.779441\pi\)
\(24\) −8.53009 −1.74120
\(25\) 0 0
\(26\) −10.4374 −2.04694
\(27\) 5.44095i 1.04711i
\(28\) − 16.8783i − 3.18971i
\(29\) −5.30040 −0.984260 −0.492130 0.870522i \(-0.663782\pi\)
−0.492130 + 0.870522i \(0.663782\pi\)
\(30\) 0 0
\(31\) 6.49485 1.16651 0.583255 0.812289i \(-0.301779\pi\)
0.583255 + 0.812289i \(0.301779\pi\)
\(32\) − 9.59601i − 1.69635i
\(33\) 3.48284i 0.606285i
\(34\) −2.60242 −0.446312
\(35\) 0 0
\(36\) −7.64773 −1.27462
\(37\) 3.43224i 0.564257i 0.959377 + 0.282128i \(0.0910404\pi\)
−0.959377 + 0.282128i \(0.908960\pi\)
\(38\) − 18.1583i − 2.94566i
\(39\) 4.74135 0.759224
\(40\) 0 0
\(41\) 4.61307 0.720440 0.360220 0.932867i \(-0.382702\pi\)
0.360220 + 0.932867i \(0.382702\pi\)
\(42\) 10.8803i 1.67886i
\(43\) − 10.2901i − 1.56923i −0.619985 0.784614i \(-0.712861\pi\)
0.619985 0.784614i \(-0.287139\pi\)
\(44\) −14.0605 −2.11970
\(45\) 0 0
\(46\) 15.9448 2.35094
\(47\) 3.67705i 0.536352i 0.963370 + 0.268176i \(0.0864209\pi\)
−0.963370 + 0.268176i \(0.913579\pi\)
\(48\) 10.9146i 1.57539i
\(49\) −5.50686 −0.786695
\(50\) 0 0
\(51\) 1.18219 0.165540
\(52\) 19.1412i 2.65441i
\(53\) 6.77260i 0.930289i 0.885235 + 0.465144i \(0.153998\pi\)
−0.885235 + 0.465144i \(0.846002\pi\)
\(54\) 14.1596 1.92688
\(55\) 0 0
\(56\) −25.5176 −3.40993
\(57\) 8.24868i 1.09256i
\(58\) 13.7939i 1.81123i
\(59\) −9.92573 −1.29222 −0.646110 0.763244i \(-0.723605\pi\)
−0.646110 + 0.763244i \(0.723605\pi\)
\(60\) 0 0
\(61\) −2.36438 −0.302728 −0.151364 0.988478i \(-0.548367\pi\)
−0.151364 + 0.988478i \(0.548367\pi\)
\(62\) − 16.9024i − 2.14660i
\(63\) 5.66698i 0.713972i
\(64\) −6.50778 −0.813473
\(65\) 0 0
\(66\) 9.06383 1.11568
\(67\) − 9.56650i − 1.16873i −0.811490 0.584367i \(-0.801343\pi\)
0.811490 0.584367i \(-0.198657\pi\)
\(68\) 4.77260i 0.578763i
\(69\) −7.24319 −0.871978
\(70\) 0 0
\(71\) 5.51248 0.654212 0.327106 0.944988i \(-0.393927\pi\)
0.327106 + 0.944988i \(0.393927\pi\)
\(72\) 11.5623i 1.36263i
\(73\) − 2.00515i − 0.234685i −0.993091 0.117343i \(-0.962562\pi\)
0.993091 0.117343i \(-0.0374376\pi\)
\(74\) 8.93214 1.03834
\(75\) 0 0
\(76\) −33.3006 −3.81984
\(77\) 10.4189i 1.18734i
\(78\) − 12.3390i − 1.39712i
\(79\) −10.5803 −1.19038 −0.595191 0.803584i \(-0.702924\pi\)
−0.595191 + 0.803584i \(0.702924\pi\)
\(80\) 0 0
\(81\) −1.62497 −0.180552
\(82\) − 12.0052i − 1.32575i
\(83\) − 9.07301i − 0.995892i −0.867208 0.497946i \(-0.834088\pi\)
0.867208 0.497946i \(-0.165912\pi\)
\(84\) 19.9534 2.17710
\(85\) 0 0
\(86\) −26.7792 −2.88768
\(87\) − 6.26609i − 0.671796i
\(88\) 21.2575i 2.26606i
\(89\) −2.63321 −0.279119 −0.139560 0.990214i \(-0.544569\pi\)
−0.139560 + 0.990214i \(0.544569\pi\)
\(90\) 0 0
\(91\) 14.1837 1.48685
\(92\) − 29.2414i − 3.04862i
\(93\) 7.67816i 0.796188i
\(94\) 9.56923 0.986991
\(95\) 0 0
\(96\) 11.3443 1.15783
\(97\) 5.86816i 0.595822i 0.954594 + 0.297911i \(0.0962898\pi\)
−0.954594 + 0.297911i \(0.903710\pi\)
\(98\) 14.3312i 1.44767i
\(99\) 4.72088 0.474467
\(100\) 0 0
\(101\) −7.90283 −0.786361 −0.393180 0.919461i \(-0.628625\pi\)
−0.393180 + 0.919461i \(0.628625\pi\)
\(102\) − 3.07656i − 0.304625i
\(103\) 6.36826i 0.627483i 0.949508 + 0.313742i \(0.101583\pi\)
−0.949508 + 0.313742i \(0.898417\pi\)
\(104\) 28.9388 2.83768
\(105\) 0 0
\(106\) 17.6252 1.71191
\(107\) 6.85432i 0.662632i 0.943520 + 0.331316i \(0.107493\pi\)
−0.943520 + 0.331316i \(0.892507\pi\)
\(108\) − 25.9675i − 2.49872i
\(109\) 14.6758 1.40569 0.702843 0.711345i \(-0.251914\pi\)
0.702843 + 0.711345i \(0.251914\pi\)
\(110\) 0 0
\(111\) −4.05757 −0.385127
\(112\) 32.6509i 3.08522i
\(113\) − 13.3994i − 1.26051i −0.776388 0.630255i \(-0.782950\pi\)
0.776388 0.630255i \(-0.217050\pi\)
\(114\) 21.4666 2.01053
\(115\) 0 0
\(116\) 25.2967 2.34874
\(117\) − 6.42675i − 0.594153i
\(118\) 25.8309i 2.37793i
\(119\) 3.53650 0.324191
\(120\) 0 0
\(121\) −2.32055 −0.210959
\(122\) 6.15313i 0.557078i
\(123\) 5.45353i 0.491728i
\(124\) −30.9974 −2.78365
\(125\) 0 0
\(126\) 14.7479 1.31384
\(127\) 4.63321i 0.411131i 0.978643 + 0.205565i \(0.0659033\pi\)
−0.978643 + 0.205565i \(0.934097\pi\)
\(128\) − 2.25602i − 0.199405i
\(129\) 12.1649 1.07106
\(130\) 0 0
\(131\) −12.1496 −1.06151 −0.530757 0.847524i \(-0.678092\pi\)
−0.530757 + 0.847524i \(0.678092\pi\)
\(132\) − 16.6222i − 1.44678i
\(133\) 24.6758i 2.13966i
\(134\) −24.8961 −2.15069
\(135\) 0 0
\(136\) 7.21549 0.618723
\(137\) − 8.86852i − 0.757689i −0.925460 0.378844i \(-0.876322\pi\)
0.925460 0.378844i \(-0.123678\pi\)
\(138\) 18.8498i 1.60461i
\(139\) −7.32306 −0.621134 −0.310567 0.950552i \(-0.600519\pi\)
