Properties

Label 425.2.c.a.424.5
Level $425$
Weight $2$
Character 425.424
Analytic conductor $3.394$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [425,2,Mod(424,425)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(425, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("425.424");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 425 = 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 425.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.39364208590\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.350464.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} + 2x^{4} + 2x^{3} + 4x^{2} - 4x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 85)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 424.5
Root \(0.403032 + 0.403032i\) of defining polynomial
Character \(\chi\) \(=\) 425.424
Dual form 425.2.c.a.424.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.48119i q^{2} +1.67513 q^{3} -0.193937 q^{4} +2.48119i q^{6} +1.28726 q^{7} +2.67513i q^{8} -0.193937 q^{9} -0.481194i q^{11} -0.324869 q^{12} +2.15633i q^{13} +1.90668i q^{14} -4.35026 q^{16} +(3.67513 - 1.86907i) q^{17} -0.287258i q^{18} -3.35026 q^{19} +2.15633 q^{21} +0.712742 q^{22} +8.24965 q^{23} +4.48119i q^{24} -3.19394 q^{26} -5.35026 q^{27} -0.249646 q^{28} -0.649738i q^{29} +1.83146i q^{31} -1.09332i q^{32} -0.806063i q^{33} +(2.76845 + 5.44358i) q^{34} +0.0376114 q^{36} -4.31265 q^{37} -4.96239i q^{38} +3.61213i q^{39} -11.2750i q^{41} +3.19394i q^{42} -8.15633i q^{43} +0.0933212i q^{44} +12.2193i q^{46} -6.54420i q^{47} -7.28726 q^{48} -5.34297 q^{49} +(6.15633 - 3.13093i) q^{51} -0.418190i q^{52} +8.57452i q^{53} -7.92478i q^{54} +3.44358i q^{56} -5.61213 q^{57} +0.962389 q^{58} -4.96239 q^{59} +2.83638i q^{61} -2.71274 q^{62} -0.249646 q^{63} -7.08110 q^{64} +1.19394 q^{66} +4.93207i q^{67} +(-0.712742 + 0.362481i) q^{68} +13.8192 q^{69} -14.5320i q^{71} -0.518806i q^{72} -13.3503 q^{73} -6.38787i q^{74} +0.649738 q^{76} -0.619421i q^{77} -5.35026 q^{78} -9.05571i q^{79} -8.38058 q^{81} +16.7005 q^{82} +13.4314i q^{83} -0.418190 q^{84} +12.0811 q^{86} -1.08840i q^{87} +1.28726 q^{88} +16.7816 q^{89} +2.77575i q^{91} -1.59991 q^{92} +3.06793i q^{93} +9.69323 q^{94} -1.83146i q^{96} +3.66291 q^{97} -7.91397i q^{98} +0.0933212i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 2 q^{4} - 4 q^{7} - 2 q^{9} - 12 q^{12} - 6 q^{16} + 12 q^{17} - 8 q^{21} + 16 q^{22} + 16 q^{23} - 20 q^{26} - 12 q^{27} + 32 q^{28} - 6 q^{34} + 22 q^{36} + 16 q^{37} - 32 q^{48} + 14 q^{49} + 16 q^{51}+ \cdots - 40 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/425\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(326\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.48119i 1.04736i 0.851914 + 0.523681i \(0.175442\pi\)
−0.851914 + 0.523681i \(0.824558\pi\)
\(3\) 1.67513 0.967137 0.483569 0.875306i \(-0.339340\pi\)
0.483569 + 0.875306i \(0.339340\pi\)
\(4\) −0.193937 −0.0969683
\(5\) 0 0
\(6\) 2.48119i 1.01294i
\(7\) 1.28726 0.486538 0.243269 0.969959i \(-0.421780\pi\)
0.243269 + 0.969959i \(0.421780\pi\)
\(8\) 2.67513i 0.945802i
\(9\) −0.193937 −0.0646455
\(10\) 0 0
\(11\) 0.481194i 0.145086i −0.997365 0.0725428i \(-0.976889\pi\)
0.997365 0.0725428i \(-0.0231114\pi\)
\(12\) −0.324869 −0.0937816
\(13\) 2.15633i 0.598057i 0.954244 + 0.299028i \(0.0966626\pi\)
−0.954244 + 0.299028i \(0.903337\pi\)
\(14\) 1.90668i 0.509581i
\(15\) 0 0
\(16\) −4.35026 −1.08757
\(17\) 3.67513 1.86907i 0.891350 0.453315i
\(18\) 0.287258i 0.0677073i
\(19\) −3.35026 −0.768603 −0.384301 0.923208i \(-0.625558\pi\)
−0.384301 + 0.923208i \(0.625558\pi\)
\(20\) 0 0
\(21\) 2.15633 0.470549
\(22\) 0.712742 0.151957
\(23\) 8.24965 1.72017 0.860085 0.510151i \(-0.170410\pi\)
0.860085 + 0.510151i \(0.170410\pi\)
\(24\) 4.48119i 0.914720i
\(25\) 0 0
\(26\) −3.19394 −0.626382
\(27\) −5.35026 −1.02966
\(28\) −0.249646 −0.0471787
\(29\) 0.649738i 0.120653i −0.998179 0.0603267i \(-0.980786\pi\)
0.998179 0.0603267i \(-0.0192142\pi\)
\(30\) 0 0
\(31\) 1.83146i 0.328939i 0.986382 + 0.164470i \(0.0525912\pi\)
−0.986382 + 0.164470i \(0.947409\pi\)
\(32\) 1.09332i 0.193274i
\(33\) 0.806063i 0.140318i
\(34\) 2.76845 + 5.44358i 0.474786 + 0.933567i
\(35\) 0 0
\(36\) 0.0376114 0.00626857
\(37\) −4.31265 −0.708995 −0.354498 0.935057i \(-0.615348\pi\)
−0.354498 + 0.935057i \(0.615348\pi\)
\(38\) 4.96239i 0.805006i
\(39\) 3.61213i 0.578403i
\(40\) 0 0
\(41\) 11.2750i 1.76087i −0.474171 0.880433i \(-0.657252\pi\)
0.474171 0.880433i \(-0.342748\pi\)
\(42\) 3.19394i 0.492835i
\(43\) 8.15633i 1.24383i −0.783086 0.621914i \(-0.786355\pi\)
0.783086 0.621914i \(-0.213645\pi\)
\(44\) 0.0933212i 0.0140687i
\(45\) 0 0
\(46\) 12.2193i 1.80164i
\(47\) 6.54420i 0.954569i −0.878749 0.477285i \(-0.841621\pi\)
0.878749 0.477285i \(-0.158379\pi\)
\(48\) −7.28726 −1.05183
\(49\) −5.34297 −0.763281
\(50\) 0 0
\(51\) 6.15633 3.13093i 0.862058 0.438418i
\(52\) 0.418190i 0.0579926i
\(53\) 8.57452i 1.17780i 0.808206 + 0.588900i \(0.200439\pi\)
−0.808206 + 0.588900i \(0.799561\pi\)
\(54\) 7.92478i 1.07843i
\(55\) 0 0
\(56\) 3.44358i 0.460168i
\(57\) −5.61213 −0.743344
