Properties

Label 425.2.j.d.149.5
Level $425$
Weight $2$
Character 425.149
Analytic conductor $3.394$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [425,2,Mod(149,425)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(425, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("425.149");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 425 = 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 425.j (of order \(4\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.39364208590\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 18x^{10} + 119x^{8} + 364x^{6} + 519x^{4} + 278x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 149.5
Root \(-1.68228i\) of defining polynomial
Character \(\chi\) \(=\) 425.149
Dual form 425.2.j.d.174.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.68228 q^{2} +(-1.27457 + 1.27457i) q^{3} +0.830060 q^{4} +(-2.14419 + 2.14419i) q^{6} +(1.92759 + 1.92759i) q^{7} -1.96816 q^{8} -0.249077i q^{9} +(-0.0173960 + 0.0173960i) q^{11} +(-1.05797 + 1.05797i) q^{12} +3.62828i q^{13} +(3.24274 + 3.24274i) q^{14} -4.97112 q^{16} +(1.33255 + 3.90184i) q^{17} -0.419017i q^{18} -0.603141i q^{19} -4.91370 q^{21} +(-0.0292650 + 0.0292650i) q^{22} +(1.94875 + 1.94875i) q^{23} +(2.50857 - 2.50857i) q^{24} +6.10378i q^{26} +(-3.50625 - 3.50625i) q^{27} +(1.60001 + 1.60001i) q^{28} +(-3.01483 - 3.01483i) q^{29} +(-0.422356 - 0.422356i) q^{31} -4.42648 q^{32} -0.0443451i q^{33} +(2.24171 + 6.56397i) q^{34} -0.206749i q^{36} +(7.50498 - 7.50498i) q^{37} -1.01465i q^{38} +(-4.62452 - 4.62452i) q^{39} +(5.07178 - 5.07178i) q^{41} -8.26622 q^{42} +12.0321 q^{43} +(-0.0144398 + 0.0144398i) q^{44} +(3.27834 + 3.27834i) q^{46} +11.0911i q^{47} +(6.33606 - 6.33606i) q^{48} +0.431184i q^{49} +(-6.67161 - 3.27475i) q^{51} +3.01170i q^{52} -2.05698 q^{53} +(-5.89850 - 5.89850i) q^{54} +(-3.79381 - 3.79381i) q^{56} +(0.768748 + 0.768748i) q^{57} +(-5.07178 - 5.07178i) q^{58} +0.926819i q^{59} +(8.41435 - 8.41435i) q^{61} +(-0.710520 - 0.710520i) q^{62} +(0.480117 - 0.480117i) q^{63} +2.49567 q^{64} -0.0746007i q^{66} -5.79776i q^{67} +(1.10609 + 3.23876i) q^{68} -4.96765 q^{69} +(-3.84845 - 3.84845i) q^{71} +0.490224i q^{72} +(-2.88624 + 2.88624i) q^{73} +(12.6255 - 12.6255i) q^{74} -0.500644i q^{76} -0.0670647 q^{77} +(-7.77972 - 7.77972i) q^{78} +(-9.68618 + 9.68618i) q^{79} +9.68519 q^{81} +(8.53214 - 8.53214i) q^{82} -12.1804 q^{83} -4.07867 q^{84} +20.2414 q^{86} +7.68523 q^{87} +(0.0342382 - 0.0342382i) q^{88} +7.11750 q^{89} +(-6.99384 + 6.99384i) q^{91} +(1.61758 + 1.61758i) q^{92} +1.07665 q^{93} +18.6583i q^{94} +(5.64188 - 5.64188i) q^{96} +(5.01796 - 5.01796i) q^{97} +0.725372i q^{98} +(0.00433295 + 0.00433295i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 4 q^{2} + 2 q^{3} + 12 q^{4} + 6 q^{6} + 12 q^{8} - 4 q^{11} - 4 q^{12} - 14 q^{14} + 4 q^{16} - 10 q^{17} + 8 q^{21} + 10 q^{22} + 12 q^{23} + 8 q^{24} - 22 q^{27} - 34 q^{28} + 6 q^{29} - 6 q^{31}+ \cdots - 30 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/425\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(326\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.68228 1.18955 0.594775 0.803892i \(-0.297241\pi\)
0.594775 + 0.803892i \(0.297241\pi\)
\(3\) −1.27457 + 1.27457i −0.735876 + 0.735876i −0.971777 0.235901i \(-0.924196\pi\)
0.235901 + 0.971777i \(0.424196\pi\)
\(4\) 0.830060 0.415030
\(5\) 0 0
\(6\) −2.14419 + 2.14419i −0.875361 + 0.875361i
\(7\) 1.92759 + 1.92759i 0.728559 + 0.728559i 0.970333 0.241773i \(-0.0777290\pi\)
−0.241773 + 0.970333i \(0.577729\pi\)
\(8\) −1.96816 −0.695851
\(9\) 0.249077i 0.0830256i
\(10\) 0 0
\(11\) −0.0173960 + 0.0173960i −0.00524510 + 0.00524510i −0.709724 0.704479i \(-0.751181\pi\)
0.704479 + 0.709724i \(0.251181\pi\)
\(12\) −1.05797 + 1.05797i −0.305411 + 0.305411i
\(13\) 3.62828i 1.00631i 0.864198 + 0.503153i \(0.167827\pi\)
−0.864198 + 0.503153i \(0.832173\pi\)
\(14\) 3.24274 + 3.24274i 0.866658 + 0.866658i
\(15\) 0 0
\(16\) −4.97112 −1.24278
\(17\) 1.33255 + 3.90184i 0.323190 + 0.946334i
\(18\) 0.419017i 0.0987632i
\(19\) 0.603141i 0.138370i −0.997604 0.0691850i \(-0.977960\pi\)
0.997604 0.0691850i \(-0.0220399\pi\)
\(20\) 0 0
\(21\) −4.91370 −1.07226
\(22\) −0.0292650 + 0.0292650i −0.00623931 + 0.00623931i
\(23\) 1.94875 + 1.94875i 0.406343 + 0.406343i 0.880461 0.474118i \(-0.157233\pi\)
−0.474118 + 0.880461i \(0.657233\pi\)
\(24\) 2.50857 2.50857i 0.512060 0.512060i
\(25\) 0 0
\(26\) 6.10378i 1.19705i
\(27\) −3.50625 3.50625i −0.674779 0.674779i
\(28\) 1.60001 + 1.60001i 0.302374 + 0.302374i
\(29\) −3.01483 3.01483i −0.559839 0.559839i 0.369423 0.929262i \(-0.379556\pi\)
−0.929262 + 0.369423i \(0.879556\pi\)
\(30\) 0 0
\(31\) −0.422356 0.422356i −0.0758573 0.0758573i 0.668160 0.744017i \(-0.267082\pi\)
−0.744017 + 0.668160i \(0.767082\pi\)
\(32\) −4.42648 −0.782498
\(33\) 0.0443451i 0.00771948i
\(34\) 2.24171 + 6.56397i 0.384451 + 1.12571i
\(35\) 0 0
\(36\) 0.206749i 0.0344581i
\(37\) 7.50498 7.50498i 1.23381 1.23381i 0.271322 0.962489i \(-0.412539\pi\)
0.962489 0.271322i \(-0.0874608\pi\)
\(38\) 1.01465i 0.164598i
\(39\) −4.62452 4.62452i −0.740515 0.740515i
\(40\) 0 0
\(41\) 5.07178 5.07178i 0.792078 0.792078i −0.189754 0.981832i \(-0.560769\pi\)
0.981832 + 0.189754i \(0.0607689\pi\)
\(42\) −8.26622 −1.27551
\(43\) 12.0321 1.83488 0.917442 0.397869i \(-0.130250\pi\)
