Properties

Label 425.2.e.c.251.6
Level $425$
Weight $2$
Character 425.251
Analytic conductor $3.394$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [425,2,Mod(251,425)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(425, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("425.251");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 425 = 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 425.e (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.39364208590\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 18x^{10} + 119x^{8} + 364x^{6} + 519x^{4} + 278x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 251.6
Root \(2.69251i\) of defining polynomial
Character \(\chi\) \(=\) 425.251
Dual form 425.2.e.c.276.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.69251i q^{2} +(-0.494558 - 0.494558i) q^{3} -5.24959 q^{4} +(1.33160 - 1.33160i) q^{6} +(3.43326 - 3.43326i) q^{7} -8.74953i q^{8} -2.51083i q^{9} +(-1.72004 + 1.72004i) q^{11} +(2.59622 + 2.59622i) q^{12} +1.74964 q^{13} +(9.24408 + 9.24408i) q^{14} +13.0590 q^{16} +(0.515279 - 4.09078i) q^{17} +6.76041 q^{18} -0.0462547i q^{19} -3.39590 q^{21} +(-4.63121 - 4.63121i) q^{22} +(1.90172 - 1.90172i) q^{23} +(-4.32715 + 4.32715i) q^{24} +4.71093i q^{26} +(-2.72542 + 2.72542i) q^{27} +(-18.0232 + 18.0232i) q^{28} +(-1.39828 - 1.39828i) q^{29} +(-2.06252 - 2.06252i) q^{31} +17.6623i q^{32} +1.70132 q^{33} +(11.0144 + 1.38739i) q^{34} +13.1808i q^{36} +(2.43847 + 2.43847i) q^{37} +0.124541 q^{38} +(-0.865300 - 0.865300i) q^{39} +(-3.76486 + 3.76486i) q^{41} -9.14347i q^{42} -7.98228i q^{43} +(9.02949 - 9.02949i) q^{44} +(5.12039 + 5.12039i) q^{46} +9.75559 q^{47} +(-6.45842 - 6.45842i) q^{48} -16.5746i q^{49} +(-2.27796 + 1.76829i) q^{51} -9.18491 q^{52} +11.5454i q^{53} +(-7.33821 - 7.33821i) q^{54} +(-30.0394 - 30.0394i) q^{56} +(-0.0228756 + 0.0228756i) q^{57} +(3.76486 - 3.76486i) q^{58} +7.13788i q^{59} +(6.15308 - 6.15308i) q^{61} +(5.55335 - 5.55335i) q^{62} +(-8.62033 - 8.62033i) q^{63} -21.4379 q^{64} +4.58080i q^{66} +11.5883 q^{67} +(-2.70500 + 21.4749i) q^{68} -1.88102 q^{69} +(3.17202 + 3.17202i) q^{71} -21.9685 q^{72} +(-5.45257 - 5.45257i) q^{73} +(-6.56558 + 6.56558i) q^{74} +0.242818i q^{76} +11.8107i q^{77} +(2.32983 - 2.32983i) q^{78} +(2.81394 - 2.81394i) q^{79} -4.83672 q^{81} +(-10.1369 - 10.1369i) q^{82} -0.548920i q^{83} +17.8270 q^{84} +21.4923 q^{86} +1.38306i q^{87} +(15.0495 + 15.0495i) q^{88} +0.475447 q^{89} +(6.00699 - 6.00699i) q^{91} +(-9.98323 + 9.98323i) q^{92} +2.04007i q^{93} +26.2670i q^{94} +(8.73503 - 8.73503i) q^{96} +(-9.98146 - 9.98146i) q^{97} +44.6272 q^{98} +(4.31872 + 4.31872i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 2 q^{3} - 12 q^{4} + 6 q^{6} - 4 q^{11} - 4 q^{12} + 12 q^{13} + 14 q^{14} + 4 q^{16} + 6 q^{17} - 4 q^{18} + 8 q^{21} + 10 q^{22} + 12 q^{23} - 8 q^{24} + 22 q^{27} - 34 q^{28} - 6 q^{29} - 6 q^{31}+ \cdots + 30 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/425\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(326\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.69251i 1.90389i 0.306271 + 0.951944i \(0.400919\pi\)
−0.306271 + 0.951944i \(0.599081\pi\)
\(3\) −0.494558 0.494558i −0.285533 0.285533i 0.549778 0.835311i \(-0.314712\pi\)
−0.835311 + 0.549778i \(0.814712\pi\)
\(4\) −5.24959 −2.62479
\(5\) 0 0
\(6\) 1.33160 1.33160i 0.543623 0.543623i
\(7\) 3.43326 3.43326i 1.29765 1.29765i 0.367713 0.929939i \(-0.380141\pi\)
0.929939 0.367713i \(-0.119859\pi\)
\(8\) 8.74953i 3.09342i
\(9\) 2.51083i 0.836942i
\(10\) 0 0
\(11\) −1.72004 + 1.72004i −0.518611 + 0.518611i −0.917151 0.398540i \(-0.869517\pi\)
0.398540 + 0.917151i \(0.369517\pi\)
\(12\) 2.59622 + 2.59622i 0.749465 + 0.749465i
\(13\) 1.74964 0.485264 0.242632 0.970118i \(-0.421989\pi\)
0.242632 + 0.970118i \(0.421989\pi\)
\(14\) 9.24408 + 9.24408i 2.47059 + 2.47059i
\(15\) 0 0
\(16\) 13.0590 3.26474
\(17\) 0.515279 4.09078i 0.124973 0.992160i
\(18\) 6.76041 1.59344
\(19\) 0.0462547i 0.0106115i −0.999986 0.00530577i \(-0.998311\pi\)
0.999986 0.00530577i \(-0.00168889\pi\)
\(20\) 0 0
\(21\) −3.39590 −0.741045
\(22\) −4.63121 4.63121i −0.987378 0.987378i
\(23\) 1.90172 1.90172i 0.396536 0.396536i −0.480474 0.877009i \(-0.659535\pi\)
0.877009 + 0.480474i \(0.159535\pi\)
\(24\) −4.32715 + 4.32715i −0.883275 + 0.883275i
\(25\) 0 0
\(26\) 4.71093i 0.923889i
\(27\) −2.72542 + 2.72542i −0.524508 + 0.524508i
\(28\) −18.0232 + 18.0232i −3.40607 + 3.40607i
\(29\) −1.39828 1.39828i −0.259653 0.259653i 0.565260 0.824913i \(-0.308776\pi\)
−0.824913 + 0.565260i \(0.808776\pi\)
\(30\) 0 0
\(31\) −2.06252 2.06252i −0.370440 0.370440i 0.497197 0.867637i \(-0.334362\pi\)
−0.867637 + 0.497197i \(0.834362\pi\)
\(32\) 17.6623i 3.12228i
\(33\) 1.70132 0.296161
\(34\) 11.0144 + 1.38739i 1.88896 + 0.237936i
\(35\) 0 0
\(36\) 13.1808i 2.19680i
\(37\) 2.43847 + 2.43847i 0.400881 + 0.400881i 0.878544 0.477662i \(-0.158516\pi\)
−0.477662 + 0.878544i \(0.658516\pi\)
\(38\) 0.124541 0.0202032
\(39\) −0.865300 0.865300i −0.138559 0.138559i
\(40\) 0 0
\(41\) −3.76486 + 3.76486i −0.587973 + 0.587973i −0.937082 0.349109i \(-0.886484\pi\)
0.349109 + 0.937082i \(0.386484\pi\)
\(42\) 9.14347i 1.41087i
\(43\) 7.98228i 1.21729i −0.793444 0.608643i \(-0.791714\pi\)
0.793444 0.608643i \(-0.208286\pi\)
\(44\) 9.02949 9.02949i 1.36125 1.36125i
\(45\) 0 0
\(46\) 5.12039 + 5.12039i 0.754960 + 0.754960i
\(47\) 9.75559 1.42300 0.711500 0.702687i \(-0.248016\pi\)
0.711500 + 0.702687i \(0.248016\pi\)
\(48\) −6.45842 6.45842i −0.932192 0.932192i
\(49\) 16.5746i 2.36780i
\(50\) 0 0
\(51\) −2.27796 + 1.76829i −0.318979 + 0.247610i
\(52\) −9.18491 −1.27372
\(53\) 11.5454i 1.58589i 0.609296 + 0.792943i \(0.291452\pi\)
−0.609296 + 0.792943i \(0.708548\pi\)
\(54\) −7.33821 7.33821i −0.998604 0.998604i
\(55\) 0 0
\(56\) −30.0394 30.0394i −4.01419 4.01419i
\(57\) −0.0228756 + 0.0228756i −0.00302995 + 0.00302995i
\(58\) 3.76486 3.76486i 0.494351 0.494351i
\(59\) 7.13788i 0.929273i 0.885501 + 0.464637i \(0.153815\pi\)
−0.885501 + 0.464637i \(0.846185\pi\)
\(60\) 0 0