−0.310567 + 0.950552i \(0.600519\pi\)
\(140\) 0 0
\(141\) −4.34697 −0.366081
\(142\) − 14.3458i − 1.20387i
\(143\) − 11.8157i − 0.988081i
\(144\) 14.7944 1.23287
\(145\) 0 0
\(146\) −5.21825 −0.431866
\(147\) − 6.51017i − 0.536950i
\(148\) − 16.3807i − 1.34649i
\(149\) −13.9059 −1.13922 −0.569608 0.821916i \(-0.692905\pi\)
−0.569608 + 0.821916i \(0.692905\pi\)
\(150\) 0 0
\(151\) 14.3884 1.17091 0.585456 0.810704i \(-0.300916\pi\)
0.585456 + 0.810704i \(0.300916\pi\)
\(152\) 50.3457i 4.08358i
\(153\) − 1.60242i − 0.129548i
\(154\) 27.1143 2.18493
\(155\) 0 0
\(156\) −22.6286 −1.81174
\(157\) − 8.68608i − 0.693224i −0.938009 0.346612i \(-0.887332\pi\)
0.938009 0.346612i \(-0.112668\pi\)
\(158\) 27.5345i 2.19053i
\(159\) −8.00652 −0.634958
\(160\) 0 0
\(161\) −21.6679 −1.70767
\(162\) 4.22887i 0.332251i
\(163\) − 8.95868i − 0.701698i −0.936432 0.350849i \(-0.885893\pi\)
0.936432 0.350849i \(-0.114107\pi\)
\(164\) −22.0163 −1.71919
\(165\) 0 0
\(166\) −23.6118 −1.83263
\(167\) − 4.37318i − 0.338407i −0.985581 0.169203i \(-0.945881\pi\)
0.985581 0.169203i \(-0.0541195\pi\)
\(168\) − 30.1667i − 2.32741i
\(169\) −3.08527 −0.237328
\(170\) 0 0
\(171\) 11.1808 0.855019
\(172\) 49.1106i 3.74465i
\(173\) 8.82433i 0.670901i 0.942058 + 0.335451i \(0.108889\pi\)
−0.942058 + 0.335451i \(0.891111\pi\)
\(174\) −16.3070 −1.23623
\(175\) 0 0
\(176\) 27.1999 2.05027
\(177\) − 11.7341i − 0.881990i
\(178\) 6.85272i 0.513633i
\(179\) −9.42951 −0.704795 −0.352397 0.935850i \(-0.614633\pi\)
−0.352397 + 0.935850i \(0.614633\pi\)
\(180\) 0 0
\(181\) −11.7939 −0.876633 −0.438317 0.898821i \(-0.644425\pi\)
−0.438317 + 0.898821i \(0.644425\pi\)
\(182\) − 36.9119i − 2.73609i
\(183\) − 2.79515i − 0.206624i
\(184\) −44.2087 −3.25911
\(185\) 0 0
\(186\) 19.9818 1.46514
\(187\) − 2.94609i − 0.215440i
\(188\) − 17.5491i − 1.27990i
\(189\) −19.2419 −1.39964
\(190\) 0 0
\(191\) 5.19969 0.376237 0.188118 0.982146i \(-0.439761\pi\)
0.188118 + 0.982146i \(0.439761\pi\)
\(192\) − 7.69345i − 0.555227i
\(193\) − 14.3936i − 1.03607i −0.855359 0.518035i \(-0.826664\pi\)
0.855359 0.518035i \(-0.173336\pi\)
\(194\) 15.2714 1.09643
\(195\) 0 0
\(196\) 26.2821 1.87729
\(197\) − 16.0840i − 1.14594i −0.819577 0.572969i \(-0.805792\pi\)
0.819577 0.572969i \(-0.194208\pi\)
\(198\) − 12.2857i − 0.873109i
\(199\) −18.1750 −1.28839 −0.644194 0.764862i \(-0.722807\pi\)
−0.644194 + 0.764862i \(0.722807\pi\)
\(200\) 0 0
\(201\) 11.3094 0.797706
\(202\) 20.5665i 1.44705i
\(203\) − 18.7449i − 1.31563i
\(204\) −5.64213 −0.395028
\(205\) 0 0
\(206\) 16.5729 1.15469
\(207\) 9.81791i 0.682392i
\(208\) − 37.0285i − 2.56746i
\(209\) 20.5562 1.42190
\(210\) 0 0
\(211\) −8.40614 −0.578702 −0.289351 0.957223i \(-0.593440\pi\)
−0.289351 + 0.957223i \(0.593440\pi\)
\(212\) − 32.3230i − 2.21995i
\(213\) 6.51681i 0.446525i
\(214\) 17.8378 1.21937
\(215\) 0 0
\(216\) −39.2591 −2.67124
\(217\) 22.9691i 1.55924i
\(218\) − 38.1926i − 2.58673i
\(219\) 2.37047 0.160182
\(220\) 0 0
\(221\) −4.01064 −0.269785
\(222\) 10.5595i 0.708708i
\(223\) 2.90591i 0.194594i 0.995255 + 0.0972971i \(0.0310197\pi\)
−0.995255 + 0.0972971i \(0.968980\pi\)
\(224\) 33.9363 2.26747
\(225\) 0 0
\(226\) −34.8709 −2.31958
\(227\) − 15.8127i − 1.04952i −0.851249 0.524762i \(-0.824154\pi\)
0.851249 0.524762i \(-0.175846\pi\)
\(228\) − 39.3677i − 2.60719i
\(229\) 23.1302 1.52849 0.764244 0.644927i \(-0.223112\pi\)
0.764244 + 0.644927i \(0.223112\pi\)
\(230\) 0 0
\(231\) −12.3171 −0.810405
\(232\) − 38.2450i − 2.51091i
\(233\) 14.5265i 0.951665i 0.879536 + 0.475833i \(0.157853\pi\)
−0.879536 + 0.475833i \(0.842147\pi\)
\(234\) −16.7251 −1.09336
\(235\) 0 0
\(236\) 47.3716 3.08363
\(237\) − 12.5080i − 0.812481i
\(238\) − 9.20348i − 0.596573i
\(239\) −3.56923 −0.230874 −0.115437 0.993315i \(-0.536827\pi\)
−0.115437 + 0.993315i \(0.536827\pi\)
\(240\) 0 0
\(241\) −17.7990 −1.14654 −0.573269 0.819367i \(-0.694325\pi\)
−0.573269 + 0.819367i \(0.694325\pi\)
\(242\) 6.03904i 0.388204i
\(243\) 14.4018i 0.923876i
\(244\) 11.2843 0.722401
\(245\) 0 0
\(246\) 14.1924 0.904874
\(247\) − 27.9841i − 1.78058i
\(248\) 46.8636i 2.97584i
\(249\) 10.7260 0.679735
\(250\) 0 0
\(251\) 7.45480 0.470543 0.235271 0.971930i \(-0.424402\pi\)
0.235271 + 0.971930i \(0.424402\pi\)
\(252\) − 27.0462i − 1.70375i
\(253\) 18.0505i 1.13482i
\(254\) 12.0576 0.756559
\(255\) 0 0
\(256\) −18.8867 −1.18042
\(257\) 26.4740i 1.65140i 0.564106 + 0.825702i \(0.309221\pi\)
−0.564106 + 0.825702i \(0.690779\pi\)
\(258\) − 31.6582i − 1.97095i