\(58\) 0.962389 0.126368
\(59\) −4.96239 −0.646048 −0.323024 0.946391i \(-0.604699\pi\)
−0.323024 + 0.946391i \(0.604699\pi\)
\(60\) 0 0
\(61\) 2.83638i 0.363161i 0.983376 + 0.181581i \(0.0581213\pi\)
−0.983376 + 0.181581i \(0.941879\pi\)
\(62\) −2.71274 −0.344519
\(63\) −0.249646 −0.0314525
\(64\) −7.08110 −0.885138
\(65\) 0 0
\(66\) 1.19394 0.146963
\(67\) 4.93207i 0.602548i 0.953538 + 0.301274i \(0.0974120\pi\)
−0.953538 + 0.301274i \(0.902588\pi\)
\(68\) −0.712742 + 0.362481i −0.0864327 + 0.0439572i
\(69\) 13.8192 1.66364
\(70\) 0 0
\(71\) 14.5320i 1.72463i −0.506373 0.862314i \(-0.669014\pi\)
0.506373 0.862314i \(-0.330986\pi\)
\(72\) 0.518806i 0.0611418i
\(73\) −13.3503 −1.56253 −0.781265 0.624200i \(-0.785425\pi\)
−0.781265 + 0.624200i \(0.785425\pi\)
\(74\) 6.38787i 0.742575i
\(75\) 0 0
\(76\) 0.649738 0.0745301
\(77\) 0.619421i 0.0705896i
\(78\) −5.35026 −0.605798
\(79\) 9.05571i 1.01885i −0.860516 0.509423i \(-0.829859\pi\)
0.860516 0.509423i \(-0.170141\pi\)
\(80\) 0 0
\(81\) −8.38058 −0.931175
\(82\) 16.7005 1.84426
\(83\) 13.4314i 1.47428i 0.675738 + 0.737142i \(0.263825\pi\)
−0.675738 + 0.737142i \(0.736175\pi\)
\(84\) −0.418190 −0.0456283
\(85\) 0 0
\(86\) 12.0811 1.30274
\(87\) 1.08840i 0.116688i
\(88\) 1.28726 0.137222
\(89\) 16.7816 1.77885 0.889424 0.457082i \(-0.151106\pi\)
0.889424 + 0.457082i \(0.151106\pi\)
\(90\) 0 0
\(91\) 2.77575i 0.290977i
\(92\) −1.59991 −0.166802
\(93\) 3.06793i 0.318129i
\(94\) 9.69323 0.999780
\(95\) 0 0
\(96\) 1.83146i 0.186922i
\(97\) 3.66291 0.371912 0.185956 0.982558i \(-0.440462\pi\)
0.185956 + 0.982558i \(0.440462\pi\)
\(98\) 7.91397i 0.799432i
\(99\) 0.0933212i 0.00937913i
\(100\) 0 0
\(101\) 6.85685 0.682282 0.341141 0.940012i \(-0.389187\pi\)
0.341141 + 0.940012i \(0.389187\pi\)
\(102\) 4.63752 + 9.11871i 0.459183 + 0.902887i
\(103\) 7.04349i 0.694016i −0.937862 0.347008i \(-0.887198\pi\)
0.937862 0.347008i \(-0.112802\pi\)
\(104\) −5.76845 −0.565643
\(105\) 0 0
\(106\) −12.7005 −1.23358
\(107\) 5.86177 0.566679 0.283340 0.959020i \(-0.408558\pi\)
0.283340 + 0.959020i \(0.408558\pi\)
\(108\) 1.03761 0.0998442
\(109\) 12.7005i 1.21649i −0.793750 0.608245i \(-0.791874\pi\)
0.793750 0.608245i \(-0.208126\pi\)
\(110\) 0 0
\(111\) −7.22425 −0.685696
\(112\) −5.59991 −0.529142
\(113\) 4.88717 0.459746 0.229873 0.973221i \(-0.426169\pi\)
0.229873 + 0.973221i \(0.426169\pi\)
\(114\) 8.31265i 0.778551i
\(115\) 0 0
\(116\) 0.126008i 0.0116995i
\(117\) 0.418190i 0.0386617i
\(118\) 7.35026i 0.676646i
\(119\) 4.73084 2.40597i 0.433675 0.220555i
\(120\) 0 0
\(121\) 10.7685 0.978950
\(122\) −4.20123 −0.380362
\(123\) 18.8872i 1.70300i
\(124\) 0.355186i 0.0318967i
\(125\) 0 0
\(126\) 0.369775i 0.0329422i
\(127\) 1.76845i 0.156925i 0.996917 + 0.0784624i \(0.0250010\pi\)
−0.996917 + 0.0784624i \(0.974999\pi\)
\(128\) 12.6751i 1.12033i
\(129\) 13.6629i 1.20295i
\(130\) 0 0
\(131\) 11.1065i 0.970379i 0.874409 + 0.485189i \(0.161249\pi\)
−0.874409 + 0.485189i \(0.838751\pi\)
\(132\) 0.156325i 0.0136064i
\(133\) −4.31265 −0.373954
\(134\) −7.30536 −0.631087
\(135\) 0 0
\(136\) 5.00000 + 9.83146i 0.428746 + 0.843040i
\(137\) 11.7685i 1.00545i 0.864447 + 0.502723i \(0.167669\pi\)
−0.864447 + 0.502723i \(0.832331\pi\)
\(138\) 20.4690i 1.74243i
\(139\) 11.7054i 0.992843i 0.868082 + 0.496422i \(0.165353\pi\)
−0.868082 + 0.496422i \(0.834647\pi\)
\(140\) 0 0
\(141\) 10.9624i 0.923200i
\(142\) 21.5247 1.80631
\(143\) 1.03761 0.0867694
\(144\) 0.843675 0.0703062
\(145\) 0 0
\(146\) 19.7743i 1.63654i
\(147\) −8.95017 −0.738198
\(148\) 0.836381 0.0687501
\(149\) −17.1998 −1.40906 −0.704532 0.709672i \(-0.748843\pi\)
−0.704532 + 0.709672i \(0.748843\pi\)
\(150\) 0 0
\(151\) −13.5877 −1.10575 −0.552875 0.833264i \(-0.686469\pi\)
−0.552875 + 0.833264i \(0.686469\pi\)
\(152\) 8.96239i 0.726946i
\(153\) −0.712742 + 0.362481i −0.0576218 + 0.0293048i
\(154\) 0.917483 0.0739329
\(155\) 0 0
\(156\) 0.700523i 0.0560868i
\(157\) 8.57452i 0.684321i −0.939642 0.342160i \(-0.888841\pi\)
0.939642 0.342160i \(-0.111159\pi\)
\(158\) 13.4133 1.06710
\(159\) 14.3634i 1.13909i
\(160\) 0 0
\(161\) 10.6194 0.836928
\(162\) 12.4133i 0.975278i
\(163\) 14.3757 1.12599 0.562994 0.826461i \(-0.309649\pi\)
0.562994 + 0.826461i \(0.309649\pi\)
\(164\) 2.18664i 0.170748i
\(165\) 0 0
\(166\) −19.8945 −1.54411
\(167\) −7.54912 −0.584169 −0.292084 0.956393i \(-0.594349\pi\)
−0.292084 + 0.956393i \(0.594349\pi\)
\(168\) 5.76845i 0.445046i
\(169\) 8.35026 0.642328
\(170\) 0 0
\(171\) 0.649738 0.0496867
\(172\) 1.58181i 0.120612i
\(173\) −11.8496 −0.900905 −0.450452 0.892800i \(-0.648737\pi\)
−0.450452 + 0.892800i \(0.648737\pi\)
\(174\) 1.61213 0.122215
\(175\) 0 0
\(176\) 2.09332i 0.157790i
\(177\) −8.31265 −0.624817
\(178\) 24.8568i 1.86310i
\(179\) 3.22425 0.240992 0.120496 0.992714i \(-0.461551\pi\)
0.120496 + 0.992714i \(0.461551\pi\)
\(180\) 0 0
\(181\) 6.88717i 0.511919i 0.966688 + 0.255960i \(0.0823914\pi\)
−0.966688 + 0.255960i \(0.917609\pi\)
\(182\) −4.11142 −0.304759
\(183\) 4.75131i 0.351227i
\(184\) 22.0689i 1.62694i
\(185\) 0 0
\(186\) −4.54420 −0.333197
\(187\) −0.899385 1.76845i −0.0657695 0.129322i