\(61\) 6.15308 6.15308i 0.787821 0.787821i −0.193316 0.981137i \(-0.561924\pi\)
0.981137 + 0.193316i \(0.0619242\pi\)
\(62\) 5.55335 5.55335i 0.705276 0.705276i
\(63\) −8.62033 8.62033i −1.08606 1.08606i
\(64\) −21.4379 −2.67974
\(65\) 0 0
\(66\) 4.58080i 0.563858i
\(67\) 11.5883 1.41574 0.707871 0.706342i \(-0.249656\pi\)
0.707871 + 0.706342i \(0.249656\pi\)
\(68\) −2.70500 + 21.4749i −0.328029 + 2.60421i
\(69\) −1.88102 −0.226448
\(70\) 0 0
\(71\) 3.17202 + 3.17202i 0.376450 + 0.376450i 0.869820 0.493370i \(-0.164235\pi\)
−0.493370 + 0.869820i \(0.664235\pi\)
\(72\) −21.9685 −2.58902
\(73\) −5.45257 5.45257i −0.638175 0.638175i 0.311930 0.950105i \(-0.399025\pi\)
−0.950105 + 0.311930i \(0.899025\pi\)
\(74\) −6.56558 + 6.56558i −0.763234 + 0.763234i
\(75\) 0 0
\(76\) 0.242818i 0.0278531i
\(77\) 11.8107i 1.34595i
\(78\) 2.32983 2.32983i 0.263801 0.263801i
\(79\) 2.81394 2.81394i 0.316593 0.316593i −0.530864 0.847457i \(-0.678132\pi\)
0.847457 + 0.530864i \(0.178132\pi\)
\(80\) 0 0
\(81\) −4.83672 −0.537413
\(82\) −10.1369 10.1369i −1.11944 1.11944i
\(83\) 0.548920i 0.0602518i −0.999546 0.0301259i \(-0.990409\pi\)
0.999546 0.0301259i \(-0.00959083\pi\)
\(84\) 17.8270 1.94509
\(85\) 0 0
\(86\) 21.4923 2.31758
\(87\) 1.38306i 0.148279i
\(88\) 15.0495 + 15.0495i 1.60428 + 1.60428i
\(89\) 0.475447 0.0503973 0.0251986 0.999682i \(-0.491978\pi\)
0.0251986 + 0.999682i \(0.491978\pi\)
\(90\) 0 0
\(91\) 6.00699 6.00699i 0.629704 0.629704i
\(92\) −9.98323 + 9.98323i −1.04082 + 1.04082i
\(93\) 2.04007i 0.211546i
\(94\) 26.2670i 2.70923i
\(95\) 0 0
\(96\) 8.73503 8.73503i 0.891516 0.891516i
\(97\) −9.98146 9.98146i −1.01346 1.01346i −0.999908 0.0135555i \(-0.995685\pi\)
−0.0135555 0.999908i \(-0.504315\pi\)
\(98\) 44.6272 4.50803
\(99\) 4.31872 + 4.31872i 0.434047 + 0.434047i
\(100\) 0 0
\(101\) −9.72087 −0.967263 −0.483631 0.875272i \(-0.660682\pi\)
−0.483631 + 0.875272i \(0.660682\pi\)
\(102\) −4.76114 6.13343i −0.471423 0.607300i
\(103\) 0.810012 0.0798129 0.0399064 0.999203i \(-0.487294\pi\)
0.0399064 + 0.999203i \(0.487294\pi\)
\(104\) 15.3086i 1.50113i
\(105\) 0 0
\(106\) −31.0861 −3.01935
\(107\) −7.04176 7.04176i −0.680752 0.680752i 0.279417 0.960170i \(-0.409859\pi\)
−0.960170 + 0.279417i \(0.909859\pi\)
\(108\) 14.3073 14.3073i 1.37672 1.37672i
\(109\) −6.91117 + 6.91117i −0.661970 + 0.661970i −0.955844 0.293874i \(-0.905055\pi\)
0.293874 + 0.955844i \(0.405055\pi\)
\(110\) 0 0
\(111\) 2.41193i 0.228930i
\(112\) 44.8349 44.8349i 4.23650 4.23650i
\(113\) 3.27807 3.27807i 0.308375 0.308375i −0.535904 0.844279i \(-0.680029\pi\)
0.844279 + 0.535904i \(0.180029\pi\)
\(114\) −0.0615927 0.0615927i −0.00576868 0.00576868i
\(115\) 0 0
\(116\) 7.34037 + 7.34037i 0.681536 + 0.681536i
\(117\) 4.39305i 0.406138i
\(118\) −19.2188 −1.76923
\(119\) −12.2756 15.8138i −1.12531 1.44965i
\(120\) 0 0
\(121\) 5.08294i 0.462085i
\(122\) 16.5672 + 16.5672i 1.49992 + 1.49992i
\(123\) 3.72389 0.335771
\(124\) 10.8274 + 10.8274i 0.972328 + 0.972328i
\(125\) 0 0
\(126\) 23.2103 23.2103i 2.06774 2.06774i
\(127\) 10.7928i 0.957708i 0.877895 + 0.478854i \(0.158948\pi\)
−0.877895 + 0.478854i \(0.841052\pi\)
\(128\) 22.3971i 1.97964i
\(129\) −3.94770 + 3.94770i −0.347576 + 0.347576i
\(130\) 0 0
\(131\) 9.21049 + 9.21049i 0.804724 + 0.804724i 0.983830 0.179106i \(-0.0573204\pi\)
−0.179106 + 0.983830i \(0.557320\pi\)
\(132\) −8.93121 −0.777362
\(133\) −0.158805 0.158805i −0.0137701 0.0137701i
\(134\) 31.2017i 2.69541i
\(135\) 0 0
\(136\) −35.7924 4.50845i −3.06917 0.386596i
\(137\) 4.96853 0.424490 0.212245 0.977216i \(-0.431922\pi\)
0.212245 + 0.977216i \(0.431922\pi\)
\(138\) 5.06465i 0.431132i
\(139\) 1.38601 + 1.38601i 0.117560 + 0.117560i 0.763439 0.645880i \(-0.223509\pi\)
−0.645880 + 0.763439i \(0.723509\pi\)
\(140\) 0 0
\(141\) −4.82470 4.82470i −0.406313 0.406313i
\(142\) −8.54069 + 8.54069i −0.716719 + 0.716719i
\(143\) −3.00946 + 3.00946i −0.251663 + 0.251663i
\(144\) 32.7888i 2.73240i
\(145\) 0 0
\(146\) 14.6811 14.6811i 1.21501 1.21501i
\(147\) −8.19710 + 8.19710i −0.676086 + 0.676086i
\(148\) −12.8009 12.8009i −1.05223 1.05223i
\(149\) −3.47063 −0.284325 −0.142163 0.989843i \(-0.545406\pi\)
−0.142163 + 0.989843i \(0.545406\pi\)
\(150\) 0 0
\(151\) 8.04006i 0.654291i 0.944974 + 0.327146i \(0.106087\pi\)
−0.944974 + 0.327146i \(0.893913\pi\)
\(152\) −0.404706 −0.0328260
\(153\) −10.2712 1.29377i −0.830380 0.104596i
\(154\) −31.8004 −2.56255
\(155\) 0 0
\(156\) 4.54247 + 4.54247i 0.363688 + 0.363688i
\(157\) −9.48714 −0.757156 −0.378578 0.925569i \(-0.623587\pi\)
−0.378578 + 0.925569i \(0.623587\pi\)
\(158\) 7.57655 + 7.57655i 0.602758 + 0.602758i
\(159\) 5.70988 5.70988i 0.452823 0.452823i
\(160\) 0 0
\(161\) 13.0582i 1.02913i
\(162\) 13.0229i 1.02318i
\(163\) −8.48931 + 8.48931i −0.664934 + 0.664934i −0.956539 0.291605i \(-0.905811\pi\)
0.291605 + 0.956539i \(0.405811\pi\)
\(164\) 19.7640 19.7640i 1.54331 1.54331i
\(165\) 0 0
\(166\) 1.47797 0.114713
\(167\) 7.23359 + 7.23359i 0.559752 + 0.559752i 0.929237 0.369485i \(-0.120466\pi\)
−0.369485 + 0.929237i \(0.620466\pi\)
\(168\) 29.7125i 2.29237i
\(169\) −9.93874 −0.764519
\(170\) 0 0
\(171\) −0.116137 −0.00888125
\(172\) 41.9037i 3.19512i
\(173\) 1.36897 + 1.36897i 0.104081 + 0.104081i 0.757230 0.653149i \(-0.226552\pi\)
−0.653149 + 0.757230i \(0.726552\pi\)
\(174\) −3.72389 −0.282307
\(175\) 0 0
\(176\) −22.4619 + 22.4619i −1.69313 + 1.69313i
\(177\) 3.53010 3.53010i 0.265338 0.265338i
\(178\) 1.28014i 0.0959508i
\(179\) 2.16167i 0.161571i −0.996732 0.0807855i \(-0.974257\pi\)
0.996732 0.0807855i \(-0.0257429\pi\)
\(180\) 0 0
\(181\) 15.8826 15.8826i 1.18054 1.18054i 0.200938 0.979604i \(-0.435601\pi\)
0.979604 0.200938i \(-0.0643991\pi\)
\(182\) 16.1739 + 16.1739i 1.19889 + 1.19889i
\(183\) −6.08610 −0.449898
\(184\) −16.6391 16.6391i −1.22665 1.22665i
\(185\) 0 0
\(186\) −5.49291 −0.402759
\(187\) 6.15000 + 7.92260i 0.449733 + 0.579358i
\(188\) −51.2128 −3.73508
\(189\) 18.7142i 1.36126i
\(190\) 0 0
\(191\) 10.6325 0.769339 0.384669 0.923054i \(-0.374315\pi\)
0.384669 + 0.923054i \(0.374315\pi\)