\(259\) −12.1381 −0.754227
\(260\) 0 0
\(261\) −8.49349 −0.525734
\(262\) 31.6183i 1.95339i
\(263\) − 12.4974i − 0.770621i −0.922787 0.385310i \(-0.874094\pi\)
0.922787 0.385310i \(-0.125906\pi\)
\(264\) −25.1304 −1.54667
\(265\) 0 0
\(266\) 64.2168 3.93739
\(267\) − 3.11296i − 0.190510i
\(268\) 45.6571i 2.78895i
\(269\) −2.83773 −0.173020 −0.0865098 0.996251i \(-0.527571\pi\)
−0.0865098 + 0.996251i \(0.527571\pi\)
\(270\) 0 0
\(271\) −7.60005 −0.461670 −0.230835 0.972993i \(-0.574146\pi\)
−0.230835 + 0.972993i \(0.574146\pi\)
\(272\) − 9.23255i − 0.559805i
\(273\) 16.7678i 1.01483i
\(274\) −23.0796 −1.39429
\(275\) 0 0
\(276\) 34.5689 2.08080
\(277\) − 30.4187i − 1.82768i −0.406070 0.913842i \(-0.633101\pi\)
0.406070 0.913842i \(-0.366899\pi\)
\(278\) 19.0577i 1.14300i
\(279\) 10.4075 0.623081
\(280\) 0 0
\(281\) −20.5944 −1.22856 −0.614279 0.789089i \(-0.710553\pi\)
−0.614279 + 0.789089i \(0.710553\pi\)
\(282\) 11.3127i 0.673659i
\(283\) 4.14433i 0.246355i 0.992385 + 0.123177i \(0.0393084\pi\)
−0.992385 + 0.123177i \(0.960692\pi\)
\(284\) −26.3089 −1.56115
\(285\) 0 0
\(286\) −30.7495 −1.81826
\(287\) 16.3141i 0.962993i
\(288\) − 15.3769i − 0.906091i
\(289\) −1.00000 −0.0588235
\(290\) 0 0
\(291\) −6.93729 −0.406671
\(292\) 9.56980i 0.560030i
\(293\) 7.85031i 0.458620i 0.973353 + 0.229310i \(0.0736470\pi\)
−0.973353 + 0.229310i \(0.926353\pi\)
\(294\) −16.9422 −0.988090
\(295\) 0 0
\(296\) −24.7653 −1.43945
\(297\) 16.0295i 0.930127i
\(298\) 36.1891i 2.09638i
\(299\) 24.5729 1.42109
\(300\) 0 0
\(301\) 36.3910 2.09754
\(302\) − 37.4447i − 2.15470i
\(303\) − 9.34266i − 0.536722i
\(304\) 64.4196 3.69472
\(305\) 0 0
\(306\) −4.17018 −0.238393
\(307\) 0.473348i 0.0270154i 0.999909 + 0.0135077i \(0.00429977\pi\)
−0.999909 + 0.0135077i \(0.995700\pi\)
\(308\) − 49.7251i − 2.83335i
\(309\) −7.52851 −0.428282
\(310\) 0 0
\(311\) 18.3062 1.03805 0.519023 0.854760i \(-0.326296\pi\)
0.519023 + 0.854760i \(0.326296\pi\)
\(312\) 34.2112i 1.93683i
\(313\) 3.84193i 0.217159i 0.994088 + 0.108579i \(0.0346302\pi\)
−0.994088 + 0.108579i \(0.965370\pi\)
\(314\) −22.6048 −1.27567
\(315\) 0 0
\(316\) 50.4958 2.84061
\(317\) 4.52266i 0.254018i 0.991902 + 0.127009i \(0.0405377\pi\)
−0.991902 + 0.127009i \(0.959462\pi\)
\(318\) 20.8363i 1.16844i
\(319\) −15.6155 −0.874299
\(320\) 0 0
\(321\) −8.10312 −0.452272
\(322\) 56.3890i 3.14243i
\(323\) − 6.97745i − 0.388236i
\(324\) 7.75535 0.430853
\(325\) 0 0
\(326\) −23.3143 −1.29126
\(327\) 17.3496i 0.959435i
\(328\) 33.2855i 1.83789i
\(329\) −13.0039 −0.716928
\(330\) 0 0
\(331\) 17.4347 0.958296 0.479148 0.877734i \(-0.340946\pi\)
0.479148 + 0.877734i \(0.340946\pi\)
\(332\) 43.3019i 2.37650i
\(333\) 5.49990i 0.301393i
\(334\) −11.3809 −0.622733
\(335\) 0 0
\(336\) −38.5997 −2.10578
\(337\) 0.943903i 0.0514177i 0.999669 + 0.0257088i \(0.00818428\pi\)
−0.999669 + 0.0257088i \(0.991816\pi\)
\(338\) 8.02917i 0.436729i
\(339\) 15.8407 0.860347
\(340\) 0 0
\(341\) 19.1344 1.03619
\(342\) − 29.0972i − 1.57340i
\(343\) 5.28048i 0.285119i
\(344\) 74.2482 4.00320
\(345\) 0 0
\(346\) 22.9646 1.23459
\(347\) − 19.2108i − 1.03129i −0.856802 0.515645i \(-0.827552\pi\)
0.856802 0.515645i \(-0.172448\pi\)
\(348\) 29.9056i 1.60311i
\(349\) 31.7831 1.70131 0.850655 0.525724i \(-0.176205\pi\)
0.850655 + 0.525724i \(0.176205\pi\)
\(350\) 0 0
\(351\) 21.8217 1.16476
\(352\) − 28.2707i − 1.50683i
\(353\) − 15.4511i − 0.822380i −0.911550 0.411190i \(-0.865113\pi\)
0.911550 0.411190i \(-0.134887\pi\)
\(354\) −30.5371 −1.62303
\(355\) 0 0
\(356\) 12.5673 0.666064
\(357\) 4.18083i 0.221273i
\(358\) 24.5396i 1.29696i
\(359\) 27.9639 1.47588 0.737940 0.674866i \(-0.235799\pi\)
0.737940 + 0.674866i \(0.235799\pi\)
\(360\) 0 0
\(361\) 29.6848 1.56236
\(362\) 30.6927i 1.61317i
\(363\) − 2.74333i − 0.143987i
\(364\) −67.6930 −3.54808
\(365\) 0 0
\(366\) −7.27417 −0.380227
\(367\) − 22.7225i − 1.18610i −0.805165 0.593051i \(-0.797923\pi\)
0.805165 0.593051i \(-0.202077\pi\)
\(368\) 56.5671i 2.94876i
\(369\) 7.39208 0.384817
\(370\) 0 0
\(371\) −23.9513 −1.24349
\(372\) − 36.6448i − 1.89995i
\(373\) − 35.5230i − 1.83931i −0.392725 0.919656i \(-0.628468\pi\)
0.392725 0.919656i \(-0.371532\pi\)
\(374\) −7.66698 −0.396450
\(375\) 0 0
\(376\) −26.5317 −1.36827
\(377\) 21.2580i 1.09484i
\(378\) 50.0756i 2.57561i
\(379\) 30.4727 1.56528 0.782640 0.622475i \(-0.213873\pi\)
0.782640 + 0.622475i \(0.213873\pi\)
\(380\) 0 0
\(381\) −5.47734 −0.280613
\(382\) − 13.5318i − 0.692347i
