Properties

Label 425.2.j.a.174.4
Level $425$
Weight $2$
Character 425.174
Analytic conductor $3.394$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [425,2,Mod(149,425)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(425, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("425.149");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 425 = 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 425.j (of order \(4\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.39364208590\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 18x^{10} + 119x^{8} + 364x^{6} + 519x^{4} + 278x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 174.4
Root \(0.0601793i\) of defining polynomial
Character \(\chi\) \(=\) 425.174
Dual form 425.2.j.a.149.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.0601793 q^{2} +(0.294708 + 0.294708i) q^{3} -1.99638 q^{4} +(0.0177353 + 0.0177353i) q^{6} +(0.900793 - 0.900793i) q^{7} -0.240499 q^{8} -2.82629i q^{9} +(2.24864 + 2.24864i) q^{11} +(-0.588349 - 0.588349i) q^{12} -4.23326i q^{13} +(0.0542091 - 0.0542091i) q^{14} +3.97828 q^{16} +(1.29364 - 3.91491i) q^{17} -0.170084i q^{18} +4.76249i q^{19} +0.530942 q^{21} +(0.135322 + 0.135322i) q^{22} +(5.13512 - 5.13512i) q^{23} +(-0.0708771 - 0.0708771i) q^{24} -0.254754i q^{26} +(1.71706 - 1.71706i) q^{27} +(-1.79832 + 1.79832i) q^{28} +(1.35382 - 1.35382i) q^{29} +(1.64149 - 1.64149i) q^{31} +0.720409 q^{32} +1.32539i q^{33} +(0.0778504 - 0.235596i) q^{34} +5.64235i q^{36} +(-3.84759 - 3.84759i) q^{37} +0.286603i q^{38} +(1.24758 - 1.24758i) q^{39} +(0.0814719 + 0.0814719i) q^{41} +0.0319517 q^{42} +0.562791 q^{43} +(-4.48914 - 4.48914i) q^{44} +(0.309028 - 0.309028i) q^{46} +5.01576i q^{47} +(1.17243 + 1.17243i) q^{48} +5.37714i q^{49} +(1.53500 - 0.772509i) q^{51} +8.45118i q^{52} -7.75525 q^{53} +(0.103331 - 0.103331i) q^{54} +(-0.216640 + 0.216640i) q^{56} +(-1.40355 + 1.40355i) q^{57} +(0.0814719 - 0.0814719i) q^{58} -2.01596i q^{59} +(-7.03868 - 7.03868i) q^{61} +(0.0987837 - 0.0987837i) q^{62} +(-2.54591 - 2.54591i) q^{63} -7.91321 q^{64} +0.0797608i q^{66} -3.64576i q^{67} +(-2.58260 + 7.81564i) q^{68} +3.02672 q^{69} +(-6.92188 + 6.92188i) q^{71} +0.679721i q^{72} +(10.2527 + 10.2527i) q^{73} +(-0.231545 - 0.231545i) q^{74} -9.50774i q^{76} +4.05112 q^{77} +(0.0750782 - 0.0750782i) q^{78} +(5.78193 + 5.78193i) q^{79} -7.46682 q^{81} +(0.00490292 + 0.00490292i) q^{82} -4.38162 q^{83} -1.05996 q^{84} +0.0338684 q^{86} +0.797964 q^{87} +(-0.540797 - 0.540797i) q^{88} +13.8492 q^{89} +(-3.81329 - 3.81329i) q^{91} +(-10.2516 + 10.2516i) q^{92} +0.967522 q^{93} +0.301845i q^{94} +(0.212310 + 0.212310i) q^{96} +(9.15882 + 9.15882i) q^{97} +0.323593i q^{98} +(6.35533 - 6.35533i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 4 q^{2} - 2 q^{3} + 12 q^{4} + 6 q^{6} - 12 q^{8} - 4 q^{11} + 4 q^{12} - 14 q^{14} + 4 q^{16} + 10 q^{17} + 8 q^{21} - 10 q^{22} - 12 q^{23} + 8 q^{24} + 22 q^{27} + 34 q^{28} + 6 q^{29} - 6 q^{31}+ \cdots - 30 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/425\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(326\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.0601793 0.0425532 0.0212766 0.999774i \(-0.493227\pi\)
0.0212766 + 0.999774i \(0.493227\pi\)
\(3\) 0.294708 + 0.294708i 0.170150 + 0.170150i 0.787045 0.616895i \(-0.211610\pi\)
−0.616895 + 0.787045i \(0.711610\pi\)
\(4\) −1.99638 −0.998189
\(5\) 0 0
\(6\) 0.0177353 + 0.0177353i 0.00724042 + 0.00724042i
\(7\) 0.900793 0.900793i 0.340468 0.340468i −0.516075 0.856543i \(-0.672608\pi\)
0.856543 + 0.516075i \(0.172608\pi\)
\(8\) −0.240499 −0.0850293
\(9\) 2.82629i 0.942098i
\(10\) 0 0
\(11\) 2.24864 + 2.24864i 0.677991 + 0.677991i 0.959545 0.281554i \(-0.0908499\pi\)
−0.281554 + 0.959545i \(0.590850\pi\)
\(12\) −0.588349 0.588349i −0.169842 0.169842i
\(13\) 4.23326i 1.17409i −0.809553 0.587047i \(-0.800290\pi\)
0.809553 0.587047i \(-0.199710\pi\)
\(14\) 0.0542091 0.0542091i 0.0144880 0.0144880i
\(15\) 0 0
\(16\) 3.97828 0.994571
\(17\) 1.29364 3.91491i 0.313754 0.949504i
\(18\) 0.170084i 0.0400893i
\(19\) 4.76249i 1.09259i 0.837593 + 0.546295i \(0.183962\pi\)
−0.837593 + 0.546295i \(0.816038\pi\)
\(20\) 0 0
\(21\) 0.530942 0.115861
\(22\) 0.135322 + 0.135322i 0.0288507 + 0.0288507i
\(23\) 5.13512 5.13512i 1.07075 1.07075i 0.0734466 0.997299i \(-0.476600\pi\)
0.997299 0.0734466i \(-0.0233998\pi\)
\(24\) −0.0708771 0.0708771i −0.0144677 0.0144677i
\(25\) 0 0
\(26\) 0.254754i 0.0499614i
\(27\) 1.71706 1.71706i 0.330448 0.330448i
\(28\) −1.79832 + 1.79832i −0.339851 + 0.339851i
\(29\) 1.35382 1.35382i 0.251398 0.251398i −0.570146 0.821544i \(-0.693113\pi\)
0.821544 + 0.570146i \(0.193113\pi\)
\(30\) 0 0
\(31\) 1.64149 1.64149i 0.294820 0.294820i −0.544161 0.838981i \(-0.683152\pi\)
0.838981 + 0.544161i \(0.183152\pi\)
\(32\) 0.720409 0.127351
\(33\) 1.32539i 0.230720i
\(34\) 0.0778504 0.235596i 0.0133512 0.0404044i
\(35\) 0 0
\(36\) 5.64235i 0.940392i
\(37\) −3.84759 3.84759i −0.632539 0.632539i 0.316165 0.948704i \(-0.397605\pi\)
−0.948704 + 0.316165i \(0.897605\pi\)
\(38\) 0.286603i 0.0464932i
\(39\) 1.24758 1.24758i 0.199772 0.199772i
\(40\) 0 0
\(41\) 0.0814719 + 0.0814719i 0.0127238 + 0.0127238i 0.713440 0.700716i \(-0.247136\pi\)
−0.700716 + 0.713440i \(0.747136\pi\)
\(42\) 0.0319517 0.00493026
\(43\) 0.562791 0.0858249 0.0429124 0.999079i \(-0.486336\pi\)
0.0429124 + 0.999079i \(0.486336\pi\)
\(44\) −4.48914 4.48914i −0.676764 0.676764i
\(45\) 0 0
\(46\) 0.309028 0.309028i 0.0455636 0.0455636i
\(47\) 5.01576i 0.731624i 0.930689 + 0.365812i \(0.119209\pi\)
−0.930689 + 0.365812i \(0.880791\pi\)
\(48\) 1.17243 + 1.17243i 0.169226 + 0.169226i
\(49\) 5.37714i 0.768164i
\(50\) 0 0
\(51\) 1.53500 0.772509i 0.214943 0.108173i
\(52\) 8.45118i 1.17197i
\(53\) −7.75525 −1.06527 −0.532633 0.846346i \(-0.678797\pi\)
−0.532633 + 0.846346i \(0.678797\pi\)
\(54\) 0.103331 0.103331i 0.0140616 0.0140616i
\(55\) 0 0
\(56\) −0.216640 + 0.216640i −0.0289497 + 0.0289497i
\(57\) −1.40355 + 1.40355i −0.185904 + 0.185904i
\(58\) 0.0814719 0.0814719i 0.0106978 0.0106978i
\(59\) 2.01596i 0.262456i −0.991352 0.131228i \(-0.958108\pi\)
0.991352 0.131228i \(-0.0418919\pi\)
\(60\) 0 0
