Properties

Label 425.2.j.d.149.4
Level $425$
Weight $2$
Character 425.149
Analytic conductor $3.394$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [425,2,Mod(149,425)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(425, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("425.149");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 425 = 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 425.j (of order \(4\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.39364208590\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 18x^{10} + 119x^{8} + 364x^{6} + 519x^{4} + 278x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 149.4
Root \(-1.21647i\) of defining polynomial
Character \(\chi\) \(=\) 425.149
Dual form 425.2.j.d.174.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.21647 q^{2} +(2.23861 - 2.23861i) q^{3} -0.520205 q^{4} +(2.72320 - 2.72320i) q^{6} +(0.679950 + 0.679950i) q^{7} -3.06575 q^{8} -7.02277i q^{9} +(2.22126 - 2.22126i) q^{11} +(-1.16454 + 1.16454i) q^{12} +2.02534i q^{13} +(0.827137 + 0.827137i) q^{14} -2.68898 q^{16} +(-2.07407 - 3.56346i) q^{17} -8.54297i q^{18} +5.28609i q^{19} +3.04429 q^{21} +(2.70209 - 2.70209i) q^{22} +(6.01797 + 6.01797i) q^{23} +(-6.86302 + 6.86302i) q^{24} +2.46376i q^{26} +(-9.00542 - 9.00542i) q^{27} +(-0.353714 - 0.353714i) q^{28} +(0.857606 + 0.857606i) q^{29} +(3.97529 + 3.97529i) q^{31} +2.86045 q^{32} -9.94509i q^{33} +(-2.52305 - 4.33483i) q^{34} +3.65328i q^{36} +(-5.84955 + 5.84955i) q^{37} +6.43037i q^{38} +(4.53395 + 4.53395i) q^{39} +(-1.04325 + 1.04325i) q^{41} +3.70328 q^{42} -7.01089 q^{43} +(-1.15551 + 1.15551i) q^{44} +(7.32067 + 7.32067i) q^{46} -10.9275i q^{47} +(-6.01957 + 6.01957i) q^{48} -6.07534i q^{49} +(-12.6202 - 3.33415i) q^{51} -1.05359i q^{52} -5.24568 q^{53} +(-10.9548 - 10.9548i) q^{54} +(-2.08456 - 2.08456i) q^{56} +(11.8335 + 11.8335i) q^{57} +(1.04325 + 1.04325i) q^{58} +13.8346i q^{59} +(2.70557 - 2.70557i) q^{61} +(4.83581 + 4.83581i) q^{62} +(4.77513 - 4.77513i) q^{63} +8.85759 q^{64} -12.0979i q^{66} +2.37336i q^{67} +(1.07894 + 1.85373i) q^{68} +26.9438 q^{69} +(2.82261 + 2.82261i) q^{71} +21.5300i q^{72} +(-5.51272 + 5.51272i) q^{73} +(-7.11579 + 7.11579i) q^{74} -2.74985i q^{76} +3.02069 q^{77} +(5.51540 + 5.51540i) q^{78} +(4.74215 - 4.74215i) q^{79} -19.2510 q^{81} +(-1.26908 + 1.26908i) q^{82} -0.171341 q^{83} -1.58365 q^{84} -8.52853 q^{86} +3.83969 q^{87} +(-6.80983 + 6.80983i) q^{88} -1.32080 q^{89} +(-1.37713 + 1.37713i) q^{91} +(-3.13058 - 3.13058i) q^{92} +17.7982 q^{93} -13.2930i q^{94} +(6.40343 - 6.40343i) q^{96} +(1.33838 - 1.33838i) q^{97} -7.39045i q^{98} +(-15.5994 - 15.5994i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 4 q^{2} + 2 q^{3} + 12 q^{4} + 6 q^{6} + 12 q^{8} - 4 q^{11} - 4 q^{12} - 14 q^{14} + 4 q^{16} - 10 q^{17} + 8 q^{21} + 10 q^{22} + 12 q^{23} + 8 q^{24} - 22 q^{27} - 34 q^{28} + 6 q^{29} - 6 q^{31}+ \cdots - 30 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/425\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(326\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.21647 0.860173 0.430086 0.902788i \(-0.358483\pi\)
0.430086 + 0.902788i \(0.358483\pi\)
\(3\) 2.23861 2.23861i 1.29246 1.29246i 0.359204 0.933259i \(-0.383048\pi\)
0.933259 0.359204i \(-0.116952\pi\)
\(4\) −0.520205 −0.260103
\(5\) 0 0
\(6\) 2.72320 2.72320i 1.11174 1.11174i
\(7\) 0.679950 + 0.679950i 0.256997 + 0.256997i 0.823832 0.566835i \(-0.191832\pi\)
−0.566835 + 0.823832i \(0.691832\pi\)
\(8\) −3.06575 −1.08391
\(9\) 7.02277i 2.34092i
\(10\) 0 0
\(11\) 2.22126 2.22126i 0.669736 0.669736i −0.287919 0.957655i \(-0.592963\pi\)
0.957655 + 0.287919i \(0.0929634\pi\)
\(12\) −1.16454 + 1.16454i −0.336173 + 0.336173i
\(13\) 2.02534i 0.561728i 0.959748 + 0.280864i \(0.0906210\pi\)
−0.959748 + 0.280864i \(0.909379\pi\)
\(14\) 0.827137 + 0.827137i 0.221062 + 0.221062i
\(15\) 0 0
\(16\) −2.68898 −0.672244
\(17\) −2.07407 3.56346i −0.503037 0.864265i
\(18\) 8.54297i 2.01360i
\(19\) 5.28609i 1.21271i 0.795193 + 0.606357i \(0.207370\pi\)
−0.795193 + 0.606357i \(0.792630\pi\)
\(20\) 0 0
\(21\) 3.04429 0.664318
\(22\) 2.70209 2.70209i 0.576088 0.576088i
\(23\) 6.01797 + 6.01797i 1.25483 + 1.25483i 0.953527 + 0.301307i \(0.0974230\pi\)
0.301307 + 0.953527i \(0.402577\pi\)
\(24\) −6.86302 + 6.86302i −1.40091 + 1.40091i
\(25\) 0 0
\(26\) 2.46376i 0.483183i
\(27\) −9.00542 9.00542i −1.73309 1.73309i
\(28\) −0.353714 0.353714i −0.0668456 0.0668456i
\(29\) 0.857606 + 0.857606i 0.159253 + 0.159253i 0.782236 0.622982i \(-0.214079\pi\)
−0.622982 + 0.782236i \(0.714079\pi\)
\(30\) 0 0
\(31\) 3.97529 + 3.97529i 0.713982 + 0.713982i 0.967366 0.253384i \(-0.0815435\pi\)
−0.253384 + 0.967366i \(0.581543\pi\)
\(32\) 2.86045 0.505660
\(33\) 9.94509i 1.73122i
\(34\) −2.52305 4.33483i −0.432699 0.743417i
\(35\) 0 0
\(36\) 3.65328i 0.608880i
\(37\) −5.84955 + 5.84955i −0.961660 + 0.961660i −0.999292 0.0376315i \(-0.988019\pi\)
0.0376315 + 0.999292i \(0.488019\pi\)
\(38\) 6.43037i 1.04314i
\(39\) 4.53395 + 4.53395i 0.726013 + 0.726013i
\(40\) 0 0
\(41\) −1.04325 + 1.04325i −0.162928 + 0.162928i −0.783863 0.620934i \(-0.786753\pi\)
0.620934 + 0.783863i \(0.286753\pi\)
\(42\) 3.70328 0.571428
\(43\) −7.01089 −1.06915 −0.534576 0.845121i \(-0.679529\pi\)
−0.534576 + 0.845121i \(0.679529\pi\)
\(44\) −1.15551 + 1.15551i −0.174200 + 0.174200i
\(45\) 0 0
\(46\) 7.32067 + 7.32067i 1.07937 + 1.07937i
\(47\) 10.9275i 1.59394i −0.604019 0.796970i \(-0.706435\pi\)
0.604019 0.796970i \(-0.293565\pi\)
\(48\) −6.01957 + 6.01957i −0.868851 + 0.868851i
\(49\) 6.07534i 0.867905i
\(50\) 0 0
\(51\) −12.6202 3.33415i −1.76719 0.466874i
\(52\) 1.05359i 0.146107i
\(53\) −5.24568 −0.720550 −0.360275 0.932846i \(-0.617317\pi\)
−0.360275 + 0.932846i \(0.617317\pi\)
\(54\) −10.9548 10.9548i −1.49076 1.49076i
\(55\) 0 0
\(56\) −2.08456 2.08456i −0.278561 0.278561i
\(57\) 11.8335 + 11.8335i 1.56739 + 1.56739i
\(58\) 1.04325 + 1.04325i 0.136985 + 0.136985i
\(59\) 13.8346i 1.80111i 0.434747 + 0.900553i \(0.356838\pi\)
−0.434747 + 0.900553i \(0.643162\pi\)
\(60\) 0 0