\(192\) 10.6023 + 10.6023i 0.765154 + 0.765154i
\(193\) 7.66070 7.66070i 0.551429 0.551429i −0.375424 0.926853i \(-0.622503\pi\)
0.926853 + 0.375424i \(0.122503\pi\)
\(194\) 26.8751 26.8751i 1.92952 1.92952i
\(195\) 0 0
\(196\) 87.0098i 6.21499i
\(197\) −11.9582 + 11.9582i −0.851983 + 0.851983i −0.990377 0.138394i \(-0.955806\pi\)
0.138394 + 0.990377i \(0.455806\pi\)
\(198\) −11.6282 + 11.6282i −0.826378 + 0.826378i
\(199\) 12.2410 + 12.2410i 0.867738 + 0.867738i 0.992222 0.124483i \(-0.0397273\pi\)
−0.124483 + 0.992222i \(0.539727\pi\)
\(200\) 0 0
\(201\) −5.73110 5.73110i −0.404241 0.404241i
\(202\) 26.1735i 1.84156i
\(203\) −9.60130 −0.673879
\(204\) 11.9584 9.28280i 0.837253 0.649926i
\(205\) 0 0
\(206\) 2.18096i 0.151955i
\(207\) −4.77488 4.77488i −0.331877 0.331877i
\(208\) 22.8486 1.58426
\(209\) 0.0795598 + 0.0795598i 0.00550327 + 0.00550327i
\(210\) 0 0
\(211\) −13.1260 + 13.1260i −0.903632 + 0.903632i −0.995748 0.0921164i \(-0.970637\pi\)
0.0921164 + 0.995748i \(0.470637\pi\)
\(212\) 60.6087i 4.16262i
\(213\) 3.13750i 0.214978i
\(214\) 18.9600 18.9600i 1.29608 1.29608i
\(215\) 0 0
\(216\) 23.8461 + 23.8461i 1.62252 + 1.62252i
\(217\) −14.1624 −0.961404
\(218\) −18.6084 18.6084i −1.26032 1.26032i
\(219\) 5.39322i 0.364440i
\(220\) 0 0
\(221\) 0.901555 7.15741i 0.0606451 0.481460i
\(222\) 6.49412 0.435857
\(223\) 20.9166i 1.40068i 0.713808 + 0.700341i \(0.246969\pi\)
−0.713808 + 0.700341i \(0.753031\pi\)
\(224\) 60.6394 + 60.6394i 4.05164 + 4.05164i
\(225\) 0 0
\(226\) 8.82622 + 8.82622i 0.587111 + 0.587111i
\(227\) −15.5588 + 15.5588i −1.03267 + 1.03267i −0.0332266 + 0.999448i \(0.510578\pi\)
−0.999448 + 0.0332266i \(0.989422\pi\)
\(228\) 0.120087 0.120087i 0.00795298 0.00795298i
\(229\) 10.6775i 0.705589i 0.935701 + 0.352795i \(0.114769\pi\)
−0.935701 + 0.352795i \(0.885231\pi\)
\(230\) 0 0
\(231\) 5.84107 5.84107i 0.384314 0.384314i
\(232\) −12.2342 + 12.2342i −0.803218 + 0.803218i
\(233\) 10.6763 + 10.6763i 0.699426 + 0.699426i 0.964287 0.264860i \(-0.0853259\pi\)
−0.264860 + 0.964287i \(0.585326\pi\)
\(234\) 11.8283 0.773241
\(235\) 0 0
\(236\) 37.4709i 2.43915i
\(237\) −2.78331 −0.180796
\(238\) 42.5788 33.0522i 2.75997 2.14246i
\(239\) −13.2142 −0.854757 −0.427378 0.904073i \(-0.640563\pi\)
−0.427378 + 0.904073i \(0.640563\pi\)
\(240\) 0 0
\(241\) −9.00000 9.00000i −0.579741 0.579741i 0.355091 0.934832i \(-0.384450\pi\)
−0.934832 + 0.355091i \(0.884450\pi\)
\(242\) −13.6858 −0.879759
\(243\) 10.5683 + 10.5683i 0.677957 + 0.677957i
\(244\) −32.3011 + 32.3011i −2.06787 + 2.06787i
\(245\) 0 0
\(246\) 10.0266i 0.639271i
\(247\) 0.0809292i 0.00514940i
\(248\) −18.0461 + 18.0461i −1.14593 + 1.14593i
\(249\) −0.271473 + 0.271473i −0.0172039 + 0.0172039i
\(250\) 0 0
\(251\) 2.93595 0.185316 0.0926578 0.995698i \(-0.470464\pi\)
0.0926578 + 0.995698i \(0.470464\pi\)
\(252\) 45.2531 + 45.2531i 2.85068 + 2.85068i
\(253\) 6.54206i 0.411296i
\(254\) −29.0597 −1.82337
\(255\) 0 0
\(256\) 17.4284 1.08928
\(257\) 13.0537i 0.814269i −0.913368 0.407135i \(-0.866528\pi\)
0.913368 0.407135i \(-0.133472\pi\)
\(258\) −10.6292 10.6292i −0.661745 0.661745i
\(259\) 16.7438 1.04041
\(260\) 0 0
\(261\) −3.51083 + 3.51083i −0.217315 + 0.217315i
\(262\) −24.7993 + 24.7993i −1.53211 + 1.53211i
\(263\) 7.27549i 0.448626i −0.974517 0.224313i \(-0.927986\pi\)
0.974517 0.224313i \(-0.0720138\pi\)
\(264\) 14.8857i 0.916152i
\(265\) 0 0
\(266\) 0.427582 0.427582i 0.0262167 0.0262167i
\(267\) −0.235136 0.235136i −0.0143901 0.0143901i
\(268\) −60.8340 −3.71603
\(269\) −2.85304 2.85304i −0.173953 0.173953i 0.614761 0.788714i \(-0.289253\pi\)
−0.788714 + 0.614761i \(0.789253\pi\)
\(270\) 0 0
\(271\) 25.4636 1.54680 0.773401 0.633918i \(-0.218554\pi\)
0.773401 + 0.633918i \(0.218554\pi\)
\(272\) 6.72901 53.4214i 0.408006 3.23915i
\(273\) −5.94161 −0.359603
\(274\) 13.3778i 0.808182i
\(275\) 0 0
\(276\) 9.87457 0.594379
\(277\) −5.33909 5.33909i −0.320795 0.320795i 0.528277 0.849072i \(-0.322838\pi\)
−0.849072 + 0.528277i \(0.822838\pi\)
\(278\) −3.73183 + 3.73183i −0.223820 + 0.223820i
\(279\) −5.17863 + 5.17863i −0.310037 + 0.310037i
\(280\) 0 0
\(281\) 6.24956i 0.372818i 0.982472 + 0.186409i \(0.0596849\pi\)
−0.982472 + 0.186409i \(0.940315\pi\)
\(282\) 12.9905 12.9905i 0.773575 0.773575i
\(283\) 13.6812 13.6812i 0.813260 0.813260i −0.171861 0.985121i \(-0.554978\pi\)
0.985121 + 0.171861i \(0.0549781\pi\)
\(284\) −16.6518 16.6518i −0.988103 0.988103i
\(285\) 0 0
\(286\) −8.10298 8.10298i −0.479139 0.479139i
\(287\) 25.8516i 1.52597i
\(288\) 44.3470 2.61317
\(289\) −16.4690 4.21579i −0.968763 0.247987i
\(290\) 0 0
\(291\) 9.87282i 0.578755i
\(292\) 28.6237 + 28.6237i 1.67508 + 1.67508i
\(293\) 28.6474 1.67360 0.836801 0.547508i \(-0.184423\pi\)
0.836801 + 0.547508i \(0.184423\pi\)
\(294\) −22.0707 22.0707i −1.28719 1.28719i
\(295\) 0 0
\(296\) 21.3354 21.3354i 1.24010 1.24010i
\(297\) 9.37566i 0.544031i
\(298\) 9.34470i 0.541324i
\(299\) 3.32733 3.32733i 0.192425 0.192425i
\(300\) 0 0
\(301\) −27.4053 27.4053i −1.57961 1.57961i
\(302\) −21.6479 −1.24570
\(303\) 4.80753 + 4.80753i 0.276186 + 0.276186i
\(304\) 0.604039i 0.0346440i
\(305\) 0 0
\(306\) 3.48350 27.6554i 0.199138 1.58095i
\(307\) 16.8718 0.962922 0.481461 0.876468i \(-0.340106\pi\)
0.481461 + 0.876468i \(0.340106\pi\)
\(308\) 62.0012i 3.53285i
\(309\) −0.400598 0.400598i −0.0227892 0.0227892i
\(310\) 0 0
\(311\) 3.26758 + 3.26758i 0.185288 + 0.185288i 0.793655 0.608368i \(-0.208175\pi\)
−0.608368 + 0.793655i \(0.708175\pi\)
\(312\) −7.57097 + 7.57097i −0.428622 + 0.428622i
\(313\) −6.96224 + 6.96224i −0.393529 + 0.393529i −0.875943 0.482414i \(-0.839760\pi\)
0.482414 + 0.875943i \(0.339760\pi\)
\(314\) 25.5442i 1.44154i
\(315\) 0 0
\(316\) −14.7720 + 14.7720i −0.830991 + 0.830991i
\(317\) 20.9932 20.9932i 1.17910 1.17910i 0.199123 0.979974i \(-0.436191\pi\)
0.979974 0.199123i \(-0.0638094\pi\)
\(318\) 15.3739 + 15.3739i 0.862124 + 0.862124i
\(319\) 4.81017 0.269318
\(320\) 0 0
\(321\) 6.96511i 0.388755i
\(322\) 35.1593 1.95935
\(323\) −0.189218 0.0238340i −0.0105284 0.00132616i