\(61\) −7.03868 7.03868i −0.901211 0.901211i 0.0943302 0.995541i \(-0.469929\pi\)
−0.995541 + 0.0943302i \(0.969929\pi\)
\(62\) 0.0987837 0.0987837i 0.0125455 0.0125455i
\(63\) −2.54591 2.54591i −0.320754 0.320754i
\(64\) −7.91321 −0.989152
\(65\) 0 0
\(66\) 0.0797608i 0.00981788i
\(67\) 3.64576i 0.445400i −0.974887 0.222700i \(-0.928513\pi\)
0.974887 0.222700i \(-0.0714870\pi\)
\(68\) −2.58260 + 7.81564i −0.313186 + 0.947785i
\(69\) 3.02672 0.364375
\(70\) 0 0
\(71\) −6.92188 + 6.92188i −0.821476 + 0.821476i −0.986320 0.164844i \(-0.947288\pi\)
0.164844 + 0.986320i \(0.447288\pi\)
\(72\) 0.679721i 0.0801059i
\(73\) 10.2527 + 10.2527i 1.19999 + 1.19999i 0.974168 + 0.225825i \(0.0725076\pi\)
0.225825 + 0.974168i \(0.427492\pi\)
\(74\) −0.231545 0.231545i −0.0269166 0.0269166i
\(75\) 0 0
\(76\) 9.50774i 1.09061i
\(77\) 4.05112 0.461668
\(78\) 0.0750782 0.0750782i 0.00850093 0.00850093i
\(79\) 5.78193 + 5.78193i 0.650518 + 0.650518i 0.953118 0.302599i \(-0.0978544\pi\)
−0.302599 + 0.953118i \(0.597854\pi\)
\(80\) 0 0
\(81\) −7.46682 −0.829647
\(82\) 0.00490292 + 0.00490292i 0.000541437 + 0.000541437i
\(83\) −4.38162 −0.480946 −0.240473 0.970656i \(-0.577303\pi\)
−0.240473 + 0.970656i \(0.577303\pi\)
\(84\) −1.05996 −0.115651
\(85\) 0 0
\(86\) 0.0338684 0.00365212
\(87\) 0.797964 0.0855507
\(88\) −0.540797 0.540797i −0.0576491 0.0576491i
\(89\) 13.8492 1.46801 0.734006 0.679143i \(-0.237648\pi\)
0.734006 + 0.679143i \(0.237648\pi\)
\(90\) 0 0
\(91\) −3.81329 3.81329i −0.399741 0.399741i
\(92\) −10.2516 + 10.2516i −1.06881 + 1.06881i
\(93\) 0.967522 0.100327
\(94\) 0.301845i 0.0311329i
\(95\) 0 0
\(96\) 0.212310 + 0.212310i 0.0216688 + 0.0216688i
\(97\) 9.15882 + 9.15882i 0.929937 + 0.929937i 0.997701 0.0677639i \(-0.0215865\pi\)
−0.0677639 + 0.997701i \(0.521586\pi\)
\(98\) 0.323593i 0.0326878i
\(99\) 6.35533 6.35533i 0.638734 0.638734i
\(100\) 0 0
\(101\) −12.0395 −1.19798 −0.598989 0.800757i \(-0.704431\pi\)
−0.598989 + 0.800757i \(0.704431\pi\)
\(102\) 0.0923753 0.0464890i 0.00914652 0.00460310i
\(103\) 6.06868i 0.597965i −0.954259 0.298982i \(-0.903353\pi\)
0.954259 0.298982i \(-0.0966472\pi\)
\(104\) 1.01809i 0.0998324i
\(105\) 0 0
\(106\) −0.466705 −0.0453304
\(107\) −11.9571 11.9571i −1.15594 1.15594i −0.985340 0.170601i \(-0.945429\pi\)
−0.170601 0.985340i \(-0.554571\pi\)
\(108\) −3.42790 + 3.42790i −0.329849 + 0.329849i
\(109\) 6.38396 + 6.38396i 0.611473 + 0.611473i 0.943330 0.331857i \(-0.107675\pi\)
−0.331857 + 0.943330i \(0.607675\pi\)
\(110\) 0 0
\(111\) 2.26783i 0.215253i
\(112\) 3.58361 3.58361i 0.338619 0.338619i
\(113\) −3.62958 + 3.62958i −0.341443 + 0.341443i −0.856909 0.515467i \(-0.827619\pi\)
0.515467 + 0.856909i \(0.327619\pi\)
\(114\) −0.0844644 + 0.0844644i −0.00791081 + 0.00791081i
\(115\) 0 0
\(116\) −2.70274 + 2.70274i −0.250943 + 0.250943i
\(117\) −11.9644 −1.10611
\(118\) 0.121319i 0.0111683i
\(119\) −2.36122 4.69182i −0.216452 0.430099i
\(120\) 0 0
\(121\) 0.887212i 0.0806556i
\(122\) −0.423583 0.423583i −0.0383494 0.0383494i
\(123\) 0.0480209i 0.00432990i
\(124\) −3.27704 + 3.27704i −0.294287 + 0.294287i
\(125\) 0 0
\(126\) −0.153211 0.153211i −0.0136491 0.0136491i
\(127\) 17.4817 1.55125 0.775626 0.631193i \(-0.217434\pi\)
0.775626 + 0.631193i \(0.217434\pi\)
\(128\) −1.91703 −0.169443
\(129\) 0.165859 + 0.165859i 0.0146031 + 0.0146031i
\(130\) 0 0
\(131\) 7.39051 7.39051i 0.645712 0.645712i −0.306242 0.951954i \(-0.599072\pi\)
0.951954 + 0.306242i \(0.0990715\pi\)
\(132\) 2.64597i 0.230302i
\(133\) 4.29002 + 4.29002i 0.371992 + 0.371992i
\(134\) 0.219399i 0.0189532i
\(135\) 0 0
\(136\) −0.311120 + 0.941532i −0.0266783 + 0.0807357i
\(137\) 16.3203i 1.39434i 0.716908 + 0.697168i \(0.245557\pi\)
−0.716908 + 0.697168i \(0.754443\pi\)
\(138\) 0.182146 0.0155053
\(139\) −15.8001 + 15.8001i −1.34015 + 1.34015i −0.444240 + 0.895908i \(0.646526\pi\)
−0.895908 + 0.444240i \(0.853474\pi\)
\(140\) 0 0
\(141\) −1.47819 + 1.47819i −0.124486 + 0.124486i
\(142\) −0.416554 + 0.416554i −0.0349564 + 0.0349564i
\(143\) 9.51908 9.51908i 0.796026 0.796026i
\(144\) 11.2438i 0.936983i
\(145\) 0 0
\(146\) 0.617003 + 0.617003i 0.0510635 + 0.0510635i
\(147\) −1.58469 + 1.58469i −0.130703 + 0.130703i
\(148\) 7.68124 + 7.68124i 0.631394 + 0.631394i
\(149\) 2.33253 0.191088 0.0955441 0.995425i \(-0.469541\pi\)
0.0955441 + 0.995425i \(0.469541\pi\)
\(150\) 0 0
\(151\) 14.0599i 1.14418i 0.820192 + 0.572088i \(0.193867\pi\)
−0.820192 + 0.572088i \(0.806133\pi\)
\(152\) 1.14538i 0.0929022i
\(153\) −11.0647 3.65621i −0.894526 0.295587i
\(154\) 0.243794 0.0196454
\(155\) 0 0
\(156\) −2.49063 + 2.49063i −0.199410 + 0.199410i
\(157\) 11.3114i 0.902750i 0.892334 + 0.451375i \(0.149066\pi\)
−0.892334 + 0.451375i \(0.850934\pi\)
\(158\) 0.347953 + 0.347953i 0.0276816 + 0.0276816i
\(159\) −2.28554 2.28554i −0.181255 0.181255i
\(160\) 0 0
\(161\) 9.25135i 0.729109i
\(162\) −0.449348 −0.0353041
\(163\) −7.34754 + 7.34754i −0.575504 + 0.575504i −0.933661 0.358157i \(-0.883405\pi\)
0.358157 + 0.933661i \(0.383405\pi\)
\(164\) −0.162649 0.162649i −0.0127007 0.0127007i
\(165\) 0 0
\(166\) −0.263683 −0.0204658
\(167\) −13.4849 13.4849i −1.04349 1.04349i −0.999010 0.0444820i \(-0.985836\pi\)
−0.0444820 0.999010i \(-0.514164\pi\)
\(168\) −0.127691 −0.00985158
\(169\) −4.92046 −0.378497
\(170\) 0 0
\(171\) 13.4602 1.02933
\(172\) −1.12354 −0.0856694
\(173\) 1.44947 + 1.44947i 0.110201 + 0.110201i 0.760057 0.649856i \(-0.225171\pi\)
−0.649856 + 0.760057i \(0.725171\pi\)
\(174\) 0.0480209 0.00364045
\(175\) 0 0
\(176\) 8.94574 + 8.94574i 0.674310 + 0.674310i
\(177\) 0.594120 0.594120i 0.0446568 0.0446568i
\(178\) 0.833435 0.0624686
\(179\) 16.3180i 1.21966i −0.792531 0.609831i \(-0.791237\pi\)
0.792531 0.609831i \(-0.208763\pi\)
\(180\) 0 0
\(181\) 5.23176 + 5.23176i 0.388873 + 0.388873i 0.874285 0.485412i \(-0.161330\pi\)
−0.485412 + 0.874285i \(0.661330\pi\)
\(182\) −0.229481 0.229481i −0.0170103 0.0170103i
\(183\) 4.14871i 0.306682i
\(184\) −1.23499 + 1.23499i −0.0910448 + 0.0910448i
\(185\) 0 0
\(186\) 0.0582248 0.00426925
\(187\) 11.7122 5.89429i 0.856478 0.431033i
\(188\) 10.0134i 0.730299i
\(189\) 3.09342i 0.225014i
\(190\) 0 0
\(191\) 19.6307 1.42042 0.710212 0.703987i \(-0.248599\pi\)
0.710212 + 0.703987i \(0.248599\pi\)