\(61\) 2.70557 2.70557i 0.346412 0.346412i −0.512359 0.858771i \(-0.671228\pi\)
0.858771 + 0.512359i \(0.171228\pi\)
\(62\) 4.83581 + 4.83581i 0.614148 + 0.614148i
\(63\) 4.77513 4.77513i 0.601610 0.601610i
\(64\) 8.85759 1.10720
\(65\) 0 0
\(66\) 12.0979i 1.48915i
\(67\) 2.37336i 0.289953i 0.989435 + 0.144976i \(0.0463106\pi\)
−0.989435 + 0.144976i \(0.953689\pi\)
\(68\) 1.07894 + 1.85373i 0.130841 + 0.224798i
\(69\) 26.9438 3.24366
\(70\) 0 0
\(71\) 2.82261 + 2.82261i 0.334983 + 0.334983i 0.854475 0.519492i \(-0.173879\pi\)
−0.519492 + 0.854475i \(0.673879\pi\)
\(72\) 21.5300i 2.53734i
\(73\) −5.51272 + 5.51272i −0.645215 + 0.645215i −0.951833 0.306618i \(-0.900803\pi\)
0.306618 + 0.951833i \(0.400803\pi\)
\(74\) −7.11579 + 7.11579i −0.827194 + 0.827194i
\(75\) 0 0
\(76\) 2.74985i 0.315430i
\(77\) 3.02069 0.344240
\(78\) 5.51540 + 5.51540i 0.624496 + 0.624496i
\(79\) 4.74215 4.74215i 0.533534 0.533534i −0.388089 0.921622i \(-0.626865\pi\)
0.921622 + 0.388089i \(0.126865\pi\)
\(80\) 0 0
\(81\) −19.2510 −2.13900
\(82\) −1.26908 + 1.26908i −0.140147 + 0.140147i
\(83\) −0.171341 −0.0188071 −0.00940355 0.999956i \(-0.502993\pi\)
−0.00940355 + 0.999956i \(0.502993\pi\)
\(84\) −1.58365 −0.172791
\(85\) 0 0
\(86\) −8.52853 −0.919655
\(87\) 3.83969 0.411658
\(88\) −6.80983 + 6.80983i −0.725930 + 0.725930i
\(89\) −1.32080 −0.140004 −0.0700020 0.997547i \(-0.522301\pi\)
−0.0700020 + 0.997547i \(0.522301\pi\)
\(90\) 0 0
\(91\) −1.37713 + 1.37713i −0.144362 + 0.144362i
\(92\) −3.13058 3.13058i −0.326386 0.326386i
\(93\) 17.7982 1.84559
\(94\) 13.2930i 1.37106i
\(95\) 0 0
\(96\) 6.40343 6.40343i 0.653547 0.653547i
\(97\) 1.33838 1.33838i 0.135892 0.135892i −0.635889 0.771781i \(-0.719366\pi\)
0.771781 + 0.635889i \(0.219366\pi\)
\(98\) 7.39045i 0.746548i
\(99\) −15.5994 15.5994i −1.56780 1.56780i
\(100\) 0 0
\(101\) 4.43204 0.441004 0.220502 0.975386i \(-0.429230\pi\)
0.220502 + 0.975386i \(0.429230\pi\)
\(102\) −15.3521 4.05588i −1.52009 0.401592i
\(103\) 15.4586i 1.52318i −0.648057 0.761591i \(-0.724418\pi\)
0.648057 0.761591i \(-0.275582\pi\)
\(104\) 6.20918i 0.608860i
\(105\) 0 0
\(106\) −6.38121 −0.619798
\(107\) −0.692094 + 0.692094i −0.0669072 + 0.0669072i −0.739769 0.672861i \(-0.765065\pi\)
0.672861 + 0.739769i \(0.265065\pi\)
\(108\) 4.68467 + 4.68467i 0.450782 + 0.450782i
\(109\) 3.51917 3.51917i 0.337075 0.337075i −0.518190 0.855265i \(-0.673394\pi\)
0.855265 + 0.518190i \(0.173394\pi\)
\(110\) 0 0
\(111\) 26.1897i 2.48582i
\(112\) −1.82837 1.82837i −0.172765 0.172765i
\(113\) −3.07762 3.07762i −0.289519 0.289519i 0.547371 0.836890i \(-0.315629\pi\)
−0.836890 + 0.547371i \(0.815629\pi\)
\(114\) 14.3951 + 14.3951i 1.34822 + 1.34822i
\(115\) 0 0
\(116\) −0.446131 0.446131i −0.0414222 0.0414222i
\(117\) 14.2235 1.31496
\(118\) 16.8293i 1.54926i
\(119\) 1.01270 3.83324i 0.0928345 0.351392i
\(120\) 0 0
\(121\) 1.13199i 0.102909i
\(122\) 3.29124 3.29124i 0.297974 0.297974i
\(123\) 4.67087i 0.421158i
\(124\) −2.06796 2.06796i −0.185709 0.185709i
\(125\) 0 0
\(126\) 5.80879 5.80879i 0.517488 0.517488i
\(127\) −20.0499 −1.77914 −0.889572 0.456795i \(-0.848997\pi\)
−0.889572 + 0.456795i \(0.848997\pi\)
\(128\) 5.05409 0.446722
\(129\) −15.6947 + 15.6947i −1.38184 + 1.38184i
\(130\) 0 0
\(131\) −11.3827 11.3827i −0.994508 0.994508i 0.00547746 0.999985i \(-0.498256\pi\)
−0.999985 + 0.00547746i \(0.998256\pi\)
\(132\) 5.17349i 0.450294i
\(133\) −3.59428 + 3.59428i −0.311664 + 0.311664i
\(134\) 2.88712i 0.249409i
\(135\) 0 0
\(136\) 6.35859 + 10.9247i 0.545245 + 0.936782i
\(137\) 4.53005i 0.387028i −0.981098 0.193514i \(-0.938011\pi\)
0.981098 0.193514i \(-0.0619885\pi\)
\(138\) 32.7763 2.79010
\(139\) 0.678975 + 0.678975i 0.0575899 + 0.0575899i 0.735315 0.677725i \(-0.237034\pi\)
−0.677725 + 0.735315i \(0.737034\pi\)
\(140\) 0 0
\(141\) −24.4624 24.4624i −2.06011 2.06011i
\(142\) 3.43362 + 3.43362i 0.288143 + 0.288143i
\(143\) 4.49881 + 4.49881i 0.376209 + 0.376209i
\(144\) 18.8841i 1.57367i
\(145\) 0 0
\(146\) −6.70605 + 6.70605i −0.554996 + 0.554996i
\(147\) −13.6003 13.6003i −1.12174 1.12174i
\(148\) 3.04297 3.04297i 0.250130 0.250130i
\(149\) 1.68439 0.137990 0.0689952 0.997617i \(-0.478021\pi\)
0.0689952 + 0.997617i \(0.478021\pi\)
\(150\) 0 0
\(151\) 7.30864i 0.594769i 0.954758 + 0.297384i \(0.0961142\pi\)
−0.954758 + 0.297384i \(0.903886\pi\)
\(152\) 16.2058i 1.31447i
\(153\) −25.0253 + 14.5657i −2.02318 + 1.17757i
\(154\) 3.67458 0.296106
\(155\) 0 0
\(156\) −2.35858 2.35858i −0.188838 0.188838i
\(157\) 7.30709i 0.583169i 0.956545 + 0.291585i \(0.0941825\pi\)
−0.956545 + 0.291585i \(0.905818\pi\)
\(158\) 5.76867 5.76867i 0.458931 0.458931i
\(159\) −11.7431 + 11.7431i −0.931285 + 0.931285i
\(160\) 0 0
\(161\) 8.18384i 0.644977i
\(162\) −23.4182 −1.83991
\(163\) −15.4004 15.4004i −1.20626 1.20626i −0.972231 0.234025i \(-0.924810\pi\)
−0.234025 0.972231i \(-0.575190\pi\)
\(164\) 0.542704 0.542704i 0.0423781 0.0423781i
\(165\) 0 0
\(166\) −0.208431 −0.0161774
\(167\) −6.15592 + 6.15592i −0.476360 + 0.476360i −0.903965 0.427606i \(-0.859357\pi\)
0.427606 + 0.903965i \(0.359357\pi\)
\(168\) −9.33302 −0.720058
\(169\) 8.89800 0.684462
\(170\) 0 0
\(171\) 37.1230 2.83887
\(172\) 3.64710 0.278089
\(173\) −5.08754 + 5.08754i −0.386798 + 0.386798i −0.873544 0.486745i \(-0.838184\pi\)
0.486745 + 0.873544i \(0.338184\pi\)
\(174\) 4.67087 0.354097
\(175\) 0 0
\(176\) −5.97292 + 5.97292i −0.450226 + 0.450226i
\(177\) 30.9702 + 30.9702i 2.32786 + 2.32786i
\(178\) −1.60671 −0.120428
\(179\) 9.93729i 0.742748i −0.928483 0.371374i \(-0.878887\pi\)
0.928483 0.371374i \(-0.121113\pi\)
\(180\) 0 0
\(181\) 0.985498 0.985498i 0.0732515 0.0732515i −0.669532 0.742783i \(-0.733505\pi\)
0.742783 + 0.669532i \(0.233505\pi\)
\(182\) −1.67523 + 1.67523i −0.124177 + 0.124177i
\(183\) 12.1134i 0.895450i
\(184\) −18.4496 18.4496i −1.36012 1.36012i
\(185\) 0 0
\(186\) 21.6510 1.58753
\(187\) −12.5224 3.30831i −0.915731 0.241927i
\(188\) 5.68454i 0.414588i
\(189\) 12.2465i 0.890799i
\(190\) 0 0
\(191\) 4.39578 0.318068 0.159034 0.987273i \(-0.449162\pi\)
0.159034 + 0.987273i \(0.449162\pi\)