0.917442 + 0.397869i \(0.130250\pi\)
\(44\) −0.0144398 + 0.0144398i −0.00217688 + 0.00217688i
\(45\) 0 0
\(46\) 3.27834 + 3.27834i 0.483365 + 0.483365i
\(47\) 11.0911i 1.61780i 0.587943 + 0.808902i \(0.299938\pi\)
−0.587943 + 0.808902i \(0.700062\pi\)
\(48\) 6.33606 6.33606i 0.914531 0.914531i
\(49\) 0.431184i 0.0615978i
\(50\) 0 0
\(51\) −6.67161 3.27475i −0.934212 0.458556i
\(52\) 3.01170i 0.417647i
\(53\) −2.05698 −0.282548 −0.141274 0.989971i \(-0.545120\pi\)
−0.141274 + 0.989971i \(0.545120\pi\)
\(54\) −5.89850 5.89850i −0.802684 0.802684i
\(55\) 0 0
\(56\) −3.79381 3.79381i −0.506969 0.506969i
\(57\) 0.768748 + 0.768748i 0.101823 + 0.101823i
\(58\) −5.07178 5.07178i −0.665957 0.665957i
\(59\) 0.926819i 0.120662i 0.998178 + 0.0603308i \(0.0192155\pi\)
−0.998178 + 0.0603308i \(0.980784\pi\)
\(60\) 0 0
\(61\) 8.41435 8.41435i 1.07735 1.07735i 0.0806003 0.996747i \(-0.474316\pi\)
0.996747 0.0806003i \(-0.0256837\pi\)
\(62\) −0.710520 0.710520i −0.0902361 0.0902361i
\(63\) 0.480117 0.480117i 0.0604891 0.0604891i
\(64\) 2.49567 0.311959
\(65\) 0 0
\(66\) 0.0746007i 0.00918271i
\(67\) 5.79776i 0.708309i −0.935187 0.354154i \(-0.884769\pi\)
0.935187 0.354154i \(-0.115231\pi\)
\(68\) 1.10609 + 3.23876i 0.134134 + 0.392757i
\(69\) −4.96765 −0.598035
\(70\) 0 0
\(71\) −3.84845 3.84845i −0.456727 0.456727i 0.440853 0.897580i \(-0.354676\pi\)
−0.897580 + 0.440853i \(0.854676\pi\)
\(72\) 0.490224i 0.0577735i
\(73\) −2.88624 + 2.88624i −0.337809 + 0.337809i −0.855542 0.517733i \(-0.826776\pi\)
0.517733 + 0.855542i \(0.326776\pi\)
\(74\) 12.6255 12.6255i 1.46768 1.46768i
\(75\) 0 0
\(76\) 0.500644i 0.0574278i
\(77\) −0.0670647 −0.00764274
\(78\) −7.77972 7.77972i −0.880880 0.880880i
\(79\) −9.68618 + 9.68618i −1.08978 + 1.08978i −0.0942295 + 0.995550i \(0.530039\pi\)
−0.995550 + 0.0942295i \(0.969961\pi\)
\(80\) 0 0
\(81\) 9.68519 1.07613
\(82\) 8.53214 8.53214i 0.942217 0.942217i
\(83\) −12.1804 −1.33697 −0.668486 0.743725i \(-0.733057\pi\)
−0.668486 + 0.743725i \(0.733057\pi\)
\(84\) −4.07867 −0.445019
\(85\) 0 0
\(86\) 20.2414 2.18269
\(87\) 7.68523 0.823944
\(88\) 0.0342382 0.0342382i 0.00364981 0.00364981i
\(89\) 7.11750 0.754453 0.377227 0.926121i \(-0.376878\pi\)
0.377227 + 0.926121i \(0.376878\pi\)
\(90\) 0 0
\(91\) −6.99384 + 6.99384i −0.733153 + 0.733153i
\(92\) 1.61758 + 1.61758i 0.168644 + 0.168644i
\(93\) 1.07665 0.111643
\(94\) 18.6583i 1.92446i
\(95\) 0 0
\(96\) 5.64188 5.64188i 0.575821 0.575821i
\(97\) 5.01796 5.01796i 0.509496 0.509496i −0.404876 0.914372i \(-0.632685\pi\)
0.914372 + 0.404876i \(0.132685\pi\)
\(98\) 0.725372i 0.0732737i
\(99\) 0.00433295 + 0.00433295i 0.000435478 + 0.000435478i
\(100\) 0 0
\(101\) 16.9936 1.69093 0.845464 0.534033i \(-0.179324\pi\)
0.845464 + 0.534033i \(0.179324\pi\)
\(102\) −11.2235 5.50904i −1.11129 0.545476i
\(103\) 2.34537i 0.231096i −0.993302 0.115548i \(-0.963138\pi\)
0.993302 0.115548i \(-0.0368624\pi\)
\(104\) 7.14106i 0.700239i
\(105\) 0 0
\(106\) −3.46041 −0.336105
\(107\) −2.41794 + 2.41794i −0.233751 + 0.233751i −0.814257 0.580505i \(-0.802855\pi\)
0.580505 + 0.814257i \(0.302855\pi\)
\(108\) −2.91040 2.91040i −0.280054 0.280054i
\(109\) 4.01187 4.01187i 0.384267 0.384267i −0.488370 0.872637i \(-0.662408\pi\)
0.872637 + 0.488370i \(0.162408\pi\)
\(110\) 0 0
\(111\) 19.1313i 1.81586i
\(112\) −9.58227 9.58227i −0.905439 0.905439i
\(113\) −14.2494 14.2494i −1.34047 1.34047i −0.895591 0.444878i \(-0.853247\pi\)
−0.444878 0.895591i \(-0.646753\pi\)
\(114\) 1.29325 + 1.29325i 0.121124 + 0.121124i
\(115\) 0 0
\(116\) −2.50249 2.50249i −0.232350 0.232350i
\(117\) 0.903722 0.0835491
\(118\) 1.55917i 0.143533i
\(119\) −4.95253 + 10.0897i −0.453997 + 0.924924i
\(120\) 0 0
\(121\) 10.9994i 0.999945i
\(122\) 14.1553 14.1553i 1.28156 1.28156i
\(123\) 12.9287i 1.16574i
\(124\) −0.350581 0.350581i −0.0314831 0.0314831i
\(125\) 0 0
\(126\) 0.807691 0.807691i 0.0719548 0.0719548i
\(127\) −19.9852 −1.77340 −0.886699 0.462347i \(-0.847007\pi\)
−0.886699 + 0.462347i \(0.847007\pi\)
\(128\) 13.0514 1.15359
\(129\) −15.3359 + 15.3359i −1.35025 + 1.35025i
\(130\) 0 0
\(131\) 7.54509 + 7.54509i 0.659217 + 0.659217i 0.955195 0.295978i \(-0.0956454\pi\)
−0.295978 + 0.955195i \(0.595645\pi\)
\(132\) 0.0368091i 0.00320382i
\(133\) 1.16261 1.16261i 0.100811 0.100811i
\(134\) 9.75344i 0.842569i
\(135\) 0 0
\(136\) −2.62267 7.67945i −0.224892 0.658508i
\(137\) 16.5098i 1.41053i 0.708946 + 0.705263i \(0.249171\pi\)
−0.708946 + 0.705263i \(0.750829\pi\)
\(138\) −8.35698 −0.711393
\(139\) 7.41833 + 7.41833i 0.629214 + 0.629214i 0.947870 0.318656i \(-0.103232\pi\)
−0.318656 + 0.947870i \(0.603232\pi\)
\(140\) 0 0
\(141\) −14.1364 14.1364i −1.19050 1.19050i
\(142\) −6.47416 6.47416i −0.543300 0.543300i
\(143\) −0.0631178 0.0631178i −0.00527817 0.00527817i
\(144\) 1.23819i 0.103183i
\(145\) 0 0
\(146\) −4.85547 + 4.85547i −0.401841 + 0.401841i
\(147\) −0.549576 0.549576i −0.0453283 0.0453283i
\(148\) 6.22958 6.22958i 0.512069 0.512069i
\(149\) −8.76888 −0.718375 −0.359187 0.933266i \(-0.616946\pi\)
−0.359187 + 0.933266i \(0.616946\pi\)
\(150\) 0 0
\(151\) 4.09736i 0.333438i −0.986004 0.166719i \(-0.946683\pi\)
0.986004 0.166719i \(-0.0533173\pi\)
\(152\) 1.18708i 0.0962850i
\(153\) 0.971857 0.331907i 0.0785700 0.0268331i
\(154\) −0.112822 −0.00909142
\(155\) 0 0