\(324\) 25.3908 1.41060
\(325\) 0 0
\(326\) −22.8575 22.8575i −1.26596 1.26596i
\(327\) 6.83595 0.378029
\(328\) 32.9408 + 32.9408i 1.81885 + 1.81885i
\(329\) 33.4935 33.4935i 1.84656 1.84656i
\(330\) 0 0
\(331\) 15.8142i 0.869227i 0.900617 + 0.434614i \(0.143115\pi\)
−0.900617 + 0.434614i \(0.856885\pi\)
\(332\) 2.88160i 0.158149i
\(333\) 6.12256 6.12256i 0.335514 0.335514i
\(334\) −19.4765 + 19.4765i −1.06571 + 1.06571i
\(335\) 0 0
\(336\) −44.3469 −2.41932
\(337\) −21.2541 21.2541i −1.15779 1.15779i −0.984951 0.172837i \(-0.944707\pi\)
−0.172837 0.984951i \(-0.555293\pi\)
\(338\) 26.7601i 1.45556i
\(339\) −3.24239 −0.176102
\(340\) 0 0
\(341\) 7.09523 0.384228
\(342\) 0.312701i 0.0169089i
\(343\) −32.8722 32.8722i −1.77493 1.77493i
\(344\) −69.8412 −3.76558
\(345\) 0 0
\(346\) −3.68596 + 3.68596i −0.198158 + 0.198158i
\(347\) 17.9011 17.9011i 0.960982 0.960982i −0.0382850 0.999267i \(-0.512189\pi\)
0.999267 + 0.0382850i \(0.0121895\pi\)
\(348\) 7.26047i 0.389202i
\(349\) 2.52854i 0.135349i −0.997707 0.0676747i \(-0.978442\pi\)
0.997707 0.0676747i \(-0.0215580\pi\)
\(350\) 0 0
\(351\) −4.76852 + 4.76852i −0.254525 + 0.254525i
\(352\) −30.3798 30.3798i −1.61925 1.61925i
\(353\) 0.839563 0.0446854 0.0223427 0.999750i \(-0.492888\pi\)
0.0223427 + 0.999750i \(0.492888\pi\)
\(354\) 9.50480 + 9.50480i 0.505175 + 0.505175i
\(355\) 0 0
\(356\) −2.49590 −0.132282
\(357\) −1.74983 + 13.8919i −0.0926110 + 0.735235i
\(358\) 5.82032 0.307613
\(359\) 14.0641i 0.742276i 0.928578 + 0.371138i \(0.121032\pi\)
−0.928578 + 0.371138i \(0.878968\pi\)
\(360\) 0 0
\(361\) 18.9979 0.999887
\(362\) 42.7639 + 42.7639i 2.24762 + 2.24762i
\(363\) 2.51381 2.51381i 0.131941 0.131941i
\(364\) −31.5342 + 31.5342i −1.65284 + 1.65284i
\(365\) 0 0
\(366\) 16.3869i 0.856555i
\(367\) 19.4035 19.4035i 1.01286 1.01286i 0.0129403 0.999916i \(-0.495881\pi\)
0.999916 0.0129403i \(-0.00411913\pi\)
\(368\) 24.8345 24.8345i 1.29459 1.29459i
\(369\) 9.45292 + 9.45292i 0.492099 + 0.492099i
\(370\) 0 0
\(371\) 39.6385 + 39.6385i 2.05793 + 2.05793i
\(372\) 10.7095i 0.555264i
\(373\) −0.812952 −0.0420931 −0.0210465 0.999778i \(-0.506700\pi\)
−0.0210465 + 0.999778i \(0.506700\pi\)
\(374\) −21.3316 + 16.5589i −1.10303 + 0.856241i
\(375\) 0 0
\(376\) 85.3568i 4.40194i
\(377\) −2.44649 2.44649i −0.126000 0.126000i
\(378\) −50.3880 −2.59168
\(379\) 17.6119 + 17.6119i 0.904665 + 0.904665i 0.995835 0.0911706i \(-0.0290608\pi\)
−0.0911706 + 0.995835i \(0.529061\pi\)
\(380\) 0 0
\(381\) 5.33767 5.33767i 0.273457 0.273457i
\(382\) 28.6280i 1.46474i
\(383\) 14.9723i 0.765050i 0.923945 + 0.382525i \(0.124945\pi\)
−0.923945 + 0.382525i \(0.875055\pi\)
\(384\) −11.0766 + 11.0766i −0.565253 + 0.565253i
\(385\) 0 0
\(386\) 20.6265 + 20.6265i 1.04986 + 1.04986i
\(387\) −20.0421 −1.01880
\(388\) 52.3985 + 52.3985i 2.66013 + 2.66013i
\(389\) 3.25025i 0.164794i −0.996600 0.0823970i \(-0.973742\pi\)
0.996600 0.0823970i \(-0.0262575\pi\)
\(390\) 0 0
\(391\) −6.79960 8.75943i −0.343870 0.442983i
\(392\) −145.020 −7.32462
\(393\) 9.11024i 0.459551i
\(394\) −32.1974 32.1974i −1.62208 1.62208i
\(395\) 0 0
\(396\) −22.6715 22.6715i −1.13928 1.13928i
\(397\) 4.23535 4.23535i 0.212566 0.212566i −0.592790 0.805357i \(-0.701974\pi\)
0.805357 + 0.592790i \(0.201974\pi\)
\(398\) −32.9588 + 32.9588i −1.65208 + 1.65208i
\(399\) 0.157076i 0.00786364i
\(400\) 0 0
\(401\) −17.7838 + 17.7838i −0.888079 + 0.888079i −0.994338 0.106259i \(-0.966113\pi\)
0.106259 + 0.994338i \(0.466113\pi\)
\(402\) 15.4310 15.4310i 0.769630 0.769630i
\(403\) −3.60868 3.60868i −0.179761 0.179761i
\(404\) 51.0305 2.53886
\(405\) 0 0
\(406\) 25.8516i 1.28299i
\(407\) −8.38851 −0.415803
\(408\) 15.4717 + 19.9311i 0.765964 + 0.986736i
\(409\) 26.1116 1.29113 0.645567 0.763704i \(-0.276621\pi\)
0.645567 + 0.763704i \(0.276621\pi\)
\(410\) 0 0
\(411\) −2.45723 2.45723i −0.121206 0.121206i
\(412\) −4.25223 −0.209492
\(413\) 24.5062 + 24.5062i 1.20587 + 1.20587i
\(414\) 12.8564 12.8564i 0.631857 0.631857i
\(415\) 0 0
\(416\) 30.9028i 1.51513i
\(417\) 1.37092i 0.0671343i
\(418\) −0.214215 + 0.214215i −0.0104776 + 0.0104776i
\(419\) −12.2813 + 12.2813i −0.599981 + 0.599981i −0.940307 0.340326i \(-0.889462\pi\)
0.340326 + 0.940307i \(0.389462\pi\)
\(420\) 0 0
\(421\) −1.60876 −0.0784063 −0.0392032 0.999231i \(-0.512482\pi\)
−0.0392032 + 0.999231i \(0.512482\pi\)
\(422\) −35.3419 35.3419i −1.72041 1.72041i
\(423\) 24.4946i 1.19097i
\(424\) 101.017 4.90582
\(425\) 0 0
\(426\) 8.44773 0.409294
\(427\) 42.2503i 2.04463i
\(428\) 36.9663 + 36.9663i 1.78683 + 1.78683i
\(429\) 2.97670 0.143716
\(430\) 0 0
\(431\) −19.6629 + 19.6629i −0.947128 + 0.947128i −0.998671 0.0515425i \(-0.983586\pi\)
0.0515425 + 0.998671i \(0.483586\pi\)
\(432\) −35.5912 + 35.5912i −1.71238 + 1.71238i
\(433\) 32.7970i 1.57613i 0.615595 + 0.788063i \(0.288916\pi\)
−0.615595 + 0.788063i \(0.711084\pi\)
\(434\) 38.1323i 1.83041i
\(435\) 0 0
\(436\) 36.2808 36.2808i 1.73754 1.73754i
\(437\) −0.0879634 0.0879634i −0.00420786 0.00420786i
\(438\) −14.5213 −0.693854
\(439\) 14.9000 + 14.9000i 0.711136 + 0.711136i 0.966773 0.255637i \(-0.0822851\pi\)
−0.255637 + 0.966773i \(0.582285\pi\)
\(440\) 0 0
\(441\) −41.6160 −1.98171
\(442\) 19.2714 + 2.42744i 0.916646 + 0.115462i
\(443\) 21.4940 1.02121 0.510605 0.859815i \(-0.329421\pi\)
0.510605 + 0.859815i \(0.329421\pi\)
\(444\) 12.6616i 0.600893i
\(445\) 0 0
\(446\) −56.3182 −2.66674
\(447\) 1.71643 + 1.71643i 0.0811843 + 0.0811843i
\(448\) −73.6020 + 73.6020i −3.47737 + 3.47737i
\(449\) −17.6314 + 17.6314i −0.832079 + 0.832079i −0.987801 0.155722i \(-0.950230\pi\)
0.155722 + 0.987801i \(0.450230\pi\)
\(450\) 0 0
\(451\) 12.9514i 0.609859i
\(452\) −17.2085 + 17.2085i −0.809420 + 0.809420i
\(453\) 3.97628 3.97628i 0.186822 0.186822i
\(454\) −41.8922 41.8922i −1.96610 1.96610i
\(455\) 0 0
\(456\) 0.200151 + 0.200151i 0.00937292 + 0.00937292i
\(457\) 11.3434i 0.530621i 0.964163 + 0.265311i \(0.0854745\pi\)
−0.964163 + 0.265311i \(0.914526\pi\)
\(458\) −28.7492 −1.34336
\(459\) 9.74475 + 12.5535i 0.454846 + 0.585945i
\(460\) 0 0