\(192\) 19.8287 19.8287i 1.43101 1.43101i
\(193\) −7.54658 7.54658i −0.543215 0.543215i 0.381255 0.924470i \(-0.375492\pi\)
−0.924470 + 0.381255i \(0.875492\pi\)
\(194\) 1.62810 1.62810i 0.116891 0.116891i
\(195\) 0 0
\(196\) 3.16042i 0.225744i
\(197\) −3.37366 3.37366i −0.240364 0.240364i 0.576637 0.817001i \(-0.304365\pi\)
−0.817001 + 0.576637i \(0.804365\pi\)
\(198\) −18.9762 18.9762i −1.34858 1.34858i
\(199\) −13.0268 13.0268i −0.923445 0.923445i 0.0738262 0.997271i \(-0.476479\pi\)
−0.997271 + 0.0738262i \(0.976479\pi\)
\(200\) 0 0
\(201\) 5.31304 + 5.31304i 0.374753 + 0.374753i
\(202\) 5.39143 0.379340
\(203\) 1.16626i 0.0818553i
\(204\) 6.56512 + 1.73444i 0.459650 + 0.121435i
\(205\) 0 0
\(206\) 18.8049i 1.31020i
\(207\) 42.2628 42.2628i 2.93747 2.93747i
\(208\) 5.44609i 0.377618i
\(209\) 11.7418 + 11.7418i 0.812197 + 0.812197i
\(210\) 0 0
\(211\) 14.5044 14.5044i 0.998523 0.998523i −0.00147578 0.999999i \(-0.500470\pi\)
0.999999 + 0.00147578i \(0.000469756\pi\)
\(212\) 2.72883 0.187417
\(213\) 12.6375 0.865905
\(214\) −0.841910 + 0.841910i −0.0575518 + 0.0575518i
\(215\) 0 0
\(216\) 27.6084 + 27.6084i 1.87851 + 1.87851i
\(217\) 5.40599i 0.366982i
\(218\) 4.28096 4.28096i 0.289943 0.289943i
\(219\) 24.6817i 1.66783i
\(220\) 0 0
\(221\) 7.21720 4.20070i 0.485482 0.282570i
\(222\) 31.8590i 2.13824i
\(223\) −16.2801 −1.09019 −0.545097 0.838373i \(-0.683507\pi\)
−0.545097 + 0.838373i \(0.683507\pi\)
\(224\) 1.94496 + 1.94496i 0.129953 + 0.129953i
\(225\) 0 0
\(226\) −3.74383 3.74383i −0.249036 0.249036i
\(227\) 10.4633 + 10.4633i 0.694477 + 0.694477i 0.963214 0.268737i \(-0.0866062\pi\)
−0.268737 + 0.963214i \(0.586606\pi\)
\(228\) −6.15586 6.15586i −0.407682 0.407682i
\(229\) 13.4006i 0.885534i −0.896637 0.442767i \(-0.853997\pi\)
0.896637 0.442767i \(-0.146003\pi\)
\(230\) 0 0
\(231\) 6.76216 6.76216i 0.444917 0.444917i
\(232\) −2.62921 2.62921i −0.172616 0.172616i
\(233\) 17.4785 17.4785i 1.14505 1.14505i 0.157541 0.987512i \(-0.449643\pi\)
0.987512 0.157541i \(-0.0503567\pi\)
\(234\) 17.3024 1.13109
\(235\) 0 0
\(236\) 7.19681i 0.468472i
\(237\) 21.2317i 1.37914i
\(238\) 1.23192 4.66301i 0.0798537 0.302258i
\(239\) −1.28352 −0.0830243 −0.0415121 0.999138i \(-0.513218\pi\)
−0.0415121 + 0.999138i \(0.513218\pi\)
\(240\) 0 0
\(241\) −9.00000 9.00000i −0.579741 0.579741i 0.355091 0.934832i \(-0.384450\pi\)
−0.934832 + 0.355091i \(0.884450\pi\)
\(242\) 1.37703i 0.0885191i
\(243\) −16.0792 + 16.0792i −1.03148 + 1.03148i
\(244\) −1.40745 + 1.40745i −0.0901028 + 0.0901028i
\(245\) 0 0
\(246\) 5.68196i 0.362268i
\(247\) −10.7061 −0.681215
\(248\) −12.1872 12.1872i −0.773890 0.773890i
\(249\) −0.383566 + 0.383566i −0.0243075 + 0.0243075i
\(250\) 0 0
\(251\) 15.1133 0.953943 0.476972 0.878919i \(-0.341734\pi\)
0.476972 + 0.878919i \(0.341734\pi\)
\(252\) −2.48405 + 2.48405i −0.156480 + 0.156480i
\(253\) 26.7350 1.68081
\(254\) −24.3901 −1.53037
\(255\) 0 0
\(256\) −11.5670 −0.722941
\(257\) 0.247858 0.0154609 0.00773047 0.999970i \(-0.497539\pi\)
0.00773047 + 0.999970i \(0.497539\pi\)
\(258\) −19.0921 + 19.0921i −1.18862 + 1.18862i
\(259\) −7.95480 −0.494287
\(260\) 0 0
\(261\) 6.02277 6.02277i 0.372800 0.372800i
\(262\) −13.8466 13.8466i −0.855448 0.855448i
\(263\) 12.6190 0.778120 0.389060 0.921212i \(-0.372800\pi\)
0.389060 + 0.921212i \(0.372800\pi\)
\(264\) 30.4891i 1.87648i
\(265\) 0 0
\(266\) −4.37233 + 4.37233i −0.268085 + 0.268085i
\(267\) −2.95675 + 2.95675i −0.180950 + 0.180950i
\(268\) 1.23464i 0.0754174i
\(269\) 10.1203 + 10.1203i 0.617046 + 0.617046i 0.944773 0.327727i \(-0.106283\pi\)
−0.327727 + 0.944773i \(0.606283\pi\)
\(270\) 0 0
\(271\) −18.9859 −1.15331 −0.576656 0.816987i \(-0.695643\pi\)
−0.576656 + 0.816987i \(0.695643\pi\)
\(272\) 5.57713 + 9.58205i 0.338163 + 0.580997i
\(273\) 6.16571i 0.373166i
\(274\) 5.51066i 0.332911i
\(275\) 0 0
\(276\) −14.0163 −0.843683
\(277\) −10.4399 + 10.4399i −0.627275 + 0.627275i −0.947382 0.320106i \(-0.896281\pi\)
0.320106 + 0.947382i \(0.396281\pi\)
\(278\) 0.825952 + 0.825952i 0.0495373 + 0.0495373i
\(279\) 27.9175 27.9175i 1.67138 1.67138i
\(280\) 0 0
\(281\) 23.7227i 1.41518i 0.706624 + 0.707589i \(0.250217\pi\)
−0.706624 + 0.707589i \(0.749783\pi\)
\(282\) −29.7578 29.7578i −1.77205 1.77205i
\(283\) 18.6754 + 18.6754i 1.11013 + 1.11013i 0.993132 + 0.117003i \(0.0373288\pi\)
0.117003 + 0.993132i \(0.462671\pi\)
\(284\) −1.46834 1.46834i −0.0871299 0.0871299i
\(285\) 0 0
\(286\) 5.47266 + 5.47266i 0.323605 + 0.323605i
\(287\) −1.41872 −0.0837442
\(288\) 20.0882i 1.18371i
\(289\) −8.39643 + 14.7817i −0.493908 + 0.869514i
\(290\) 0 0
\(291\) 5.99223i 0.351271i
\(292\) 2.86775 2.86775i 0.167822 0.167822i
\(293\) 11.0287i 0.644306i 0.946688 + 0.322153i \(0.104407\pi\)
−0.946688 + 0.322153i \(0.895593\pi\)
\(294\) −16.5444 16.5444i −0.964887 0.964887i
\(295\) 0 0
\(296\) 17.9333 17.9333i 1.04235 1.04235i
\(297\) −40.0068 −2.32143
\(298\) 2.04900 0.118696
\(299\) −12.1884 + 12.1884i −0.704876 + 0.704876i
\(300\) 0 0
\(301\) −4.76706 4.76706i −0.274769 0.274769i
\(302\) 8.89073i 0.511604i
\(303\) 9.92162 9.92162i 0.569982 0.569982i
\(304\) 14.2142i 0.815239i
\(305\) 0 0
\(306\) −30.4425 + 17.7188i −1.74028 + 1.01291i
\(307\) 5.11998i 0.292213i 0.989269 + 0.146106i \(0.0466742\pi\)
−0.989269 + 0.146106i \(0.953326\pi\)
\(308\) −1.57138 −0.0895377
\(309\) −34.6059 34.6059i −1.96866 1.96866i
\(310\) 0 0
\(311\) −1.28347 1.28347i −0.0727789 0.0727789i 0.669780 0.742559i \(-0.266388\pi\)
−0.742559 + 0.669780i \(0.766388\pi\)
\(312\) −13.8999 13.8999i −0.786930 0.786930i
\(313\) −11.4417 11.4417i −0.646721 0.646721i 0.305478 0.952199i \(-0.401184\pi\)
−0.952199 + 0.305478i \(0.901184\pi\)
\(314\) 8.88884i 0.501626i
\(315\) 0 0
\(316\) −2.46689 + 2.46689i −0.138773 + 0.138773i
\(317\) 8.07082 + 8.07082i 0.453303 + 0.453303i 0.896449 0.443147i \(-0.146138\pi\)
−0.443147 + 0.896449i \(0.646138\pi\)
\(318\) −14.2850 + 14.2850i −0.801066 + 0.801066i
\(319\) 3.80993 0.213315
\(320\) 0 0
\(321\) 3.09866i 0.172950i
\(322\) 9.95538i 0.554792i
\(323\) 18.8368 10.9638i 1.04811 0.610040i
\(324\) 10.0145 0.556359