\(156\) −3.83863 3.83863i −0.307336 0.307336i
\(157\) 18.3271i 1.46266i 0.682022 + 0.731331i \(0.261101\pi\)
−0.682022 + 0.731331i \(0.738899\pi\)
\(158\) −16.2948 + 16.2948i −1.29635 + 1.29635i
\(159\) 2.62177 2.62177i 0.207920 0.207920i
\(160\) 0 0
\(161\) 7.51278i 0.592090i
\(162\) 16.2932 1.28011
\(163\) 9.33881 + 9.33881i 0.731472 + 0.731472i 0.970911 0.239439i \(-0.0769635\pi\)
−0.239439 + 0.970911i \(0.576964\pi\)
\(164\) 4.20988 4.20988i 0.328736 0.328736i
\(165\) 0 0
\(166\) −20.4908 −1.59039
\(167\) −3.01070 + 3.01070i −0.232975 + 0.232975i −0.813933 0.580958i \(-0.802678\pi\)
0.580958 + 0.813933i \(0.302678\pi\)
\(168\) 9.67098 0.746132
\(169\) −0.164450 −0.0126500
\(170\) 0 0
\(171\) −0.150229 −0.0114883
\(172\) 9.98740 0.761532
\(173\) 8.98548 8.98548i 0.683153 0.683153i −0.277556 0.960709i \(-0.589524\pi\)
0.960709 + 0.277556i \(0.0895244\pi\)
\(174\) 12.9287 0.980122
\(175\) 0 0
\(176\) 0.0864778 0.0864778i 0.00651851 0.00651851i
\(177\) −1.18130 1.18130i −0.0887919 0.0887919i
\(178\) 11.9736 0.897460
\(179\) 11.0612i 0.826752i −0.910560 0.413376i \(-0.864349\pi\)
0.910560 0.413376i \(-0.135651\pi\)
\(180\) 0 0
\(181\) 13.4949 13.4949i 1.00307 1.00307i 0.00306987 0.999995i \(-0.499023\pi\)
0.999995 0.00306987i \(-0.000977172\pi\)
\(182\) −11.7656 + 11.7656i −0.872123 + 0.872123i
\(183\) 21.4494i 1.58559i
\(184\) −3.83546 3.83546i −0.282754 0.282754i
\(185\) 0 0
\(186\) 1.81122 0.132805
\(187\) −0.0910575 0.0446954i −0.00665878 0.00326845i
\(188\) 9.20629i 0.671438i
\(189\) 13.5172i 0.983233i
\(190\) 0 0
\(191\) −16.5896 −1.20038 −0.600190 0.799857i \(-0.704909\pi\)
−0.600190 + 0.799857i \(0.704909\pi\)
\(192\) −3.18092 + 3.18092i −0.229563 + 0.229563i
\(193\) −5.95630 5.95630i −0.428744 0.428744i 0.459457 0.888200i \(-0.348044\pi\)
−0.888200 + 0.459457i \(0.848044\pi\)
\(194\) 8.44160 8.44160i 0.606071 0.606071i
\(195\) 0 0
\(196\) 0.357909i 0.0255649i
\(197\) −15.1996 15.1996i −1.08292 1.08292i −0.996235 0.0866884i \(-0.972372\pi\)
−0.0866884 0.996235i \(-0.527628\pi\)
\(198\) 0.00728923 + 0.00728923i 0.000518023 + 0.000518023i
\(199\) 6.39953 + 6.39953i 0.453651 + 0.453651i 0.896564 0.442914i \(-0.146055\pi\)
−0.442914 + 0.896564i \(0.646055\pi\)
\(200\) 0 0
\(201\) 7.38967 + 7.38967i 0.521227 + 0.521227i
\(202\) 28.5880 2.01144
\(203\) 11.6227i 0.815752i
\(204\) −5.53784 2.71824i −0.387726 0.190315i
\(205\) 0 0
\(206\) 3.94556i 0.274900i
\(207\) 0.485389 0.485389i 0.0337369 0.0337369i
\(208\) 18.0366i 1.25062i
\(209\) 0.0104923 + 0.0104923i 0.000725765 + 0.000725765i
\(210\) 0 0
\(211\) −0.462382 + 0.462382i −0.0318317 + 0.0318317i −0.722843 0.691012i \(-0.757165\pi\)
0.691012 + 0.722843i \(0.257165\pi\)
\(212\) −1.70742 −0.117266
\(213\) 9.81027 0.672188
\(214\) −4.06765 + 4.06765i −0.278059 + 0.278059i
\(215\) 0 0
\(216\) 6.90088 + 6.90088i 0.469546 + 0.469546i
\(217\) 1.62826i 0.110533i
\(218\) 6.74908 6.74908i 0.457105 0.457105i
\(219\) 7.35746i 0.497171i
\(220\) 0 0
\(221\) −14.1570 + 4.83486i −0.952301 + 0.325228i
\(222\) 32.1842i 2.16006i
\(223\) 23.6081 1.58092 0.790458 0.612516i \(-0.209843\pi\)
0.790458 + 0.612516i \(0.209843\pi\)
\(224\) −8.53243 8.53243i −0.570097 0.570097i
\(225\) 0 0
\(226\) −23.9714 23.9714i −1.59456 1.59456i
\(227\) 13.1516 + 13.1516i 0.872905 + 0.872905i 0.992788 0.119883i \(-0.0382519\pi\)
−0.119883 + 0.992788i \(0.538252\pi\)
\(228\) 0.638107 + 0.638107i 0.0422597 + 0.0422597i
\(229\) 1.08531i 0.0717195i 0.999357 + 0.0358598i \(0.0114170\pi\)
−0.999357 + 0.0358598i \(0.988583\pi\)
\(230\) 0 0
\(231\) 0.0854790 0.0854790i 0.00562410 0.00562410i
\(232\) 5.93367 + 5.93367i 0.389565 + 0.389565i
\(233\) 7.35221 7.35221i 0.481660 0.481660i −0.424002 0.905661i \(-0.639375\pi\)
0.905661 + 0.424002i \(0.139375\pi\)
\(234\) 1.52031 0.0993859
\(235\) 0 0
\(236\) 0.769315i 0.0500782i
\(237\) 24.6915i 1.60388i
\(238\) −8.33153 + 16.9737i −0.540053 + 1.10024i
\(239\) 12.9823 0.839758 0.419879 0.907580i \(-0.362072\pi\)
0.419879 + 0.907580i \(0.362072\pi\)
\(240\) 0 0
\(241\) −9.00000 9.00000i −0.579741 0.579741i 0.355091 0.934832i \(-0.384450\pi\)
−0.934832 + 0.355091i \(0.884450\pi\)
\(242\) 18.5040i 1.18948i
\(243\) −1.82573 + 1.82573i −0.117120 + 0.117120i
\(244\) 6.98442 6.98442i 0.447131 0.447131i
\(245\) 0 0
\(246\) 21.7497i 1.38671i
\(247\) 2.18837 0.139243
\(248\) 0.831266 + 0.831266i 0.0527854 + 0.0527854i
\(249\) 15.5248 15.5248i 0.983845 0.983845i
\(250\) 0 0
\(251\) −24.0485 −1.51793 −0.758964 0.651133i \(-0.774294\pi\)
−0.758964 + 0.651133i \(0.774294\pi\)
\(252\) 0.398526 0.398526i 0.0251048 0.0251048i
\(253\) −0.0678011 −0.00426262
\(254\) −33.6206 −2.10955
\(255\) 0 0
\(256\) 16.9647 1.06029
\(257\) −15.1812 −0.946978 −0.473489 0.880800i \(-0.657006\pi\)
−0.473489 + 0.880800i \(0.657006\pi\)
\(258\) −25.7992 + 25.7992i −1.60619 + 1.60619i
\(259\) 28.9330 1.79781
\(260\) 0 0
\(261\) −0.750923 + 0.750923i −0.0464810 + 0.0464810i
\(262\) 12.6929 + 12.6929i 0.784172 + 0.784172i
\(263\) −12.3845 −0.763662 −0.381831 0.924232i \(-0.624706\pi\)
−0.381831 + 0.924232i \(0.624706\pi\)
\(264\) 0.0872783i 0.00537161i
\(265\) 0 0
\(266\) 1.95583 1.95583i 0.119920 0.119920i
\(267\) −9.07178 + 9.07178i −0.555184 + 0.555184i
\(268\) 4.81249i 0.293970i
\(269\) 6.97115 + 6.97115i 0.425039 + 0.425039i 0.886934 0.461896i \(-0.152831\pi\)
−0.461896 + 0.886934i \(0.652831\pi\)
\(270\) 0 0