\(188\) 1.26916i 0.0925630i
\(189\) −6.88717 −0.500968
\(190\) 0 0
\(191\) 7.19982 0.520960 0.260480 0.965479i \(-0.416119\pi\)
0.260480 + 0.965479i \(0.416119\pi\)
\(192\) −11.8618 −0.856050
\(193\) −20.1114 −1.44765 −0.723826 0.689983i \(-0.757618\pi\)
−0.723826 + 0.689983i \(0.757618\pi\)
\(194\) 5.42548i 0.389527i
\(195\) 0 0
\(196\) 1.03620 0.0740141
\(197\) −3.16362 −0.225399 −0.112699 0.993629i \(-0.535950\pi\)
−0.112699 + 0.993629i \(0.535950\pi\)
\(198\) −0.138227 −0.00982335
\(199\) 21.4944i 1.52370i 0.647756 + 0.761848i \(0.275708\pi\)
−0.647756 + 0.761848i \(0.724292\pi\)
\(200\) 0 0
\(201\) 8.26187i 0.582747i
\(202\) 10.1563i 0.714597i
\(203\) 0.836381i 0.0587024i
\(204\) −1.19394 + 0.607202i −0.0835923 + 0.0425127i
\(205\) 0 0
\(206\) 10.4328 0.726886
\(207\) −1.59991 −0.111201
\(208\) 9.38058i 0.650426i
\(209\) 1.61213i 0.111513i
\(210\) 0 0
\(211\) 20.8691i 1.43669i 0.695689 + 0.718343i \(0.255099\pi\)
−0.695689 + 0.718343i \(0.744901\pi\)
\(212\) 1.66291i 0.114209i
\(213\) 24.3430i 1.66795i
\(214\) 8.68243i 0.593518i
\(215\) 0 0
\(216\) 14.3127i 0.973853i
\(217\) 2.35756i 0.160041i
\(218\) 18.8119 1.27411
\(219\) −22.3634 −1.51118
\(220\) 0 0
\(221\) 4.03032 + 7.92478i 0.271108 + 0.533078i
\(222\) 10.7005i 0.718172i
\(223\) 24.3430i 1.63013i 0.579373 + 0.815063i \(0.303298\pi\)
−0.579373 + 0.815063i \(0.696702\pi\)
\(224\) 1.40739i 0.0940349i
\(225\) 0 0
\(226\) 7.23884i 0.481521i
\(227\) −11.2120 −0.744169 −0.372084 0.928199i \(-0.621357\pi\)
−0.372084 + 0.928199i \(0.621357\pi\)
\(228\) 1.08840 0.0720808
\(229\) −12.1563 −0.803313 −0.401656 0.915790i \(-0.631565\pi\)
−0.401656 + 0.915790i \(0.631565\pi\)
\(230\) 0 0
\(231\) 1.03761i 0.0682698i
\(232\) 1.73813 0.114114
\(233\) 11.9756 0.784545 0.392273 0.919849i \(-0.371689\pi\)
0.392273 + 0.919849i \(0.371689\pi\)
\(234\) 0.619421 0.0404928
\(235\) 0 0
\(236\) 0.962389 0.0626462
\(237\) 15.1695i 0.985365i
\(238\) 3.56371 + 7.00729i 0.231001 + 0.454215i
\(239\) 8.83638 0.571578 0.285789 0.958293i \(-0.407744\pi\)
0.285789 + 0.958293i \(0.407744\pi\)
\(240\) 0 0
\(241\) 0.261865i 0.0168682i −0.999964 0.00843411i \(-0.997315\pi\)
0.999964 0.00843411i \(-0.00268469\pi\)
\(242\) 15.9502i 1.02532i
\(243\) 2.01222 0.129084
\(244\) 0.550078i 0.0352151i
\(245\) 0 0
\(246\) 27.9756 1.78366
\(247\) 7.22425i 0.459668i
\(248\) −4.89938 −0.311111
\(249\) 22.4993i 1.42583i
\(250\) 0 0
\(251\) −23.6629 −1.49359 −0.746795 0.665054i \(-0.768408\pi\)
−0.746795 + 0.665054i \(0.768408\pi\)
\(252\) 0.0484156 0.00304989
\(253\) 3.96968i 0.249572i
\(254\) −2.61942 −0.164357
\(255\) 0 0
\(256\) 4.61213 0.288258
\(257\) 19.2447i 1.20045i 0.799830 + 0.600226i \(0.204923\pi\)
−0.799830 + 0.600226i \(0.795077\pi\)
\(258\) 20.2374 1.25993
\(259\) −5.55149 −0.344953
\(260\) 0 0
\(261\) 0.126008i 0.00779970i
\(262\) −16.4509 −1.01634
\(263\) 17.2447i 1.06336i 0.846947 + 0.531678i \(0.178438\pi\)
−0.846947 + 0.531678i \(0.821562\pi\)
\(264\) 2.15633 0.132713
\(265\) 0 0
\(266\) 6.38787i 0.391666i
\(267\) 28.1114 1.72039
\(268\) 0.956509i 0.0584281i
\(269\) 26.6253i 1.62337i −0.584093 0.811687i \(-0.698550\pi\)
0.584093 0.811687i \(-0.301450\pi\)
\(270\) 0 0
\(271\) −6.70052 −0.407028 −0.203514 0.979072i \(-0.565236\pi\)
−0.203514 + 0.979072i \(0.565236\pi\)
\(272\) −15.9878 + 8.13093i −0.969402 + 0.493010i
\(273\) 4.64974i 0.281415i
\(274\) −17.4314 −1.05307
\(275\) 0 0
\(276\) −2.68006 −0.161320
\(277\) 16.7005 1.00344 0.501719 0.865031i \(-0.332701\pi\)
0.501719 + 0.865031i \(0.332701\pi\)
\(278\) −17.3380 −1.03987
\(279\) 0.355186i 0.0212644i
\(280\) 0 0
\(281\) −28.4241 −1.69564 −0.847819 0.530286i \(-0.822085\pi\)
−0.847819 + 0.530286i \(0.822085\pi\)
\(282\) 16.2374 0.966925
\(283\) 10.0630 0.598183 0.299092 0.954224i \(-0.403316\pi\)
0.299092 + 0.954224i \(0.403316\pi\)
\(284\) 2.81828i 0.167234i
\(285\) 0 0
\(286\) 1.53690i 0.0908790i
\(287\) 14.5139i 0.856727i
\(288\) 0.212035i 0.0124943i
\(289\) 10.0132 13.7381i 0.589010 0.808126i
\(290\) 0 0
\(291\) 6.13586 0.359690
\(292\) 2.58910 0.151516
\(293\) 14.3127i 0.836154i −0.908412 0.418077i \(-0.862704\pi\)
0.908412 0.418077i \(-0.137296\pi\)
\(294\) 13.2569i 0.773160i
\(295\) 0 0
\(296\) 11.5369i 0.670569i
\(297\) 2.57452i 0.149389i
\(298\) 25.4763i 1.47580i
\(299\) 17.7889i 1.02876i
\(300\) 0 0
\(301\) 10.4993i 0.605169i
\(302\) 20.1260i 1.15812i
\(303\) 11.4861 0.659860
\(304\) 14.5745 0.835906
\(305\) 0 0
\(306\) −0.536904 1.05571i −0.0306928 0.0603509i
\(307\) 29.2809i 1.67115i 0.549376 + 0.835575i \(0.314865\pi\)
−0.549376 + 0.835575i \(0.685135\pi\)
\(308\) 0.120128i 0.00684495i
\(309\) 11.7988i 0.671209i
\(310\) 0 0
\(311\) 4.54183i 0.257543i 0.991674 + 0.128772i \(0.0411035\pi\)
−0.991674 + 0.128772i \(0.958897\pi\)
\(312\) −9.66291 −0.547055
\(313\) −0.826531 −0.0467183 −0.0233592 0.999727i \(-0.507436\pi\)
−0.0233592 + 0.999727i \(0.507436\pi\)
\(314\) 12.7005 0.716732
\(315\) 0 0
\(316\) 1.75623i 0.0987958i
\(317\) 32.2374 1.81063 0.905317 0.424736i \(-0.139633\pi\)
0.905317 + 0.424736i \(0.139633\pi\)
\(318\) −21.2750 −1.19304
\(319\) −0.312650 −0.0175051
\(320\) 0 0
\(321\) 9.81924 0.548056