\(325\) 0 0
\(326\) −18.7341 18.7341i −1.03759 1.03759i
\(327\) 15.7561i 0.871314i
\(328\) 3.19834 3.19834i 0.176599 0.176599i
\(329\) 7.43015 7.43015i 0.409638 0.409638i
\(330\) 0 0
\(331\) 8.46764i 0.465423i 0.972546 + 0.232712i \(0.0747599\pi\)
−0.972546 + 0.232712i \(0.925240\pi\)
\(332\) 0.0891324 0.00489178
\(333\) 41.0800 + 41.0800i 2.25117 + 2.25117i
\(334\) −7.48848 + 7.48848i −0.409752 + 0.409752i
\(335\) 0 0
\(336\) −8.18602 −0.446584
\(337\) 1.92994 1.92994i 0.105131 0.105131i −0.652585 0.757716i \(-0.726315\pi\)
0.757716 + 0.652585i \(0.226315\pi\)
\(338\) 10.8241 0.588755
\(339\) −13.7792 −0.748384
\(340\) 0 0
\(341\) 17.6603 0.956359
\(342\) 45.1590 2.44192
\(343\) 8.89057 8.89057i 0.480046 0.480046i
\(344\) 21.4936 1.15886
\(345\) 0 0
\(346\) −6.18883 + 6.18883i −0.332713 + 0.332713i
\(347\) 9.34214 + 9.34214i 0.501512 + 0.501512i 0.911908 0.410395i \(-0.134609\pi\)
−0.410395 + 0.911908i \(0.634609\pi\)
\(348\) −1.99743 −0.107073
\(349\) 27.0950i 1.45036i 0.688558 + 0.725181i \(0.258244\pi\)
−0.688558 + 0.725181i \(0.741756\pi\)
\(350\) 0 0
\(351\) 18.2390 18.2390i 0.973527 0.973527i
\(352\) 6.35380 6.35380i 0.338659 0.338659i
\(353\) 27.4302i 1.45996i 0.683468 + 0.729980i \(0.260471\pi\)
−0.683468 + 0.729980i \(0.739529\pi\)
\(354\) 37.6743 + 37.6743i 2.00236 + 2.00236i
\(355\) 0 0
\(356\) 0.687085 0.0364154
\(357\) −6.31408 10.8482i −0.334176 0.574147i
\(358\) 12.0884i 0.638892i
\(359\) 3.45103i 0.182138i 0.995845 + 0.0910692i \(0.0290284\pi\)
−0.995845 + 0.0910692i \(0.970972\pi\)
\(360\) 0 0
\(361\) −8.94280 −0.470674
\(362\) 1.19883 1.19883i 0.0630090 0.0630090i
\(363\) 2.53410 + 2.53410i 0.133006 + 0.133006i
\(364\) 0.716390 0.716390i 0.0375490 0.0375490i
\(365\) 0 0
\(366\) 14.7356i 0.770242i
\(367\) 1.01764 + 1.01764i 0.0531203 + 0.0531203i 0.733168 0.680048i \(-0.238041\pi\)
−0.680048 + 0.733168i \(0.738041\pi\)
\(368\) −16.1822 16.1822i −0.843555 0.843555i
\(369\) 7.32651 + 7.32651i 0.381403 + 0.381403i
\(370\) 0 0
\(371\) −3.56680 3.56680i −0.185179 0.185179i
\(372\) −9.25874 −0.480043
\(373\) 16.8892i 0.874490i 0.899342 + 0.437245i \(0.144046\pi\)
−0.899342 + 0.437245i \(0.855954\pi\)
\(374\) −15.2331 4.02445i −0.787687 0.208099i
\(375\) 0 0
\(376\) 33.5010i 1.72768i
\(377\) −1.73694 + 1.73694i −0.0894571 + 0.0894571i
\(378\) 14.8974i 0.766241i
\(379\) −21.9472 21.9472i −1.12735 1.12735i −0.990606 0.136748i \(-0.956335\pi\)
−0.136748 0.990606i \(-0.543665\pi\)
\(380\) 0 0
\(381\) −44.8840 + 44.8840i −2.29948 + 2.29948i
\(382\) 5.34733 0.273593
\(383\) 31.3111 1.59992 0.799961 0.600052i \(-0.204853\pi\)
0.799961 + 0.600052i \(0.204853\pi\)
\(384\) 11.3141 11.3141i 0.577372 0.577372i
\(385\) 0 0
\(386\) −9.18018 9.18018i −0.467259 0.467259i
\(387\) 49.2359i 2.50280i
\(388\) −0.696232 + 0.696232i −0.0353458 + 0.0353458i
\(389\) 28.2233i 1.43098i −0.698624 0.715489i \(-0.746204\pi\)
0.698624 0.715489i \(-0.253796\pi\)
\(390\) 0 0
\(391\) 8.96306 33.9265i 0.453281 1.71574i
\(392\) 18.6255i 0.940728i
\(393\) −50.9627 −2.57073
\(394\) −4.10396 4.10396i −0.206754 0.206754i
\(395\) 0 0
\(396\) 8.11489 + 8.11489i 0.407789 + 0.407789i
\(397\) −8.15876 8.15876i −0.409476 0.409476i 0.472080 0.881556i \(-0.343503\pi\)
−0.881556 + 0.472080i \(0.843503\pi\)
\(398\) −15.8467 15.8467i −0.794322 0.794322i
\(399\) 16.0924i 0.805627i
\(400\) 0 0
\(401\) −0.0456362 + 0.0456362i −0.00227896 + 0.00227896i −0.708245 0.705966i \(-0.750513\pi\)
0.705966 + 0.708245i \(0.250513\pi\)
\(402\) 6.46315 + 6.46315i 0.322352 + 0.322352i
\(403\) −8.05130 + 8.05130i −0.401064 + 0.401064i
\(404\) −2.30557 −0.114706
\(405\) 0 0
\(406\) 1.41872i 0.0704097i
\(407\) 25.9868i 1.28812i
\(408\) 38.6905 + 10.2217i 1.91547 + 0.506048i
\(409\) −5.13414 −0.253867 −0.126933 0.991911i \(-0.540513\pi\)
−0.126933 + 0.991911i \(0.540513\pi\)
\(410\) 0 0
\(411\) −10.1410 10.1410i −0.500220 0.500220i
\(412\) 8.04166i 0.396184i
\(413\) −9.40680 + 9.40680i −0.462879 + 0.462879i
\(414\) 51.4114 51.4114i 2.52673 2.52673i
\(415\) 0 0
\(416\) 5.79337i 0.284043i
\(417\) 3.03993 0.148866
\(418\) 14.2835 + 14.2835i 0.698630 + 0.698630i
\(419\) 12.9683 12.9683i 0.633544 0.633544i −0.315411 0.948955i \(-0.602142\pi\)
0.948955 + 0.315411i \(0.102142\pi\)
\(420\) 0 0
\(421\) 16.0749 0.783441 0.391721 0.920084i \(-0.371880\pi\)
0.391721 + 0.920084i \(0.371880\pi\)
\(422\) 17.6441 17.6441i 0.858902 0.858902i
\(423\) −76.7413 −3.73129
\(424\) 16.0820 0.781009
\(425\) 0 0
\(426\) 15.3731 0.744828
\(427\) 3.67930 0.178054
\(428\) 0.360031 0.360031i 0.0174027 0.0174027i
\(429\) 20.1422 0.972473
\(430\) 0 0
\(431\) 9.69615 9.69615i 0.467047 0.467047i −0.433909 0.900956i \(-0.642866\pi\)
0.900956 + 0.433909i \(0.142866\pi\)
\(432\) 24.2153 + 24.2153i 1.16506 + 1.16506i
\(433\) −24.9519 −1.19911 −0.599555 0.800334i \(-0.704656\pi\)
−0.599555 + 0.800334i \(0.704656\pi\)
\(434\) 6.57621i 0.315668i
\(435\) 0 0
\(436\) −1.83069 + 1.83069i −0.0876741 + 0.0876741i
\(437\) −31.8116 + 31.8116i −1.52175 + 1.52175i
\(438\) 30.0245i 1.43463i
\(439\) 6.47186 + 6.47186i 0.308885 + 0.308885i 0.844477 0.535592i \(-0.179911\pi\)
−0.535592 + 0.844477i \(0.679911\pi\)
\(440\) 0 0
\(441\) −42.6657 −2.03170
\(442\) 8.77950 5.11002i 0.417598 0.243059i
\(443\) 28.9501i 1.37546i −0.725967 0.687730i \(-0.758607\pi\)
0.725967 0.687730i \(-0.241393\pi\)
\(444\) 13.6240i 0.646569i
\(445\) 0 0
\(446\) −19.8042 −0.937755
\(447\) 3.77069 3.77069i 0.178348 0.178348i
\(448\) 6.02272 + 6.02272i 0.284547 + 0.284547i
\(449\) −16.8659 + 16.8659i −0.795953 + 0.795953i −0.982455 0.186502i \(-0.940285\pi\)
0.186502 + 0.982455i \(0.440285\pi\)
\(450\) 0 0
\(451\) 4.63466i 0.218238i
\(452\) 1.60100 + 1.60100i 0.0753045 + 0.0753045i
\(453\) 16.3612 + 16.3612i 0.768717 + 0.768717i
\(454\) 12.7283 + 12.7283i 0.597370 + 0.597370i
\(455\) 0 0
\(456\) −36.2786 36.2786i −1.69890 1.69890i
\(457\) 6.99557 0.327239 0.163620 0.986524i \(-0.447683\pi\)
0.163620 + 0.986524i \(0.447683\pi\)
\(458\) 16.3014i 0.761713i
\(459\) −13.4125 + 50.7683i −0.626042 + 2.36966i
\(460\) 0 0
\(461\) 4.25687i 0.198262i −0.995074 0.0991311i \(-0.968394\pi\)