\(271\) −4.38049 −0.266096 −0.133048 0.991110i \(-0.542476\pi\)
−0.133048 + 0.991110i \(0.542476\pi\)
\(272\) −6.62425 19.3965i −0.401654 1.17609i
\(273\) 17.8283i 1.07902i
\(274\) 27.7740i 1.67789i
\(275\) 0 0
\(276\) −4.12345 −0.248203
\(277\) 4.90350 4.90350i 0.294623 0.294623i −0.544280 0.838903i \(-0.683197\pi\)
0.838903 + 0.544280i \(0.183197\pi\)
\(278\) 12.4797 + 12.4797i 0.748482 + 0.748482i
\(279\) −0.105199 + 0.105199i −0.00629810 + 0.00629810i
\(280\) 0 0
\(281\) 13.3453i 0.796113i −0.917361 0.398056i \(-0.869685\pi\)
0.917361 0.398056i \(-0.130315\pi\)
\(282\) −23.7814 23.7814i −1.41616 1.41616i
\(283\) 4.23171 + 4.23171i 0.251549 + 0.251549i 0.821606 0.570056i \(-0.193079\pi\)
−0.570056 + 0.821606i \(0.693079\pi\)
\(284\) −3.19445 3.19445i −0.189555 0.189555i
\(285\) 0 0
\(286\) −0.106182 0.106182i −0.00627865 0.00627865i
\(287\) 19.5526 1.15415
\(288\) 1.10253i 0.0649674i
\(289\) −13.4486 + 10.3988i −0.791096 + 0.611692i
\(290\) 0 0
\(291\) 12.7915i 0.749852i
\(292\) −2.39576 + 2.39576i −0.140201 + 0.140201i
\(293\) 17.4231i 1.01787i 0.860806 + 0.508934i \(0.169960\pi\)
−0.860806 + 0.508934i \(0.830040\pi\)
\(294\) −0.924540 0.924540i −0.0539203 0.0539203i
\(295\) 0 0
\(296\) −14.7710 + 14.7710i −0.858548 + 0.858548i
\(297\) 0.121990 0.00707857
\(298\) −14.7517 −0.854543
\(299\) −7.07062 + 7.07062i −0.408905 + 0.408905i
\(300\) 0 0
\(301\) 23.1930 + 23.1930i 1.33682 + 1.33682i
\(302\) 6.89289i 0.396641i
\(303\) −21.6596 + 21.6596i −1.24431 + 1.24431i
\(304\) 2.99829i 0.171964i
\(305\) 0 0
\(306\) 1.63493 0.558359i 0.0934629 0.0319193i
\(307\) 2.60778i 0.148834i 0.997227 + 0.0744169i \(0.0237096\pi\)
−0.997227 + 0.0744169i \(0.976290\pi\)
\(308\) −0.0556678 −0.00317197
\(309\) 2.98935 + 2.98935i 0.170058 + 0.170058i
\(310\) 0 0
\(311\) 1.98182 + 1.98182i 0.112379 + 0.112379i 0.761060 0.648681i \(-0.224679\pi\)
−0.648681 + 0.761060i \(0.724679\pi\)
\(312\) 9.10181 + 9.10181i 0.515288 + 0.515288i
\(313\) −8.06011 8.06011i −0.455584 0.455584i 0.441619 0.897203i \(-0.354404\pi\)
−0.897203 + 0.441619i \(0.854404\pi\)
\(314\) 30.8313i 1.73991i
\(315\) 0 0
\(316\) −8.04011 + 8.04011i −0.452292 + 0.452292i
\(317\) −15.0278 15.0278i −0.844045 0.844045i 0.145337 0.989382i \(-0.453573\pi\)
−0.989382 + 0.145337i \(0.953573\pi\)
\(318\) 4.41055 4.41055i 0.247331 0.247331i
\(319\) 0.104892 0.00587282
\(320\) 0 0
\(321\) 6.16369i 0.344024i
\(322\) 12.6386i 0.704320i
\(323\) 2.35336 0.803714i 0.130944 0.0447198i
\(324\) 8.03929 0.446627
\(325\) 0 0
\(326\) 15.7105 + 15.7105i 0.870123 + 0.870123i
\(327\) 10.2268i 0.565546i
\(328\) −9.98209 + 9.98209i −0.551169 + 0.551169i
\(329\) −21.3791 + 21.3791i −1.17867 + 1.17867i
\(330\) 0 0
\(331\) 6.85020i 0.376521i 0.982119 + 0.188261i \(0.0602849\pi\)
−0.982119 + 0.188261i \(0.939715\pi\)
\(332\) −10.1105 −0.554883
\(333\) −1.86932 1.86932i −0.102438 0.102438i
\(334\) −5.06484 + 5.06484i −0.277136 + 0.277136i
\(335\) 0 0
\(336\) 24.4266 1.33258
\(337\) 9.86609 9.86609i 0.537440 0.537440i −0.385336 0.922776i \(-0.625914\pi\)
0.922776 + 0.385336i \(0.125914\pi\)
\(338\) −0.276651 −0.0150478
\(339\) 36.3238 1.97284
\(340\) 0 0
\(341\) 0.0146946 0.000795759
\(342\) −0.252726 −0.0136659
\(343\) 12.6620 12.6620i 0.683682 0.683682i
\(344\) −23.6812 −1.27681
\(345\) 0 0
\(346\) 15.1161 15.1161i 0.812645 0.812645i
\(347\) −9.99455 9.99455i −0.536536 0.536536i 0.385974 0.922510i \(-0.373865\pi\)
−0.922510 + 0.385974i \(0.873865\pi\)
\(348\) 6.37921 0.341961
\(349\) 13.3019i 0.712036i −0.934479 0.356018i \(-0.884134\pi\)
0.934479 0.356018i \(-0.115866\pi\)
\(350\) 0 0
\(351\) 12.7217 12.7217i 0.679034 0.679034i
\(352\) 0.0770032 0.0770032i 0.00410428 0.00410428i
\(353\) 6.86777i 0.365534i −0.983156 0.182767i \(-0.941495\pi\)
0.983156 0.182767i \(-0.0585054\pi\)
\(354\) −1.98727 1.98727i −0.105622 0.105622i
\(355\) 0 0
\(356\) 5.90795 0.313121
\(357\) −6.54774 19.1725i −0.346543 1.01471i
\(358\) 18.6080i 0.983464i
\(359\) 30.8917i 1.63040i −0.579178 0.815201i \(-0.696627\pi\)
0.579178 0.815201i \(-0.303373\pi\)
\(360\) 0 0
\(361\) 18.6362 0.980854
\(362\) 22.7021 22.7021i 1.19320 1.19320i
\(363\) −14.0195 14.0195i −0.735835 0.735835i
\(364\) −5.80530 + 5.80530i −0.304281 + 0.304281i
\(365\) 0 0
\(366\) 36.0839i 1.88613i
\(367\) 2.13492 + 2.13492i 0.111442 + 0.111442i 0.760629 0.649187i \(-0.224891\pi\)
−0.649187 + 0.760629i \(0.724891\pi\)
\(368\) −9.68748 9.68748i −0.504995 0.504995i
\(369\) −1.26326 1.26326i −0.0657628 0.0657628i
\(370\) 0 0
\(371\) −3.96501 3.96501i −0.205853 0.205853i
\(372\) 0.893682 0.0463353
\(373\) 6.62453i 0.343005i −0.985184 0.171502i \(-0.945138\pi\)
0.985184 0.171502i \(-0.0548622\pi\)
\(374\) −0.153184 0.0751901i −0.00792096 0.00388799i
\(375\) 0 0
\(376\) 21.8291i 1.12575i
\(377\) 10.9386 10.9386i 0.563369 0.563369i
\(378\) 22.7397i 1.16961i
\(379\) −9.47649 9.47649i −0.486774 0.486774i 0.420512 0.907287i \(-0.361850\pi\)
−0.907287 + 0.420512i \(0.861850\pi\)
\(380\) 0 0
\(381\) 25.4726 25.4726i 1.30500 1.30500i
\(382\) −27.9083 −1.42791
\(383\) 0.0616324 0.00314927 0.00157463 0.999999i \(-0.499499\pi\)
0.00157463 + 0.999999i \(0.499499\pi\)
\(384\) −16.6349 + 16.6349i −0.848898 + 0.848898i
\(385\) 0 0
\(386\) −10.0201 10.0201i −0.510012 0.510012i
\(387\) 2.99693i 0.152342i
\(388\) 4.16521 4.16521i 0.211456 0.211456i