\(383\) − 25.9667i − 1.32683i −0.748250 0.663417i \(-0.769105\pi\)
0.748250 0.663417i \(-0.230895\pi\)
\(384\) 2.66704 0.136102
\(385\) 0 0
\(386\) −37.4581 −1.90657
\(387\) − 16.4891i − 0.838189i
\(388\) − 28.0064i − 1.42181i
\(389\) −6.37729 −0.323342 −0.161671 0.986845i \(-0.551688\pi\)
−0.161671 + 0.986845i \(0.551688\pi\)
\(390\) 0 0
\(391\) 6.12692 0.309852
\(392\) − 39.7347i − 2.00691i
\(393\) − 14.3631i − 0.724524i
\(394\) −41.8574 −2.10874
\(395\) 0 0
\(396\) −22.5309 −1.13222
\(397\) 13.1874i 0.661858i 0.943656 + 0.330929i \(0.107362\pi\)
−0.943656 + 0.330929i \(0.892638\pi\)
\(398\) 47.2989i 2.37088i
\(399\) −29.1715 −1.46040
\(400\) 0 0
\(401\) −28.2411 −1.41030 −0.705148 0.709061i \(-0.749119\pi\)
−0.705148 + 0.709061i \(0.749119\pi\)
\(402\) − 29.4319i − 1.46793i
\(403\) − 26.0486i − 1.29757i
\(404\) 37.7171 1.87649
\(405\) 0 0
\(406\) −48.7822 −2.42102
\(407\) 10.1117i 0.501218i
\(408\) 8.53009i 0.422302i
\(409\) 21.0374 1.04023 0.520117 0.854095i \(-0.325888\pi\)
0.520117 + 0.854095i \(0.325888\pi\)
\(410\) 0 0
\(411\) 10.4843 0.517152
\(412\) − 30.3932i − 1.49737i
\(413\) − 35.1024i − 1.72728i
\(414\) 25.5504 1.25573
\(415\) 0 0
\(416\) −38.4862 −1.88694
\(417\) − 8.65726i − 0.423948i
\(418\) − 53.4959i − 2.61657i
\(419\) 28.1482 1.37513 0.687565 0.726123i \(-0.258680\pi\)
0.687565 + 0.726123i \(0.258680\pi\)
\(420\) 0 0
\(421\) −16.6639 −0.812147 −0.406074 0.913840i \(-0.633102\pi\)
−0.406074 + 0.913840i \(0.633102\pi\)
\(422\) 21.8763i 1.06492i
\(423\) 5.89218i 0.286488i
\(424\) −48.8677 −2.37322
\(425\) 0 0
\(426\) 16.9595 0.821691
\(427\) − 8.36165i − 0.404649i
\(428\) − 32.7130i − 1.58124i
\(429\) 13.9685 0.674403
\(430\) 0 0
\(431\) −11.1833 −0.538682 −0.269341 0.963045i \(-0.586806\pi\)
−0.269341 + 0.963045i \(0.586806\pi\)
\(432\) 50.2338i 2.41687i
\(433\) 11.0440i 0.530743i 0.964146 + 0.265372i \(0.0854946\pi\)
−0.964146 + 0.265372i \(0.914505\pi\)
\(434\) 59.7753 2.86930
\(435\) 0 0
\(436\) −70.0417 −3.35439
\(437\) 42.7503i 2.04502i
\(438\) − 6.16897i − 0.294765i
\(439\) 5.34654 0.255176 0.127588 0.991827i \(-0.459276\pi\)
0.127588 + 0.991827i \(0.459276\pi\)
\(440\) 0 0
\(441\) −8.82433 −0.420206
\(442\) 10.4374i 0.496456i
\(443\) 16.5863i 0.788040i 0.919102 + 0.394020i \(0.128916\pi\)
−0.919102 + 0.394020i \(0.871084\pi\)
\(444\) 19.3652 0.919030
\(445\) 0 0
\(446\) 7.56241 0.358091
\(447\) − 16.4395i − 0.777559i
\(448\) − 23.0148i − 1.08735i
\(449\) −35.2901 −1.66544 −0.832722 0.553691i \(-0.813219\pi\)
−0.832722 + 0.553691i \(0.813219\pi\)
\(450\) 0 0
\(451\) 13.5905 0.639952
\(452\) 63.9500i 3.00796i
\(453\) 17.0098i 0.799192i
\(454\) −41.1513 −1.93132
\(455\) 0 0
\(456\) −59.5183 −2.78720
\(457\) − 9.73794i − 0.455522i −0.973717 0.227761i \(-0.926860\pi\)
0.973717 0.227761i \(-0.0731404\pi\)
\(458\) − 60.1947i − 2.81271i
\(459\) 5.44095 0.253962
\(460\) 0 0
\(461\) −16.4097 −0.764276 −0.382138 0.924105i \(-0.624812\pi\)
−0.382138 + 0.924105i \(0.624812\pi\)
\(462\) 32.0543i 1.49130i
\(463\) 16.9720i 0.788755i 0.918948 + 0.394378i \(0.129040\pi\)
−0.918948 + 0.394378i \(0.870960\pi\)
\(464\) −48.9362 −2.27181
\(465\) 0 0
\(466\) 37.8042 1.75125
\(467\) 23.2884i 1.07766i 0.842416 + 0.538828i \(0.181133\pi\)
−0.842416 + 0.538828i \(0.818867\pi\)
\(468\) 30.6723i 1.41783i
\(469\) 33.8320 1.56221
\(470\) 0 0
\(471\) 10.2686 0.473152
\(472\) − 71.6190i − 3.29653i
\(473\) − 30.3156i − 1.39391i
\(474\) −32.5511 −1.49512
\(475\) 0 0
\(476\) −16.8783 −0.773617
\(477\) 10.8526i 0.496905i
\(478\) 9.28864i 0.424853i
\(479\) −2.30406 −0.105275 −0.0526376 0.998614i \(-0.516763\pi\)
−0.0526376 + 0.998614i \(0.516763\pi\)
\(480\) 0 0
\(481\) 13.7655 0.627653
\(482\) 46.3206i 2.10985i
\(483\) − 25.6156i − 1.16555i
\(484\) 11.0750 0.503411
\(485\) 0 0
\(486\) 37.4796 1.70011
\(487\) 14.0889i 0.638430i 0.947682 + 0.319215i \(0.103419\pi\)
−0.947682 + 0.319215i \(0.896581\pi\)
\(488\) − 17.0602i − 0.772278i
\(489\) 10.5909 0.478936
\(490\) 0 0
\(491\) 21.0485 0.949905 0.474953 0.880011i \(-0.342465\pi\)
0.474953 + 0.880011i \(0.342465\pi\)
\(492\) − 26.0275i − 1.17341i
\(493\) 5.30040i 0.238718i
\(494\) −72.8264 −3.27661
\(495\) 0 0
\(496\) 59.9640 2.69247
\(497\) 19.4949i 0.874467i
\(498\) − 27.9137i − 1.25084i
\(499\) −27.6747 −1.23889 −0.619446 0.785039i \(-0.712643\pi\)
−0.619446 + 0.785039i \(0.712643\pi\)
\(500\) 0 0
\(501\) 5.16994 0.230976
\(502\) − 19.4005i − 0.865889i
\(503\) 31.0855i 1.38603i 0.720921 + 0.693017i \(0.243719\pi\)
−0.720921 + 0.693017i \(0.756281\pi\)
\(504\) −40.8900 −1.82139
\(505\) 0 0