\(461\) 40.5169i 1.88706i 0.331287 + 0.943530i \(0.392517\pi\)
−0.331287 + 0.943530i \(0.607483\pi\)
\(462\) 15.7271 + 15.7271i 0.731691 + 0.731691i
\(463\) −6.91009 −0.321139 −0.160570 0.987025i \(-0.551333\pi\)
−0.160570 + 0.987025i \(0.551333\pi\)
\(464\) −18.2600 18.2600i −0.847701 0.847701i
\(465\) 0 0
\(466\) −28.7459 + 28.7459i −1.33163 + 1.33163i
\(467\) 13.1768i 0.609748i −0.952393 0.304874i \(-0.901386\pi\)
0.952393 0.304874i \(-0.0986144\pi\)
\(468\) 23.0617i 1.06603i
\(469\) 39.7858 39.7858i 1.83714 1.83714i
\(470\) 0 0
\(471\) 4.69194 + 4.69194i 0.216193 + 0.216193i
\(472\) 62.4531 2.87464
\(473\) 13.7298 + 13.7298i 0.631298 + 0.631298i
\(474\) 7.49408i 0.344215i
\(475\) 0 0
\(476\) 64.4420 + 83.0160i 2.95370 + 3.80503i
\(477\) 28.9885 1.32729
\(478\) 35.5793i 1.62736i
\(479\) −28.7306 28.7306i −1.31273 1.31273i −0.919392 0.393342i \(-0.871319\pi\)
−0.393342 0.919392i \(-0.628681\pi\)
\(480\) 0 0
\(481\) 4.26645 + 4.26645i 0.194533 + 0.194533i
\(482\) 24.2325 24.2325i 1.10376 1.10376i
\(483\) −6.45804 + 6.45804i −0.293851 + 0.293851i
\(484\) 26.6833i 1.21288i
\(485\) 0 0
\(486\) −28.4552 + 28.4552i −1.29075 + 1.29075i
\(487\) 0.328023 0.328023i 0.0148641 0.0148641i −0.699636 0.714500i \(-0.746654\pi\)
0.714500 + 0.699636i \(0.246654\pi\)
\(488\) −53.8365 53.8365i −2.43706 2.43706i
\(489\) 8.39691 0.379721
\(490\) 0 0
\(491\) 27.4036i 1.23670i −0.785901 0.618352i \(-0.787800\pi\)
0.785901 0.618352i \(-0.212200\pi\)
\(492\) −19.5489 −0.881330
\(493\) −6.44054 + 4.99954i −0.290067 + 0.225168i
\(494\) 0.217902 0.00980389
\(495\) 0 0
\(496\) −26.9344 26.9344i −1.20939 1.20939i
\(497\) 21.7808 0.977002
\(498\) −0.730942 0.730942i −0.0327543 0.0327543i
\(499\) 11.2441 11.2441i 0.503355 0.503355i −0.409124 0.912479i \(-0.634166\pi\)
0.912479 + 0.409124i \(0.134166\pi\)
\(500\) 0 0
\(501\) 7.15485i 0.319655i
\(502\) 7.90507i 0.352820i
\(503\) 31.0421 31.0421i 1.38410 1.38410i 0.546908 0.837193i \(-0.315805\pi\)
0.837193 0.546908i \(-0.184195\pi\)
\(504\) −75.4238 + 75.4238i −3.35964 + 3.35964i
\(505\) 0 0
\(506\) −17.6145 −0.783061
\(507\) 4.91528 + 4.91528i 0.218295 + 0.218295i
\(508\) 56.6578i 2.51378i
\(509\) −31.6453 −1.40265 −0.701326 0.712841i \(-0.747408\pi\)
−0.701326 + 0.712841i \(0.747408\pi\)
\(510\) 0 0
\(511\) −37.4402 −1.65626
\(512\) 2.13198i 0.0942212i
\(513\) 0.126063 + 0.126063i 0.00556584 + 0.00556584i
\(514\) 35.1472 1.55028
\(515\) 0 0
\(516\) 20.7238 20.7238i 0.912314 0.912314i
\(517\) −16.7800 + 16.7800i −0.737983 + 0.737983i
\(518\) 45.0828i 1.98082i
\(519\) 1.35407i 0.0594370i
\(520\) 0 0
\(521\) −1.22346 + 1.22346i −0.0536006 + 0.0536006i −0.733399 0.679798i \(-0.762067\pi\)
0.679798 + 0.733399i \(0.262067\pi\)
\(522\) −9.45292 9.45292i −0.413743 0.413743i
\(523\) −19.9906 −0.874130 −0.437065 0.899430i \(-0.643982\pi\)
−0.437065 + 0.899430i \(0.643982\pi\)
\(524\) −48.3512 48.3512i −2.11223 2.11223i
\(525\) 0 0
\(526\) 19.5893 0.854134
\(527\) −9.50010 + 7.37455i −0.413831 + 0.321241i
\(528\) 22.2175 0.966890
\(529\) 15.7669i 0.685519i
\(530\) 0 0
\(531\) 17.9220 0.777748
\(532\) 0.833658 + 0.833658i 0.0361437 + 0.0361437i
\(533\) −6.58717 + 6.58717i −0.285322 + 0.285322i
\(534\) 0.633105 0.633105i 0.0273971 0.0273971i
\(535\) 0 0
\(536\) 101.392i 4.37949i
\(537\) −1.06907 + 1.06907i −0.0461339 + 0.0461339i
\(538\) 7.68182 7.68182i 0.331187 0.331187i
\(539\) 28.5090 + 28.5090i 1.22797 + 1.22797i
\(540\) 0 0
\(541\) −2.66470 2.66470i −0.114564 0.114564i 0.647501 0.762065i \(-0.275814\pi\)
−0.762065 + 0.647501i \(0.775814\pi\)
\(542\) 68.5608i 2.94494i
\(543\) −15.7097 −0.674168
\(544\) 72.2526 + 9.10101i 3.09781 + 0.390203i
\(545\) 0 0
\(546\) 15.9978i 0.684643i
\(547\) 4.16866 + 4.16866i 0.178239 + 0.178239i 0.790588 0.612349i \(-0.209775\pi\)
−0.612349 + 0.790588i \(0.709775\pi\)
\(548\) −26.0827 −1.11420
\(549\) −15.4493 15.4493i −0.659360 0.659360i
\(550\) 0 0
\(551\) −0.0646768 + 0.0646768i −0.00275532 + 0.00275532i
\(552\) 16.4580i 0.700500i
\(553\) 19.3220i 0.821655i
\(554\) 14.3755 14.3755i 0.610758 0.610758i
\(555\) 0 0
\(556\) −7.27596 7.27596i −0.308569 0.308569i
\(557\) −15.3775 −0.651564 −0.325782 0.945445i \(-0.605627\pi\)
−0.325782 + 0.945445i \(0.605627\pi\)
\(558\) −13.9435 13.9435i −0.590275 0.590275i
\(559\) 13.9662i 0.590705i
\(560\) 0 0
\(561\) 0.876652 6.95971i 0.0370123 0.293839i
\(562\) −16.8270 −0.709803
\(563\) 35.0604i 1.47762i 0.673915 + 0.738809i \(0.264611\pi\)
−0.673915 + 0.738809i \(0.735389\pi\)
\(564\) 25.3277 + 25.3277i 1.06649 + 1.06649i
\(565\) 0 0
\(566\) 36.8366 + 36.8366i 1.54836 + 1.54836i
\(567\) −16.6057 + 16.6057i −0.697375 + 0.697375i
\(568\) 27.7537 27.7537i 1.16452 1.16452i
\(569\) 11.0645i 0.463849i 0.972734 + 0.231925i \(0.0745023\pi\)
−0.972734 + 0.231925i \(0.925498\pi\)
\(570\) 0 0
\(571\) 25.0574 25.0574i 1.04862 1.04862i 0.0498615 0.998756i \(-0.484122\pi\)
0.998756 0.0498615i \(-0.0158780\pi\)
\(572\) 15.7984 15.7984i 0.660564 0.660564i
\(573\) −5.25837 5.25837i −0.219672 0.219672i
\(574\) −69.6054 −2.90527
\(575\) 0 0
\(576\) 53.8269i 2.24279i
\(577\) 11.6539 0.485158 0.242579 0.970132i \(-0.422007\pi\)
0.242579 + 0.970132i \(0.422007\pi\)
\(578\) 11.3510 44.3428i 0.472140 1.84442i
\(579\) −7.57732 −0.314903
\(580\) 0 0
\(581\) −1.88459 1.88459i −0.0781859 0.0781859i
\(582\) −26.5826 −1.10188
\(583\) −19.8586 19.8586i −0.822458 0.822458i
\(584\) −47.7074 + 47.7074i −1.97415 + 1.97415i
\(585\) 0 0
\(586\) 77.1334i 3.18635i
\(587\) 20.1225i 0.830545i −0.909697 0.415273i \(-0.863686\pi\)
0.909697 0.415273i \(-0.136314\pi\)
\(588\) 43.0314 43.0314i 1.77458 1.77458i
\(589\) −0.0954013 + 0.0954013i −0.00393094 + 0.00393094i
\(590\) 0 0
\(591\) 11.8280 0.486539
\(592\) 31.8439 + 31.8439i 1.30878 + 1.30878i
\(593\) 24.0516i 0.987682i 0.869552 + 0.493841i \(0.164407\pi\)
−0.869552 + 0.493841i \(0.835593\pi\)
\(594\) 25.2440 1.03577
\(595\) 0 0
\(596\) 18.2194 0.746295
\(597\) 12.1077i 0.495536i
\(598\) 8.95886 + 8.95886i 0.366355 + 0.366355i
\(599\) −6.59301 −0.269383 −0.134691 0.990888i \(-0.543004\pi\)
−0.134691 + 0.990888i \(0.543004\pi\)
\(600\) 0 0