\(389\) 2.20403i 0.111749i −0.998438 0.0558743i \(-0.982205\pi\)
0.998438 0.0558743i \(-0.0177946\pi\)
\(390\) 0 0
\(391\) −5.00690 + 10.2005i −0.253210 + 0.515862i
\(392\) 0.848642i 0.0428629i
\(393\) −19.2335 −0.970204
\(394\) −25.5699 25.5699i −1.28819 1.28819i
\(395\) 0 0
\(396\) 0.00359661 + 0.00359661i 0.000180736 + 0.000180736i
\(397\) 8.39588 + 8.39588i 0.421377 + 0.421377i 0.885678 0.464301i \(-0.153694\pi\)
−0.464301 + 0.885678i \(0.653694\pi\)
\(398\) 10.7658 + 10.7658i 0.539640 + 0.539640i
\(399\) 2.96366i 0.148368i
\(400\) 0 0
\(401\) −3.05446 + 3.05446i −0.152532 + 0.152532i −0.779248 0.626716i \(-0.784399\pi\)
0.626716 + 0.779248i \(0.284399\pi\)
\(402\) 12.4315 + 12.4315i 0.620026 + 0.620026i
\(403\) 1.53243 1.53243i 0.0763356 0.0763356i
\(404\) 14.1057 0.701786
\(405\) 0 0
\(406\) 19.5526i 0.970378i
\(407\) 0.261114i 0.0129429i
\(408\) 13.1308 + 6.44524i 0.650072 + 0.319087i
\(409\) 39.0514 1.93097 0.965485 0.260459i \(-0.0838739\pi\)
0.965485 + 0.260459i \(0.0838739\pi\)
\(410\) 0 0
\(411\) −21.0429 21.0429i −1.03797 1.03797i
\(412\) 1.94680i 0.0959118i
\(413\) −1.78652 + 1.78652i −0.0879091 + 0.0879091i
\(414\) 0.816559 0.816559i 0.0401317 0.0401317i
\(415\) 0 0
\(416\) 16.0605i 0.787432i
\(417\) −18.9104 −0.926047
\(418\) 0.0176509 + 0.0176509i 0.000863334 + 0.000863334i
\(419\) 1.36075 1.36075i 0.0664769 0.0664769i −0.673087 0.739564i \(-0.735032\pi\)
0.739564 + 0.673087i \(0.235032\pi\)
\(420\) 0 0
\(421\) −15.5179 −0.756297 −0.378148 0.925745i \(-0.623439\pi\)
−0.378148 + 0.925745i \(0.623439\pi\)
\(422\) −0.777856 + 0.777856i −0.0378654 + 0.0378654i
\(423\) 2.76254 0.134319
\(424\) 4.04847 0.196611
\(425\) 0 0
\(426\) 16.5036 0.799602
\(427\) 32.4388 1.56982
\(428\) −2.00704 + 2.00704i −0.0970138 + 0.0970138i
\(429\) 0.160896 0.00776816
\(430\) 0 0
\(431\) 5.44688 5.44688i 0.262367 0.262367i −0.563648 0.826015i \(-0.690603\pi\)
0.826015 + 0.563648i \(0.190603\pi\)
\(432\) 17.4300 + 17.4300i 0.838602 + 0.838602i
\(433\) 2.45651 0.118052 0.0590262 0.998256i \(-0.481200\pi\)
0.0590262 + 0.998256i \(0.481200\pi\)
\(434\) 2.73918i 0.131485i
\(435\) 0 0
\(436\) 3.33009 3.33009i 0.159483 0.159483i
\(437\) 1.17537 1.17537i 0.0562257 0.0562257i
\(438\) 12.3773i 0.591410i
\(439\) −28.2107 28.2107i −1.34642 1.34642i −0.889513 0.456910i \(-0.848956\pi\)
−0.456910 0.889513i \(-0.651044\pi\)
\(440\) 0 0
\(441\) 0.107398 0.00511419
\(442\) −23.8160 + 8.13358i −1.13281 + 0.386875i
\(443\) 29.7806i 1.41492i −0.706754 0.707460i \(-0.749841\pi\)
0.706754 0.707460i \(-0.250159\pi\)
\(444\) 15.8801i 0.753637i
\(445\) 0 0
\(446\) 39.7154 1.88058
\(447\) 11.1766 11.1766i 0.528634 0.528634i
\(448\) 4.81062 + 4.81062i 0.227281 + 0.227281i
\(449\) −7.26221 + 7.26221i −0.342725 + 0.342725i −0.857391 0.514666i \(-0.827916\pi\)
0.514666 + 0.857391i \(0.327916\pi\)
\(450\) 0 0
\(451\) 0.176458i 0.00830906i
\(452\) −11.8278 11.8278i −0.556335 0.556335i
\(453\) 5.22238 + 5.22238i 0.245369 + 0.245369i
\(454\) 22.1247 + 22.1247i 1.03836 + 1.03836i
\(455\) 0 0
\(456\) −1.51302 1.51302i −0.0708538 0.0708538i
\(457\) −20.6404 −0.965519 −0.482760 0.875753i \(-0.660366\pi\)
−0.482760 + 0.875753i \(0.660366\pi\)
\(458\) 1.82580i 0.0853140i
\(459\) 9.00858 18.3531i 0.420484 0.856648i
\(460\) 0 0
\(461\) 9.20938i 0.428924i −0.976732 0.214462i \(-0.931200\pi\)
0.976732 0.214462i \(-0.0687998\pi\)
\(462\) 0.143799 0.143799i 0.00669015 0.00669015i
\(463\) 19.1899i 0.891830i 0.895075 + 0.445915i \(0.147122\pi\)
−0.895075 + 0.445915i \(0.852878\pi\)
\(464\) 14.9871 + 14.9871i 0.695757 + 0.695757i
\(465\) 0 0
\(466\) 12.3685 12.3685i 0.572958 0.572958i
\(467\) −12.8589 −0.595037 −0.297519 0.954716i \(-0.596159\pi\)
−0.297519 + 0.954716i \(0.596159\pi\)
\(468\) 0.750144 0.0346754
\(469\) 11.1757 11.1757i 0.516045 0.516045i
\(470\) 0 0
\(471\) −23.3593 23.3593i −1.07634 1.07634i
\(472\) 1.82413i 0.0839625i
\(473\) −0.209312 + 0.209312i −0.00962415 + 0.00962415i
\(474\) 41.5380i 1.90790i
\(475\) 0 0
\(476\) −4.11090 + 8.37508i −0.188423 + 0.383871i
\(477\) 0.512346i 0.0234587i
\(478\) 21.8399 0.998935
\(479\) −14.9104 14.9104i −0.681274 0.681274i 0.279013 0.960287i \(-0.409993\pi\)
−0.960287 + 0.279013i \(0.909993\pi\)
\(480\) 0 0
\(481\) 27.2302 + 27.2302i 1.24159 + 1.24159i
\(482\) −15.1405 15.1405i −0.689631 0.689631i
\(483\) −9.57559 9.57559i −0.435704 0.435704i
\(484\) 9.13016i 0.415007i
\(485\) 0 0
\(486\) −3.07138 + 3.07138i −0.139321 + 0.139321i
\(487\) 20.8708 + 20.8708i 0.945745 + 0.945745i 0.998602 0.0528575i \(-0.0168329\pi\)
−0.0528575 + 0.998602i \(0.516833\pi\)
\(488\) −16.5608 + 16.5608i −0.749673 + 0.749673i
\(489\) −23.8060 −1.07655
\(490\) 0 0
\(491\) 8.36668i 0.377583i −0.982017 0.188792i \(-0.939543\pi\)
0.982017 0.188792i \(-0.0604571\pi\)
\(492\) 10.7316i 0.483818i
\(493\) 7.74596 15.7807i 0.348860 0.710729i
\(494\) 3.68144 0.165636
\(495\) 0 0
\(496\) 2.09958 + 2.09958i 0.0942740 + 0.0942740i
\(497\) 14.8364i 0.665506i
\(498\) 26.1170 26.1170i 1.17033 1.17033i
\(499\) −7.77797 + 7.77797i −0.348190 + 0.348190i −0.859435 0.511245i \(-0.829184\pi\)
0.511245 + 0.859435i \(0.329184\pi\)
\(500\) 0 0
\(501\) 7.67473i 0.342882i
\(502\) −40.4563 −1.80565
\(503\) 8.55845 + 8.55845i 0.381603 + 0.381603i 0.871679 0.490077i \(-0.163031\pi\)
−0.490077 + 0.871679i \(0.663031\pi\)
\(504\) −0.944950 + 0.944950i −0.0420914 + 0.0420914i
\(505\) 0 0