\(506\) 46.9749 2.08829
\(507\) − 3.64738i − 0.161986i
\(508\) − 22.1125i − 0.981082i
\(509\) 20.5481 0.910781 0.455390 0.890292i \(-0.349500\pi\)
0.455390 + 0.890292i \(0.349500\pi\)
\(510\) 0 0
\(511\) 7.09123 0.313697
\(512\) 44.6391i 1.97279i
\(513\) 37.9639i 1.67615i
\(514\) 68.8966 3.03890
\(515\) 0 0
\(516\) −58.0582 −2.55587
\(517\) 10.8329i 0.476431i
\(518\) 31.5886i 1.38792i
\(519\) −10.4320 −0.457916
\(520\) 0 0
\(521\) −27.9505 −1.22453 −0.612267 0.790651i \(-0.709742\pi\)
−0.612267 + 0.790651i \(0.709742\pi\)
\(522\) 22.1037i 0.967450i
\(523\) − 0.0826499i − 0.00361403i −0.999998 0.00180701i \(-0.999425\pi\)
0.999998 0.00180701i \(-0.000575191\pi\)
\(524\) 57.9851 2.53309
\(525\) 0 0
\(526\) −32.5234 −1.41809
\(527\) − 6.49485i − 0.282920i
\(528\) 32.1555i 1.39939i
\(529\) −14.5391 −0.632136
\(530\) 0 0
\(531\) −15.9052 −0.690228
\(532\) − 117.768i − 5.10588i
\(533\) − 18.5014i − 0.801383i
\(534\) −8.10123 −0.350574
\(535\) 0 0
\(536\) 69.0270 2.98151
\(537\) − 11.1475i − 0.481050i
\(538\) 7.38498i 0.318389i
\(539\) −16.2237 −0.698805
\(540\) 0 0
\(541\) −10.7378 −0.461654 −0.230827 0.972995i \(-0.574143\pi\)
−0.230827 + 0.972995i \(0.574143\pi\)
\(542\) 19.7785i 0.849561i
\(543\) − 13.9426i − 0.598336i
\(544\) −9.59601 −0.411426
\(545\) 0 0
\(546\) 43.6369 1.86749
\(547\) − 36.8538i − 1.57576i −0.615832 0.787878i \(-0.711180\pi\)
0.615832 0.787878i \(-0.288820\pi\)
\(548\) 42.3259i 1.80807i
\(549\) −3.78874 −0.161700
\(550\) 0 0
\(551\) −36.9833 −1.57554
\(552\) − 52.2632i − 2.22447i
\(553\) − 37.4174i − 1.59115i
\(554\) −79.1624 −3.36329
\(555\) 0 0
\(556\) 34.9501 1.48221
\(557\) 2.41625i 0.102380i 0.998689 + 0.0511899i \(0.0163014\pi\)
−0.998689 + 0.0511899i \(0.983699\pi\)
\(558\) − 27.0847i − 1.14659i
\(559\) −41.2700 −1.74553
\(560\) 0 0
\(561\) 3.48284 0.147046
\(562\) 53.5953i 2.26078i
\(563\) − 4.74857i − 0.200129i −0.994981 0.100064i \(-0.968095\pi\)
0.994981 0.100064i \(-0.0319048\pi\)
\(564\) 20.7464 0.873580
\(565\) 0 0
\(566\) 10.7853 0.453340
\(567\) − 5.74672i − 0.241340i
\(568\) 39.7753i 1.66893i
\(569\) −46.0041 −1.92859 −0.964296 0.264827i \(-0.914685\pi\)
−0.964296 + 0.264827i \(0.914685\pi\)
\(570\) 0 0
\(571\) 9.95720 0.416696 0.208348 0.978055i \(-0.433191\pi\)
0.208348 + 0.978055i \(0.433191\pi\)
\(572\) 56.3918i 2.35786i
\(573\) 6.14704i 0.256796i
\(574\) 42.4563 1.77209
\(575\) 0 0
\(576\) −10.4282 −0.434509
\(577\) 18.8669i 0.785439i 0.919658 + 0.392720i \(0.128466\pi\)
−0.919658 + 0.392720i \(0.871534\pi\)
\(578\) 2.60242i 0.108247i
\(579\) 17.0159 0.707158
\(580\) 0 0
\(581\) 32.0867 1.33118
\(582\) 18.0538i 0.748353i
\(583\) 19.9527i 0.826357i
\(584\) 14.4682 0.598696
\(585\) 0 0
\(586\) 20.4298 0.843949
\(587\) − 23.8851i − 0.985843i −0.870074 0.492921i \(-0.835929\pi\)
0.870074 0.492921i \(-0.164071\pi\)
\(588\) 31.0705i 1.28132i
\(589\) 45.3175 1.86728
\(590\) 0 0
\(591\) 19.0144 0.782147
\(592\) 31.6883i 1.30238i
\(593\) 37.9019i 1.55644i 0.627989 + 0.778222i \(0.283878\pi\)
−0.627989 + 0.778222i \(0.716122\pi\)
\(594\) 41.7156 1.71161
\(595\) 0 0
\(596\) 66.3674 2.71852
\(597\) − 21.4863i − 0.879375i
\(598\) − 63.9490i − 2.61507i
\(599\) −17.8049 −0.727488 −0.363744 0.931499i \(-0.618502\pi\)
−0.363744 + 0.931499i \(0.618502\pi\)
\(600\) 0 0
\(601\) 33.6532 1.37274 0.686372 0.727251i \(-0.259202\pi\)
0.686372 + 0.727251i \(0.259202\pi\)
\(602\) − 94.7049i − 3.85988i
\(603\) − 15.3296i − 0.624269i
\(604\) −68.6702 −2.79415
\(605\) 0 0
\(606\) −24.3135 −0.987670
\(607\) 5.89699i 0.239351i 0.992813 + 0.119676i \(0.0381855\pi\)
−0.992813 + 0.119676i \(0.961815\pi\)
\(608\) − 66.9557i − 2.71541i
\(609\) 22.1601 0.897971
\(610\) 0 0
\(611\) 14.7473 0.596613
\(612\) 7.64773i 0.309141i
\(613\) − 7.04143i − 0.284401i −0.989838 0.142200i \(-0.954582\pi\)
0.989838 0.142200i \(-0.0454177\pi\)
\(614\) 1.23185 0.0497135
\(615\) 0 0
\(616\) −75.1772 −3.02898
\(617\) 6.04823i 0.243492i 0.992561 + 0.121746i \(0.0388494\pi\)
−0.992561 + 0.121746i \(0.961151\pi\)
\(618\) 19.5924i 0.788120i
\(619\) 34.0992 1.37056 0.685282 0.728278i \(-0.259679\pi\)
0.685282 + 0.728278i \(0.259679\pi\)
\(620\) 0 0
\(621\) −33.3362 −1.33774
\(622\) − 47.6404i − 1.91020i
\(623\) − 9.31235i − 0.373092i
\(624\) 43.7747 1.75239
\(625\) 0 0
\(626\) 9.99833 0.399614
\(627\) 24.3014i 0.970504i
\(628\) 41.4552i 1.65424i
\(629\) 3.43224 0.136852
\(630\) 0 0
\(631\) 18.9841 0.755743 0.377872 0.925858i \(-0.376656\pi\)
0.377872 + 0.925858i \(0.376656\pi\)
\(632\) − 76.3424i − 3.03674i
\(633\) − 9.93767i − 0.394987i