\(601\) 17.8567 17.8567i 0.728391 0.728391i −0.241908 0.970299i \(-0.577773\pi\)
0.970299 + 0.241908i \(0.0777733\pi\)
\(602\) 73.7889 73.7889i 3.00741 3.00741i
\(603\) 29.0963i 1.18489i
\(604\) 42.2070i 1.71738i
\(605\) 0 0
\(606\) −12.9443 + 12.9443i −0.525826 + 0.525826i
\(607\) 20.7247 + 20.7247i 0.841191 + 0.841191i 0.989014 0.147823i \(-0.0472267\pi\)
−0.147823 + 0.989014i \(0.547227\pi\)
\(608\) 0.816964 0.0331323
\(609\) 4.74840 + 4.74840i 0.192415 + 0.192415i
\(610\) 0 0
\(611\) 17.0688 0.690530
\(612\) 53.9197 + 6.79178i 2.17958 + 0.274542i
\(613\) −42.5066 −1.71682 −0.858412 0.512961i \(-0.828549\pi\)
−0.858412 + 0.512961i \(0.828549\pi\)
\(614\) 45.4273i 1.83330i
\(615\) 0 0
\(616\) 103.338 4.16361
\(617\) 11.6869 + 11.6869i 0.470497 + 0.470497i 0.902075 0.431579i \(-0.142043\pi\)
−0.431579 + 0.902075i \(0.642043\pi\)
\(618\) 1.07861 1.07861i 0.0433881 0.0433881i
\(619\) 0.136058 0.136058i 0.00546862 0.00546862i −0.704367 0.709836i \(-0.748769\pi\)
0.709836 + 0.704367i \(0.248769\pi\)
\(620\) 0 0
\(621\) 10.3660i 0.415972i
\(622\) −8.79798 + 8.79798i −0.352767 + 0.352767i
\(623\) 1.63233 1.63233i 0.0653981 0.0653981i
\(624\) −11.2999 11.2999i −0.452359 0.452359i
\(625\) 0 0
\(626\) −18.7459 18.7459i −0.749236 0.749236i
\(627\) 0.0786938i 0.00314273i
\(628\) 49.8035 1.98738
\(629\) 11.2317 8.71874i 0.447838 0.347639i
\(630\) 0 0
\(631\) 29.7771i 1.18541i −0.805420 0.592704i \(-0.798060\pi\)
0.805420 0.592704i \(-0.201940\pi\)
\(632\) −24.6206 24.6206i −0.979357 0.979357i
\(633\) 12.9831 0.516034
\(634\) 56.5244 + 56.5244i 2.24487 + 2.24487i
\(635\) 0 0
\(636\) −29.9745 + 29.9745i −1.18857 + 1.18857i
\(637\) 28.9997i 1.14901i
\(638\) 12.9514i 0.512752i
\(639\) 7.96440 7.96440i 0.315067 0.315067i
\(640\) 0 0
\(641\) −32.2217 32.2217i −1.27268 1.27268i −0.944676 0.328004i \(-0.893624\pi\)
−0.328004 0.944676i \(-0.606376\pi\)
\(642\) −18.7536 −0.740145
\(643\) 27.3260 + 27.3260i 1.07763 + 1.07763i 0.996721 + 0.0809091i \(0.0257824\pi\)
0.0809091 + 0.996721i \(0.474218\pi\)
\(644\) 68.5502i 2.70125i
\(645\) 0 0
\(646\) 0.0641733 0.509470i 0.00252486 0.0200448i
\(647\) −5.31423 −0.208924 −0.104462 0.994529i \(-0.533312\pi\)
−0.104462 + 0.994529i \(0.533312\pi\)
\(648\) 42.3190i 1.66245i
\(649\) −12.2774 12.2774i −0.481931 0.481931i
\(650\) 0 0
\(651\) 7.00411 + 7.00411i 0.274513 + 0.274513i
\(652\) 44.5654 44.5654i 1.74531 1.74531i
\(653\) 22.6305 22.6305i 0.885600 0.885600i −0.108497 0.994097i \(-0.534604\pi\)
0.994097 + 0.108497i \(0.0346037\pi\)
\(654\) 18.4058i 0.719725i
\(655\) 0 0
\(656\) −49.1653 + 49.1653i −1.91958 + 1.91958i
\(657\) −13.6905 + 13.6905i −0.534115 + 0.534115i
\(658\) 90.1815 + 90.1815i 3.51564 + 3.51564i
\(659\) 35.5696 1.38559 0.692797 0.721133i \(-0.256378\pi\)
0.692797 + 0.721133i \(0.256378\pi\)
\(660\) 0 0
\(661\) 30.2779i 1.17767i 0.808252 + 0.588837i \(0.200414\pi\)
−0.808252 + 0.588837i \(0.799586\pi\)
\(662\) −42.5798 −1.65491
\(663\) −3.98562 + 3.09388i −0.154789 + 0.120156i
\(664\) −4.80279 −0.186385
\(665\) 0 0
\(666\) 16.4850 + 16.4850i 0.638782 + 0.638782i
\(667\) −5.31825 −0.205924
\(668\) −37.9733 37.9733i −1.46923 1.46923i
\(669\) 10.3445 10.3445i 0.399941 0.399941i
\(670\) 0 0
\(671\) 21.1671i 0.817145i
\(672\) 59.9794i 2.31375i
\(673\) 6.13959 6.13959i 0.236664 0.236664i −0.578803 0.815467i \(-0.696480\pi\)
0.815467 + 0.578803i \(0.196480\pi\)
\(674\) 57.2269 57.2269i 2.20430 2.20430i
\(675\) 0 0
\(676\) 52.1743 2.00670
\(677\) −17.7950 17.7950i −0.683919 0.683919i 0.276962 0.960881i \(-0.410672\pi\)
−0.960881 + 0.276962i \(0.910672\pi\)
\(678\) 8.73015i 0.335279i
\(679\) −68.5380 −2.63025
\(680\) 0 0
\(681\) 15.3895 0.589725
\(682\) 19.1040i 0.731528i
\(683\) −17.2763 17.2763i −0.661058 0.661058i 0.294571 0.955629i \(-0.404823\pi\)
−0.955629 + 0.294571i \(0.904823\pi\)
\(684\) 0.609673 0.0233114
\(685\) 0 0
\(686\) 88.5085 88.5085i 3.37927 3.37927i
\(687\) 5.28064 5.28064i 0.201469 0.201469i
\(688\) 104.240i 3.97413i
\(689\) 20.2004i 0.769574i
\(690\) 0 0
\(691\) −13.6051 + 13.6051i −0.517563 + 0.517563i −0.916833 0.399270i \(-0.869264\pi\)
0.399270 + 0.916833i \(0.369264\pi\)
\(692\) −7.18652 7.18652i −0.273190 0.273190i
\(693\) 29.6546 1.12648
\(694\) 48.1988 + 48.1988i 1.82960 + 1.82960i
\(695\) 0 0
\(696\) 12.1011 0.458690
\(697\) 13.4613 + 17.3412i 0.509882 + 0.656844i
\(698\) 6.80809 0.257690
\(699\) 10.5601i 0.399419i
\(700\) 0 0
\(701\) −8.54696 −0.322814 −0.161407 0.986888i \(-0.551603\pi\)
−0.161407 + 0.986888i \(0.551603\pi\)
\(702\) −12.8393 12.8393i −0.484587 0.484587i
\(703\) 0.112790 0.112790i 0.00425397 0.00425397i
\(704\) 36.8740 36.8740i 1.38974 1.38974i
\(705\) 0 0
\(706\) 2.26053i 0.0850761i
\(707\) −33.3743 + 33.3743i −1.25517 + 1.25517i
\(708\) −18.5315 + 18.5315i −0.696458 + 0.696458i
\(709\) −9.78887 9.78887i −0.367629 0.367629i 0.498983 0.866612i \(-0.333707\pi\)
−0.866612 + 0.498983i \(0.833707\pi\)
\(710\) 0 0
\(711\) −7.06531 7.06531i −0.264970 0.264970i
\(712\) 4.15993i 0.155900i
\(713\) −7.84467 −0.293785
\(714\) −37.4039 4.71143i −1.39981 0.176321i
\(715\) 0 0
\(716\) 11.3479i 0.424091i
\(717\) 6.53519 + 6.53519i 0.244061 + 0.244061i
\(718\) −37.8677 −1.41321
\(719\) −14.0445 14.0445i −0.523771 0.523771i 0.394937 0.918708i \(-0.370766\pi\)
−0.918708 + 0.394937i \(0.870766\pi\)
\(720\) 0 0
\(721\) 2.78099 2.78099i 0.103569 0.103569i
\(722\) 51.1518i 1.90367i
\(723\) 8.90204i 0.331070i
\(724\) −83.3769 + 83.3769i −3.09868 + 3.09868i
\(725\) 0 0
\(726\) 6.76844 + 6.76844i 0.251200 + 0.251200i
\(727\) 7.72932 0.286665 0.143332 0.989675i \(-0.454218\pi\)
0.143332 + 0.989675i \(0.454218\pi\)
\(728\) −52.5583 52.5583i −1.94794 1.94794i
\(729\) 4.05689i 0.150255i
\(730\) 0 0
\(731\) −32.6538 4.11310i −1.20774 0.152129i
\(732\) 31.9495 1.18089
\(733\) 12.9264i 0.477449i 0.971087 + 0.238724i \(0.0767292\pi\)
−0.971087 + 0.238724i \(0.923271\pi\)
\(734\) 52.2441 + 52.2441i 1.92837 + 1.92837i
\(735\) 0 0
\(736\) 33.5887 + 33.5887i 1.23810 + 1.23810i
\(737\) −19.9324 + 19.9324i −0.734219 + 0.734219i
\(738\) −25.4520 + 25.4520i −0.936902 + 0.936902i