\(506\) −0.114060 −0.00507060
\(507\) 0.209604 0.209604i 0.00930884 0.00930884i
\(508\) −16.5889 −0.736014
\(509\) −10.2914 −0.456157 −0.228079 0.973643i \(-0.573244\pi\)
−0.228079 + 0.973643i \(0.573244\pi\)
\(510\) 0 0
\(511\) −11.1270 −0.492228
\(512\) 2.43660 0.107684
\(513\) −2.11477 + 2.11477i −0.0933692 + 0.0933692i
\(514\) −25.5390 −1.12648
\(515\) 0 0
\(516\) −12.7297 + 12.7297i −0.560393 + 0.560393i
\(517\) −0.192941 0.192941i −0.00848555 0.00848555i
\(518\) 48.6733 2.13858
\(519\) 22.9053i 1.00543i
\(520\) 0 0
\(521\) −25.0222 + 25.0222i −1.09624 + 1.09624i −0.101396 + 0.994846i \(0.532331\pi\)
−0.994846 + 0.101396i \(0.967669\pi\)
\(522\) −1.26326 + 1.26326i −0.0552915 + 0.0552915i
\(523\) 41.9546i 1.83455i −0.398259 0.917273i \(-0.630385\pi\)
0.398259 0.917273i \(-0.369615\pi\)
\(524\) 6.26288 + 6.26288i 0.273595 + 0.273595i
\(525\) 0 0
\(526\) −20.8342 −0.908414
\(527\) 1.08515 2.21077i 0.0472700 0.0963027i
\(528\) 0.220445i 0.00959362i
\(529\) 15.4047i 0.669771i
\(530\) 0 0
\(531\) 0.230849 0.0100180
\(532\) 0.965034 0.965034i 0.0418395 0.0418395i
\(533\) 18.4018 + 18.4018i 0.797072 + 0.797072i
\(534\) −15.2613 + 15.2613i −0.660419 + 0.660419i
\(535\) 0 0
\(536\) 11.4109i 0.492878i
\(537\) 14.0983 + 14.0983i 0.608387 + 0.608387i
\(538\) 11.7274 + 11.7274i 0.505605 + 0.505605i
\(539\) −0.00750090 0.00750090i −0.000323087 0.000323087i
\(540\) 0 0
\(541\) 16.3343 + 16.3343i 0.702266 + 0.702266i 0.964897 0.262630i \(-0.0845899\pi\)
−0.262630 + 0.964897i \(0.584590\pi\)
\(542\) −7.36920 −0.316534
\(543\) 34.4004i 1.47626i
\(544\) −5.89849 17.2714i −0.252896 0.740505i
\(545\) 0 0
\(546\) 29.9922i 1.28355i
\(547\) 22.5367 22.5367i 0.963600 0.963600i −0.0357608 0.999360i \(-0.511385\pi\)
0.999360 + 0.0357608i \(0.0113855\pi\)
\(548\) 13.7041i 0.585411i
\(549\) −2.09582 2.09582i −0.0894474 0.0894474i
\(550\) 0 0
\(551\) −1.81837 + 1.81837i −0.0774650 + 0.0774650i
\(552\) 9.77716 0.416144
\(553\) −37.3419 −1.58794
\(554\) 8.24906 8.24906i 0.350469 0.350469i
\(555\) 0 0
\(556\) 6.15766 + 6.15766i 0.261143 + 0.261143i
\(557\) 4.04822i 0.171528i 0.996315 + 0.0857642i \(0.0273332\pi\)
−0.996315 + 0.0857642i \(0.972667\pi\)
\(558\) −0.176974 + 0.176974i −0.00749191 + 0.00749191i
\(559\) 43.6560i 1.84645i
\(560\) 0 0
\(561\) 0.173027 0.0590919i 0.00730521 0.00249486i
\(562\) 22.4505i 0.947016i
\(563\) −14.7608 −0.622095 −0.311047 0.950394i \(-0.600680\pi\)
−0.311047 + 0.950394i \(0.600680\pi\)
\(564\) −11.7341 11.7341i −0.494094 0.494094i
\(565\) 0 0
\(566\) 7.11891 + 7.11891i 0.299230 + 0.299230i
\(567\) 18.6691 + 18.6691i 0.784026 + 0.784026i
\(568\) 7.57438 + 7.57438i 0.317814 + 0.317814i
\(569\) 23.9741i 1.00505i 0.864563 + 0.502524i \(0.167595\pi\)
−0.864563 + 0.502524i \(0.832405\pi\)
\(570\) 0 0
\(571\) −19.0184 + 19.0184i −0.795894 + 0.795894i −0.982445 0.186551i \(-0.940269\pi\)
0.186551 + 0.982445i \(0.440269\pi\)
\(572\) −0.0523915 0.0523915i −0.00219060 0.00219060i
\(573\) 21.1447 21.1447i 0.883331 0.883331i
\(574\) 32.8929 1.37292
\(575\) 0 0
\(576\) 0.621614i 0.0259006i
\(577\) 22.7542i 0.947271i −0.880721 0.473635i \(-0.842941\pi\)
0.880721 0.473635i \(-0.157059\pi\)
\(578\) −22.6244 + 17.4936i −0.941049 + 0.727638i
\(579\) 15.1835 0.631004
\(580\) 0 0
\(581\) −23.4788 23.4788i −0.974063 0.974063i
\(582\) 21.5189i 0.891986i
\(583\) 0.0357833 0.0357833i 0.00148199 0.00148199i
\(584\) 5.68060 5.68060i 0.235065 0.235065i
\(585\) 0 0
\(586\) 29.3105i 1.21080i
\(587\) −34.0841 −1.40680 −0.703401 0.710794i \(-0.748336\pi\)
−0.703401 + 0.710794i \(0.748336\pi\)
\(588\) −0.456182 0.456182i −0.0188126 0.0188126i
\(589\) −0.254740 + 0.254740i −0.0104964 + 0.0104964i
\(590\) 0 0
\(591\) 38.7459 1.59379
\(592\) −37.3081 + 37.3081i −1.53336 + 1.53336i
\(593\) −45.2821 −1.85951 −0.929757 0.368174i \(-0.879983\pi\)
−0.929757 + 0.368174i \(0.879983\pi\)
\(594\) 0.205221 0.00842031
\(595\) 0 0
\(596\) −7.27870 −0.298147
\(597\) −16.3133 −0.667661
\(598\) −11.8948 + 11.8948i −0.486413 + 0.486413i
\(599\) −13.2118 −0.539818 −0.269909 0.962886i \(-0.586994\pi\)
−0.269909 + 0.962886i \(0.586994\pi\)
\(600\) 0 0
\(601\) −10.8424 + 10.8424i −0.442271 + 0.442271i −0.892774 0.450504i \(-0.851244\pi\)
0.450504 + 0.892774i \(0.351244\pi\)
\(602\) 39.0171 + 39.0171i 1.59022 + 1.59022i
\(603\) −1.44409 −0.0588078
\(604\) 3.40105i 0.138387i
\(605\) 0 0
\(606\) −36.4375 + 36.4375i −1.48017 + 1.48017i
\(607\) −6.57986 + 6.57986i −0.267068 + 0.267068i −0.827918 0.560849i \(-0.810475\pi\)
0.560849 + 0.827918i \(0.310475\pi\)
\(608\) 2.66979i 0.108274i
\(609\) 14.8140 + 14.8140i 0.600292 + 0.600292i
\(610\) 0 0
\(611\) −40.2417 −1.62800
\(612\) 0.806700 0.275502i 0.0326089 0.0111365i
\(613\) 24.3891i 0.985065i 0.870294 + 0.492533i \(0.163929\pi\)
−0.870294 + 0.492533i \(0.836071\pi\)
\(614\) 4.38701i 0.177045i
\(615\) 0 0
\(616\) 0.131994 0.00531821
\(617\) 24.5305 24.5305i 0.987559 0.987559i −0.0123641 0.999924i \(-0.503936\pi\)
0.999924 + 0.0123641i \(0.00393572\pi\)
\(618\) 5.02891 + 5.02891i 0.202292 + 0.202292i
\(619\) 31.0708 31.0708i 1.24884 1.24884i 0.292608 0.956232i \(-0.405477\pi\)
0.956232 0.292608i \(-0.0945232\pi\)
\(620\) 0 0
\(621\) 13.6656i 0.548383i
\(622\) 3.33398 + 3.33398i 0.133680 + 0.133680i
\(623\) 13.7196 + 13.7196i 0.549664 + 0.549664i
\(624\) 22.9890 + 22.9890i 0.920298 + 0.920298i
\(625\) 0 0