\(322\) 15.7294i 0.876567i
\(323\) −12.3127 + 6.26187i −0.685094 + 0.348419i
\(324\) 1.62530 0.0902945
\(325\) 0 0
\(326\) 21.2931i 1.17932i
\(327\) 21.2750i 1.17651i
\(328\) 30.1622 1.66543
\(329\) 8.42407i 0.464434i
\(330\) 0 0
\(331\) −6.82653 −0.375220 −0.187610 0.982244i \(-0.560074\pi\)
−0.187610 + 0.982244i \(0.560074\pi\)
\(332\) 2.60483i 0.142959i
\(333\) 0.836381 0.0458334
\(334\) 11.1817i 0.611836i
\(335\) 0 0
\(336\) −9.38058 −0.511753
\(337\) −18.0508 −0.983289 −0.491644 0.870796i \(-0.663604\pi\)
−0.491644 + 0.870796i \(0.663604\pi\)
\(338\) 12.3684i 0.672750i
\(339\) 8.18664 0.444637
\(340\) 0 0
\(341\) 0.881286 0.0477243
\(342\) 0.962389i 0.0520400i
\(343\) −15.8886 −0.857903
\(344\) 21.8192 1.17641
\(345\) 0 0
\(346\) 17.5515i 0.943574i
\(347\) 18.3512 0.985145 0.492572 0.870271i \(-0.336057\pi\)
0.492572 + 0.870271i \(0.336057\pi\)
\(348\) 0.211080i 0.0113151i
\(349\) 13.6023 0.728113 0.364057 0.931377i \(-0.381391\pi\)
0.364057 + 0.931377i \(0.381391\pi\)
\(350\) 0 0
\(351\) 11.5369i 0.615794i
\(352\) −0.526100 −0.0280412
\(353\) 27.4010i 1.45841i −0.684295 0.729205i \(-0.739890\pi\)
0.684295 0.729205i \(-0.260110\pi\)
\(354\) 12.3127i 0.654410i
\(355\) 0 0
\(356\) −3.25457 −0.172492
\(357\) 7.92478 4.03032i 0.419424 0.213307i
\(358\) 4.77575i 0.252406i
\(359\) 9.08840 0.479667 0.239834 0.970814i \(-0.422907\pi\)
0.239834 + 0.970814i \(0.422907\pi\)
\(360\) 0 0
\(361\) −7.77575 −0.409250
\(362\) −10.2012 −0.536165
\(363\) 18.0386 0.946779
\(364\) 0.538319i 0.0282156i
\(365\) 0 0
\(366\) −7.03761 −0.367862
\(367\) 12.7635 0.666251 0.333125 0.942883i \(-0.391897\pi\)
0.333125 + 0.942883i \(0.391897\pi\)
\(368\) −35.8881 −1.87080
\(369\) 2.18664i 0.113832i
\(370\) 0 0
\(371\) 11.0376i 0.573044i
\(372\) 0.594984i 0.0308485i
\(373\) 10.0957i 0.522735i −0.965239 0.261368i \(-0.915827\pi\)
0.965239 0.261368i \(-0.0841735\pi\)
\(374\) 2.61942 1.33216i 0.135447 0.0688845i
\(375\) 0 0
\(376\) 17.5066 0.902833
\(377\) 1.40105 0.0721576
\(378\) 10.2012i 0.524695i
\(379\) 9.18172i 0.471633i −0.971798 0.235817i \(-0.924224\pi\)
0.971798 0.235817i \(-0.0757765\pi\)
\(380\) 0 0
\(381\) 2.96239i 0.151768i
\(382\) 10.6643i 0.545634i
\(383\) 1.83383i 0.0937041i 0.998902 + 0.0468521i \(0.0149189\pi\)
−0.998902 + 0.0468521i \(0.985081\pi\)
\(384\) 21.2325i 1.08352i
\(385\) 0 0
\(386\) 29.7889i 1.51622i
\(387\) 1.58181i 0.0804079i
\(388\) −0.710373 −0.0360637
\(389\) −11.6570 −0.591035 −0.295518 0.955337i \(-0.595492\pi\)
−0.295518 + 0.955337i \(0.595492\pi\)
\(390\) 0 0
\(391\) 30.3185 15.4191i 1.53327 0.779780i
\(392\) 14.2931i 0.721912i
\(393\) 18.6048i 0.938490i
\(394\) 4.68594i 0.236074i
\(395\) 0 0
\(396\) 0.0180984i 0.000909478i
\(397\) 9.37470 0.470503 0.235251 0.971935i \(-0.424409\pi\)
0.235251 + 0.971935i \(0.424409\pi\)
\(398\) −31.8373 −1.59586
\(399\) −7.22425 −0.361665
\(400\) 0 0
\(401\) 7.93937i 0.396473i 0.980154 + 0.198237i \(0.0635214\pi\)
−0.980154 + 0.198237i \(0.936479\pi\)
\(402\) −12.2374 −0.610347
\(403\) −3.94921 −0.196724
\(404\) −1.32979 −0.0661597
\(405\) 0 0
\(406\) 1.23884 0.0614827
\(407\) 2.07522i 0.102865i
\(408\) 8.37565 + 16.4690i 0.414657 + 0.815336i
\(409\) −9.07381 −0.448671 −0.224335 0.974512i \(-0.572021\pi\)
−0.224335 + 0.974512i \(0.572021\pi\)
\(410\) 0 0
\(411\) 19.7137i 0.972405i
\(412\) 1.36599i 0.0672975i
\(413\) −6.38787 −0.314327
\(414\) 2.36977i 0.116468i
\(415\) 0 0
\(416\) 2.35756 0.115589
\(417\) 19.6082i 0.960216i
\(418\) −2.38787 −0.116795
\(419\) 8.99508i 0.439438i 0.975563 + 0.219719i \(0.0705141\pi\)
−0.975563 + 0.219719i \(0.929486\pi\)
\(420\) 0 0
\(421\) 16.9076 0.824028 0.412014 0.911178i \(-0.364826\pi\)
0.412014 + 0.911178i \(0.364826\pi\)
\(422\) −30.9111 −1.50473
\(423\) 1.26916i 0.0617086i
\(424\) −22.9380 −1.11397
\(425\) 0 0
\(426\) 36.0567 1.74695
\(427\) 3.65115i 0.176692i
\(428\) −1.13681 −0.0549499
\(429\) 1.73813 0.0839179
\(430\) 0 0
\(431\) 14.6678i 0.706525i 0.935524 + 0.353262i \(0.114928\pi\)
−0.935524 + 0.353262i \(0.885072\pi\)
\(432\) 23.2750 1.11982
\(433\) 6.68006i 0.321023i 0.987034 + 0.160511i \(0.0513144\pi\)
−0.987034 + 0.160511i \(0.948686\pi\)
\(434\) −3.49200 −0.167621
\(435\) 0 0
\(436\) 2.46310i 0.117961i
\(437\) −27.6385 −1.32213
\(438\) 33.1246i 1.58275i
\(439\) 9.56959i 0.456732i −0.973575 0.228366i \(-0.926662\pi\)
0.973575 0.228366i \(-0.0733382\pi\)
\(440\) 0 0
\(441\) 1.03620 0.0493427
\(442\) −11.7381 + 5.96968i −0.558326 + 0.283949i
\(443\) 14.7915i 0.702764i 0.936232 + 0.351382i \(0.114288\pi\)
−0.936232 + 0.351382i \(0.885712\pi\)
\(444\) 1.40105 0.0664907
\(445\) 0 0
\(446\) −36.0567 −1.70733
\(447\) −28.8119 −1.36276
\(448\) −9.11520 −0.430653
\(449\) 10.9018i 0.514486i −0.966347 0.257243i \(-0.917186\pi\)
0.966347 0.257243i \(-0.0828140\pi\)
\(450\) 0 0
\(451\) −5.42548 −0.255476
\(452\) −0.947800 −0.0445808
\(453\) −22.7612 −1.06941
\(454\) 16.6072i 0.779415i
\(455\) 0 0
\(456\) 15.0132i 0.703056i
\(457\) 7.61801i 0.356355i 0.983998 + 0.178178i \(0.0570202\pi\)
−0.983998 + 0.178178i \(0.942980\pi\)
\(458\) 18.0059i 0.841360i
\(459\) −19.6629 + 10.0000i −0.917786 + 0.466760i
\(460\) 0 0