\(634\) 11.7699 0.467441
\(635\) 0 0
\(636\) 38.2119 1.51520
\(637\) 22.0861i 0.875082i
\(638\) 40.6381i 1.60888i
\(639\) 8.83333 0.349441
\(640\) 0 0
\(641\) −16.3869 −0.647245 −0.323623 0.946186i \(-0.604901\pi\)
−0.323623 + 0.946186i \(0.604901\pi\)
\(642\) 21.0877i 0.832267i
\(643\) 30.8332i 1.21594i 0.793958 + 0.607972i \(0.208017\pi\)
−0.793958 + 0.607972i \(0.791983\pi\)
\(644\) 103.412 4.07501
\(645\) 0 0
\(646\) −18.1583 −0.714428
\(647\) 15.8642i 0.623684i 0.950134 + 0.311842i \(0.100946\pi\)
−0.950134 + 0.311842i \(0.899054\pi\)
\(648\) − 11.7250i − 0.460600i
\(649\) −29.2421 −1.14785
\(650\) 0 0
\(651\) −27.1539 −1.06424
\(652\) 42.7562i 1.67446i
\(653\) − 7.51669i − 0.294151i −0.989125 0.147075i \(-0.953014\pi\)
0.989125 0.147075i \(-0.0469860\pi\)
\(654\) 45.1510 1.76554
\(655\) 0 0
\(656\) 42.5904 1.66287
\(657\) − 3.21310i − 0.125355i
\(658\) 33.8416i 1.31928i
\(659\) 3.89783 0.151838 0.0759190 0.997114i \(-0.475811\pi\)
0.0759190 + 0.997114i \(0.475811\pi\)
\(660\) 0 0
\(661\) −16.6761 −0.648625 −0.324313 0.945950i \(-0.605133\pi\)
−0.324313 + 0.945950i \(0.605133\pi\)
\(662\) − 45.3724i − 1.76345i
\(663\) − 4.74135i − 0.184139i
\(664\) 65.4662 2.54058
\(665\) 0 0
\(666\) 14.3131 0.554620
\(667\) − 32.4751i − 1.25744i
\(668\) 20.8715i 0.807541i
\(669\) −3.43534 −0.132818
\(670\) 0 0
\(671\) −6.96569 −0.268907
\(672\) 40.1193i 1.54763i
\(673\) − 39.2465i − 1.51284i −0.654086 0.756420i \(-0.726946\pi\)
0.654086 0.756420i \(-0.273054\pi\)
\(674\) 2.45644 0.0946184
\(675\) 0 0
\(676\) 14.7248 0.566337
\(677\) 15.3340i 0.589332i 0.955600 + 0.294666i \(0.0952083\pi\)
−0.955600 + 0.294666i \(0.904792\pi\)
\(678\) − 41.2241i − 1.58320i
\(679\) −20.7528 −0.796419
\(680\) 0 0
\(681\) 18.6936 0.716341
\(682\) − 49.7959i − 1.90678i
\(683\) 15.0386i 0.575435i 0.957715 + 0.287717i \(0.0928964\pi\)
−0.957715 + 0.287717i \(0.907104\pi\)
\(684\) −53.3617 −2.04033
\(685\) 0 0
\(686\) 13.7420 0.524674
\(687\) 27.3444i 1.04325i
\(688\) − 95.0040i − 3.62199i
\(689\) 27.1625 1.03481
\(690\) 0 0
\(691\) 0.735679 0.0279866 0.0139933 0.999902i \(-0.495546\pi\)
0.0139933 + 0.999902i \(0.495546\pi\)
\(692\) − 42.1150i − 1.60097i
\(693\) 16.6954i 0.634207i
\(694\) −49.9947 −1.89777
\(695\) 0 0
\(696\) 45.2129 1.71379
\(697\) − 4.61307i − 0.174732i
\(698\) − 82.7131i − 3.13074i
\(699\) −17.1732 −0.649548
\(700\) 0 0
\(701\) −16.8115 −0.634962 −0.317481 0.948265i \(-0.602837\pi\)
−0.317481 + 0.948265i \(0.602837\pi\)
\(702\) − 56.7893i − 2.14337i
\(703\) 23.9483i 0.903227i
\(704\) −19.1725 −0.722592
\(705\) 0 0
\(706\) −40.2104 −1.51334
\(707\) − 27.9484i − 1.05111i
\(708\) 56.0023i 2.10470i
\(709\) −15.0110 −0.563750 −0.281875 0.959451i \(-0.590956\pi\)
−0.281875 + 0.959451i \(0.590956\pi\)
\(710\) 0 0
\(711\) −16.9542 −0.635832
\(712\) − 18.9999i − 0.712051i
\(713\) 39.7934i 1.49028i
\(714\) 10.8803 0.407184
\(715\) 0 0
\(716\) 45.0033 1.68185
\(717\) − 4.21951i − 0.157581i
\(718\) − 72.7740i − 2.71590i
\(719\) −37.4098 −1.39515 −0.697575 0.716512i \(-0.745738\pi\)
−0.697575 + 0.716512i \(0.745738\pi\)
\(720\) 0 0
\(721\) −22.5214 −0.838740
\(722\) − 77.2524i − 2.87504i
\(723\) − 21.0419i − 0.782556i
\(724\) 56.2876 2.09191
\(725\) 0 0
\(726\) −7.13930 −0.264964
\(727\) − 6.76798i − 0.251011i −0.992093 0.125505i \(-0.959945\pi\)
0.992093 0.125505i \(-0.0400552\pi\)
\(728\) 102.342i 3.79305i
\(729\) −21.9006 −0.811134
\(730\) 0 0
\(731\) −10.2901 −0.380594
\(732\) 13.3402i 0.493067i
\(733\) 18.3230i 0.676774i 0.941007 + 0.338387i \(0.109881\pi\)
−0.941007 + 0.338387i \(0.890119\pi\)
\(734\) −59.1334 −2.18266
\(735\) 0 0
\(736\) 58.7940 2.16717
\(737\) − 28.1838i − 1.03816i
\(738\) − 19.2373i − 0.708136i
\(739\) 0.240801 0.00885802 0.00442901 0.999990i \(-0.498590\pi\)
0.00442901 + 0.999990i \(0.498590\pi\)
\(740\) 0 0
\(741\) 33.0825 1.21532
\(742\) 62.3315i 2.28826i
\(743\) 38.0128i 1.39455i 0.716801 + 0.697277i \(0.245605\pi\)
−0.716801 + 0.697277i \(0.754395\pi\)
\(744\) −55.4017 −2.03113
\(745\) 0 0
\(746\) −92.4459 −3.38468
\(747\) − 14.5388i − 0.531947i
\(748\) 14.0605i 0.514104i
\(749\) −24.2403 −0.885722
\(750\) 0 0
\(751\) 51.5263 1.88022 0.940111 0.340868i \(-0.110721\pi\)
0.940111 + 0.340868i \(0.110721\pi\)
\(752\) 33.9485i 1.23797i
\(753\) 8.81301i 0.321164i
\(754\) 55.3224 2.01472
\(755\) 0 0
\(756\) 91.8341 3.33997
\(757\) − 0.984558i − 0.0357844i −0.999840 0.0178922i \(-0.994304\pi\)
0.999840 0.0178922i \(-0.00569556\pi\)
\(758\) − 79.3029i − 2.88041i
\(759\) −21.3391 −0.774560
\(760\) 0 0