\(626\) −13.5593 13.5593i −0.541941 0.541941i
\(627\) −0.0267463 −0.00106815
\(628\) 15.2126i 0.607049i
\(629\) 39.2839 + 19.2824i 1.56635 + 0.768842i
\(630\) 0 0
\(631\) 23.0280i 0.916728i 0.888764 + 0.458364i \(0.151564\pi\)
−0.888764 + 0.458364i \(0.848436\pi\)
\(632\) 19.0640 19.0640i 0.758325 0.758325i
\(633\) 1.17868i 0.0468484i
\(634\) −25.2809 25.2809i −1.00403 1.00403i
\(635\) 0 0
\(636\) 2.17623 2.17623i 0.0862931 0.0862931i
\(637\) −1.56446 −0.0619862
\(638\) 0.176458 0.00698602
\(639\) −0.958560 + 0.958560i −0.0379200 + 0.0379200i
\(640\) 0 0
\(641\) 1.44987 + 1.44987i 0.0572664 + 0.0572664i 0.735160 0.677894i \(-0.237107\pi\)
−0.677894 + 0.735160i \(0.737107\pi\)
\(642\) 10.3690i 0.409233i
\(643\) −29.5955 + 29.5955i −1.16713 + 1.16713i −0.184253 + 0.982879i \(0.558986\pi\)
−0.982879 + 0.184253i \(0.941014\pi\)
\(644\) 6.23606i 0.245735i
\(645\) 0 0
\(646\) 3.95900 1.35207i 0.155765 0.0531965i
\(647\) 23.1590i 0.910475i 0.890370 + 0.455238i \(0.150446\pi\)
−0.890370 + 0.455238i \(0.849554\pi\)
\(648\) −19.0620 −0.748828
\(649\) −0.0161230 0.0161230i −0.000632882 0.000632882i
\(650\) 0 0
\(651\) 2.07533 + 2.07533i 0.0813387 + 0.0813387i
\(652\) 7.75178 + 7.75178i 0.303583 + 0.303583i
\(653\) −12.0651 12.0651i −0.472142 0.472142i 0.430465 0.902607i \(-0.358350\pi\)
−0.902607 + 0.430465i \(0.858350\pi\)
\(654\) 17.2044i 0.672745i
\(655\) 0 0
\(656\) −25.2124 + 25.2124i −0.984379 + 0.984379i
\(657\) 0.718897 + 0.718897i 0.0280468 + 0.0280468i
\(658\) −35.9656 + 35.9656i −1.40208 + 1.40208i
\(659\) 15.2346 0.593457 0.296728 0.954962i \(-0.404104\pi\)
0.296728 + 0.954962i \(0.404104\pi\)
\(660\) 0 0
\(661\) 19.2415i 0.748408i 0.927346 + 0.374204i \(0.122084\pi\)
−0.927346 + 0.374204i \(0.877916\pi\)
\(662\) 11.5239i 0.447891i
\(663\) 11.8817 24.2065i 0.461448 0.940102i
\(664\) 23.9730 0.930333
\(665\) 0 0
\(666\) −3.14471 3.14471i −0.121855 0.121855i
\(667\) 11.7503i 0.454973i
\(668\) −2.49907 + 2.49907i −0.0966918 + 0.0966918i
\(669\) −30.0903 + 30.0903i −1.16336 + 1.16336i
\(670\) 0 0
\(671\) 0.292753i 0.0113016i
\(672\) 21.7504 0.839040
\(673\) 32.2614 + 32.2614i 1.24358 + 1.24358i 0.958503 + 0.285082i \(0.0920207\pi\)
0.285082 + 0.958503i \(0.407979\pi\)
\(674\) 16.5975 16.5975i 0.639312 0.639312i
\(675\) 0 0
\(676\) −0.136504 −0.00525014
\(677\) −19.0624 + 19.0624i −0.732627 + 0.732627i −0.971139 0.238513i \(-0.923340\pi\)
0.238513 + 0.971139i \(0.423340\pi\)
\(678\) 61.1067 2.34679
\(679\) 19.3451 0.742397
\(680\) 0 0
\(681\) −33.5255 −1.28470
\(682\) 0.0247205 0.000946595
\(683\) −11.3404 + 11.3404i −0.433929 + 0.433929i −0.889963 0.456034i \(-0.849270\pi\)
0.456034 + 0.889963i \(0.349270\pi\)
\(684\) −0.124699 −0.00476797
\(685\) 0 0
\(686\) 21.3009 21.3009i 0.813274 0.813274i
\(687\) −1.38331 1.38331i −0.0527766 0.0527766i
\(688\) −59.8132 −2.28036
\(689\) 7.46331i 0.284329i
\(690\) 0 0
\(691\) 17.0042 17.0042i 0.646869 0.646869i −0.305366 0.952235i \(-0.598779\pi\)
0.952235 + 0.305366i \(0.0987789\pi\)
\(692\) 7.45849 7.45849i 0.283529 0.283529i
\(693\) 0.0167043i 0.000634543i
\(694\) −16.8136 16.8136i −0.638236 0.638236i
\(695\) 0 0
\(696\) −15.1258 −0.573342
\(697\) 26.5476 + 13.0309i 1.00556 + 0.493579i
\(698\) 22.3775i 0.847002i
\(699\) 18.7419i 0.708883i
\(700\) 0 0
\(701\) 36.8962 1.39355 0.696776 0.717289i \(-0.254617\pi\)
0.696776 + 0.717289i \(0.254617\pi\)
\(702\) 21.4014 21.4014i 0.807745 0.807745i
\(703\) −4.52656 4.52656i −0.170722 0.170722i
\(704\) −0.0434148 + 0.0434148i −0.00163626 + 0.00163626i
\(705\) 0 0
\(706\) 11.5535i 0.434821i
\(707\) 32.7567 + 32.7567i 1.23194 + 1.23194i
\(708\) −0.980549 0.980549i −0.0368513 0.0368513i
\(709\) −25.6738 25.6738i −0.964200 0.964200i 0.0351811 0.999381i \(-0.488799\pi\)
−0.999381 + 0.0351811i \(0.988799\pi\)
\(710\) 0 0
\(711\) 2.41260 + 2.41260i 0.0904797 + 0.0904797i
\(712\) −14.0084 −0.524987
\(713\) 1.64613i 0.0616482i
\(714\) −11.0151 32.2534i −0.412231 1.20705i
\(715\) 0 0
\(716\) 9.18146i 0.343127i
\(717\) −16.5470 + 16.5470i −0.617958 + 0.617958i
\(718\) 51.9684i 1.93944i
\(719\) 4.81509 + 4.81509i 0.179573 + 0.179573i 0.791170 0.611597i \(-0.209473\pi\)
−0.611597 + 0.791170i \(0.709473\pi\)
\(720\) 0 0
\(721\) 4.52090 4.52090i 0.168367 0.168367i
\(722\) 31.3513 1.16677
\(723\) 22.9423 0.853234
\(724\) 11.2015 11.2015i 0.416302 0.416302i
\(725\) 0 0
\(726\) −23.5848 23.5848i −0.875313 0.875313i
\(727\) 12.6708i 0.469932i 0.972004 + 0.234966i \(0.0754980\pi\)
−0.972004 + 0.234966i \(0.924502\pi\)
\(728\) 13.7650 13.7650i 0.510165 0.510165i
\(729\) 24.4015i 0.903760i
\(730\) 0 0
\(731\) 16.0334 + 46.9474i 0.593016 + 1.73641i
\(732\) 17.8043i 0.658066i
\(733\) −20.6418 −0.762422 −0.381211 0.924488i \(-0.624493\pi\)
−0.381211 + 0.924488i \(0.624493\pi\)
\(734\) 3.59154 + 3.59154i 0.132566 + 0.132566i
\(735\) 0 0
\(736\) −8.62611 8.62611i −0.317963 0.317963i
\(737\) 0.100858 + 0.100858i 0.00371515 + 0.00371515i
\(738\) −2.12516 2.12516i −0.0782281 0.0782281i
\(739\) 44.5263i 1.63793i −0.573847 0.818963i \(-0.694550\pi\)
0.573847 0.818963i \(-0.305450\pi\)
\(740\) 0 0
\(741\) −2.78924 + 2.78924i −0.102465 + 0.102465i
\(742\) −6.67025 6.67025i −0.244872 0.244872i
\(743\) 15.6872 15.6872i 0.575506 0.575506i −0.358156 0.933662i \(-0.616594\pi\)
0.933662 + 0.358156i \(0.116594\pi\)
\(744\) −2.11902 −0.0776870
\(745\) 0 0
\(746\) 11.1443i 0.408022i