\(461\) 4.57452 0.213056 0.106528 0.994310i \(-0.466027\pi\)
0.106528 + 0.994310i \(0.466027\pi\)
\(462\) 1.53690 0.0715032
\(463\) 2.56864i 0.119375i −0.998217 0.0596873i \(-0.980990\pi\)
0.998217 0.0596873i \(-0.0190104\pi\)
\(464\) 2.82653i 0.131218i
\(465\) 0 0
\(466\) 17.7381i 0.821703i
\(467\) 1.55737i 0.0720666i 0.999351 + 0.0360333i \(0.0114722\pi\)
−0.999351 + 0.0360333i \(0.988528\pi\)
\(468\) 0.0811024i 0.00374896i
\(469\) 6.34885i 0.293163i
\(470\) 0 0
\(471\) 14.3634i 0.661832i
\(472\) 13.2750i 0.611033i
\(473\) −3.92478 −0.180461
\(474\) 22.4690 1.03203
\(475\) 0 0
\(476\) −0.917483 + 0.466606i −0.0420528 + 0.0213868i
\(477\) 1.66291i 0.0761395i
\(478\) 13.0884i 0.598649i
\(479\) 20.4060i 0.932373i 0.884687 + 0.466186i \(0.154372\pi\)
−0.884687 + 0.466186i \(0.845628\pi\)
\(480\) 0 0
\(481\) 9.29948i 0.424020i
\(482\) 0.387873 0.0176671
\(483\) 17.7889 0.809424
\(484\) −2.08840 −0.0949271
\(485\) 0 0
\(486\) 2.98049i 0.135198i
\(487\) −0.162664 −0.00737103 −0.00368551 0.999993i \(-0.501173\pi\)
−0.00368551 + 0.999993i \(0.501173\pi\)
\(488\) −7.58769 −0.343479
\(489\) 24.0811 1.08899
\(490\) 0 0
\(491\) 12.8364 0.579298 0.289649 0.957133i \(-0.406461\pi\)
0.289649 + 0.957133i \(0.406461\pi\)
\(492\) 3.66291i 0.165137i
\(493\) −1.21440 2.38787i −0.0546940 0.107544i
\(494\) 10.7005 0.481439
\(495\) 0 0
\(496\) 7.96731i 0.357743i
\(497\) 18.7064i 0.839097i
\(498\) −33.3258 −1.49337
\(499\) 17.7416i 0.794225i 0.917770 + 0.397113i \(0.129988\pi\)
−0.917770 + 0.397113i \(0.870012\pi\)
\(500\) 0 0
\(501\) −12.6458 −0.564971
\(502\) 35.0494i 1.56433i
\(503\) −11.2120 −0.499920 −0.249960 0.968256i \(-0.580417\pi\)
−0.249960 + 0.968256i \(0.580417\pi\)
\(504\) 0.667837i 0.0297478i
\(505\) 0 0
\(506\) 5.87987 0.261392
\(507\) 13.9878 0.621219
\(508\) 0.342968i 0.0152167i
\(509\) 6.37328 0.282491 0.141245 0.989975i \(-0.454889\pi\)
0.141245 + 0.989975i \(0.454889\pi\)
\(510\) 0 0
\(511\) −17.1852 −0.760230
\(512\) 18.5188i 0.818423i
\(513\) 17.9248 0.791398
\(514\) −28.5052 −1.25731
\(515\) 0 0
\(516\) 2.64974i 0.116648i
\(517\) −3.14903 −0.138494
\(518\) 8.22284i 0.361291i
\(519\) −19.8496 −0.871299
\(520\) 0 0
\(521\) 0.986826i 0.0432336i −0.999766 0.0216168i \(-0.993119\pi\)
0.999766 0.0216168i \(-0.00688138\pi\)
\(522\) −0.186642 −0.00816911
\(523\) 8.99271i 0.393224i −0.980481 0.196612i \(-0.937006\pi\)
0.980481 0.196612i \(-0.0629939\pi\)
\(524\) 2.15396i 0.0940960i
\(525\) 0 0
\(526\) −25.5428 −1.11372
\(527\) 3.42311 + 6.73084i 0.149113 + 0.293200i
\(528\) 3.50659i 0.152605i
\(529\) 45.0567 1.95899
\(530\) 0 0
\(531\) 0.962389 0.0417641
\(532\) 0.836381 0.0362617
\(533\) 24.3127 1.05310
\(534\) 41.6385i 1.80187i
\(535\) 0 0
\(536\) −13.1939 −0.569891
\(537\) 5.40105 0.233072
\(538\) 39.4372 1.70026
\(539\) 2.57101i 0.110741i
\(540\) 0 0
\(541\) 37.3766i 1.60695i −0.595341 0.803473i \(-0.702983\pi\)
0.595341 0.803473i \(-0.297017\pi\)
\(542\) 9.92478i 0.426306i
\(543\) 11.5369i 0.495096i
\(544\) −2.04349 4.01810i −0.0876140 0.172275i
\(545\) 0 0
\(546\) −6.88717 −0.294743
\(547\) 22.1744 0.948110 0.474055 0.880495i \(-0.342790\pi\)
0.474055 + 0.880495i \(0.342790\pi\)
\(548\) 2.28233i 0.0974964i
\(549\) 0.550078i 0.0234768i
\(550\) 0 0
\(551\) 2.17679i 0.0927345i
\(552\) 36.9683i 1.57347i
\(553\) 11.6570i 0.495707i
\(554\) 24.7367i 1.05096i
\(555\) 0 0
\(556\) 2.27011i 0.0962743i
\(557\) 1.16950i 0.0495533i 0.999693 + 0.0247766i \(0.00788745\pi\)
−0.999693 + 0.0247766i \(0.992113\pi\)
\(558\) 0.526100 0.0222716
\(559\) 17.5877 0.743880
\(560\) 0 0
\(561\) −1.50659 2.96239i −0.0636081 0.125072i
\(562\) 42.1016i 1.77595i
\(563\) 11.1333i 0.469213i 0.972090 + 0.234606i \(0.0753801\pi\)
−0.972090 + 0.234606i \(0.924620\pi\)
\(564\) 2.12601i 0.0895211i
\(565\) 0 0
\(566\) 14.9053i 0.626515i
\(567\) −10.7880 −0.453052
\(568\) 38.8749 1.63116
\(569\) −16.7005 −0.700122 −0.350061 0.936727i \(-0.613839\pi\)
−0.350061 + 0.936727i \(0.613839\pi\)
\(570\) 0 0
\(571\) 37.2833i 1.56026i 0.625619 + 0.780129i \(0.284846\pi\)
−0.625619 + 0.780129i \(0.715154\pi\)
\(572\) −0.201231 −0.00841388
\(573\) 12.0606 0.503840
\(574\) 21.4979 0.897304
\(575\) 0 0
\(576\) 1.37328 0.0572202
\(577\) 1.63259i 0.0679658i −0.999422 0.0339829i \(-0.989181\pi\)
0.999422 0.0339829i \(-0.0108192\pi\)
\(578\) 20.3488 + 14.8315i 0.846400 + 0.616907i
\(579\) −33.6893 −1.40008
\(580\) 0 0
\(581\) 17.2896i 0.717295i
\(582\) 9.08840i 0.376726i
\(583\) 4.12601 0.170882
\(584\) 35.7137i 1.47784i
\(585\) 0 0
\(586\) 21.1998 0.875756
\(587\) 23.0435i 0.951107i 0.879687 + 0.475553i \(0.157752\pi\)
−0.879687 + 0.475553i \(0.842248\pi\)
\(588\) 1.73577 0.0715818
\(589\) 6.13586i 0.252824i
\(590\) 0 0
\(591\) −5.29948 −0.217991
\(592\) 18.7612 0.771079
\(593\) 44.2130i 1.81561i −0.419393 0.907805i \(-0.637757\pi\)
0.419393 0.907805i \(-0.362243\pi\)
\(594\) −3.81336 −0.156464
\(595\) 0 0
\(596\) 3.33567 0.136635
\(597\) 36.0059i 1.47362i
\(598\) −26.3488 −1.07748
\(599\) −15.4518 −0.631345 −0.315672 0.948868i \(-0.602230\pi\)
−0.315672 + 0.948868i \(0.602230\pi\)
\(600\) 0 0
\(601\) 43.0640i 1.75662i −0.478096 0.878308i \(-0.658673\pi\)