\(192\) −2.33209 2.33209i −0.168304 0.168304i
\(193\) 1.37554 1.37554i 0.0990133 0.0990133i −0.655865 0.754878i \(-0.727696\pi\)
0.754878 + 0.655865i \(0.227696\pi\)
\(194\) 0.551171 + 0.551171i 0.0395718 + 0.0395718i
\(195\) 0 0
\(196\) 10.7348i 0.766773i
\(197\) 18.4793 18.4793i 1.31659 1.31659i 0.400140 0.916454i \(-0.368961\pi\)
0.916454 0.400140i \(-0.131039\pi\)
\(198\) 0.382459 0.382459i 0.0271802 0.0271802i
\(199\) 1.79715 1.79715i 0.127397 0.127397i −0.640533 0.767930i \(-0.721287\pi\)
0.767930 + 0.640533i \(0.221287\pi\)
\(200\) 0 0
\(201\) 1.07443 1.07443i 0.0757848 0.0757848i
\(202\) −0.724531 −0.0509778
\(203\) 2.43902i 0.171186i
\(204\) −3.06444 + 1.54222i −0.214554 + 0.107977i
\(205\) 0 0
\(206\) 0.365209i 0.0254453i
\(207\) −14.5133 14.5133i −1.00875 1.00875i
\(208\) 16.8411i 1.16772i
\(209\) −10.7091 + 10.7091i −0.740767 + 0.740767i
\(210\) 0 0
\(211\) 10.9560 + 10.9560i 0.754240 + 0.754240i 0.975268 0.221028i \(-0.0709411\pi\)
−0.221028 + 0.975268i \(0.570941\pi\)
\(212\) 15.4824 1.06334
\(213\) −4.07987 −0.279548
\(214\) −0.719572 0.719572i −0.0491890 0.0491890i
\(215\) 0 0
\(216\) −0.412951 + 0.412951i −0.0280977 + 0.0280977i
\(217\) 2.95729i 0.200754i
\(218\) 0.384182 + 0.384182i 0.0260201 + 0.0260201i
\(219\) 6.04313i 0.408357i
\(220\) 0 0
\(221\) −16.5728 5.47631i −1.11481 0.368377i
\(222\) 0.136476i 0.00915970i
\(223\) 25.3456 1.69726 0.848632 0.528984i \(-0.177427\pi\)
0.848632 + 0.528984i \(0.177427\pi\)
\(224\) 0.648939 0.648939i 0.0433591 0.0433591i
\(225\) 0 0
\(226\) −0.218426 + 0.218426i −0.0145295 + 0.0145295i
\(227\) −1.05058 + 1.05058i −0.0697291 + 0.0697291i −0.741111 0.671382i \(-0.765701\pi\)
0.671382 + 0.741111i \(0.265701\pi\)
\(228\) 2.80201 2.80201i 0.185568 0.185568i
\(229\) 11.7431i 0.776008i −0.921658 0.388004i \(-0.873165\pi\)
0.921658 0.388004i \(-0.126835\pi\)
\(230\) 0 0
\(231\) 1.19390 + 1.19390i 0.0785528 + 0.0785528i
\(232\) −0.325593 + 0.325593i −0.0213762 + 0.0213762i
\(233\) −12.4941 12.4941i −0.818515 0.818515i 0.167378 0.985893i \(-0.446470\pi\)
−0.985893 + 0.167378i \(0.946470\pi\)
\(234\) −0.720011 −0.0470686
\(235\) 0 0
\(236\) 4.02462i 0.261980i
\(237\) 3.40797i 0.221371i
\(238\) −0.142096 0.282350i −0.00921074 0.0183021i
\(239\) 12.3555 0.799213 0.399606 0.916687i \(-0.369147\pi\)
0.399606 + 0.916687i \(0.369147\pi\)
\(240\) 0 0
\(241\) −9.00000 + 9.00000i −0.579741 + 0.579741i −0.934832 0.355091i \(-0.884450\pi\)
0.355091 + 0.934832i \(0.384450\pi\)
\(242\) 0.0533918i 0.00343215i
\(243\) −7.35170 7.35170i −0.471612 0.471612i
\(244\) 14.0519 + 14.0519i 0.899579 + 0.899579i
\(245\) 0 0
\(246\) 0.00288986i 0.000184251i
\(247\) 20.1609 1.28280
\(248\) −0.394777 + 0.394777i −0.0250684 + 0.0250684i
\(249\) −1.29130 1.29130i −0.0818329 0.0818329i
\(250\) 0 0
\(251\) 21.4164 1.35179 0.675894 0.736998i \(-0.263758\pi\)
0.675894 + 0.736998i \(0.263758\pi\)
\(252\) 5.08259 + 5.08259i 0.320173 + 0.320173i
\(253\) 23.0941 1.45191
\(254\) 1.05204 0.0660107
\(255\) 0 0
\(256\) 15.7111 0.981941
\(257\) −18.5145 −1.15490 −0.577450 0.816426i \(-0.695952\pi\)
−0.577450 + 0.816426i \(0.695952\pi\)
\(258\) 0.00998129 + 0.00998129i 0.000621408 + 0.000621408i
\(259\) −6.93176 −0.430718
\(260\) 0 0
\(261\) −3.82629 3.82629i −0.236842 0.236842i
\(262\) 0.444756 0.444756i 0.0274771 0.0274771i
\(263\) −15.9953 −0.986314 −0.493157 0.869940i \(-0.664157\pi\)
−0.493157 + 0.869940i \(0.664157\pi\)
\(264\) 0.318755i 0.0196180i
\(265\) 0 0
\(266\) 0.258170 + 0.258170i 0.0158294 + 0.0158294i
\(267\) 4.08147 + 4.08147i 0.249782 + 0.249782i
\(268\) 7.27831i 0.444593i
\(269\) −11.1688 + 11.1688i −0.680975 + 0.680975i −0.960220 0.279245i \(-0.909916\pi\)
0.279245 + 0.960220i \(0.409916\pi\)
\(270\) 0 0
\(271\) 12.3067 0.747577 0.373788 0.927514i \(-0.378059\pi\)
0.373788 + 0.927514i \(0.378059\pi\)
\(272\) 5.14647 15.5746i 0.312051 0.944349i
\(273\) 2.24761i 0.136032i
\(274\) 0.982143i 0.0593334i
\(275\) 0 0
\(276\) −6.04248 −0.363715
\(277\) −10.3628 10.3628i −0.622640 0.622640i 0.323566 0.946206i \(-0.395118\pi\)
−0.946206 + 0.323566i \(0.895118\pi\)
\(278\) −0.950839 + 0.950839i −0.0570275 + 0.0570275i
\(279\) −4.63934 4.63934i −0.277750 0.277750i
\(280\) 0 0
\(281\) 0.269035i 0.0160493i −0.999968 0.00802465i \(-0.997446\pi\)
0.999968 0.00802465i \(-0.00255435\pi\)
\(282\) −0.0889562 + 0.0889562i −0.00529726 + 0.00529726i
\(283\) 5.76819 5.76819i 0.342884 0.342884i −0.514567 0.857450i \(-0.672047\pi\)
0.857450 + 0.514567i \(0.172047\pi\)
\(284\) 13.8187 13.8187i 0.819988 0.819988i
\(285\) 0 0
\(286\) 0.572851 0.572851i 0.0338734 0.0338734i
\(287\) 0.146779 0.00866407
\(288\) 2.03609i 0.119978i
\(289\) −13.6530 10.1290i −0.803117 0.595822i
\(290\) 0 0
\(291\) 5.39836i 0.316457i
\(292\) −20.4684 20.4684i −1.19782 1.19782i
\(293\) 14.1503i 0.826668i 0.910579 + 0.413334i \(0.135636\pi\)
−0.910579 + 0.413334i \(0.864364\pi\)
\(294\) −0.0953654 + 0.0953654i −0.00556183 + 0.00556183i
\(295\) 0 0
\(296\) 0.925341 + 0.925341i 0.0537844 + 0.0537844i
\(297\) 7.72209 0.448081
\(298\) 0.140370 0.00813141
\(299\) −21.7383 21.7383i −1.25716 1.25716i
\(300\) 0 0
\(301\) 0.506958 0.506958i 0.0292206 0.0292206i
\(302\) 0.846113i 0.0486883i
\(303\) −3.54815 3.54815i −0.203836 0.203836i
\(304\) 18.9466i 1.08666i
\(305\) 0 0
\(306\) −0.665864 0.220028i −0.0380649 0.0125782i
\(307\) 31.1618i 1.77850i 0.457424 + 0.889249i \(0.348772\pi\)
−0.457424 + 0.889249i \(0.651228\pi\)
\(308\) −8.08757 −0.460832
\(309\) 1.78849 1.78849i 0.101744 0.101744i
\(310\) 0 0
\(311\) −9.69400 + 9.69400i −0.549697 + 0.549697i −0.926353 0.376656i \(-0.877074\pi\)
0.376656 + 0.926353i \(0.377074\pi\)
\(312\) −0.300041 + 0.300041i −0.0169865 + 0.0169865i
\(313\) −11.5603 + 11.5603i −0.653424 + 0.653424i −0.953816 0.300392i \(-0.902883\pi\)
0.300392 + 0.953816i \(0.402883\pi\)
\(314\) 0.680713i 0.0384149i
\(315\) 0 0
\(316\) −11.5429 11.5429i −0.649340 0.649340i
\(317\) −21.7775 + 21.7775i −1.22315 + 1.22315i −0.256640 + 0.966507i \(0.582616\pi\)
−0.966507 + 0.256640i \(0.917384\pi\)
\(318\) −0.137542 0.137542i −0.00771297 0.00771297i
\(319\) 6.08852 0.340891
\(320\) 0 0
\(321\) 7.04774i 0.393366i
\(322\) 0.556740i 0.0310259i
\(323\) 18.6447 + 6.16096i 1.03742 + 0.342805i