0.995074 0.0991311i \(-0.0316063\pi\)
\(462\) 8.22595 8.22595i 0.382706 0.382706i
\(463\) 3.53171i 0.164133i −0.996627 0.0820663i \(-0.973848\pi\)
0.996627 0.0820663i \(-0.0261519\pi\)
\(464\) −2.30608 2.30608i −0.107057 0.107057i
\(465\) 0 0
\(466\) 21.2620 21.2620i 0.984944 0.984944i
\(467\) 16.7312 0.774226 0.387113 0.922032i \(-0.373472\pi\)
0.387113 + 0.922032i \(0.373472\pi\)
\(468\) −7.39913 −0.342025
\(469\) −1.61377 + 1.61377i −0.0745169 + 0.0745169i
\(470\) 0 0
\(471\) 16.3577 + 16.3577i 0.753725 + 0.753725i
\(472\) 42.4133i 1.95223i
\(473\) −15.5730 + 15.5730i −0.716049 + 0.716049i
\(474\) 25.8276i 1.18630i
\(475\) 0 0
\(476\) −0.526814 + 1.99407i −0.0241465 + 0.0913981i
\(477\) 36.8392i 1.68675i
\(478\) −1.56137 −0.0714152
\(479\) 18.2107 + 18.2107i 0.832067 + 0.832067i 0.987799 0.155733i \(-0.0497738\pi\)
−0.155733 + 0.987799i \(0.549774\pi\)
\(480\) 0 0
\(481\) −11.8473 11.8473i −0.540191 0.540191i
\(482\) −10.9482 10.9482i −0.498677 0.498677i
\(483\) 18.3204 + 18.3204i 0.833609 + 0.833609i
\(484\) 0.588869i 0.0267668i
\(485\) 0 0
\(486\) −19.5598 + 19.5598i −0.887252 + 0.887252i
\(487\) 22.0660 + 22.0660i 0.999907 + 0.999907i 1.00000 9.30234e-5i \(-2.96103e-5\pi\)
−9.30234e−5 1.00000i \(0.500030\pi\)
\(488\) −8.29459 + 8.29459i −0.375478 + 0.375478i
\(489\) −68.9512 −3.11808
\(490\) 0 0
\(491\) 30.6676i 1.38401i 0.721893 + 0.692005i \(0.243272\pi\)
−0.721893 + 0.692005i \(0.756728\pi\)
\(492\) 2.42981i 0.109544i
\(493\) 1.27730 4.83478i 0.0575268 0.217748i
\(494\) −13.0237 −0.585963
\(495\) 0 0
\(496\) −10.6894 10.6894i −0.479970 0.479970i
\(497\) 3.83847i 0.172179i
\(498\) −0.466595 + 0.466595i −0.0209086 + 0.0209086i
\(499\) 17.9340 17.9340i 0.802837 0.802837i −0.180701 0.983538i \(-0.557837\pi\)
0.983538 + 0.180701i \(0.0578366\pi\)
\(500\) 0 0
\(501\) 27.5614i 1.23135i
\(502\) 18.3849 0.820556
\(503\) −19.0780 19.0780i −0.850647 0.850647i 0.139566 0.990213i \(-0.455429\pi\)
−0.990213 + 0.139566i \(0.955429\pi\)
\(504\) −14.6394 + 14.6394i −0.652089 + 0.652089i
\(505\) 0 0
\(506\) 32.5223 1.44579
\(507\) 19.9192 19.9192i 0.884642 0.884642i
\(508\) 10.4301 0.462760
\(509\) 32.5718 1.44372 0.721859 0.692040i \(-0.243288\pi\)
0.721859 + 0.692040i \(0.243288\pi\)
\(510\) 0 0
\(511\) −7.49675 −0.331637
\(512\) −24.1791 −1.06858
\(513\) 47.6035 47.6035i 2.10175 2.10175i
\(514\) 0.301511 0.0132991
\(515\) 0 0
\(516\) 8.16445 8.16445i 0.359420 0.359420i
\(517\) −24.2728 24.2728i −1.06752 1.06752i
\(518\) −9.67676 −0.425173
\(519\) 22.7780i 0.999845i
\(520\) 0 0
\(521\) −22.4613 + 22.4613i −0.984048 + 0.984048i −0.999875 0.0158266i \(-0.994962\pi\)
0.0158266 + 0.999875i \(0.494962\pi\)
\(522\) 7.32651 7.32651i 0.320672 0.320672i
\(523\) 4.04111i 0.176705i −0.996089 0.0883527i \(-0.971840\pi\)
0.996089 0.0883527i \(-0.0281602\pi\)
\(524\) 5.92132 + 5.92132i 0.258674 + 0.258674i
\(525\) 0 0
\(526\) 15.3506 0.669318
\(527\) 5.92072 22.4108i 0.257910 0.976229i
\(528\) 26.7421i 1.16380i
\(529\) 49.4320i 2.14922i
\(530\) 0 0
\(531\) 97.1569 4.21625
\(532\) 1.86976 1.86976i 0.0810645 0.0810645i
\(533\) −2.11294 2.11294i −0.0915214 0.0915214i
\(534\) −3.59679 + 3.59679i −0.155648 + 0.155648i
\(535\) 0 0
\(536\) 7.27614i 0.314281i
\(537\) −22.2457 22.2457i −0.959975 0.959975i
\(538\) 12.3110 + 12.3110i 0.530766 + 0.530766i
\(539\) −13.4949 13.4949i −0.581267 0.581267i
\(540\) 0 0
\(541\) 25.3445 + 25.3445i 1.08965 + 1.08965i 0.995564 + 0.0940826i \(0.0299918\pi\)
0.0940826 + 0.995564i \(0.470008\pi\)
\(542\) −23.0957 −0.992047
\(543\) 4.41230i 0.189350i
\(544\) −5.93278 10.1931i −0.254366 0.437024i
\(545\) 0 0
\(546\) 7.50039i 0.320987i
\(547\) 11.4397 11.4397i 0.489125 0.489125i −0.418905 0.908030i \(-0.637586\pi\)
0.908030 + 0.418905i \(0.137586\pi\)
\(548\) 2.35656i 0.100667i
\(549\) −19.0006 19.0006i −0.810925 0.810925i
\(550\) 0 0
\(551\) −4.53339 + 4.53339i −0.193129 + 0.193129i
\(552\) −82.6030 −3.51582
\(553\) 6.44885 0.274233
\(554\) −12.6999 + 12.6999i −0.539565 + 0.539565i
\(555\) 0 0
\(556\) −0.353207 0.353207i −0.0149793 0.0149793i
\(557\) 15.9925i 0.677622i −0.940854 0.338811i \(-0.889975\pi\)
0.940854 0.338811i \(-0.110025\pi\)
\(558\) 33.9608 33.9608i 1.43767 1.43767i
\(559\) 14.1994i 0.600572i
\(560\) 0 0
\(561\) −35.4389 + 20.6268i −1.49623 + 0.870866i
\(562\) 28.8579i 1.21730i
\(563\) −11.0267 −0.464721 −0.232361 0.972630i \(-0.574645\pi\)
−0.232361 + 0.972630i \(0.574645\pi\)
\(564\) 12.7255 + 12.7255i 0.535840 + 0.535840i
\(565\) 0 0
\(566\) 22.7180 + 22.7180i 0.954908 + 0.954908i
\(567\) −13.0897 13.0897i −0.549715 0.549715i
\(568\) −8.65342 8.65342i −0.363090 0.363090i
\(569\) 45.7921i 1.91970i −0.280506 0.959852i \(-0.590502\pi\)
0.280506 0.959852i \(-0.409498\pi\)
\(570\) 0 0
\(571\) −19.8850 + 19.8850i −0.832160 + 0.832160i −0.987812 0.155652i \(-0.950252\pi\)
0.155652 + 0.987812i \(0.450252\pi\)
\(572\) −2.34030 2.34030i −0.0978530 0.0978530i
\(573\) 9.84045 9.84045i 0.411091 0.411091i
\(574\) −1.72582 −0.0720344
\(575\) 0 0
\(576\) 62.2048i 2.59187i
\(577\) 19.7460i 0.822036i −0.911627 0.411018i \(-0.865173\pi\)
0.911627 0.411018i \(-0.134827\pi\)
\(578\) −10.2140 + 17.9815i −0.424846 + 0.747933i
\(579\) −33.7877 −1.40417
\(580\) 0 0
\(581\) −0.116503 0.116503i −0.00483337 0.00483337i
\(582\) 7.28935i 0.302153i
\(583\) −11.6520 + 11.6520i −0.482578 + 0.482578i
\(584\) 16.9006 16.9006i 0.699353 0.699353i
\(585\) 0 0
\(586\) 13.4161i 0.554215i
\(587\) 4.39220 0.181285 0.0906427 0.995883i \(-0.471108\pi\)
0.0906427 + 0.995883i \(0.471108\pi\)
\(588\) 7.07496 + 7.07496i 0.291766 + 0.291766i
\(589\) −21.0137 + 21.0137i −0.865856 + 0.865856i
\(590\) 0 0
\(591\) −15.1047 −0.621322
\(592\) 15.7293 15.7293i 0.646470 0.646470i
\(593\) 10.5967 0.435153 0.217576 0.976043i \(-0.430185\pi\)
0.217576 + 0.976043i \(0.430185\pi\)
\(594\) −48.6670 −1.99683
\(595\) 0 0
\(596\) −0.876228 −0.0358917
\(597\) −58.3239 −2.38704
\(598\) −14.8268 + 14.8268i −0.606315 + 0.606315i
\(599\) 18.0402 0.737103 0.368551 0.929607i \(-0.379854\pi\)
0.368551 + 0.929607i \(0.379854\pi\)
\(600\) 0 0
\(601\) −28.9823 + 28.9823i −1.18221 + 1.18221i −0.203041 + 0.979170i \(0.565083\pi\)