\(761\) −25.8638 −0.937563 −0.468781 0.883314i \(-0.655307\pi\)
−0.468781 + 0.883314i \(0.655307\pi\)
\(762\) 14.2544i 0.516381i
\(763\) 51.9010i 1.87894i
\(764\) −24.8161 −0.897814
\(765\) 0 0
\(766\) −67.5762 −2.44163
\(767\) 39.8086i 1.43740i
\(768\) − 22.3277i − 0.805680i
\(769\) −47.2099 −1.70243 −0.851216 0.524816i \(-0.824134\pi\)
−0.851216 + 0.524816i \(0.824134\pi\)
\(770\) 0 0
\(771\) −31.2974 −1.12715
\(772\) 68.6947i 2.47238i
\(773\) 1.18874i 0.0427560i 0.999771 + 0.0213780i \(0.00680535\pi\)
−0.999771 + 0.0213780i \(0.993195\pi\)
\(774\) −42.9116 −1.54243
\(775\) 0 0
\(776\) −42.3417 −1.51998
\(777\) − 14.3496i − 0.514789i
\(778\) 16.5964i 0.595010i
\(779\) 32.1874 1.15323
\(780\) 0 0
\(781\) 16.2403 0.581123
\(782\) − 15.9448i − 0.570186i
\(783\) − 28.8392i − 1.03063i
\(784\) −50.8424 −1.81580
\(785\) 0 0
\(786\) −37.3789 −1.33326
\(787\) 38.6087i 1.37625i 0.725592 + 0.688125i \(0.241566\pi\)
−0.725592 + 0.688125i \(0.758434\pi\)
\(788\) 76.7626i 2.73455i
\(789\) 14.7743 0.525978
\(790\) 0 0
\(791\) 47.3870 1.68489
\(792\) 34.0635i 1.21039i
\(793\) 9.48270i 0.336741i
\(794\) 34.3193 1.21795
\(795\) 0 0
\(796\) 86.7419 3.07448
\(797\) 7.77134i 0.275275i 0.990483 + 0.137638i \(0.0439509\pi\)
−0.990483 + 0.137638i \(0.956049\pi\)
\(798\) 75.9166i 2.68742i
\(799\) 3.67705 0.130085
\(800\) 0 0
\(801\) −4.21951 −0.149089
\(802\) 73.4954i 2.59521i
\(803\) − 5.90736i − 0.208466i
\(804\) −53.9755 −1.90357
\(805\) 0 0
\(806\) −67.7893 −2.38778
\(807\) − 3.35474i − 0.118093i
\(808\) − 57.0228i − 2.00605i
\(809\) 52.6740 1.85192 0.925960 0.377621i \(-0.123258\pi\)
0.925960 + 0.377621i \(0.123258\pi\)
\(810\) 0 0
\(811\) −38.0502 −1.33612 −0.668062 0.744105i \(-0.732876\pi\)
−0.668062 + 0.744105i \(0.732876\pi\)
\(812\) 89.4620i 3.13950i
\(813\) − 8.98471i − 0.315108i
\(814\) 26.3149 0.922337
\(815\) 0 0
\(816\) 10.9146 0.382089
\(817\) − 71.7988i − 2.51192i
\(818\) − 54.7483i − 1.91423i
\(819\) 22.7282 0.794188
\(820\) 0 0
\(821\) 22.8093 0.796051 0.398026 0.917374i \(-0.369695\pi\)
0.398026 + 0.917374i \(0.369695\pi\)
\(822\) − 27.2845i − 0.951658i
\(823\) − 26.6089i − 0.927530i −0.885958 0.463765i \(-0.846498\pi\)
0.885958 0.463765i \(-0.153502\pi\)
\(824\) −45.9501 −1.60075
\(825\) 0 0
\(826\) −91.3513 −3.17852
\(827\) − 0.707585i − 0.0246052i −0.999924 0.0123026i \(-0.996084\pi\)
0.999924 0.0123026i \(-0.00391613\pi\)
\(828\) − 46.8570i − 1.62839i
\(829\) −39.7559 −1.38078 −0.690390 0.723437i \(-0.742561\pi\)
−0.690390 + 0.723437i \(0.742561\pi\)
\(830\) 0 0
\(831\) 35.9608 1.24746
\(832\) 26.1004i 0.904869i
\(833\) 5.50686i 0.190802i
\(834\) −22.5298 −0.780145
\(835\) 0 0
\(836\) −98.1067 −3.39309
\(837\) 35.3382i 1.22147i
\(838\) − 73.2535i − 2.53050i
\(839\) −15.4254 −0.532542 −0.266271 0.963898i \(-0.585792\pi\)
−0.266271 + 0.963898i \(0.585792\pi\)
\(840\) 0 0
\(841\) −0.905714 −0.0312315
\(842\) 43.3664i 1.49451i
\(843\) − 24.3465i − 0.838539i
\(844\) 40.1192 1.38096
\(845\) 0 0
\(846\) 15.3340 0.527192
\(847\) − 8.20662i − 0.281983i
\(848\) 62.5284i 2.14723i
\(849\) −4.89939 −0.168147
\(850\) 0 0
\(851\) −21.0291 −0.720867
\(852\) − 31.1022i − 1.06554i
\(853\) 50.0605i 1.71404i 0.515284 + 0.857020i \(0.327686\pi\)
−0.515284 + 0.857020i \(0.672314\pi\)
\(854\) −21.7606 −0.744631
\(855\) 0 0
\(856\) −49.4573 −1.69041
\(857\) − 46.0441i − 1.57284i −0.617695 0.786418i \(-0.711933\pi\)
0.617695 0.786418i \(-0.288067\pi\)
\(858\) − 36.3518i − 1.24103i
\(859\) 37.1872 1.26881 0.634406 0.773000i \(-0.281245\pi\)
0.634406 + 0.773000i \(0.281245\pi\)
\(860\) 0 0
\(861\) −19.2864 −0.657280
\(862\) 29.1038i 0.991279i
\(863\) − 48.2016i − 1.64080i −0.571788 0.820401i \(-0.693750\pi\)
0.571788 0.820401i \(-0.306250\pi\)
\(864\) 52.2114 1.77627
\(865\) 0 0
\(866\) 28.7413 0.976668
\(867\) − 1.18219i − 0.0401493i
\(868\) − 109.622i − 3.72083i
\(869\) −31.1707 −1.05739
\(870\) 0 0
\(871\) −38.3678 −1.30004
\(872\) 105.893i 3.58599i
\(873\) 9.40328i 0.318253i
\(874\) 111.254 3.76323
\(875\) 0 0
\(876\) −11.3133 −0.382242
\(877\) 7.97840i 0.269411i 0.990886 + 0.134706i \(0.0430089\pi\)
−0.990886 + 0.134706i \(0.956991\pi\)
\(878\) − 13.9139i − 0.469573i
\(879\) −9.28057 −0.313026
\(880\) 0 0
\(881\) 48.5755 1.63655 0.818276 0.574826i \(-0.194930\pi\)
0.818276 + 0.574826i \(0.194930\pi\)
\(882\) 22.9646i 0.773259i
\(883\) − 42.6792i − 1.43627i −0.695905 0.718134i \(-0.744996\pi\)
0.695905 0.718134i \(-0.255004\pi\)
\(884\) 19.1412 0.643789
\(885\) 0 0
\(886\) 43.1646 1.45014
\(887\) − 53.1721i − 1.78535i −0.450706 0.892673i \(-0.648828\pi\)