\(324\) 14.9066 0.828144
\(325\) 0 0
\(326\) −0.442170 + 0.442170i −0.0244895 + 0.0244895i
\(327\) 3.76281i 0.208084i
\(328\) −0.0195939 0.0195939i −0.00108189 0.00108189i
\(329\) 4.51816 + 4.51816i 0.249094 + 0.249094i
\(330\) 0 0
\(331\) 0.792939i 0.0435839i −0.999763 0.0217919i \(-0.993063\pi\)
0.999763 0.0217919i \(-0.00693714\pi\)
\(332\) 8.74738 0.480075
\(333\) −10.8744 + 10.8744i −0.595914 + 0.595914i
\(334\) −0.811511 0.811511i −0.0444039 0.0444039i
\(335\) 0 0
\(336\) 2.11224 0.115232
\(337\) 18.0622 + 18.0622i 0.983912 + 0.983912i 0.999873 0.0159607i \(-0.00508066\pi\)
−0.0159607 + 0.999873i \(0.505081\pi\)
\(338\) −0.296110 −0.0161062
\(339\) −2.13934 −0.116193
\(340\) 0 0
\(341\) 7.38225 0.399771
\(342\) 0.810026 0.0438012
\(343\) 11.1492 + 11.1492i 0.602002 + 0.602002i
\(344\) −0.135351 −0.00729763
\(345\) 0 0
\(346\) 0.0872281 + 0.0872281i 0.00468941 + 0.00468941i
\(347\) −19.1514 + 19.1514i −1.02810 + 1.02810i −0.0285081 + 0.999594i \(0.509076\pi\)
−0.999594 + 0.0285081i \(0.990924\pi\)
\(348\) −1.59304 −0.0853958
\(349\) 9.63831i 0.515927i 0.966155 + 0.257964i \(0.0830514\pi\)
−0.966155 + 0.257964i \(0.916949\pi\)
\(350\) 0 0
\(351\) −7.26874 7.26874i −0.387977 0.387977i
\(352\) 1.61994 + 1.61994i 0.0863432 + 0.0863432i
\(353\) 15.9003i 0.846288i 0.906062 + 0.423144i \(0.139074\pi\)
−0.906062 + 0.423144i \(0.860926\pi\)
\(354\) 0.0357537 0.0357537i 0.00190029 0.00190029i
\(355\) 0 0
\(356\) −27.6482 −1.46535
\(357\) 0.686848 2.07859i 0.0363519 0.110011i
\(358\) 0.982004i 0.0519005i
\(359\) 12.6719i 0.668799i 0.942431 + 0.334400i \(0.108533\pi\)
−0.942431 + 0.334400i \(0.891467\pi\)
\(360\) 0 0
\(361\) −3.68134 −0.193755
\(362\) 0.314843 + 0.314843i 0.0165478 + 0.0165478i
\(363\) 0.261469 0.261469i 0.0137235 0.0137235i
\(364\) 7.61276 + 7.61276i 0.399017 + 0.399017i
\(365\) 0 0
\(366\) 0.249667i 0.0130503i
\(367\) 16.3592 16.3592i 0.853941 0.853941i −0.136675 0.990616i \(-0.543642\pi\)
0.990616 + 0.136675i \(0.0436415\pi\)
\(368\) 20.4289 20.4289i 1.06493 1.06493i
\(369\) 0.230264 0.230264i 0.0119870 0.0119870i
\(370\) 0 0
\(371\) −6.98587 + 6.98587i −0.362688 + 0.362688i
\(372\) −1.93154 −0.100146
\(373\) 21.1325i 1.09420i 0.837067 + 0.547100i \(0.184268\pi\)
−0.837067 + 0.547100i \(0.815732\pi\)
\(374\) 0.704830 0.354714i 0.0364459 0.0183418i
\(375\) 0 0
\(376\) 1.20629i 0.0622095i
\(377\) −5.73107 5.73107i −0.295165 0.295165i
\(378\) 0.186160i 0.00957504i
\(379\) −13.1729 + 13.1729i −0.676646 + 0.676646i −0.959240 0.282593i \(-0.908805\pi\)
0.282593 + 0.959240i \(0.408805\pi\)
\(380\) 0 0
\(381\) 5.15201 + 5.15201i 0.263945 + 0.263945i
\(382\) 1.18136 0.0604436
\(383\) −32.5035 −1.66085 −0.830425 0.557131i \(-0.811902\pi\)
−0.830425 + 0.557131i \(0.811902\pi\)
\(384\) −0.564964 0.564964i −0.0288307 0.0288307i
\(385\) 0 0
\(386\) 0.0827788 0.0827788i 0.00421333 0.00421333i
\(387\) 1.59061i 0.0808554i
\(388\) −18.2845 18.2845i −0.928254 0.928254i
\(389\) 27.7344i 1.40619i −0.711096 0.703095i \(-0.751801\pi\)
0.711096 0.703095i \(-0.248199\pi\)
\(390\) 0 0
\(391\) −13.4605 26.7465i −0.680727 1.35263i
\(392\) 1.29320i 0.0653164i
\(393\) 4.35609 0.219736
\(394\) 1.11207 1.11207i 0.0560253 0.0560253i
\(395\) 0 0
\(396\) −12.6876 + 12.6876i −0.637578 + 0.637578i
\(397\) −9.44969 + 9.44969i −0.474267 + 0.474267i −0.903292 0.429026i \(-0.858857\pi\)
0.429026 + 0.903292i \(0.358857\pi\)
\(398\) 0.108151 0.108151i 0.00542114 0.00542114i
\(399\) 2.52861i 0.126589i
\(400\) 0 0
\(401\) −26.9567 26.9567i −1.34615 1.34615i −0.889798 0.456355i \(-0.849155\pi\)
−0.456355 0.889798i \(-0.650845\pi\)
\(402\) 0.0646587 0.0646587i 0.00322488 0.00322488i
\(403\) −6.94885 6.94885i −0.346147 0.346147i
\(404\) 24.0355 1.19581
\(405\) 0 0
\(406\) 0.146779i 0.00728450i
\(407\) 17.3037i 0.857712i
\(408\) −0.369167 + 0.185788i −0.0182765 + 0.00919786i
\(409\) 27.6899 1.36918 0.684590 0.728929i \(-0.259981\pi\)
0.684590 + 0.728929i \(0.259981\pi\)
\(410\) 0 0
\(411\) −4.80972 + 4.80972i −0.237246 + 0.237246i
\(412\) 12.1154i 0.596882i
\(413\) −1.81596 1.81596i −0.0893577 0.0893577i
\(414\) −0.873403 0.873403i −0.0429254 0.0429254i
\(415\) 0 0
\(416\) 3.04967i 0.149523i
\(417\) −9.31284 −0.456052
\(418\) −0.644469 + 0.644469i −0.0315220 + 0.0315220i
\(419\) −4.32322 4.32322i −0.211203 0.211203i 0.593575 0.804779i \(-0.297716\pi\)
−0.804779 + 0.593575i \(0.797716\pi\)
\(420\) 0 0
\(421\) −17.3965 −0.847851 −0.423926 0.905697i \(-0.639348\pi\)
−0.423926 + 0.905697i \(0.639348\pi\)
\(422\) 0.659322 + 0.659322i 0.0320953 + 0.0320953i
\(423\) 14.1760 0.689261
\(424\) 1.86513 0.0905788
\(425\) 0 0
\(426\) −0.245524 −0.0118957
\(427\) −12.6808 −0.613666
\(428\) 23.8710 + 23.8710i 1.15385 + 1.15385i
\(429\) 5.61070 0.270887
\(430\) 0 0
\(431\) 8.29991 + 8.29991i 0.399793 + 0.399793i 0.878160 0.478367i \(-0.158771\pi\)
−0.478367 + 0.878160i \(0.658771\pi\)
\(432\) 6.83094 6.83094i 0.328654 0.328654i
\(433\) −23.3059 −1.12001 −0.560006 0.828489i \(-0.689201\pi\)
−0.560006 + 0.828489i \(0.689201\pi\)
\(434\) 0.177967i 0.00854271i
\(435\) 0 0
\(436\) −12.7448 12.7448i −0.610366 0.610366i
\(437\) 24.4560 + 24.4560i 1.16989 + 1.16989i
\(438\) 0.363671i 0.0173769i
\(439\) 4.25782 4.25782i 0.203215 0.203215i −0.598161 0.801376i \(-0.704102\pi\)
0.801376 + 0.598161i \(0.204102\pi\)
\(440\) 0 0
\(441\) 15.1974 0.723685
\(442\) −0.997339 0.329561i −0.0474386 0.0156756i
\(443\) 12.6102i 0.599130i 0.954076 + 0.299565i \(0.0968416\pi\)
−0.954076 + 0.299565i \(0.903158\pi\)
\(444\) 4.52745i 0.214863i
\(445\) 0 0
\(446\) 1.52528 0.0722240
\(447\) 0.687415 + 0.687415i 0.0325136 + 0.0325136i
\(448\) −7.12817 + 7.12817i −0.336774 + 0.336774i
\(449\) 23.2014 + 23.2014i 1.09494 + 1.09494i 0.994992 + 0.0999508i \(0.0318685\pi\)
0.0999508 + 0.994992i \(0.468131\pi\)
\(450\) 0 0
\(451\) 0.366403i 0.0172532i
\(452\) 7.24602 7.24602i 0.340824 0.340824i
\(453\) −4.14356 + 4.14356i −0.194682 + 0.194682i
\(454\) −0.0632229 + 0.0632229i −0.00296720 + 0.00296720i
\(455\) 0 0
\(456\) 0.337552 0.337552i 0.0158073 0.0158073i
\(457\) −38.1782 −1.78590 −0.892951 0.450154i \(-0.851369\pi\)
−0.892951 + 0.450154i \(0.851369\pi\)
\(458\) 0.706693i 0.0330216i
\(459\) −4.50086 8.94337i −0.210082 0.417441i
\(460\) 0 0