−0.979170 + 0.203041i \(0.934917\pi\)
\(602\) −5.79897 5.79897i −0.236348 0.236348i
\(603\) 16.6676 0.678757
\(604\) 3.80199i 0.154701i
\(605\) 0 0
\(606\) 12.0693 12.0693i 0.490283 0.490283i
\(607\) −31.3128 + 31.3128i −1.27095 + 1.27095i −0.325356 + 0.945591i \(0.605484\pi\)
−0.945591 + 0.325356i \(0.894516\pi\)
\(608\) 15.1206i 0.613221i
\(609\) 2.61080 + 2.61080i 0.105795 + 0.105795i
\(610\) 0 0
\(611\) 22.1319 0.895361
\(612\) 13.0183 7.57718i 0.526234 0.306289i
\(613\) 36.5738i 1.47720i 0.674142 + 0.738602i \(0.264514\pi\)
−0.674142 + 0.738602i \(0.735486\pi\)
\(614\) 6.22830i 0.251354i
\(615\) 0 0
\(616\) −9.26069 −0.373124
\(617\) 22.6074 22.6074i 0.910140 0.910140i −0.0861430 0.996283i \(-0.527454\pi\)
0.996283 + 0.0861430i \(0.0274542\pi\)
\(618\) −42.0969 42.0969i −1.69339 1.69339i
\(619\) 9.87497 9.87497i 0.396909 0.396909i −0.480233 0.877141i \(-0.659448\pi\)
0.877141 + 0.480233i \(0.159448\pi\)
\(620\) 0 0
\(621\) 108.389i 4.34949i
\(622\) −1.56130 1.56130i −0.0626024 0.0626024i
\(623\) −0.898075 0.898075i −0.0359806 0.0359806i
\(624\) −12.1917 12.1917i −0.488058 0.488058i
\(625\) 0 0
\(626\) −13.9184 13.9184i −0.556292 0.556292i
\(627\) 52.5707 2.09947
\(628\) 3.80119i 0.151684i
\(629\) 32.9770 + 8.71221i 1.31488 + 0.347379i
\(630\) 0 0
\(631\) 37.1093i 1.47730i −0.674090 0.738649i \(-0.735464\pi\)
0.674090 0.738649i \(-0.264536\pi\)
\(632\) −14.5382 + 14.5382i −0.578300 + 0.578300i
\(633\) 64.9394i 2.58111i
\(634\) 9.81790 + 9.81790i 0.389919 + 0.389919i
\(635\) 0 0
\(636\) 6.10880 6.10880i 0.242230 0.242230i
\(637\) 12.3046 0.487527
\(638\) 4.63466 0.183488
\(639\) 19.8226 19.8226i 0.784168 0.784168i
\(640\) 0 0
\(641\) −1.90323 1.90323i −0.0751730 0.0751730i 0.668521 0.743694i \(-0.266928\pi\)
−0.743694 + 0.668521i \(0.766928\pi\)
\(642\) 3.76942i 0.148767i
\(643\) 19.7734 19.7734i 0.779788 0.779788i −0.200007 0.979795i \(-0.564096\pi\)
0.979795 + 0.200007i \(0.0640964\pi\)
\(644\) 4.25728i 0.167760i
\(645\) 0 0
\(646\) 22.9143 13.3371i 0.901552 0.524739i
\(647\) 4.31955i 0.169819i 0.996389 + 0.0849096i \(0.0270601\pi\)
−0.996389 + 0.0849096i \(0.972940\pi\)
\(648\) 59.0186 2.31847
\(649\) 30.7302 + 30.7302i 1.20626 + 1.20626i
\(650\) 0 0
\(651\) 12.1019 + 12.1019i 0.474311 + 0.474311i
\(652\) 8.01139 + 8.01139i 0.313750 + 0.313750i
\(653\) −5.90260 5.90260i −0.230987 0.230987i 0.582118 0.813104i \(-0.302224\pi\)
−0.813104 + 0.582118i \(0.802224\pi\)
\(654\) 19.1668i 0.749481i
\(655\) 0 0
\(656\) 2.80527 2.80527i 0.109528 0.109528i
\(657\) 38.7146 + 38.7146i 1.51040 + 1.51040i
\(658\) 9.03854 9.03854i 0.352359 0.352359i
\(659\) −4.31764 −0.168192 −0.0840958 0.996458i \(-0.526800\pi\)
−0.0840958 + 0.996458i \(0.526800\pi\)
\(660\) 0 0
\(661\) 32.6701i 1.27072i −0.772216 0.635360i \(-0.780852\pi\)
0.772216 0.635360i \(-0.219148\pi\)
\(662\) 10.3006i 0.400345i
\(663\) 6.75278 25.5603i 0.262256 0.992678i
\(664\) 0.525288 0.0203851
\(665\) 0 0
\(666\) 49.9726 + 49.9726i 1.93640 + 1.93640i
\(667\) 10.3221i 0.399673i
\(668\) 3.20234 3.20234i 0.123902 0.123902i
\(669\) −36.4447 + 36.4447i −1.40903 + 1.40903i
\(670\) 0 0
\(671\) 12.0195i 0.464009i
\(672\) 8.70802 0.335919
\(673\) −0.921112 0.921112i −0.0355063 0.0355063i 0.689131 0.724637i \(-0.257993\pi\)
−0.724637 + 0.689131i \(0.757993\pi\)
\(674\) 2.34771 2.34771i 0.0904306 0.0904306i
\(675\) 0 0
\(676\) −4.62879 −0.178030
\(677\) 17.5174 17.5174i 0.673250 0.673250i −0.285214 0.958464i \(-0.592065\pi\)
0.958464 + 0.285214i \(0.0920647\pi\)
\(678\) −16.7620 −0.643740
\(679\) 1.82006 0.0698476
\(680\) 0 0
\(681\) 46.8467 1.79517
\(682\) 21.4832 0.822634
\(683\) −14.6591 + 14.6591i −0.560913 + 0.560913i −0.929567 0.368654i \(-0.879819\pi\)
0.368654 + 0.929567i \(0.379819\pi\)
\(684\) −19.3116 −0.738397
\(685\) 0 0
\(686\) 10.8151 10.8151i 0.412922 0.412922i
\(687\) −29.9987 29.9987i −1.14452 1.14452i
\(688\) 18.8521 0.718730
\(689\) 10.6243i 0.404753i
\(690\) 0 0
\(691\) 1.95620 1.95620i 0.0744174 0.0744174i −0.668918 0.743336i \(-0.733242\pi\)
0.743336 + 0.668918i \(0.233242\pi\)
\(692\) 2.64656 2.64656i 0.100607 0.100607i
\(693\) 21.2136i 0.805839i
\(694\) 11.3644 + 11.3644i 0.431387 + 0.431387i
\(695\) 0 0
\(696\) −11.7715 −0.446199
\(697\) 5.88136 + 1.55380i 0.222772 + 0.0588543i
\(698\) 32.9602i 1.24756i
\(699\) 78.2551i 2.95988i
\(700\) 0 0
\(701\) 34.0966 1.28781 0.643906 0.765105i \(-0.277313\pi\)
0.643906 + 0.765105i \(0.277313\pi\)
\(702\) 22.1872 22.1872i 0.837401 0.837401i
\(703\) −30.9213 30.9213i −1.16622 1.16622i
\(704\) 19.6750 19.6750i 0.741531 0.741531i
\(705\) 0 0
\(706\) 33.3679i 1.25582i
\(707\) 3.01356 + 3.01356i 0.113337 + 0.113337i
\(708\) −16.1109 16.1109i −0.605483 0.605483i
\(709\) 17.1425 + 17.1425i 0.643801 + 0.643801i 0.951488 0.307687i \(-0.0995549\pi\)
−0.307687 + 0.951488i \(0.599555\pi\)
\(710\) 0 0
\(711\) −33.3030 33.3030i −1.24896 1.24896i
\(712\) 4.04923 0.151751
\(713\) 47.8463i 1.79186i
\(714\) −7.68088 13.1965i −0.287450 0.493866i
\(715\) 0 0
\(716\) 5.16943i 0.193191i
\(717\) −2.87331 + 2.87331i −0.107306 + 0.107306i
\(718\) 4.19807i 0.156670i
\(719\) −20.5856 20.5856i −0.767715 0.767715i 0.209989 0.977704i \(-0.432657\pi\)
−0.977704 + 0.209989i \(0.932657\pi\)
\(720\) 0 0
\(721\) 10.5111 10.5111i 0.391453 0.391453i
\(722\) −10.8786 −0.404861
\(723\) −40.2950 −1.49859
\(724\) −0.512661 + 0.512661i −0.0190529 + 0.0190529i
\(725\) 0 0
\(726\) 3.08265 + 3.08265i 0.114408 + 0.114408i
\(727\) 47.0608i 1.74539i −0.488265 0.872695i \(-0.662370\pi\)
0.488265 0.872695i \(-0.337630\pi\)
\(728\) 4.22193 4.22193i 0.156475 0.156475i
\(729\) 14.2373i 0.527306i
\(730\) 0 0
\(731\) 14.5411 + 24.9830i 0.537823 + 0.924030i
\(732\) 6.30147i 0.232909i
\(733\) 20.8419 0.769812 0.384906 0.922956i \(-0.374234\pi\)
0.384906 + 0.922956i \(0.374234\pi\)
\(734\) 1.23792 + 1.23792i 0.0456926 + 0.0456926i
\(735\) 0 0
\(736\) 17.2141 + 17.2141i 0.634520 + 0.634520i
\(737\) 5.27186 + 5.27186i 0.194192 + 0.194192i
\(738\) 8.91246 + 8.91246i 0.328072 + 0.328072i
\(739\) 5.26172i 0.193556i 0.995306 + 0.0967778i \(0.0308536\pi\)