0.450706 0.892673i \(-0.351172\pi\)
\(888\) − 29.2773i − 0.982483i
\(889\) −16.3854 −0.549547
\(890\) 0 0
\(891\) −4.78732 −0.160381
\(892\) − 13.8688i − 0.464361i
\(893\) 25.6564i 0.858559i
\(894\) −42.7824 −1.43086
\(895\) 0 0
\(896\) 7.97841 0.266540
\(897\) 29.0499i 0.969947i
\(898\) 91.8398i 3.06473i
\(899\) −34.4254 −1.14815
\(900\) 0 0
\(901\) 6.77260 0.225628
\(902\) − 35.3683i − 1.17763i
\(903\) 43.0212i 1.43166i
\(904\) 96.6832 3.21564
\(905\) 0 0
\(906\) 44.2668 1.47067
\(907\) 42.0949i 1.39774i 0.715250 + 0.698868i \(0.246313\pi\)
−0.715250 + 0.698868i \(0.753687\pi\)
\(908\) 75.4676i 2.50448i
\(909\) −12.6637 −0.420027
\(910\) 0 0
\(911\) −32.3227 −1.07090 −0.535450 0.844567i \(-0.679858\pi\)
−0.535450 + 0.844567i \(0.679858\pi\)
\(912\) 76.1564i 2.52179i
\(913\) − 26.7299i − 0.884631i
\(914\) −25.3422 −0.838247
\(915\) 0 0
\(916\) −110.391 −3.64744
\(917\) − 42.9670i − 1.41890i
\(918\) − 14.1596i − 0.467338i
\(919\) −20.8713 −0.688480 −0.344240 0.938882i \(-0.611863\pi\)
−0.344240 + 0.938882i \(0.611863\pi\)
\(920\) 0 0
\(921\) −0.559588 −0.0184391
\(922\) 42.7050i 1.40641i
\(923\) − 22.1086i − 0.727714i
\(924\) 58.7846 1.93387
\(925\) 0 0
\(926\) 44.1683 1.45146
\(927\) 10.2046i 0.335165i
\(928\) 50.8627i 1.66965i
\(929\) −41.3293 −1.35597 −0.677985 0.735076i \(-0.737146\pi\)
−0.677985 + 0.735076i \(0.737146\pi\)
\(930\) 0 0
\(931\) −38.4239 −1.25929
\(932\) − 69.3294i − 2.27096i
\(933\) 21.6414i 0.708507i
\(934\) 60.6061 1.98309
\(935\) 0 0
\(936\) 46.3721 1.51572
\(937\) − 24.3395i − 0.795138i −0.917572 0.397569i \(-0.869854\pi\)
0.917572 0.397569i \(-0.130146\pi\)
\(938\) − 88.0451i − 2.87477i
\(939\) −4.54190 −0.148219
\(940\) 0 0
\(941\) −33.4007 −1.08883 −0.544415 0.838816i \(-0.683248\pi\)
−0.544415 + 0.838816i \(0.683248\pi\)
\(942\) − 26.7233i − 0.870691i
\(943\) 28.2639i 0.920399i
\(944\) −91.6398 −2.98262
\(945\) 0 0
\(946\) −78.8940 −2.56507
\(947\) − 14.7087i − 0.477969i −0.971023 0.238985i \(-0.923185\pi\)
0.971023 0.238985i \(-0.0768146\pi\)
\(948\) 59.6957i 1.93883i
\(949\) −8.04195 −0.261053
\(950\) 0 0
\(951\) −5.34665 −0.173377
\(952\) 25.5176i 0.827031i
\(953\) 20.9652i 0.679128i 0.940583 + 0.339564i \(0.110280\pi\)
−0.940583 + 0.339564i \(0.889720\pi\)
\(954\) 28.2430 0.914401
\(955\) 0 0
\(956\) 17.0345 0.550936
\(957\) − 18.4605i − 0.596743i
\(958\) 5.99614i 0.193727i
\(959\) 31.3635 1.01278
\(960\) 0 0
\(961\) 11.1831 0.360746
\(962\) − 35.8236i − 1.15500i
\(963\) 10.9835i 0.353939i
\(964\) 84.9478 2.73598
\(965\) 0 0
\(966\) −66.6626 −2.14483
\(967\) 31.1916i 1.00306i 0.865141 + 0.501528i \(0.167229\pi\)
−0.865141 + 0.501528i \(0.832771\pi\)
\(968\) − 16.7439i − 0.538168i
\(969\) 8.24868 0.264986
\(970\) 0 0
\(971\) 3.55989 0.114242 0.0571211 0.998367i \(-0.481808\pi\)
0.0571211 + 0.998367i \(0.481808\pi\)
\(972\) − 68.7341i − 2.20465i
\(973\) − 25.8980i − 0.830253i
\(974\) 36.6653 1.17483
\(975\) 0 0
\(976\) −21.8293 −0.698738
\(977\) − 51.0404i − 1.63293i −0.577397 0.816463i \(-0.695932\pi\)
0.577397 0.816463i \(-0.304068\pi\)
\(978\) − 27.5619i − 0.881333i
\(979\) −7.75767 −0.247936
\(980\) 0 0
\(981\) 23.5168 0.750834
\(982\) − 54.7771i − 1.74801i
\(983\) 43.4903i 1.38712i 0.720397 + 0.693562i \(0.243960\pi\)
−0.720397 + 0.693562i \(0.756040\pi\)
\(984\) −39.3499 −1.25443
\(985\) 0 0
\(986\) 13.7939 0.439287
\(987\) − 15.3731i − 0.489331i
\(988\) 133.557i 4.24901i
\(989\) 63.0467 2.00477
\(990\) 0 0
\(991\) −20.5455 −0.652650 −0.326325 0.945258i \(-0.605810\pi\)
−0.326325 + 0.945258i \(0.605810\pi\)
\(992\) − 62.3247i − 1.97881i
\(993\) 20.6111i 0.654074i
\(994\) 50.7340 1.60919
\(995\) 0 0
\(996\) −51.1911 −1.62205
\(997\) − 48.6107i − 1.53952i −0.638336 0.769758i \(-0.720377\pi\)
0.638336 0.769758i \(-0.279623\pi\)
\(998\) 72.0214i 2.27980i
\(999\) −18.6746 −0.590839
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 425.2.b.f.324.2 10
5.2 odd 4 425.2.a.i.1.5 5
5.3 odd 4 425.2.a.j.1.1 yes 5
5.4 even 2 inner 425.2.b.f.324.9 10
15.2 even 4 3825.2.a.bq.1.1 5
15.8 even 4 3825.2.a.bl.1.5 5
20.3 even 4 6800.2.a.cd.1.3 5
20.7 even 4 6800.2.a.bz.1.3 5
85.33 odd 4 7225.2.a.y.1.1 5
85.67 odd 4 7225.2.a.x.1.5 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
425.2.a.i.1.5 5 5.2 odd 4
425.2.a.j.1.1 yes 5 5.3 odd 4
425.2.b.f.324.2 10 1.1 even 1 trivial
425.2.b.f.324.9 10 5.4 even 2 inner
3825.2.a.bl.1.5 5 15.8 even 4
3825.2.a.bq.1.1 5 15.2 even 4
6800.2.a.bz.1.3 5 20.7 even 4
6800.2.a.cd.1.3 5 20.3 even 4
7225.2.a.x.1.5 5 85.67 odd 4
7225.2.a.y.1.1 5 85.33 odd 4