\(461\) 3.75572i 0.174921i −0.996168 0.0874606i \(-0.972125\pi\)
0.996168 0.0874606i \(-0.0278752\pi\)
\(462\) 0.0718480 + 0.0718480i 0.00334267 + 0.00334267i
\(463\) 2.87858i 0.133779i −0.997760 0.0668895i \(-0.978692\pi\)
0.997760 0.0668895i \(-0.0213075\pi\)
\(464\) 5.38588 5.38588i 0.250033 0.250033i
\(465\) 0 0
\(466\) −0.751885 0.751885i −0.0348304 0.0348304i
\(467\) 19.5036 0.902519 0.451259 0.892393i \(-0.350975\pi\)
0.451259 + 0.892393i \(0.350975\pi\)
\(468\) 23.8855 1.10411
\(469\) −3.28407 3.28407i −0.151644 0.151644i
\(470\) 0 0
\(471\) −3.33357 + 3.33357i −0.153603 + 0.153603i
\(472\) 0.484837i 0.0223164i
\(473\) 1.26552 + 1.26552i 0.0581885 + 0.0581885i
\(474\) 0.205089i 0.00942005i
\(475\) 0 0
\(476\) 4.71388 + 9.36665i 0.216060 + 0.429320i
\(477\) 21.9186i 1.00358i
\(478\) 0.743547 0.0340090
\(479\) −21.9512 + 21.9512i −1.00298 + 1.00298i −0.00298006 + 0.999996i \(0.500949\pi\)
−0.999996 + 0.00298006i \(0.999051\pi\)
\(480\) 0 0
\(481\) −16.2878 + 16.2878i −0.742661 + 0.742661i
\(482\) −0.541614 + 0.541614i −0.0246698 + 0.0246698i
\(483\) 2.72645 2.72645i 0.124058 0.124058i
\(484\) 1.77121i 0.0805096i
\(485\) 0 0
\(486\) −0.442420 0.442420i −0.0200686 0.0200686i
\(487\) 13.3233 13.3233i 0.603738 0.603738i −0.337564 0.941303i \(-0.609603\pi\)
0.941303 + 0.337564i \(0.109603\pi\)
\(488\) 1.69280 + 1.69280i 0.0766293 + 0.0766293i
\(489\) −4.33076 −0.195844
\(490\) 0 0
\(491\) 10.7005i 0.482906i −0.970413 0.241453i \(-0.922376\pi\)
0.970413 0.241453i \(-0.0776239\pi\)
\(492\) 0.0958679i 0.00432206i
\(493\) −3.54872 7.05144i −0.159826 0.317581i
\(494\) 1.21327 0.0545874
\(495\) 0 0
\(496\) 6.53032 6.53032i 0.293220 0.293220i
\(497\) 12.4704i 0.559372i
\(498\) −0.0777096 0.0777096i −0.00348225 0.00348225i
\(499\) −22.9732 22.9732i −1.02842 1.02842i −0.999584 0.0288371i \(-0.990820\pi\)
−0.0288371 0.999584i \(-0.509180\pi\)
\(500\) 0 0
\(501\) 7.94822i 0.355100i
\(502\) 1.28882 0.0575229
\(503\) 1.24757 1.24757i 0.0556265 0.0556265i −0.678746 0.734373i \(-0.737476\pi\)
0.734373 + 0.678746i \(0.237476\pi\)
\(504\) 0.612288 + 0.612288i 0.0272735 + 0.0272735i
\(505\) 0 0
\(506\) 1.38979 0.0617835
\(507\) −1.45010 1.45010i −0.0644012 0.0644012i
\(508\) −34.9001 −1.54844
\(509\) −3.00023 −0.132983 −0.0664914 0.997787i \(-0.521181\pi\)
−0.0664914 + 0.997787i \(0.521181\pi\)
\(510\) 0 0
\(511\) 18.4712 0.817117
\(512\) 4.77954 0.211228
\(513\) 8.17747 + 8.17747i 0.361044 + 0.361044i
\(514\) −1.11419 −0.0491447
\(515\) 0 0
\(516\) −0.331118 0.331118i −0.0145766 0.0145766i
\(517\) −11.2787 + 11.2787i −0.496035 + 0.496035i
\(518\) −0.417148 −0.0183284
\(519\) 0.854342i 0.0375014i
\(520\) 0 0
\(521\) 15.9121 + 15.9121i 0.697121 + 0.697121i 0.963789 0.266668i \(-0.0859226\pi\)
−0.266668 + 0.963789i \(0.585923\pi\)
\(522\) −0.230264 0.230264i −0.0100784 0.0100784i
\(523\) 0.441113i 0.0192885i −0.999953 0.00964426i \(-0.996930\pi\)
0.999953 0.00964426i \(-0.00306991\pi\)
\(524\) −14.7543 + 14.7543i −0.644543 + 0.644543i
\(525\) 0 0
\(526\) −0.962587 −0.0419708
\(527\) −4.30278 8.54978i −0.187432 0.372434i
\(528\) 5.27277i 0.229468i
\(529\) 29.7388i 1.29299i
\(530\) 0 0
\(531\) −5.69770 −0.247259
\(532\) −8.56450 8.56450i −0.371318 0.371318i
\(533\) 0.344892 0.344892i 0.0149389 0.0149389i
\(534\) 0.245620 + 0.245620i 0.0106290 + 0.0106290i
\(535\) 0 0
\(536\) 0.876801i 0.0378721i
\(537\) 4.80904 4.80904i 0.207525 0.207525i
\(538\) −0.672132 + 0.672132i −0.0289777 + 0.0289777i
\(539\) −12.0913 + 12.0913i −0.520808 + 0.520808i
\(540\) 0 0
\(541\) −9.19175 + 9.19175i −0.395184 + 0.395184i −0.876531 0.481346i \(-0.840148\pi\)
0.481346 + 0.876531i \(0.340148\pi\)
\(542\) 0.740606 0.0318118
\(543\) 3.08368i 0.132334i
\(544\) 0.931950 2.82033i 0.0399570 0.120921i
\(545\) 0 0
\(546\) 0.135260i 0.00578858i
\(547\) −4.06711 4.06711i −0.173897 0.173897i 0.614792 0.788689i \(-0.289240\pi\)
−0.788689 + 0.614792i \(0.789240\pi\)
\(548\) 32.5815i 1.39181i
\(549\) −19.8934 + 19.8934i −0.849029 + 0.849029i
\(550\) 0 0
\(551\) 6.44756 + 6.44756i 0.274675 + 0.274675i
\(552\) −0.727924 −0.0309825
\(553\) 10.4166 0.442961
\(554\) −0.623625 0.623625i −0.0264953 0.0264953i
\(555\) 0 0
\(556\) 31.5430 31.5430i 1.33772 1.33772i
\(557\) 16.8695i 0.714782i −0.933955 0.357391i \(-0.883666\pi\)
0.933955 0.357391i \(-0.116334\pi\)
\(558\) −0.279192 0.279192i −0.0118191 0.0118191i
\(559\) 2.38244i 0.100766i
\(560\) 0 0
\(561\) 5.18877 + 1.71457i 0.219070 + 0.0723894i
\(562\) 0.0161904i 0.000682949i
\(563\) 6.74798 0.284394 0.142197 0.989838i \(-0.454583\pi\)
0.142197 + 0.989838i \(0.454583\pi\)
\(564\) 2.95102 2.95102i 0.124260 0.124260i
\(565\) 0 0
\(566\) 0.347126 0.347126i 0.0145908 0.0145908i
\(567\) −6.72606 + 6.72606i −0.282468 + 0.282468i
\(568\) 1.66471 1.66471i 0.0698495 0.0698495i
\(569\) 17.7358i 0.743523i −0.928328 0.371761i \(-0.878754\pi\)
0.928328 0.371761i \(-0.121246\pi\)
\(570\) 0 0
\(571\) 26.9615 + 26.9615i 1.12830 + 1.12830i 0.990453 + 0.137851i \(0.0440194\pi\)
0.137851 + 0.990453i \(0.455981\pi\)
\(572\) −19.0037 + 19.0037i −0.794584 + 0.794584i
\(573\) 5.78532 + 5.78532i 0.241685 + 0.241685i
\(574\) 0.00883303 0.000368684
\(575\) 0 0
\(576\) 22.3651i 0.931878i
\(577\) 12.9541i 0.539285i −0.962960 0.269643i \(-0.913094\pi\)
0.962960 0.269643i \(-0.0869056\pi\)
\(578\) −0.821627 0.609554i −0.0341752 0.0253541i
\(579\) 0.810764 0.0336942
\(580\) 0 0
\(581\) −3.94694 + 3.94694i −0.163746 + 0.163746i
\(582\) 0.324869i 0.0134663i
\(583\) −17.4388 17.4388i −0.722241 0.722241i
\(584\) −2.46578 2.46578i −0.102035 0.102035i
\(585\) 0 0
\(586\) 0.851554i 0.0351774i
\(587\) 43.4517 1.79344 0.896722 0.442594i \(-0.145942\pi\)
0.896722 + 0.442594i \(0.145942\pi\)
\(588\) 3.16364 3.16364i 0.130466 0.130466i
\(589\) 7.81759 + 7.81759i 0.322118 + 0.322118i
\(590\) 0 0
\(591\) 10.8920 0.448037
\(592\) −15.3068 15.3068i −0.629105 0.629105i
\(593\) 20.8552 0.856419 0.428209 0.903680i \(-0.359145\pi\)
0.428209 + 0.903680i \(0.359145\pi\)
\(594\) 0.464710 0.0190673
\(595\) 0 0
\(596\) −4.65661 −0.190742
\(597\) 1.05927 0.0433531
\(598\) −1.30819 1.30819i −0.0534960 0.0534960i
\(599\) 33.9126 1.38563 0.692816 0.721115i \(-0.256370\pi\)
0.692816 + 0.721115i \(0.256370\pi\)
\(600\) 0 0