−0.995306 + 0.0967778i \(0.969146\pi\)
\(740\) 0 0
\(741\) −23.9669 + 23.9669i −0.880445 + 0.880445i
\(742\) −4.33890 4.33890i −0.159286 0.159286i
\(743\) −5.95166 + 5.95166i −0.218345 + 0.218345i −0.807801 0.589456i \(-0.799342\pi\)
0.589456 + 0.807801i \(0.299342\pi\)
\(744\) −54.5650 −2.00045
\(745\) 0 0
\(746\) 20.5452i 0.752213i
\(747\) 1.20329i 0.0440260i
\(748\) 6.51423 + 1.72100i 0.238184 + 0.0629259i
\(749\) −0.941178 −0.0343899
\(750\) 0 0
\(751\) −14.1448 14.1448i −0.516152 0.516152i 0.400253 0.916405i \(-0.368922\pi\)
−0.916405 + 0.400253i \(0.868922\pi\)
\(752\) 29.3838i 1.07152i
\(753\) 33.8328 33.8328i 1.23294 1.23294i
\(754\) −2.11294 + 2.11294i −0.0769486 + 0.0769486i
\(755\) 0 0
\(756\) 6.37068i 0.231699i
\(757\) 30.7146 1.11634 0.558170 0.829727i \(-0.311504\pi\)
0.558170 + 0.829727i \(0.311504\pi\)
\(758\) −26.6981 26.6981i −0.969719 0.969719i
\(759\) 59.8493 59.8493i 2.17239 2.17239i
\(760\) 0 0
\(761\) 24.4465 0.886186 0.443093 0.896476i \(-0.353881\pi\)
0.443093 + 0.896476i \(0.353881\pi\)
\(762\) −54.6000 + 54.6000i −1.97795 + 1.97795i
\(763\) 4.78572 0.173255
\(764\) −2.28671 −0.0827302
\(765\) 0 0
\(766\) 38.0890 1.37621
\(767\) −28.0197 −1.01173
\(768\) −25.8941 + 25.8941i −0.934374 + 0.934374i
\(769\) 24.2567 0.874719 0.437359 0.899287i \(-0.355914\pi\)
0.437359 + 0.899287i \(0.355914\pi\)
\(770\) 0 0
\(771\) 0.554857 0.554857i 0.0199827 0.0199827i
\(772\) 3.92577 + 3.92577i 0.141292 + 0.141292i
\(773\) −18.9396 −0.681209 −0.340604 0.940207i \(-0.610632\pi\)
−0.340604 + 0.940207i \(0.610632\pi\)
\(774\) 59.8939i 2.15284i
\(775\) 0 0
\(776\) −4.10314 + 4.10314i −0.147294 + 0.147294i
\(777\) −17.8077 + 17.8077i −0.638848 + 0.638848i
\(778\) 34.3328i 1.23089i
\(779\) −5.51472 5.51472i −0.197585 0.197585i
\(780\) 0 0
\(781\) 12.5395 0.448699
\(782\) 10.9033 41.2705i 0.389900 1.47583i
\(783\) 15.4462i 0.552002i
\(784\) 16.3364i 0.583444i
\(785\) 0 0
\(786\) −61.9945 −2.21127
\(787\) −30.8634 + 30.8634i −1.10016 + 1.10016i −0.105769 + 0.994391i \(0.533730\pi\)
−0.994391 + 0.105769i \(0.966270\pi\)
\(788\) 1.75500 + 1.75500i 0.0625192 + 0.0625192i
\(789\) 28.2490 28.2490i 1.00569 1.00569i
\(790\) 0 0
\(791\) 4.18526i 0.148811i
\(792\) 47.8239 + 47.8239i 1.69935 + 1.69935i
\(793\) 5.47969 + 5.47969i 0.194589 + 0.194589i
\(794\) −9.92487 9.92487i −0.352220 0.352220i
\(795\) 0 0
\(796\) 6.77661 + 6.77661i 0.240190 + 0.240190i
\(797\) 21.7263 0.769585 0.384792 0.923003i \(-0.374273\pi\)
0.384792 + 0.923003i \(0.374273\pi\)
\(798\) 19.5759i 0.692979i
\(799\) −38.9397 + 22.6644i −1.37759 + 0.801811i
\(800\) 0 0
\(801\) 9.27564i 0.327739i
\(802\) −0.0555149 + 0.0555149i −0.00196030 + 0.00196030i
\(803\) 24.4904i 0.864247i
\(804\) −2.76387 2.76387i −0.0974743 0.0974743i
\(805\) 0 0
\(806\) −9.79415 + 9.79415i −0.344984 + 0.344984i
\(807\) 45.3109 1.59502
\(808\) −13.5875 −0.478007
\(809\) −31.5971 + 31.5971i −1.11090 + 1.11090i −0.117867 + 0.993029i \(0.537606\pi\)
−0.993029 + 0.117867i \(0.962394\pi\)
\(810\) 0 0
\(811\) −27.5170 27.5170i −0.966251 0.966251i 0.0331973 0.999449i \(-0.489431\pi\)
−0.999449 + 0.0331973i \(0.989431\pi\)
\(812\) 0.606694i 0.0212908i
\(813\) −42.5021 + 42.5021i −1.49061 + 1.49061i
\(814\) 31.6121i 1.10800i
\(815\) 0 0
\(816\) 33.9355 + 8.96544i 1.18798 + 0.313853i
\(817\) 37.0602i 1.29657i
\(818\) −6.24552 −0.218369
\(819\) 9.67126 + 9.67126i 0.337941 + 0.337941i
\(820\) 0 0
\(821\) −12.8847 12.8847i −0.449679 0.449679i 0.445569 0.895248i \(-0.353002\pi\)
−0.895248 + 0.445569i \(0.853002\pi\)
\(822\) −12.3362 12.3362i −0.430275 0.430275i
\(823\) 14.5848 + 14.5848i 0.508395 + 0.508395i 0.914034 0.405639i \(-0.132951\pi\)
−0.405639 + 0.914034i \(0.632951\pi\)
\(824\) 47.3923i 1.65099i
\(825\) 0 0
\(826\) −11.4431 + 11.4431i −0.398156 + 0.398156i
\(827\) −36.7846 36.7846i −1.27912 1.27912i −0.941158 0.337966i \(-0.890261\pi\)
−0.337966 0.941158i \(-0.609739\pi\)
\(828\) −21.9854 + 21.9854i −0.764044 + 0.764044i
\(829\) 10.2614 0.356395 0.178197 0.983995i \(-0.442973\pi\)
0.178197 + 0.983995i \(0.442973\pi\)
\(830\) 0 0
\(831\) 46.7419i 1.62146i
\(832\) 17.9396i 0.621945i
\(833\) −21.6492 + 12.6007i −0.750100 + 0.436588i
\(834\) 3.69797 0.128050
\(835\) 0 0
\(836\) −6.10815 6.10815i −0.211255 0.211255i
\(837\) 71.5982i 2.47480i
\(838\) 15.7755 15.7755i 0.544957 0.544957i
\(839\) −23.4767 + 23.4767i −0.810504 + 0.810504i −0.984709 0.174205i \(-0.944264\pi\)
0.174205 + 0.984709i \(0.444264\pi\)
\(840\) 0 0
\(841\) 27.5290i 0.949277i
\(842\) 19.5546 0.673895
\(843\) 53.1059 + 53.1059i 1.82907 + 1.82907i
\(844\) −7.54526 + 7.54526i −0.259719 + 0.259719i
\(845\) 0 0
\(846\) −93.3534 −3.20955
\(847\) −0.769699 + 0.769699i −0.0264472 + 0.0264472i
\(848\) 14.1055 0.484385
\(849\) 83.6138 2.86962
\(850\) 0 0
\(851\) −70.4049 −2.41345
\(852\) −6.57408 −0.225224
\(853\) −12.2943 + 12.2943i −0.420950 + 0.420950i −0.885531 0.464581i \(-0.846205\pi\)
0.464581 + 0.885531i \(0.346205\pi\)
\(854\) 4.47575 0.153157
\(855\) 0 0
\(856\) 2.12179 2.12179i 0.0725211 0.0725211i
\(857\) −5.16808 5.16808i −0.176538 0.176538i 0.613307 0.789845i \(-0.289839\pi\)
−0.789845 + 0.613307i \(0.789839\pi\)
\(858\) 24.5023 0.836495
\(859\) 3.45616i 0.117923i 0.998260 + 0.0589613i \(0.0187789\pi\)
−0.998260 + 0.0589613i \(0.981221\pi\)
\(860\) 0 0
\(861\) −3.17595 + 3.17595i −0.108236 + 0.108236i
\(862\) 11.7951 11.7951i 0.401741 0.401741i
\(863\) 4.15372i 0.141394i −0.997498 0.0706971i \(-0.977478\pi\)
0.997498 0.0706971i \(-0.0225224\pi\)
\(864\) −25.7595 25.7595i −0.876356 0.876356i
\(865\) 0 0
\(866\) −30.3531 −1.03144
\(867\) 14.2942 + 51.8869i 0.485458 + 1.76217i
\(868\) 2.81222i 0.0954531i
\(869\) 21.0671i 0.714653i
\(870\) 0 0
\(871\) −4.80687 −0.162874
\(872\) −10.7889 + 10.7889i −0.365358 + 0.365358i
\(873\) −9.39913 9.39913i −0.318112 0.318112i
\(874\) −38.6978 + 38.6978i −1.30897 + 1.30897i
\(875\) 0 0
\(876\) 12.8395i 0.433808i
\(877\) 6.06412 + 6.06412i 0.204771 + 0.204771i 0.802040 0.597270i \(-0.203748\pi\)
−0.597270 + 0.802040i \(0.703748\pi\)
\(878\) 7.87282 + 7.87282i 0.265695 + 0.265695i
\(879\) 24.6891 + 24.6891i 0.832742 + 0.832742i