0.478096 0.878308i \(-0.341327\pi\)
\(602\) 15.5515 0.633832
\(603\) 0.956509i 0.0389521i
\(604\) 2.63515 0.107223
\(605\) 0 0
\(606\) 17.0132i 0.691113i
\(607\) −41.5002 −1.68444 −0.842222 0.539132i \(-0.818753\pi\)
−0.842222 + 0.539132i \(0.818753\pi\)
\(608\) 3.66291i 0.148551i
\(609\) 1.40105i 0.0567733i
\(610\) 0 0
\(611\) 14.1114 0.570887
\(612\) 0.138227 0.0702982i 0.00558749 0.00284164i
\(613\) 27.7137i 1.11935i 0.828714 + 0.559673i \(0.189073\pi\)
−0.828714 + 0.559673i \(0.810927\pi\)
\(614\) −43.3707 −1.75030
\(615\) 0 0
\(616\) 1.65703 0.0667637
\(617\) 29.6629 1.19418 0.597092 0.802173i \(-0.296323\pi\)
0.597092 + 0.802173i \(0.296323\pi\)
\(618\) 17.4763 0.702999
\(619\) 26.4422i 1.06280i −0.847121 0.531400i \(-0.821666\pi\)
0.847121 0.531400i \(-0.178334\pi\)
\(620\) 0 0
\(621\) −44.1378 −1.77119
\(622\) −6.72733 −0.269741
\(623\) 21.6023 0.865477
\(624\) 15.7137i 0.629051i
\(625\) 0 0
\(626\) 1.22425i 0.0489310i
\(627\) 2.70052i 0.107849i
\(628\) 1.66291i 0.0663574i
\(629\) −15.8496 + 8.06063i −0.631963 + 0.321399i
\(630\) 0 0
\(631\) 37.7499 1.50280 0.751400 0.659847i \(-0.229379\pi\)
0.751400 + 0.659847i \(0.229379\pi\)
\(632\) 24.2252 0.963627
\(633\) 34.9584i 1.38947i
\(634\) 47.7499i 1.89639i
\(635\) 0 0
\(636\) 2.78560i 0.110456i
\(637\) 11.5212i 0.456486i
\(638\) 0.463096i 0.0183341i
\(639\) 2.81828i 0.111490i
\(640\) 0 0
\(641\) 46.3488i 1.83067i 0.402694 + 0.915335i \(0.368074\pi\)
−0.402694 + 0.915335i \(0.631926\pi\)
\(642\) 14.5442i 0.574014i
\(643\) −34.9502 −1.37830 −0.689150 0.724619i \(-0.742016\pi\)
−0.689150 + 0.724619i \(0.742016\pi\)
\(644\) −2.05949 −0.0811554
\(645\) 0 0
\(646\) −9.27504 18.2374i −0.364922 0.717542i
\(647\) 36.5296i 1.43613i 0.695978 + 0.718064i \(0.254971\pi\)
−0.695978 + 0.718064i \(0.745029\pi\)
\(648\) 22.4191i 0.880707i
\(649\) 2.38787i 0.0937322i
\(650\) 0 0
\(651\) 3.94921i 0.154782i
\(652\) −2.78797 −0.109185
\(653\) −0.926192 −0.0362447 −0.0181223 0.999836i \(-0.505769\pi\)
−0.0181223 + 0.999836i \(0.505769\pi\)
\(654\) 31.5125 1.23223
\(655\) 0 0
\(656\) 49.0494i 1.91506i
\(657\) 2.58910 0.101011
\(658\) 12.4777 0.486431
\(659\) 24.0118 0.935365 0.467683 0.883896i \(-0.345089\pi\)
0.467683 + 0.883896i \(0.345089\pi\)
\(660\) 0 0
\(661\) −20.9478 −0.814775 −0.407387 0.913255i \(-0.633560\pi\)
−0.407387 + 0.913255i \(0.633560\pi\)
\(662\) 10.1114i 0.392991i
\(663\) 6.75131 + 13.2750i 0.262199 + 0.515560i
\(664\) −35.9307 −1.39438
\(665\) 0 0
\(666\) 1.23884i 0.0480042i
\(667\) 5.36011i 0.207544i
\(668\) 1.46405 0.0566458
\(669\) 40.7777i 1.57656i
\(670\) 0 0
\(671\) 1.36485 0.0526895
\(672\) 2.35756i 0.0909447i
\(673\) 0.513881 0.0198087 0.00990433 0.999951i \(-0.496847\pi\)
0.00990433 + 0.999951i \(0.496847\pi\)
\(674\) 26.7367i 1.02986i
\(675\) 0 0
\(676\) −1.61942 −0.0622854
\(677\) 3.67276 0.141156 0.0705778 0.997506i \(-0.477516\pi\)
0.0705778 + 0.997506i \(0.477516\pi\)
\(678\) 12.1260i 0.465697i
\(679\) 4.71511 0.180949
\(680\) 0 0
\(681\) −18.7816 −0.719713
\(682\) 1.30536i 0.0499847i
\(683\) 10.5115 0.402212 0.201106 0.979570i \(-0.435546\pi\)
0.201106 + 0.979570i \(0.435546\pi\)
\(684\) −0.126008 −0.00481804
\(685\) 0 0
\(686\) 23.5341i 0.898535i
\(687\) −20.3634 −0.776914
\(688\) 35.4821i 1.35274i
\(689\) −18.4894 −0.704392
\(690\) 0 0
\(691\) 25.5940i 0.973643i 0.873502 + 0.486821i \(0.161844\pi\)
−0.873502 + 0.486821i \(0.838156\pi\)
\(692\) 2.29806 0.0873592
\(693\) 0.120128i 0.00456330i
\(694\) 27.1817i 1.03180i
\(695\) 0 0
\(696\) 2.91160 0.110364
\(697\) −21.0738 41.4372i −0.798227 1.56955i
\(698\) 20.1476i 0.762599i
\(699\) 20.0606 0.758763
\(700\) 0 0
\(701\) 30.8324 1.16452 0.582262 0.813001i \(-0.302168\pi\)
0.582262 + 0.813001i \(0.302168\pi\)
\(702\) 17.0884 0.644960
\(703\) 14.4485 0.544936
\(704\) 3.40739i 0.128421i
\(705\) 0 0
\(706\) 40.5863 1.52748
\(707\) 8.82653 0.331956
\(708\) 1.61213 0.0605874
\(709\) 28.1866i 1.05857i −0.848444 0.529286i \(-0.822460\pi\)
0.848444 0.529286i \(-0.177540\pi\)
\(710\) 0 0
\(711\) 1.75623i 0.0658639i
\(712\) 44.8930i 1.68244i
\(713\) 15.1089i 0.565831i
\(714\) 5.96968 + 11.7381i 0.223410 + 0.439289i
\(715\) 0 0
\(716\) −0.625301 −0.0233686
\(717\) 14.8021 0.552794
\(718\) 13.4617i 0.502385i
\(719\) 17.7200i 0.660846i −0.943833 0.330423i \(-0.892809\pi\)
0.943833 0.330423i \(-0.107191\pi\)
\(720\) 0 0
\(721\) 9.06679i 0.337665i
\(722\) 11.5174i 0.428633i
\(723\) 0.438658i 0.0163139i
\(724\) 1.33567i 0.0496399i
\(725\) 0 0
\(726\) 26.7186i 0.991621i
\(727\) 9.68338i 0.359137i −0.983746 0.179568i \(-0.942530\pi\)
0.983746 0.179568i \(-0.0574701\pi\)
\(728\) −7.42548 −0.275207
\(729\) 28.5125 1.05602
\(730\) 0 0
\(731\) −15.2447 29.9756i −0.563846 1.10869i
\(732\) 0.921452i 0.0340579i
\(733\) 32.7123i 1.20826i −0.796887 0.604128i \(-0.793522\pi\)
0.796887 0.604128i \(-0.206478\pi\)
\(734\) 18.9053i 0.697806i
\(735\) 0 0
\(736\) 9.01951i 0.332464i
\(737\) 2.37328 0.0874211
\(738\) −3.23884 −0.119223
\(739\) −1.42548 −0.0524373 −0.0262186 0.999656i \(-0.508347\pi\)
−0.0262186 + 0.999656i \(0.508347\pi\)
\(740\) 0 0
\(741\) 12.1016i 0.444562i
\(742\) −16.3488 −0.600185