\(601\) 13.1613 + 13.1613i 0.536860 + 0.536860i 0.922605 0.385745i \(-0.126056\pi\)
−0.385745 + 0.922605i \(0.626056\pi\)
\(602\) 0.0305084 0.0305084i 0.00124343 0.00124343i
\(603\) −10.3040 −0.419610
\(604\) 28.0688i 1.14210i
\(605\) 0 0
\(606\) −0.213525 0.213525i −0.00867387 0.00867387i
\(607\) −17.1393 17.1393i −0.695661 0.695661i 0.267811 0.963472i \(-0.413700\pi\)
−0.963472 + 0.267811i \(0.913700\pi\)
\(608\) 3.43094i 0.139143i
\(609\) 0.718800 0.718800i 0.0291273 0.0291273i
\(610\) 0 0
\(611\) 21.2330 0.858995
\(612\) 22.0893 + 7.29918i 0.892906 + 0.295052i
\(613\) 33.3708i 1.34784i −0.738806 0.673918i \(-0.764610\pi\)
0.738806 0.673918i \(-0.235390\pi\)
\(614\) 1.87529i 0.0756807i
\(615\) 0 0
\(616\) −0.974292 −0.0392553
\(617\) −2.71740 2.71740i −0.109399 0.109399i 0.650289 0.759687i \(-0.274648\pi\)
−0.759687 + 0.650289i \(0.774648\pi\)
\(618\) 0.107630 0.107630i 0.00432951 0.00432951i
\(619\) −10.8425 10.8425i −0.435796 0.435796i 0.454799 0.890594i \(-0.349711\pi\)
−0.890594 + 0.454799i \(0.849711\pi\)
\(620\) 0 0
\(621\) 17.6346i 0.707651i
\(622\) −0.583378 + 0.583378i −0.0233913 + 0.0233913i
\(623\) 12.4753 12.4753i 0.499811 0.499811i
\(624\) 4.96321 4.96321i 0.198687 0.198687i
\(625\) 0 0
\(626\) −0.695688 + 0.695688i −0.0278053 + 0.0278053i
\(627\) −6.31215 −0.252083
\(628\) 22.5819i 0.901115i
\(629\) −20.0403 + 10.0855i −0.799061 + 0.402137i
\(630\) 0 0
\(631\) 5.30984i 0.211381i −0.994399 0.105691i \(-0.966295\pi\)
0.994399 0.105691i \(-0.0337053\pi\)
\(632\) −1.39055 1.39055i −0.0553131 0.0553131i
\(633\) 6.45763i 0.256668i
\(634\) −1.31056 + 1.31056i −0.0520488 + 0.0520488i
\(635\) 0 0
\(636\) 4.56280 + 4.56280i 0.180927 + 0.180927i
\(637\) 22.7628 0.901896
\(638\) 0.366403 0.0145060
\(639\) 19.5633 + 19.5633i 0.773911 + 0.773911i
\(640\) 0 0
\(641\) −12.0435 + 12.0435i −0.475689 + 0.475689i −0.903750 0.428061i \(-0.859197\pi\)
0.428061 + 0.903750i \(0.359197\pi\)
\(642\) 0.424128i 0.0167390i
\(643\) 23.5197 + 23.5197i 0.927528 + 0.927528i 0.997546 0.0700181i \(-0.0223057\pi\)
−0.0700181 + 0.997546i \(0.522306\pi\)
\(644\) 18.4692i 0.727788i
\(645\) 0 0
\(646\) 1.12203 + 0.370762i 0.0441455 + 0.0145874i
\(647\) 24.1907i 0.951033i −0.879707 0.475517i \(-0.842261\pi\)
0.879707 0.475517i \(-0.157739\pi\)
\(648\) 1.79576 0.0705443
\(649\) 4.53317 4.53317i 0.177943 0.177943i
\(650\) 0 0
\(651\) 0.871537 0.871537i 0.0341582 0.0341582i
\(652\) 14.6685 14.6685i 0.574462 0.574462i
\(653\) 2.03577 2.03577i 0.0796657 0.0796657i −0.666151 0.745817i \(-0.732059\pi\)
0.745817 + 0.666151i \(0.232059\pi\)
\(654\) 0.226443i 0.00885464i
\(655\) 0 0
\(656\) 0.324118 + 0.324118i 0.0126547 + 0.0126547i
\(657\) 28.9773 28.9773i 1.13051 1.13051i
\(658\) 0.271900 + 0.271900i 0.0105998 + 0.0105998i
\(659\) −24.3591 −0.948895 −0.474447 0.880284i \(-0.657352\pi\)
−0.474447 + 0.880284i \(0.657352\pi\)
\(660\) 0 0
\(661\) 3.36043i 0.130706i −0.997862 0.0653529i \(-0.979183\pi\)
0.997862 0.0653529i \(-0.0208173\pi\)
\(662\) 0.0477185i 0.00185463i
\(663\) −3.27023 6.49806i −0.127005 0.252364i
\(664\) 1.05378 0.0408945
\(665\) 0 0
\(666\) −0.654414 + 0.654414i −0.0253580 + 0.0253580i
\(667\) 13.9040i 0.538367i
\(668\) 26.9209 + 26.9209i 1.04160 + 1.04160i
\(669\) 7.46954 + 7.46954i 0.288789 + 0.288789i
\(670\) 0 0
\(671\) 31.6550i 1.22203i
\(672\) 0.382495 0.0147551
\(673\) −5.01831 + 5.01831i −0.193441 + 0.193441i −0.797181 0.603740i \(-0.793677\pi\)
0.603740 + 0.797181i \(0.293677\pi\)
\(674\) 1.08697 + 1.08697i 0.0418686 + 0.0418686i
\(675\) 0 0
\(676\) 9.82309 0.377811
\(677\) −10.0170 10.0170i −0.384986 0.384986i 0.487909 0.872895i \(-0.337760\pi\)
−0.872895 + 0.487909i \(0.837760\pi\)
\(678\) −0.128744 −0.00494437
\(679\) 16.5004 0.633227
\(680\) 0 0
\(681\) −0.619226 −0.0237288
\(682\) 0.444259 0.0170115
\(683\) −33.0280 33.0280i −1.26378 1.26378i −0.949246 0.314536i \(-0.898151\pi\)
−0.314536 0.949246i \(-0.601849\pi\)
\(684\) −26.8717 −1.02746
\(685\) 0 0
\(686\) 0.670953 + 0.670953i 0.0256171 + 0.0256171i
\(687\) 3.46080 3.46080i 0.132038 0.132038i
\(688\) 2.23894 0.0853589
\(689\) 32.8300i 1.25072i
\(690\) 0 0
\(691\) 12.6534 + 12.6534i 0.481357 + 0.481357i 0.905565 0.424208i \(-0.139447\pi\)
−0.424208 + 0.905565i \(0.639447\pi\)
\(692\) −2.89369 2.89369i −0.110002 0.110002i
\(693\) 11.4497i 0.434937i
\(694\) −1.15252 + 1.15252i −0.0437490 + 0.0437490i
\(695\) 0 0
\(696\) −0.191910 −0.00727432
\(697\) 0.424350 0.213560i 0.0160734 0.00808915i
\(698\) 0.580027i 0.0219543i
\(699\) 7.36422i 0.278540i
\(700\) 0 0
\(701\) 38.7447 1.46337 0.731683 0.681645i \(-0.238735\pi\)
0.731683 + 0.681645i \(0.238735\pi\)
\(702\) −0.437428 0.437428i −0.0165096 0.0165096i
\(703\) 18.3241 18.3241i 0.691107 0.691107i
\(704\) −17.7940 17.7940i −0.670636 0.670636i
\(705\) 0 0
\(706\) 0.956869i 0.0360122i
\(707\) −10.8451 + 10.8451i −0.407873 + 0.407873i
\(708\) −1.18609 + 1.18609i −0.0445759 + 0.0445759i
\(709\) 11.7213 11.7213i 0.440202 0.440202i −0.451878 0.892080i \(-0.649246\pi\)
0.892080 + 0.451878i \(0.149246\pi\)
\(710\) 0 0
\(711\) 16.3414 16.3414i 0.612852 0.612852i
\(712\) −3.33072 −0.124824
\(713\) 16.8585i 0.631356i
\(714\) 0.0413340 0.125088i 0.00154689 0.00468130i
\(715\) 0 0
\(716\) 32.5768i 1.21745i
\(717\) 3.64128 + 3.64128i 0.135986 + 0.135986i
\(718\) 0.762588i 0.0284595i
\(719\) 32.5474 32.5474i 1.21381 1.21381i 0.244049 0.969763i \(-0.421524\pi\)
0.969763 0.244049i \(-0.0784758\pi\)
\(720\) 0 0
\(721\) −5.46662 5.46662i −0.203588 0.203588i
\(722\) −0.221541 −0.00824488
\(723\) −5.30475 −0.197286
\(724\) −10.4446 10.4446i −0.388169 0.388169i
\(725\) 0 0
\(726\) 0.0157350 0.0157350i 0.000583980 0.000583980i
\(727\) 18.1923i 0.674715i 0.941377 + 0.337357i \(0.109533\pi\)
−0.941377 + 0.337357i \(0.890467\pi\)
\(728\) 0.917092 + 0.917092i 0.0339897 + 0.0339897i
\(729\) 18.0672i 0.669157i
\(730\) 0 0
\(731\) 0.728050 2.20327i 0.0269279 0.0814911i
\(732\) 8.28240i 0.306126i
\(733\) −9.02248 −0.333253 −0.166626 0.986020i \(-0.553287\pi\)
−0.166626 + 0.986020i \(0.553287\pi\)
\(734\) 0.984483 0.984483i 0.0363379 0.0363379i
\(735\) 0 0
\(736\) 3.69938 3.69938i 0.136361 0.136361i
\(737\) 8.19800 8.19800i 0.301977 0.301977i
\(738\) 0.0138571 0.0138571i 0.000510087 0.000510087i
\(739\) 28.2213i 1.03814i −0.854733 0.519068i \(-0.826279\pi\)