\(880\) 0 0
\(881\) 8.93223 + 8.93223i 0.300935 + 0.300935i 0.841379 0.540445i \(-0.181744\pi\)
−0.540445 + 0.841379i \(0.681744\pi\)
\(882\) −51.9014 −1.74761
\(883\) 35.6843i 1.20087i 0.799673 + 0.600436i \(0.205006\pi\)
−0.799673 + 0.600436i \(0.794994\pi\)
\(884\) −3.75443 + 2.18523i −0.126275 + 0.0734972i
\(885\) 0 0
\(886\) 35.2169i 1.18313i
\(887\) −15.7269 + 15.7269i −0.528058 + 0.528058i −0.919993 0.391935i \(-0.871806\pi\)
0.391935 + 0.919993i \(0.371806\pi\)
\(888\) 80.2912i 2.69440i
\(889\) −13.6330 13.6330i −0.457235 0.457235i
\(890\) 0 0
\(891\) −42.7614 + 42.7614i −1.43256 + 1.43256i
\(892\) 8.46897 0.283562
\(893\) 57.7638 1.93299
\(894\) 4.58693 4.58693i 0.153410 0.153410i
\(895\) 0 0
\(896\) 3.43653 + 3.43653i 0.114806 + 0.114806i
\(897\) 54.5704i 1.82205i
\(898\) −20.5169 + 20.5169i −0.684657 + 0.684657i
\(899\) 6.81846i 0.227408i
\(900\) 0 0
\(901\) 10.8799 + 18.6928i 0.362463 + 0.622746i
\(902\) 5.63792i 0.187722i
\(903\) −21.3432 −0.710257
\(904\) 9.43522 + 9.43522i 0.313811 + 0.313811i
\(905\) 0 0
\(906\) 19.9029 + 19.9029i 0.661229 + 0.661229i
\(907\) 6.27061 + 6.27061i 0.208212 + 0.208212i 0.803507 0.595295i \(-0.202965\pi\)
−0.595295 + 0.803507i \(0.702965\pi\)
\(908\) −5.44309 5.44309i −0.180635 0.180635i
\(909\) 31.1252i 1.03236i
\(910\) 0 0
\(911\) −3.48594 + 3.48594i −0.115494 + 0.115494i −0.762492 0.646998i \(-0.776024\pi\)
0.646998 + 0.762492i \(0.276024\pi\)
\(912\) −31.8200 31.8200i −1.05367 1.05367i
\(913\) −0.380593 + 0.380593i −0.0125958 + 0.0125958i
\(914\) 8.50989 0.281482
\(915\) 0 0
\(916\) 6.97105i 0.230330i
\(917\) 15.4793i 0.511171i
\(918\) −16.3159 + 61.7580i −0.538504 + 2.03832i
\(919\) 39.8706 1.31521 0.657606 0.753362i \(-0.271569\pi\)
0.657606 + 0.753362i \(0.271569\pi\)
\(920\) 0 0
\(921\) 11.4617 + 11.4617i 0.377674 + 0.377674i
\(922\) 5.17835i 0.170540i
\(923\) −5.71675 + 5.71675i −0.188169 + 0.188169i
\(924\) −3.51771 + 3.51771i −0.115724 + 0.115724i
\(925\) 0 0
\(926\) 4.29622i 0.141182i
\(927\) −108.562 −3.56565
\(928\) 2.45314 + 2.45314i 0.0805281 + 0.0805281i
\(929\) −1.16727 + 1.16727i −0.0382967 + 0.0382967i −0.725996 0.687699i \(-0.758621\pi\)
0.687699 + 0.725996i \(0.258621\pi\)
\(930\) 0 0
\(931\) 32.1148 1.05252
\(932\) −9.09240 + 9.09240i −0.297832 + 0.297832i
\(933\) −5.74638 −0.188128
\(934\) 20.3529 0.665969
\(935\) 0 0
\(936\) −43.6056 −1.42529
\(937\) 35.6142 1.16346 0.581732 0.813380i \(-0.302375\pi\)
0.581732 + 0.813380i \(0.302375\pi\)
\(938\) −1.96310 + 1.96310i −0.0640974 + 0.0640974i
\(939\) −51.2269 −1.67173
\(940\) 0 0
\(941\) −20.7529 + 20.7529i −0.676526 + 0.676526i −0.959212 0.282686i \(-0.908774\pi\)
0.282686 + 0.959212i \(0.408774\pi\)
\(942\) 19.8987 + 19.8987i 0.648334 + 0.648334i
\(943\) −12.5565 −0.408896
\(944\) 37.2008i 1.21078i
\(945\) 0 0
\(946\) −18.9441 + 18.9441i −0.615926 + 0.615926i
\(947\) 16.8899 16.8899i 0.548848 0.548848i −0.377259 0.926108i \(-0.623133\pi\)
0.926108 + 0.377259i \(0.123133\pi\)
\(948\) 11.0448i 0.358719i
\(949\) −11.1651 11.1651i −0.362435 0.362435i
\(950\) 0 0
\(951\) 36.1349 1.17175
\(952\) −3.10470 + 11.7517i −0.100624 + 0.380876i
\(953\) 21.4293i 0.694163i −0.937835 0.347081i \(-0.887173\pi\)
0.937835 0.347081i \(-0.112827\pi\)
\(954\) 44.8137i 1.45090i
\(955\) 0 0
\(956\) 0.667696 0.0215948
\(957\) 8.52897 8.52897i 0.275702 0.275702i
\(958\) 22.1527 + 22.1527i 0.715721 + 0.715721i
\(959\) 3.08021 3.08021i 0.0994650 0.0994650i
\(960\) 0 0
\(961\) 0.605790i 0.0195416i
\(962\) −14.4119 14.4119i −0.464658 0.464658i
\(963\) 4.86041 + 4.86041i 0.156625 + 0.156625i
\(964\) 4.68185 + 4.68185i 0.150792 + 0.150792i
\(965\) 0 0
\(966\) 22.2862 + 22.2862i 0.717048 + 0.717048i
\(967\) 29.8258 0.959133 0.479567 0.877505i \(-0.340794\pi\)
0.479567 + 0.877505i \(0.340794\pi\)
\(968\) 3.47041i 0.111543i
\(969\) 17.6246 66.7118i 0.566184 2.14309i
\(970\) 0 0
\(971\) 7.71562i 0.247606i −0.992307 0.123803i \(-0.960491\pi\)
0.992307 0.123803i \(-0.0395091\pi\)
\(972\) 8.36449 8.36449i 0.268291 0.268291i
\(973\) 0.923338i 0.0296009i
\(974\) 26.8426 + 26.8426i 0.860093 + 0.860093i
\(975\) 0 0
\(976\) −7.27520 + 7.27520i −0.232874 + 0.232874i
\(977\) 13.5920 0.434846 0.217423 0.976077i \(-0.430235\pi\)
0.217423 + 0.976077i \(0.430235\pi\)
\(978\) −83.8769 −2.68209
\(979\) −2.93383 + 2.93383i −0.0937657 + 0.0937657i
\(980\) 0 0
\(981\) −24.7143 24.7143i −0.789067 0.789067i
\(982\) 37.3062i 1.19049i
\(983\) 17.4851 17.4851i 0.557689 0.557689i −0.370960 0.928649i \(-0.620971\pi\)
0.928649 + 0.370960i \(0.120971\pi\)
\(984\) 14.3197i 0.456495i
\(985\) 0 0
\(986\) 1.55380 5.88136i 0.0494830 0.187301i
\(987\) 33.2665i 1.05888i
\(988\) 5.56939 0.177186
\(989\) −42.1914 42.1914i −1.34161 1.34161i
\(990\) 0 0
\(991\) −20.9616 20.9616i −0.665868 0.665868i 0.290889 0.956757i \(-0.406049\pi\)
−0.956757 + 0.290889i \(0.906049\pi\)
\(992\) 11.3711 + 11.3711i 0.361032 + 0.361032i
\(993\) 18.9558 + 18.9558i 0.601543 + 0.601543i
\(994\) 4.66938i 0.148104i
\(995\) 0 0
\(996\) 0.199533 0.199533i 0.00632244 0.00632244i
\(997\) 29.2994 + 29.2994i 0.927923 + 0.927923i 0.997572 0.0696488i \(-0.0221879\pi\)
−0.0696488 + 0.997572i \(0.522188\pi\)
\(998\) 21.8162 21.8162i 0.690579 0.690579i
\(999\) 105.355 3.33329
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 425.2.j.d.149.4 12
5.2 odd 4 425.2.e.c.251.4 12
5.3 odd 4 425.2.e.e.251.3 yes 12
5.4 even 2 425.2.j.a.149.3 12
17.4 even 4 425.2.j.a.174.3 12
85.2 odd 8 7225.2.a.bm.1.5 12
85.4 even 4 inner 425.2.j.d.174.4 12
85.32 odd 8 7225.2.a.bm.1.6 12
85.38 odd 4 425.2.e.e.276.4 yes 12
85.53 odd 8 7225.2.a.br.1.8 12
85.72 odd 4 425.2.e.c.276.3 yes 12
85.83 odd 8 7225.2.a.br.1.7 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
425.2.e.c.251.4 12 5.2 odd 4
425.2.e.c.276.3 yes 12 85.72 odd 4
425.2.e.e.251.3 yes 12 5.3 odd 4
425.2.e.e.276.4 yes 12 85.38 odd 4
425.2.j.a.149.3 12 5.4 even 2
425.2.j.a.174.3 12 17.4 even 4
425.2.j.d.149.4 12 1.1 even 1 trivial
425.2.j.d.174.4 12 85.4 even 4 inner
7225.2.a.bm.1.5 12 85.2 odd 8
7225.2.a.bm.1.6 12 85.32 odd 8
7225.2.a.br.1.7 12 85.83 odd 8
7225.2.a.br.1.8 12 85.53 odd 8