\(743\) 16.8143 0.616857 0.308429 0.951247i \(-0.400197\pi\)
0.308429 + 0.951247i \(0.400197\pi\)
\(744\) −8.20711 −0.300887
\(745\) 0 0
\(746\) 14.9537 0.547493
\(747\) 2.60483i 0.0953058i
\(748\) 0.174424 + 0.342968i 0.00637756 + 0.0125401i
\(749\) 7.54561 0.275711
\(750\) 0 0
\(751\) 44.0835i 1.60863i −0.594204 0.804314i \(-0.702533\pi\)
0.594204 0.804314i \(-0.297467\pi\)
\(752\) 28.4690i 1.03816i
\(753\) −39.6385 −1.44451
\(754\) 2.07522i 0.0755752i
\(755\) 0 0
\(756\) 1.33567 0.0485780
\(757\) 39.8094i 1.44690i −0.690378 0.723448i \(-0.742556\pi\)
0.690378 0.723448i \(-0.257444\pi\)
\(758\) 13.5999 0.493971
\(759\) 6.64974i 0.241370i
\(760\) 0 0
\(761\) 2.81591 0.102077 0.0510384 0.998697i \(-0.483747\pi\)
0.0510384 + 0.998697i \(0.483747\pi\)
\(762\) −4.38787 −0.158956
\(763\) 16.3488i 0.591868i
\(764\) −1.39631 −0.0505166
\(765\) 0 0
\(766\) −2.71625 −0.0981422
\(767\) 10.7005i 0.386374i
\(768\) 7.72592 0.278785
\(769\) −36.0665 −1.30059 −0.650296 0.759681i \(-0.725355\pi\)
−0.650296 + 0.759681i \(0.725355\pi\)
\(770\) 0 0
\(771\) 32.2374i 1.16100i
\(772\) 3.90034 0.140376
\(773\) 11.6180i 0.417871i −0.977929 0.208935i \(-0.933000\pi\)
0.977929 0.208935i \(-0.0669998\pi\)
\(774\) −2.34297 −0.0842162
\(775\) 0 0
\(776\) 9.79877i 0.351755i
\(777\) −9.29948 −0.333617
\(778\) 17.2663i 0.619028i
\(779\) 37.7743i 1.35341i
\(780\) 0 0
\(781\) −6.99271 −0.250219
\(782\) 22.8388 + 44.9076i 0.816712 + 1.60589i
\(783\) 3.47627i 0.124232i
\(784\) 23.2433 0.830118
\(785\) 0 0
\(786\) −27.5574 −0.982939
\(787\) −28.4626 −1.01458 −0.507292 0.861774i \(-0.669353\pi\)
−0.507292 + 0.861774i \(0.669353\pi\)
\(788\) 0.613541 0.0218565
\(789\) 28.8872i 1.02841i
\(790\) 0 0
\(791\) 6.29104 0.223684
\(792\) −0.249646 −0.00887080
\(793\) −6.11616 −0.217191
\(794\) 13.8858i 0.492787i
\(795\) 0 0
\(796\) 4.16854i 0.147750i
\(797\) 50.5355i 1.79006i −0.446007 0.895029i \(-0.647154\pi\)
0.446007 0.895029i \(-0.352846\pi\)
\(798\) 10.7005i 0.378794i
\(799\) −12.2315 24.0508i −0.432721 0.850856i
\(800\) 0 0
\(801\) −3.25457 −0.114995
\(802\) −11.7597 −0.415251
\(803\) 6.42407i 0.226701i
\(804\) 1.60228i 0.0565080i
\(805\) 0 0
\(806\) 5.84955i 0.206042i
\(807\) 44.6009i 1.57002i
\(808\) 18.3430i 0.645303i
\(809\) 2.50914i 0.0882167i −0.999027 0.0441084i \(-0.985955\pi\)
0.999027 0.0441084i \(-0.0140447\pi\)
\(810\) 0 0
\(811\) 18.0933i 0.635342i −0.948201 0.317671i \(-0.897099\pi\)
0.948201 0.317671i \(-0.102901\pi\)
\(812\) 0.162205i 0.00569227i
\(813\) −11.2243 −0.393652
\(814\) −3.07381 −0.107737
\(815\) 0 0
\(816\) −26.7816 + 13.6204i −0.937544 + 0.476809i
\(817\) 27.3258i 0.956010i
\(818\) 13.4401i 0.469921i
\(819\) 0.538319i 0.0188104i
\(820\) 0 0
\(821\) 7.02776i 0.245271i 0.992452 + 0.122635i \(0.0391345\pi\)
−0.992452 + 0.122635i \(0.960865\pi\)
\(822\) −29.1998 −1.01846
\(823\) −28.5379 −0.994767 −0.497384 0.867531i \(-0.665706\pi\)
−0.497384 + 0.867531i \(0.665706\pi\)
\(824\) 18.8423 0.656401
\(825\) 0 0
\(826\) 9.46168i 0.329214i
\(827\) −26.3004 −0.914556 −0.457278 0.889324i \(-0.651175\pi\)
−0.457278 + 0.889324i \(0.651175\pi\)
\(828\) 0.310281 0.0107830
\(829\) 27.2506 0.946453 0.473226 0.880941i \(-0.343089\pi\)
0.473226 + 0.880941i \(0.343089\pi\)
\(830\) 0 0
\(831\) 27.9756 0.970462
\(832\) 15.2692i 0.529363i
\(833\) −19.6361 + 9.98637i −0.680351 + 0.346007i
\(834\) −29.0435 −1.00569
\(835\) 0 0
\(836\) 0.312650i 0.0108132i
\(837\) 9.79877i 0.338695i
\(838\) −13.3235 −0.460251
\(839\) 38.6580i 1.33462i −0.744779 0.667311i \(-0.767445\pi\)
0.744779 0.667311i \(-0.232555\pi\)
\(840\) 0 0
\(841\) 28.5778 0.985443
\(842\) 25.0435i 0.863056i
\(843\) −47.6140 −1.63991
\(844\) 4.04728i 0.139313i
\(845\) 0 0
\(846\) −1.87987 −0.0646313
\(847\) 13.8618 0.476296
\(848\) 37.3014i 1.28093i
\(849\) 16.8568 0.578526
\(850\) 0 0
\(851\) −35.5778 −1.21959
\(852\) 4.72099i 0.161739i
\(853\) −5.46168 −0.187004 −0.0935022 0.995619i \(-0.529806\pi\)
−0.0935022 + 0.995619i \(0.529806\pi\)
\(854\) −5.40807 −0.185060
\(855\) 0 0
\(856\) 15.6810i 0.535966i
\(857\) −8.30280 −0.283618 −0.141809 0.989894i \(-0.545292\pi\)
−0.141809 + 0.989894i \(0.545292\pi\)
\(858\) 2.57452i 0.0878925i
\(859\) −10.7612 −0.367166 −0.183583 0.983004i \(-0.558770\pi\)
−0.183583 + 0.983004i \(0.558770\pi\)
\(860\) 0 0
\(861\) 24.3127i 0.828573i
\(862\) −21.7259 −0.739988
\(863\) 43.7342i 1.48873i −0.667774 0.744364i \(-0.732753\pi\)
0.667774 0.744364i \(-0.267247\pi\)
\(864\) 5.84955i 0.199006i
\(865\) 0 0
\(866\) −9.89446 −0.336227
\(867\) 16.7734 23.0132i 0.569654 0.781568i
\(868\) 0.457216i 0.0155189i
\(869\) −4.35756 −0.147820
\(870\) 0 0
\(871\) −10.6351 −0.360358
\(872\) 33.9756 1.15056
\(873\) −0.710373 −0.0240425
\(874\) 40.9380i 1.38475i
\(875\) 0 0
\(876\) 4.33709 0.146537
\(877\) −43.5633 −1.47103 −0.735513 0.677510i \(-0.763059\pi\)
−0.735513 + 0.677510i \(0.763059\pi\)
\(878\) 14.1744 0.478364
\(879\) 23.9756i 0.808676i
\(880\) 0 0
\(881\) 43.4372i 1.46344i −0.681606 0.731719i \(-0.738718\pi\)
0.681606 0.731719i \(-0.261282\pi\)
\(882\) 1.53481i 0.0516797i
\(883\) 6.56864i 0.221052i 0.993873 + 0.110526i \(0.0352536\pi\)
−0.993873 + 0.110526i \(0.964746\pi\)