0.854733 0.519068i \(-0.173721\pi\)
\(740\) 0 0
\(741\) 5.94157 + 5.94157i 0.218269 + 0.218269i
\(742\) −0.420405 + 0.420405i −0.0154335 + 0.0154335i
\(743\) −22.1541 22.1541i −0.812757 0.812757i 0.172290 0.985046i \(-0.444883\pi\)
−0.985046 + 0.172290i \(0.944883\pi\)
\(744\) −0.232688 −0.00853076
\(745\) 0 0
\(746\) 1.27174i 0.0465617i
\(747\) 12.3838i 0.453098i
\(748\) −23.3819 + 11.7672i −0.854927 + 0.430253i
\(749\) −21.5418 −0.787121
\(750\) 0 0
\(751\) −26.0910 + 26.0910i −0.952075 + 0.952075i −0.998903 0.0468280i \(-0.985089\pi\)
0.0468280 + 0.998903i \(0.485089\pi\)
\(752\) 19.9541i 0.727652i
\(753\) 6.31158 + 6.31158i 0.230007 + 0.230007i
\(754\) −0.344892 0.344892i −0.0125602 0.0125602i
\(755\) 0 0
\(756\) 6.17565i 0.224606i
\(757\) −28.0818 −1.02065 −0.510325 0.859981i \(-0.670475\pi\)
−0.510325 + 0.859981i \(0.670475\pi\)
\(758\) −0.792735 + 0.792735i −0.0287934 + 0.0287934i
\(759\) 6.80602 + 6.80602i 0.247043 + 0.247043i
\(760\) 0 0
\(761\) −22.1562 −0.803161 −0.401581 0.915824i \(-0.631539\pi\)
−0.401581 + 0.915824i \(0.631539\pi\)
\(762\) 0.310044 + 0.310044i 0.0112317 + 0.0112317i
\(763\) 11.5013 0.416373
\(764\) −39.1902 −1.41785
\(765\) 0 0
\(766\) −1.95603 −0.0706744
\(767\) −8.53408 −0.308148
\(768\) 4.63018 + 4.63018i 0.167077 + 0.167077i
\(769\) 0.921771 0.0332399 0.0166200 0.999862i \(-0.494709\pi\)
0.0166200 + 0.999862i \(0.494709\pi\)
\(770\) 0 0
\(771\) −5.45637 5.45637i −0.196506 0.196506i
\(772\) −2.74609 + 2.74609i −0.0988340 + 0.0988340i
\(773\) 37.8535 1.36150 0.680748 0.732518i \(-0.261655\pi\)
0.680748 + 0.732518i \(0.261655\pi\)
\(774\) 0.0957220i 0.00344066i
\(775\) 0 0
\(776\) −2.20269 2.20269i −0.0790719 0.0790719i
\(777\) −2.04285 2.04285i −0.0732867 0.0732867i
\(778\) 1.66904i 0.0598379i
\(779\) −0.388010 + 0.388010i −0.0139019 + 0.0139019i
\(780\) 0 0
\(781\) −31.1297 −1.11391
\(782\) −0.810043 1.60958i −0.0289671 0.0575586i
\(783\) 4.64917i 0.166148i
\(784\) 21.3918i 0.763993i
\(785\) 0 0
\(786\) 0.262146 0.00935045
\(787\) 0.116710 + 0.116710i 0.00416026 + 0.00416026i 0.709184 0.705024i \(-0.249064\pi\)
−0.705024 + 0.709184i \(0.749064\pi\)
\(788\) −36.8916 + 36.8916i −1.31421 + 1.31421i
\(789\) −4.71395 4.71395i −0.167821 0.167821i
\(790\) 0 0
\(791\) 6.53901i 0.232500i
\(792\) −1.52845 + 1.52845i −0.0543111 + 0.0543111i
\(793\) −29.7965 + 29.7965i −1.05811 + 1.05811i
\(794\) −0.568676 + 0.568676i −0.0201815 + 0.0201815i
\(795\) 0 0
\(796\) −3.58780 + 3.58780i −0.127166 + 0.127166i
\(797\) 38.6997 1.37081 0.685407 0.728160i \(-0.259624\pi\)
0.685407 + 0.728160i \(0.259624\pi\)
\(798\) 0.152170i 0.00538675i
\(799\) 19.6362 + 6.48859i 0.694680 + 0.229550i
\(800\) 0 0
\(801\) 39.1419i 1.38301i
\(802\) −1.62223 1.62223i −0.0572831 0.0572831i
\(803\) 46.1095i 1.62717i
\(804\) −2.14498 + 2.14498i −0.0756475 + 0.0756475i
\(805\) 0 0
\(806\) −0.418177 0.418177i −0.0147297 0.0147297i
\(807\) −6.58309 −0.231736
\(808\) 2.89550 0.101863
\(809\) −14.6123 14.6123i −0.513741 0.513741i 0.401930 0.915670i \(-0.368340\pi\)
−0.915670 + 0.401930i \(0.868340\pi\)
\(810\) 0 0
\(811\) −24.8273 + 24.8273i −0.871805 + 0.871805i −0.992669 0.120864i \(-0.961433\pi\)
0.120864 + 0.992669i \(0.461433\pi\)
\(812\) 4.86921i 0.170876i
\(813\) 3.62688 + 3.62688i 0.127200 + 0.127200i
\(814\) 1.04132i 0.0364984i
\(815\) 0 0
\(816\) 6.10667 3.07326i 0.213776 0.107586i
\(817\) 2.68029i 0.0937715i
\(818\) 1.66636 0.0582629
\(819\) −10.7775 + 10.7775i −0.376595 + 0.376595i
\(820\) 0 0
\(821\) 34.0467 34.0467i 1.18824 1.18824i 0.210683 0.977554i \(-0.432431\pi\)
0.977554 0.210683i \(-0.0675687\pi\)
\(822\) −0.289446 + 0.289446i −0.0100956 + 0.0100956i
\(823\) 8.39703 8.39703i 0.292702 0.292702i −0.545445 0.838147i \(-0.683639\pi\)
0.838147 + 0.545445i \(0.183639\pi\)
\(824\) 1.45951i 0.0508445i
\(825\) 0 0
\(826\) −0.109283 0.109283i −0.00380245 0.00380245i
\(827\) −17.5744 + 17.5744i −0.611122 + 0.611122i −0.943238 0.332116i \(-0.892237\pi\)
0.332116 + 0.943238i \(0.392237\pi\)
\(828\) 28.9741 + 28.9741i 1.00692 + 1.00692i
\(829\) 22.4093 0.778307 0.389154 0.921173i \(-0.372768\pi\)
0.389154 + 0.921173i \(0.372768\pi\)
\(830\) 0 0
\(831\) 6.10800i 0.211884i
\(832\) 33.4987i 1.16136i
\(833\) 21.0510 + 6.95609i 0.729375 + 0.241014i
\(834\) −0.560440 −0.0194065
\(835\) 0 0
\(836\) 21.3795 21.3795i 0.739426 0.739426i
\(837\) 5.63707i 0.194846i
\(838\) −0.260169 0.260169i −0.00898737 0.00898737i
\(839\) 30.9672 + 30.9672i 1.06911 + 1.06911i 0.997428 + 0.0716773i \(0.0228352\pi\)
0.0716773 + 0.997428i \(0.477165\pi\)
\(840\) 0 0
\(841\) 25.3343i 0.873598i
\(842\) −1.04691 −0.0360788
\(843\) 0.0792869 0.0792869i 0.00273079 0.00273079i
\(844\) −21.8723 21.8723i −0.752874 0.752874i
\(845\) 0 0
\(846\) 0.853102 0.0293303
\(847\) −0.799194 0.799194i −0.0274606 0.0274606i
\(848\) −30.8526 −1.05948
\(849\) 3.39987 0.116683
\(850\) 0 0
\(851\) −39.5156 −1.35458
\(852\) 8.14496 0.279042
\(853\) −24.5706 24.5706i −0.841281 0.841281i 0.147744 0.989026i \(-0.452799\pi\)
−0.989026 + 0.147744i \(0.952799\pi\)
\(854\) −0.763121 −0.0261134
\(855\) 0 0
\(856\) 2.87568 + 2.87568i 0.0982888 + 0.0982888i
\(857\) −2.16478 + 2.16478i −0.0739476 + 0.0739476i −0.743113 0.669166i \(-0.766652\pi\)
0.669166 + 0.743113i \(0.266652\pi\)
\(858\) 0.337648 0.0115271
\(859\) 14.1387i 0.482405i −0.970475 0.241202i \(-0.922458\pi\)
0.970475 0.241202i \(-0.0775417\pi\)
\(860\) 0 0
\(861\) 0.0432569 + 0.0432569i 0.00147419 + 0.00147419i
\(862\) 0.499483 + 0.499483i 0.0170125 + 0.0170125i
\(863\) 13.4091i 0.456452i −0.973608 0.228226i \(-0.926708\pi\)
0.973608 0.228226i \(-0.0732925\pi\)
\(864\) 1.23698 1.23698i 0.0420830 0.0420830i
\(865\) 0 0
\(866\) −1.40253 −0.0476601
\(867\) −1.03856 7.00874i −0.0352713 0.238029i
\(868\) 5.90386i 0.200390i
\(869\) 26.0030i 0.882092i
\(870\) 0 0
\(871\) −15.4334 −0.522941
\(872\) −1.53534 1.53534i −0.0519931 0.0519931i
\(873\) 25.8855 25.8855i 0.876092 0.876092i
\(874\) 1.47174 + 1.47174i 0.0497824 + 0.0497824i
\(875\) 0 0
\(876\) 12.0644i 0.407618i
\(877\) −3.94729 + 3.94729i −0.133290 + 0.133290i −0.770604 0.637314i \(-0.780045\pi\)
0.637314 + 0.770604i \(0.280045\pi\)
\(878\) 0.256232 0.256232i 0.00864742 0.00864742i
\(879\) −4.17021 + 4.17021i −0.140658 + 0.140658i