\(739\) 24.2516i 0.892111i 0.895005 + 0.446056i \(0.147172\pi\)
−0.895005 + 0.446056i \(0.852828\pi\)
\(740\) 0 0
\(741\) −0.0400242 + 0.0400242i −0.00147032 + 0.00147032i
\(742\) −106.727 + 106.727i −3.91807 + 3.91807i
\(743\) −25.2324 25.2324i −0.925688 0.925688i 0.0717353 0.997424i \(-0.477146\pi\)
−0.997424 + 0.0717353i \(0.977146\pi\)
\(744\) 17.8497 0.654401
\(745\) 0 0
\(746\) 2.18888i 0.0801405i
\(747\) −1.37824 −0.0504273
\(748\) −32.2850 41.5904i −1.18045 1.52069i
\(749\) −48.3524 −1.76676
\(750\) 0 0
\(751\) −6.25068 6.25068i −0.228091 0.228091i 0.583804 0.811895i \(-0.301564\pi\)
−0.811895 + 0.583804i \(0.801564\pi\)
\(752\) 127.398 4.64573
\(753\) −1.45200 1.45200i −0.0529137 0.0529137i
\(754\) 6.58717 6.58717i 0.239891 0.239891i
\(755\) 0 0
\(756\) 98.2417i 3.57302i
\(757\) 7.60186i 0.276294i −0.990412 0.138147i \(-0.955885\pi\)
0.990412 0.138147i \(-0.0441147\pi\)
\(758\) −47.4203 + 47.4203i −1.72238 + 1.72238i
\(759\) 3.23542 3.23542i 0.117438 0.117438i
\(760\) 0 0
\(761\) 21.7693 0.789136 0.394568 0.918867i \(-0.370894\pi\)
0.394568 + 0.918867i \(0.370894\pi\)
\(762\) 14.3717 + 14.3717i 0.520632 + 0.520632i
\(763\) 47.4558i 1.71801i
\(764\) −55.8161 −2.01935
\(765\) 0 0
\(766\) −40.3130 −1.45657
\(767\) 12.4888i 0.450943i
\(768\) −8.61937 8.61937i −0.311025 0.311025i
\(769\) −41.1671 −1.48452 −0.742262 0.670110i \(-0.766247\pi\)
−0.742262 + 0.670110i \(0.766247\pi\)
\(770\) 0 0
\(771\) −6.45582 + 6.45582i −0.232501 + 0.232501i
\(772\) −40.2155 + 40.2155i −1.44739 + 1.44739i
\(773\) 5.37164i 0.193204i −0.995323 0.0966022i \(-0.969203\pi\)
0.995323 0.0966022i \(-0.0307975\pi\)
\(774\) 53.9635i 1.93968i
\(775\) 0 0
\(776\) −87.3330 + 87.3330i −3.13507 + 3.13507i
\(777\) −8.28078 8.28078i −0.297071 0.297071i
\(778\) 8.75130 0.313749
\(779\) 0.174143 + 0.174143i 0.00623930 + 0.00623930i
\(780\) 0 0
\(781\) −10.9120 −0.390462
\(782\) 23.5848 18.3080i 0.843391 0.654691i
\(783\) 7.62178 0.272380
\(784\) 216.447i 7.73027i
\(785\) 0 0
\(786\) 24.5294 0.874933
\(787\) −17.5629 17.5629i −0.626050 0.626050i 0.321021 0.947072i \(-0.395974\pi\)
−0.947072 + 0.321021i \(0.895974\pi\)
\(788\) 62.7753 62.7753i 2.23628 2.23628i
\(789\) −3.59815 + 3.59815i −0.128098 + 0.128098i
\(790\) 0 0
\(791\) 22.5090i 0.800327i
\(792\) 37.7867 37.7867i 1.34269 1.34269i
\(793\) 10.7657 10.7657i 0.382301 0.382301i
\(794\) 11.4037 + 11.4037i 0.404703 + 0.404703i
\(795\) 0 0
\(796\) −64.2599 64.2599i −2.27763 2.27763i
\(797\) 8.73114i 0.309273i −0.987971 0.154636i \(-0.950579\pi\)
0.987971 0.154636i \(-0.0494206\pi\)
\(798\) −0.422928 −0.0149715
\(799\) 5.02685 39.9080i 0.177837 1.41184i
\(800\) 0 0
\(801\) 1.19376i 0.0421796i
\(802\) −47.8829 47.8829i −1.69080 1.69080i
\(803\) 18.7573 0.661929
\(804\) 30.0859 + 30.0859i 1.06105 + 1.06105i
\(805\) 0 0
\(806\) 9.71639 9.71639i 0.342245 0.342245i
\(807\) 2.82198i 0.0993386i
\(808\) 85.0530i 2.99215i
\(809\) −28.3946 + 28.3946i −0.998302 + 0.998302i −0.999999 0.00169682i \(-0.999460\pi\)
0.00169682 + 0.999999i \(0.499460\pi\)
\(810\) 0 0
\(811\) 22.0825 + 22.0825i 0.775423 + 0.775423i 0.979049 0.203626i \(-0.0652727\pi\)
−0.203626 + 0.979049i \(0.565273\pi\)
\(812\) 50.4028 1.76879
\(813\) −12.5932 12.5932i −0.441663 0.441663i
\(814\) 22.5861i 0.791643i
\(815\) 0 0
\(816\) −29.7479 + 23.0921i −1.04138 + 0.808385i
\(817\) −0.369218 −0.0129173
\(818\) 70.3055i 2.45817i
\(819\) −15.0825 15.0825i −0.527026 0.527026i
\(820\) 0 0
\(821\) −8.23585 8.23585i −0.287433 0.287433i 0.548631 0.836064i \(-0.315149\pi\)
−0.836064 + 0.548631i \(0.815149\pi\)
\(822\) 6.61609 6.61609i 0.230763 0.230763i
\(823\) −7.43349 + 7.43349i −0.259115 + 0.259115i −0.824694 0.565579i \(-0.808653\pi\)
0.565579 + 0.824694i \(0.308653\pi\)
\(824\) 7.08722i 0.246895i
\(825\) 0 0
\(826\) −65.9832 + 65.9832i −2.29585 + 2.29585i
\(827\) −15.4787 + 15.4787i −0.538249 + 0.538249i −0.923014 0.384766i \(-0.874282\pi\)
0.384766 + 0.923014i \(0.374282\pi\)
\(828\) 25.0662 + 25.0662i 0.871109 + 0.871109i
\(829\) 35.5510 1.23474 0.617369 0.786674i \(-0.288199\pi\)
0.617369 + 0.786674i \(0.288199\pi\)
\(830\) 0 0
\(831\) 5.28098i 0.183195i
\(832\) −37.5087 −1.30038
\(833\) −67.8031 8.54055i −2.34924 0.295912i
\(834\) 3.69121 0.127816
\(835\) 0 0
\(836\) −0.417656 0.417656i −0.0144449 0.0144449i
\(837\) 11.2425 0.388597
\(838\) −33.0675 33.0675i −1.14230 1.14230i
\(839\) 15.6461 15.6461i 0.540162 0.540162i −0.383414 0.923576i \(-0.625252\pi\)
0.923576 + 0.383414i \(0.125252\pi\)
\(840\) 0 0
\(841\) 25.0897i 0.865160i
\(842\) 4.33160i 0.149277i
\(843\) 3.09077 3.09077i 0.106452 0.106452i
\(844\) 68.9061 68.9061i 2.37185 2.37185i
\(845\) 0 0
\(846\) 65.9518 2.26747
\(847\) 17.4511 + 17.4511i 0.599626 + 0.599626i
\(848\) 150.771i 5.17751i
\(849\) −13.5322 −0.464425
\(850\) 0 0
\(851\) 9.27455 0.317928
\(852\) 16.4706i 0.564272i
\(853\) −27.9585 27.9585i −0.957281 0.957281i 0.0418433 0.999124i \(-0.486677\pi\)
−0.999124 + 0.0418433i \(0.986677\pi\)
\(854\) 113.759 3.89276
\(855\) 0 0
\(856\) −61.6120 + 61.6120i −2.10586 + 2.10586i
\(857\) −14.5933 + 14.5933i −0.498498 + 0.498498i −0.910970 0.412472i \(-0.864665\pi\)
0.412472 + 0.910970i \(0.364665\pi\)
\(858\) 8.01478i 0.273620i
\(859\) 42.8019i 1.46038i 0.683243 + 0.730191i \(0.260569\pi\)
−0.683243 + 0.730191i \(0.739431\pi\)
\(860\) 0 0
\(861\) 12.7851 12.7851i 0.435715 0.435715i
\(862\) −52.9425 52.9425i −1.80323 1.80323i
\(863\) 19.5632 0.665940 0.332970 0.942937i \(-0.391949\pi\)
0.332970 + 0.942937i \(0.391949\pi\)
\(864\) −48.1372 48.1372i −1.63766 1.63766i
\(865\) 0 0
\(866\) −88.3062 −3.00077
\(867\) 6.05991 + 10.2298i 0.205805 + 0.347423i
\(868\) 74.3466 2.52349
\(869\) 9.68017i 0.328377i
\(870\) 0 0
\(871\) 20.2755 0.687008
\(872\) 60.4695 + 60.4695i 2.04776 + 2.04776i
\(873\) −25.0617 + 25.0617i −0.848210 + 0.848210i
\(874\) 0.236842 0.236842i 0.00801129 0.00801129i
\(875\) 0 0
\(876\) 28.3122i 0.956580i
\(877\) −22.6041 + 22.6041i −0.763286 + 0.763286i −0.976915 0.213629i \(-0.931472\pi\)
0.213629 + 0.976915i \(0.431472\pi\)
\(878\) −40.1182 + 40.1182i −1.35392 + 1.35392i
\(879\) −14.1678 14.1678i −0.477868 0.477868i