\(884\) −0.781626 1.53690i −0.0262889 0.0516917i
\(885\) 0 0
\(886\) −21.9090 −0.736049
\(887\) −21.4396 −0.719872 −0.359936 0.932977i \(-0.617201\pi\)
−0.359936 + 0.932977i \(0.617201\pi\)
\(888\) 19.3258i 0.648532i
\(889\) 2.27645i 0.0763498i
\(890\) 0 0
\(891\) 4.03269i 0.135100i
\(892\) 4.72099i 0.158070i
\(893\) 21.9248i 0.733685i
\(894\) 42.6761i 1.42730i
\(895\) 0 0
\(896\) 16.3162i 0.545085i
\(897\) 29.7988i 0.994952i
\(898\) 16.1476 0.538853
\(899\) 1.18997 0.0396876
\(900\) 0 0
\(901\) 16.0263 + 31.5125i 0.533915 + 1.04983i
\(902\) 8.03620i 0.267576i
\(903\) 17.5877i 0.585282i
\(904\) 13.0738i 0.434828i
\(905\) 0 0
\(906\) 33.7137i 1.12006i
\(907\) 21.2628 0.706020 0.353010 0.935619i \(-0.385158\pi\)
0.353010 + 0.935619i \(0.385158\pi\)
\(908\) 2.17442 0.0721608
\(909\) −1.32979 −0.0441065
\(910\) 0 0
\(911\) 48.6678i 1.61244i −0.591618 0.806219i \(-0.701510\pi\)
0.591618 0.806219i \(-0.298490\pi\)
\(912\) 24.4142 0.808436
\(913\) 6.46310 0.213897
\(914\) −11.2837 −0.373233
\(915\) 0 0
\(916\) 2.35756 0.0778958
\(917\) 14.2969i 0.472126i
\(918\) −14.8119 29.1246i −0.488867 0.961255i
\(919\) −4.55993 −0.150418 −0.0752091 0.997168i \(-0.523962\pi\)
−0.0752091 + 0.997168i \(0.523962\pi\)
\(920\) 0 0
\(921\) 49.0494i 1.61623i
\(922\) 6.77575i 0.223147i
\(923\) 31.3357 1.03143
\(924\) 0.201231i 0.00662001i
\(925\) 0 0
\(926\) 3.80465 0.125029
\(927\) 1.36599i 0.0448650i
\(928\) −0.710373 −0.0233191
\(929\) 23.3963i 0.767608i 0.923415 + 0.383804i \(0.125386\pi\)
−0.923415 + 0.383804i \(0.874614\pi\)
\(930\) 0 0
\(931\) 17.9003 0.586660
\(932\) −2.32250 −0.0760760
\(933\) 7.60816i 0.249080i
\(934\) −2.30677 −0.0754798
\(935\) 0 0
\(936\) 1.11871 0.0365663
\(937\) 30.3898i 0.992791i −0.868097 0.496395i \(-0.834657\pi\)
0.868097 0.496395i \(-0.165343\pi\)
\(938\) −9.40388 −0.307047
\(939\) −1.38455 −0.0451830
\(940\) 0 0
\(941\) 25.9610i 0.846304i 0.906059 + 0.423152i \(0.139076\pi\)
−0.906059 + 0.423152i \(0.860924\pi\)
\(942\) 21.2750 0.693178
\(943\) 93.0151i 3.02899i
\(944\) 21.5877 0.702619
\(945\) 0 0
\(946\) 5.81336i 0.189009i
\(947\) 16.8289 0.546866 0.273433 0.961891i \(-0.411841\pi\)
0.273433 + 0.961891i \(0.411841\pi\)
\(948\) 2.94192i 0.0955491i
\(949\) 28.7875i 0.934482i
\(950\) 0 0
\(951\) 54.0019 1.75113
\(952\) 6.43629 + 12.6556i 0.208601 + 0.410171i
\(953\) 12.7553i 0.413184i 0.978427 + 0.206592i \(0.0662373\pi\)
−0.978427 + 0.206592i \(0.933763\pi\)
\(954\) 2.46310 0.0797457
\(955\) 0 0
\(956\) −1.71370 −0.0554249
\(957\) −0.523730 −0.0169298
\(958\) −30.2252 −0.976532
\(959\) 15.1490i 0.489188i
\(960\) 0 0
\(961\) 27.6458 0.891799
\(962\) 13.7743 0.444102
\(963\) −1.13681 −0.0366333
\(964\) 0.0507852i 0.00163568i
\(965\) 0 0
\(966\) 26.3488i 0.847760i
\(967\) 42.5560i 1.36851i 0.729244 + 0.684254i \(0.239872\pi\)
−0.729244 + 0.684254i \(0.760128\pi\)
\(968\) 28.8070i 0.925893i
\(969\) −20.6253 + 10.4894i −0.662580 + 0.336969i
\(970\) 0 0
\(971\) −18.4485 −0.592041 −0.296020 0.955182i \(-0.595660\pi\)
−0.296020 + 0.955182i \(0.595660\pi\)
\(972\) −0.390243 −0.0125170
\(973\) 15.0679i 0.483056i
\(974\) 0.240938i 0.00772014i
\(975\) 0 0
\(976\) 12.3390i 0.394962i
\(977\) 24.8383i 0.794647i 0.917679 + 0.397324i \(0.130061\pi\)
−0.917679 + 0.397324i \(0.869939\pi\)
\(978\) 35.6688i 1.14056i
\(979\) 8.07522i 0.258085i
\(980\) 0 0
\(981\) 2.46310i 0.0786406i
\(982\) 19.0132i 0.606735i
\(983\) 4.32487 0.137942 0.0689710 0.997619i \(-0.478028\pi\)
0.0689710 + 0.997619i \(0.478028\pi\)
\(984\) 50.5256 1.61070
\(985\) 0 0
\(986\) 3.53690 1.79877i 0.112638 0.0572845i
\(987\) 14.1114i 0.449171i
\(988\) 1.40105i 0.0445732i
\(989\) 67.2868i 2.13960i
\(990\) 0 0
\(991\) 31.8432i 1.01153i −0.862670 0.505767i \(-0.831210\pi\)
0.862670 0.505767i \(-0.168790\pi\)
\(992\) 2.00237 0.0635753
\(993\) −11.4353 −0.362889
\(994\) 27.7078 0.878839
\(995\) 0 0
\(996\) 4.36344i 0.138261i
\(997\) −29.0278 −0.919318 −0.459659 0.888095i \(-0.652028\pi\)
−0.459659 + 0.888095i \(0.652028\pi\)
\(998\) −26.2788 −0.831842
\(999\) 23.0738 0.730023
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 425.2.c.a.424.5 6
5.2 odd 4 425.2.d.c.101.1 6
5.3 odd 4 85.2.d.a.16.6 yes 6
5.4 even 2 425.2.c.b.424.2 6
15.8 even 4 765.2.g.b.271.2 6
17.16 even 2 425.2.c.b.424.5 6
20.3 even 4 1360.2.c.f.1121.2 6
85.13 odd 4 1445.2.a.k.1.1 3
85.33 odd 4 85.2.d.a.16.5 6
85.38 odd 4 1445.2.a.j.1.1 3
85.47 odd 4 7225.2.a.r.1.3 3
85.67 odd 4 425.2.d.c.101.2 6
85.72 odd 4 7225.2.a.q.1.3 3
85.84 even 2 inner 425.2.c.a.424.2 6
255.203 even 4 765.2.g.b.271.1 6
340.203 even 4 1360.2.c.f.1121.5 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.d.a.16.5 6 85.33 odd 4
85.2.d.a.16.6 yes 6 5.3 odd 4
425.2.c.a.424.2 6 85.84 even 2 inner
425.2.c.a.424.5 6 1.1 even 1 trivial
425.2.c.b.424.2 6 5.4 even 2
425.2.c.b.424.5 6 17.16 even 2
425.2.d.c.101.1 6 5.2 odd 4
425.2.d.c.101.2 6 85.67 odd 4
765.2.g.b.271.1 6 255.203 even 4
765.2.g.b.271.2 6 15.8 even 4
1360.2.c.f.1121.2 6 20.3 even 4
1360.2.c.f.1121.5 6 340.203 even 4
1445.2.a.j.1.1 3 85.38 odd 4
1445.2.a.k.1.1 3 85.13 odd 4
7225.2.a.q.1.3 3 85.72 odd 4
7225.2.a.r.1.3 3 85.47 odd 4