\(880\) 0 0
\(881\) 10.5800 10.5800i 0.356448 0.356448i −0.506054 0.862502i \(-0.668896\pi\)
0.862502 + 0.506054i \(0.168896\pi\)
\(882\) 0.914568 0.0307951
\(883\) 17.3722i 0.584620i 0.956324 + 0.292310i \(0.0944239\pi\)
−0.956324 + 0.292310i \(0.905576\pi\)
\(884\) 33.0856 + 10.9328i 1.11279 + 0.367710i
\(885\) 0 0
\(886\) 0.758875i 0.0254949i
\(887\) 15.1642 + 15.1642i 0.509164 + 0.509164i 0.914270 0.405106i \(-0.132765\pi\)
−0.405106 + 0.914270i \(0.632765\pi\)
\(888\) 0.545411i 0.0183028i
\(889\) 15.7474 15.7474i 0.528151 0.528151i
\(890\) 0 0
\(891\) −16.7902 16.7902i −0.562493 0.562493i
\(892\) −50.5993 −1.69419
\(893\) −23.8875 −0.799366
\(894\) 0.0413681 + 0.0413681i 0.00138356 + 0.00138356i
\(895\) 0 0
\(896\) −1.72685 + 1.72685i −0.0576899 + 0.0576899i
\(897\) 12.8129i 0.427810i
\(898\) 1.39625 + 1.39625i 0.0465933 + 0.0465933i
\(899\) 4.44457i 0.148235i
\(900\) 0 0
\(901\) −10.0325 + 30.3611i −0.334231 + 1.01147i
\(902\) 0.0220498i 0.000734179i
\(903\) 0.298810 0.00994376
\(904\) 0.872912 0.872912i 0.0290326 0.0290326i
\(905\) 0 0
\(906\) −0.249357 + 0.249357i −0.00828432 + 0.00828432i
\(907\) −21.8367 + 21.8367i −0.725076 + 0.725076i −0.969635 0.244558i \(-0.921357\pi\)
0.244558 + 0.969635i \(0.421357\pi\)
\(908\) 2.09735 2.09735i 0.0696029 0.0696029i
\(909\) 34.0273i 1.12861i
\(910\) 0 0
\(911\) −32.0459 32.0459i −1.06173 1.06173i −0.997965 0.0637617i \(-0.979690\pi\)
−0.0637617 0.997965i \(-0.520310\pi\)
\(912\) −5.58370 + 5.58370i −0.184895 + 0.184895i
\(913\) −9.85271 9.85271i −0.326077 0.326077i
\(914\) −2.29754 −0.0759958
\(915\) 0 0
\(916\) 23.4437i 0.774603i
\(917\) 13.3146i 0.439688i
\(918\) −0.270859 0.538206i −0.00893967 0.0177634i
\(919\) 4.76737 0.157261 0.0786305 0.996904i \(-0.474945\pi\)
0.0786305 + 0.996904i \(0.474945\pi\)
\(920\) 0 0
\(921\) −9.18364 + 9.18364i −0.302611 + 0.302611i
\(922\) 0.226016i 0.00744346i
\(923\) 29.3021 + 29.3021i 0.964490 + 0.964490i
\(924\) −2.38347 2.38347i −0.0784106 0.0784106i
\(925\) 0 0
\(926\) 0.173231i 0.00569272i
\(927\) −17.1519 −0.563341
\(928\) 0.975304 0.975304i 0.0320159 0.0320159i
\(929\) 20.0545 + 20.0545i 0.657968 + 0.657968i 0.954899 0.296931i \(-0.0959632\pi\)
−0.296931 + 0.954899i \(0.595963\pi\)
\(930\) 0 0
\(931\) −25.6086 −0.839289
\(932\) 24.9429 + 24.9429i 0.817033 + 0.817033i
\(933\) −5.71381 −0.187062
\(934\) 1.17371 0.0384050
\(935\) 0 0
\(936\) 2.87743 0.0940519
\(937\) 24.1392 0.788595 0.394297 0.918983i \(-0.370988\pi\)
0.394297 + 0.918983i \(0.370988\pi\)
\(938\) −0.197633 0.197633i −0.00645295 0.00645295i
\(939\) −6.81380 −0.222360
\(940\) 0 0
\(941\) −41.1168 41.1168i −1.34037 1.34037i −0.895691 0.444678i \(-0.853318\pi\)
−0.444678 0.895691i \(-0.646682\pi\)
\(942\) −0.200612 + 0.200612i −0.00653629 + 0.00653629i
\(943\) 0.836736 0.0272479
\(944\) 8.02006i 0.261031i
\(945\) 0 0
\(946\) 0.0761579 + 0.0761579i 0.00247611 + 0.00247611i
\(947\) 4.09293 + 4.09293i 0.133002 + 0.133002i 0.770474 0.637471i \(-0.220020\pi\)
−0.637471 + 0.770474i \(0.720020\pi\)
\(948\) 6.80359i 0.220970i
\(949\) 43.4025 43.4025i 1.40890 1.40890i
\(950\) 0 0
\(951\) −12.8360 −0.416237
\(952\) 0.567871 + 1.12838i 0.0184048 + 0.0365710i
\(953\) 18.4069i 0.596258i −0.954526 0.298129i \(-0.903637\pi\)
0.954526 0.298129i \(-0.0963625\pi\)
\(954\) 1.31905i 0.0427057i
\(955\) 0 0
\(956\) −24.6663 −0.797766
\(957\) 1.79434 + 1.79434i 0.0580026 + 0.0580026i
\(958\) −1.32101 + 1.32101i −0.0426798 + 0.0426798i
\(959\) 14.7012 + 14.7012i 0.474726 + 0.474726i
\(960\) 0 0
\(961\) 25.6110i 0.826162i
\(962\) −0.980189 + 0.980189i −0.0316026 + 0.0316026i
\(963\) −33.7944 + 33.7944i −1.08901 + 1.08901i
\(964\) 17.9674 17.9674i 0.578691 0.578691i
\(965\) 0 0
\(966\) 0.164076 0.164076i 0.00527905 0.00527905i
\(967\) 19.0245 0.611786 0.305893 0.952066i \(-0.401045\pi\)
0.305893 + 0.952066i \(0.401045\pi\)
\(968\) 0.213374i 0.00685809i
\(969\) 3.67907 + 7.31044i 0.118189 + 0.234845i
\(970\) 0 0
\(971\) 25.9469i 0.832676i 0.909210 + 0.416338i \(0.136687\pi\)
−0.909210 + 0.416338i \(0.863313\pi\)
\(972\) 14.6768 + 14.6768i 0.470758 + 0.470758i
\(973\) 28.4652i 0.912554i
\(974\) 0.801789 0.801789i 0.0256910 0.0256910i
\(975\) 0 0
\(976\) −28.0019 28.0019i −0.896318 0.896318i
\(977\) −32.8611 −1.05132 −0.525660 0.850694i \(-0.676182\pi\)
−0.525660 + 0.850694i \(0.676182\pi\)
\(978\) −0.260622 −0.00833378
\(979\) 31.1419 + 31.1419i 0.995299 + 0.995299i
\(980\) 0 0
\(981\) 18.0430 18.0430i 0.576067 0.576067i
\(982\) 0.643947i 0.0205492i
\(983\) 16.6750 + 16.6750i 0.531851 + 0.531851i 0.921123 0.389272i \(-0.127273\pi\)
−0.389272 + 0.921123i \(0.627273\pi\)
\(984\) 0.0115490i 0.000368168i
\(985\) 0 0
\(986\) −0.213560 0.424350i −0.00680112 0.0135141i
\(987\) 2.66308i 0.0847667i
\(988\) −40.2487 −1.28048
\(989\) 2.89000 2.89000i 0.0918966 0.0918966i
\(990\) 0 0
\(991\) −4.05359 + 4.05359i −0.128767 + 0.128767i −0.768553 0.639786i \(-0.779023\pi\)
0.639786 + 0.768553i \(0.279023\pi\)
\(992\) 1.18254 1.18254i 0.0375458 0.0375458i
\(993\) 0.233686 0.233686i 0.00741579 0.00741579i
\(994\) 0.750457i 0.0238031i
\(995\) 0 0
\(996\) 2.57793 + 2.57793i 0.0816847 + 0.0816847i
\(997\) 18.1702 18.1702i 0.575455 0.575455i −0.358193 0.933648i \(-0.616607\pi\)
0.933648 + 0.358193i \(0.116607\pi\)
\(998\) −1.38251 1.38251i −0.0437626 0.0437626i
\(999\) −13.2131 −0.418042
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 425.2.j.a.174.4 12
5.2 odd 4 425.2.e.c.276.4 yes 12
5.3 odd 4 425.2.e.e.276.3 yes 12
5.4 even 2 425.2.j.d.174.3 12
17.13 even 4 425.2.j.d.149.3 12
85.8 odd 8 7225.2.a.br.1.6 12
85.13 odd 4 425.2.e.e.251.4 yes 12
85.42 odd 8 7225.2.a.bm.1.7 12
85.43 odd 8 7225.2.a.br.1.5 12
85.47 odd 4 425.2.e.c.251.3 12
85.64 even 4 inner 425.2.j.a.149.4 12
85.77 odd 8 7225.2.a.bm.1.8 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
425.2.e.c.251.3 12 85.47 odd 4
425.2.e.c.276.4 yes 12 5.2 odd 4
425.2.e.e.251.4 yes 12 85.13 odd 4
425.2.e.e.276.3 yes 12 5.3 odd 4
425.2.j.a.149.4 12 85.64 even 4 inner
425.2.j.a.174.4 12 1.1 even 1 trivial
425.2.j.d.149.3 12 17.13 even 4
425.2.j.d.174.3 12 5.4 even 2
7225.2.a.bm.1.7 12 85.42 odd 8
7225.2.a.bm.1.8 12 85.77 odd 8
7225.2.a.br.1.5 12 85.43 odd 8
7225.2.a.br.1.6 12 85.8 odd 8