\(880\) 0 0
\(881\) 9.45655 + 9.45655i 0.318599 + 0.318599i 0.848229 0.529630i \(-0.177669\pi\)
−0.529630 + 0.848229i \(0.677669\pi\)
\(882\) 112.051i 3.77296i
\(883\) 8.07936 0.271892 0.135946 0.990716i \(-0.456593\pi\)
0.135946 + 0.990716i \(0.456593\pi\)
\(884\) −4.73279 + 37.5734i −0.159181 + 1.26373i
\(885\) 0 0
\(886\) 57.8727i 1.94427i
\(887\) 37.1386 + 37.1386i 1.24699 + 1.24699i 0.957041 + 0.289952i \(0.0936392\pi\)
0.289952 + 0.957041i \(0.406361\pi\)
\(888\) −21.1032 −0.708177
\(889\) 37.0546 + 37.0546i 1.24277 + 1.24277i
\(890\) 0 0
\(891\) 8.31934 8.31934i 0.278708 0.278708i
\(892\) 109.804i 3.67650i
\(893\) 0.451242i 0.0151002i
\(894\) −4.62149 + 4.62149i −0.154566 + 0.154566i
\(895\) 0 0
\(896\) −76.8951 76.8951i −2.56889 2.56889i
\(897\) −3.29111 −0.109887
\(898\) −47.4728 47.4728i −1.58419 1.58419i
\(899\) 5.76795i 0.192372i
\(900\) 0 0
\(901\) 47.2298 + 5.94911i 1.57345 + 0.198194i
\(902\) 34.8718 1.16110
\(903\) 27.1070i 0.902064i
\(904\) −28.6816 28.6816i −0.953934 0.953934i
\(905\) 0 0
\(906\) 10.7061 + 10.7061i 0.355688 + 0.355688i
\(907\) −11.0571 + 11.0571i −0.367147 + 0.367147i −0.866436 0.499289i \(-0.833595\pi\)
0.499289 + 0.866436i \(0.333595\pi\)
\(908\) 81.6773 81.6773i 2.71056 2.71056i
\(909\) 24.4074i 0.809543i
\(910\) 0 0
\(911\) 12.0283 12.0283i 0.398516 0.398516i −0.479194 0.877709i \(-0.659071\pi\)
0.877709 + 0.479194i \(0.159071\pi\)
\(912\) −0.298732 + 0.298732i −0.00989200 + 0.00989200i
\(913\) 0.944164 + 0.944164i 0.0312473 + 0.0312473i
\(914\) −30.5421 −1.01024
\(915\) 0 0
\(916\) 56.0525i 1.85203i
\(917\) 63.2441 2.08850
\(918\) −33.8002 + 26.2378i −1.11557 + 0.865976i
\(919\) −56.2688 −1.85614 −0.928069 0.372408i \(-0.878532\pi\)
−0.928069 + 0.372408i \(0.878532\pi\)
\(920\) 0 0
\(921\) −8.34406 8.34406i −0.274946 0.274946i
\(922\) −109.092 −3.59275
\(923\) 5.54992 + 5.54992i 0.182678 + 0.182678i
\(924\) −30.6632 + 30.6632i −1.00875 + 1.00875i
\(925\) 0 0
\(926\) 18.6055i 0.611413i
\(927\) 2.03380i 0.0667987i
\(928\) 24.6968 24.6968i 0.810711 0.810711i
\(929\) 25.6944 25.6944i 0.843005 0.843005i −0.146244 0.989249i \(-0.546718\pi\)
0.989249 + 0.146244i \(0.0467183\pi\)
\(930\) 0 0
\(931\) −0.766653 −0.0251260
\(932\) −56.0460 56.0460i −1.83585 1.83585i
\(933\) 3.23202i 0.105811i
\(934\) 35.4785 1.16089
\(935\) 0 0
\(936\) −38.4371 −1.25636
\(937\) 40.8124i 1.33328i 0.745378 + 0.666642i \(0.232269\pi\)
−0.745378 + 0.666642i \(0.767731\pi\)
\(938\) 107.124 + 107.124i 3.49771 + 3.49771i
\(939\) 6.88646 0.224731
\(940\) 0 0
\(941\) 22.8191 22.8191i 0.743883 0.743883i −0.229440 0.973323i \(-0.573689\pi\)
0.973323 + 0.229440i \(0.0736894\pi\)
\(942\) −12.6331 + 12.6331i −0.411608 + 0.411608i
\(943\) 14.3194i 0.466305i
\(944\) 93.2135i 3.03384i
\(945\) 0 0
\(946\) −36.9676 + 36.9676i −1.20192 + 1.20192i
\(947\) −6.61111 6.61111i −0.214832 0.214832i 0.591484 0.806316i \(-0.298542\pi\)
−0.806316 + 0.591484i \(0.798542\pi\)
\(948\) 14.6112 0.474551
\(949\) −9.54006 9.54006i −0.309684 0.309684i
\(950\) 0 0
\(951\) −20.7647 −0.673343
\(952\) −138.363 + 107.406i −4.48439 + 3.48105i
\(953\) −41.4456 −1.34256 −0.671278 0.741206i \(-0.734254\pi\)
−0.671278 + 0.741206i \(0.734254\pi\)
\(954\) 78.0518i 2.52702i
\(955\) 0 0
\(956\) 69.3692 2.24356
\(957\) −2.37891 2.37891i −0.0768992 0.0768992i
\(958\) 77.3573 77.3573i 2.49930 2.49930i
\(959\) 17.0583 17.0583i 0.550841 0.550841i
\(960\) 0 0
\(961\) 22.4920i 0.725549i
\(962\) −11.4874 + 11.4874i −0.370370 + 0.370370i
\(963\) −17.6806 + 17.6806i −0.569750 + 0.569750i
\(964\) 47.2463 + 47.2463i 1.52170 + 1.52170i
\(965\) 0 0
\(966\) −17.3883 17.3883i −0.559459 0.559459i
\(967\) 17.1727i 0.552236i −0.961124 0.276118i \(-0.910952\pi\)
0.961124 0.276118i \(-0.0890481\pi\)
\(968\) 44.4733 1.42943
\(969\) 0.0817918 + 0.105366i 0.00262753 + 0.00338486i
\(970\) 0 0
\(971\) 33.0307i 1.06001i −0.847996 0.530003i \(-0.822191\pi\)
0.847996 0.530003i \(-0.177809\pi\)
\(972\) −55.4792 55.4792i −1.77950 1.77950i
\(973\) 9.51705 0.305103
\(974\) 0.883204 + 0.883204i 0.0282997 + 0.0282997i
\(975\) 0 0
\(976\) 80.3529 80.3529i 2.57203 2.57203i
\(977\) 31.6277i 1.01186i 0.862575 + 0.505930i \(0.168851\pi\)
−0.862575 + 0.505930i \(0.831149\pi\)
\(978\) 22.6087i 0.722947i
\(979\) −0.817787 + 0.817787i −0.0261366 + 0.0261366i
\(980\) 0 0
\(981\) 17.3528 + 17.3528i 0.554031 + 0.554031i
\(982\) 73.7842 2.35455
\(983\) −15.0952 15.0952i −0.481463 0.481463i 0.424135 0.905599i \(-0.360578\pi\)
−0.905599 + 0.424135i \(0.860578\pi\)
\(984\) 32.5822i 1.03868i
\(985\) 0 0
\(986\) −13.4613 17.3412i −0.428694 0.552256i
\(987\) −33.1290 −1.05451
\(988\) 0.424845i 0.0135161i
\(989\) −15.1801 15.1801i −0.482698 0.482698i
\(990\) 0 0
\(991\) −0.883161 0.883161i −0.0280545 0.0280545i 0.692940 0.720995i \(-0.256315\pi\)
−0.720995 + 0.692940i \(0.756315\pi\)
\(992\) 36.4289 36.4289i 1.15662 1.15662i
\(993\) 7.82104 7.82104i 0.248193 0.248193i
\(994\) 58.6449i 1.86010i
\(995\) 0 0
\(996\) 1.42512 1.42512i 0.0451567 0.0451567i
\(997\) 18.9898 18.9898i 0.601414 0.601414i −0.339274 0.940688i \(-0.610181\pi\)
0.940688 + 0.339274i \(0.110181\pi\)
\(998\) 30.2748 + 30.2748i 0.958331 + 0.958331i
\(999\) −13.2917 −0.420531
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 425.2.e.c.251.6 12
5.2 odd 4 425.2.j.a.149.1 12
5.3 odd 4 425.2.j.d.149.6 12
5.4 even 2 425.2.e.e.251.1 yes 12
17.2 even 8 7225.2.a.bm.1.1 12
17.4 even 4 inner 425.2.e.c.276.1 yes 12
17.15 even 8 7225.2.a.bm.1.2 12
85.4 even 4 425.2.e.e.276.6 yes 12
85.19 even 8 7225.2.a.br.1.12 12
85.38 odd 4 425.2.j.a.174.1 12
85.49 even 8 7225.2.a.br.1.11 12
85.72 odd 4 425.2.j.d.174.6 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
425.2.e.c.251.6 12 1.1 even 1 trivial
425.2.e.c.276.1 yes 12 17.4 even 4 inner
425.2.e.e.251.1 yes 12 5.4 even 2
425.2.e.e.276.6 yes 12 85.4 even 4
425.2.j.a.149.1 12 5.2 odd 4
425.2.j.a.174.1 12 85.38 odd 4
425.2.j.d.149.6 12 5.3 odd 4
425.2.j.d.174.6 12 85.72 odd 4
7225.2.a.bm.1.1 12 17.2 even 8
7225.2.a.bm.1.2 12 17.15 even 8
7225.2.a.br.1.11 12 85.49 even 8
7225.2.a.br.1.12 12 85.19 even 8