\(747\) 3.03385i 0.111003i
\(748\) −0.0755832 0.0370999i −0.00276360 0.00135651i
\(749\) −9.32159 −0.340603
\(750\) 0 0
\(751\) 18.4987 + 18.4987i 0.675026 + 0.675026i 0.958870 0.283845i \(-0.0916100\pi\)
−0.283845 + 0.958870i \(0.591610\pi\)
\(752\) 55.1352i 2.01057i
\(753\) 30.6516 30.6516i 1.11701 1.11701i
\(754\) 18.4018 18.4018i 0.670156 0.670156i
\(755\) 0 0
\(756\) 11.2201i 0.408071i
\(757\) −23.9905 −0.871949 −0.435974 0.899959i \(-0.643596\pi\)
−0.435974 + 0.899959i \(0.643596\pi\)
\(758\) −15.9421 15.9421i −0.579043 0.579043i
\(759\) 0.0864175 0.0864175i 0.00313676 0.00313676i
\(760\) 0 0
\(761\) 16.5206 0.598870 0.299435 0.954117i \(-0.403202\pi\)
0.299435 + 0.954117i \(0.403202\pi\)
\(762\) 42.8520 42.8520i 1.55236 1.55236i
\(763\) 15.4665 0.559923
\(764\) −13.7704 −0.498194
\(765\) 0 0
\(766\) 0.103683 0.00374621
\(767\) −3.36276 −0.121422
\(768\) −21.6228 + 21.6228i −0.780244 + 0.780244i
\(769\) −48.8518 −1.76164 −0.880821 0.473450i \(-0.843009\pi\)
−0.880821 + 0.473450i \(0.843009\pi\)
\(770\) 0 0
\(771\) 19.3496 19.3496i 0.696858 0.696858i
\(772\) −4.94408 4.94408i −0.177941 0.177941i
\(773\) 35.5187 1.27752 0.638759 0.769407i \(-0.279448\pi\)
0.638759 + 0.769407i \(0.279448\pi\)
\(774\) 5.04167i 0.181219i
\(775\) 0 0
\(776\) −9.87616 + 9.87616i −0.354533 + 0.354533i
\(777\) −36.8772 + 36.8772i −1.32296 + 1.32296i
\(778\) 3.70778i 0.132930i
\(779\) −3.05900 3.05900i −0.109600 0.109600i
\(780\) 0 0
\(781\) 0.133896 0.00479116
\(782\) −8.42301 + 17.1601i −0.301206 + 0.613644i
\(783\) 21.1415i 0.755535i
\(784\) 2.14347i 0.0765525i
\(785\) 0 0
\(786\) −32.3562 −1.15411
\(787\) −13.3494 + 13.3494i −0.475854 + 0.475854i −0.903803 0.427949i \(-0.859236\pi\)
0.427949 + 0.903803i \(0.359236\pi\)
\(788\) −12.6166 12.6166i −0.449446 0.449446i
\(789\) 15.7850 15.7850i 0.561960 0.561960i
\(790\) 0 0
\(791\) 54.9338i 1.95322i
\(792\) −0.00852795 0.00852795i −0.000303028 0.000303028i
\(793\) 30.5296 + 30.5296i 1.08414 + 1.08414i
\(794\) 14.1242 + 14.1242i 0.501249 + 0.501249i
\(795\) 0 0
\(796\) 5.31200 + 5.31200i 0.188279 + 0.188279i
\(797\) 15.8796 0.562483 0.281242 0.959637i \(-0.409254\pi\)
0.281242 + 0.959637i \(0.409254\pi\)
\(798\) 4.98570i 0.176492i
\(799\) −43.2757 + 14.7794i −1.53098 + 0.522858i
\(800\) 0 0
\(801\) 1.77280i 0.0626389i
\(802\) −5.13845 + 5.13845i −0.181445 + 0.181445i
\(803\) 0.100418i 0.00354369i
\(804\) 6.13387 + 6.13387i 0.216325 + 0.216325i
\(805\) 0 0
\(806\) 2.57797 2.57797i 0.0908051 0.0908051i
\(807\) −17.7705 −0.625551
\(808\) −33.4462 −1.17663
\(809\) −2.50314 + 2.50314i −0.0880057 + 0.0880057i −0.749739 0.661733i \(-0.769821\pi\)
0.661733 + 0.749739i \(0.269821\pi\)
\(810\) 0 0
\(811\) −32.8175 32.8175i −1.15238 1.15238i −0.986075 0.166303i \(-0.946817\pi\)
−0.166303 0.986075i \(-0.553183\pi\)
\(812\) 9.64752i 0.338562i
\(813\) 5.58326 5.58326i 0.195813 0.195813i
\(814\) 0.439266i 0.0153963i
\(815\) 0 0
\(816\) 33.1654 + 16.2792i 1.16102 + 0.569885i
\(817\) 7.25708i 0.253893i
\(818\) 65.6954 2.29699
\(819\) 1.74200 + 1.74200i 0.0608705 + 0.0608705i
\(820\) 0 0
\(821\) 15.5572 + 15.5572i 0.542951 + 0.542951i 0.924393 0.381442i \(-0.124572\pi\)
−0.381442 + 0.924393i \(0.624572\pi\)
\(822\) −35.4001 35.4001i −1.23472 1.23472i
\(823\) 10.3745 + 10.3745i 0.361633 + 0.361633i 0.864414 0.502781i \(-0.167690\pi\)
−0.502781 + 0.864414i \(0.667690\pi\)
\(824\) 4.61607i 0.160808i
\(825\) 0 0
\(826\) −3.00543 + 3.00543i −0.104572 + 0.104572i
\(827\) −18.5691 18.5691i −0.645711 0.645711i 0.306242 0.951954i \(-0.400928\pi\)
−0.951954 + 0.306242i \(0.900928\pi\)
\(828\) 0.402902 0.402902i 0.0140018 0.0140018i
\(829\) 28.2971 0.982800 0.491400 0.870934i \(-0.336485\pi\)
0.491400 + 0.870934i \(0.336485\pi\)
\(830\) 0 0
\(831\) 12.4998i 0.433612i
\(832\) 9.05500i 0.313926i
\(833\) −1.68241 + 0.574574i −0.0582921 + 0.0199078i
\(834\) −31.8126 −1.10158
\(835\) 0 0
\(836\) 0.00870921 + 0.00870921i 0.000301214 + 0.000301214i
\(837\) 2.96177i 0.102374i
\(838\) 2.28916 2.28916i 0.0790776 0.0790776i
\(839\) −32.0977 + 32.0977i −1.10814 + 1.10814i −0.114740 + 0.993396i \(0.536603\pi\)
−0.993396 + 0.114740i \(0.963397\pi\)
\(840\) 0 0
\(841\) 10.8217i 0.373161i
\(842\) −26.1054 −0.899653
\(843\) 17.0095 + 17.0095i 0.585840 + 0.585840i
\(844\) −0.383805 + 0.383805i −0.0132111 + 0.0132111i
\(845\) 0 0
\(846\) 4.64736 0.159779
\(847\) −21.2023 + 21.2023i −0.728519 + 0.728519i
\(848\) 10.2255 0.351145
\(849\) −10.7873 −0.370218
\(850\) 0 0
\(851\) 29.2507 1.00270
\(852\) 8.14311 0.278978
\(853\) 9.97065 9.97065i 0.341389 0.341389i −0.515501 0.856889i \(-0.672394\pi\)
0.856889 + 0.515501i \(0.172394\pi\)
\(854\) 54.5711 1.86738
\(855\) 0 0
\(856\) 4.75891 4.75891i 0.162656 0.162656i
\(857\) 5.00436 + 5.00436i 0.170946 + 0.170946i 0.787395 0.616449i \(-0.211429\pi\)
−0.616449 + 0.787395i \(0.711429\pi\)
\(858\) 0.270673 0.00924061
\(859\) 29.8876i 1.01975i 0.860248 + 0.509876i \(0.170309\pi\)
−0.860248 + 0.509876i \(0.829691\pi\)
\(860\) 0 0
\(861\) −24.9212 + 24.9212i −0.849312 + 0.849312i
\(862\) 9.16317 9.16317i 0.312099 0.312099i
\(863\) 37.7086i 1.28362i 0.766865 + 0.641808i \(0.221815\pi\)
−0.766865 + 0.641808i \(0.778185\pi\)
\(864\) 15.5204 + 15.5204i 0.528014 + 0.528014i
\(865\) 0 0
\(866\) 4.13254 0.140429
\(867\) 3.88730 30.3953i 0.132020 1.03228i
\(868\) 1.35155i 0.0458746i
\(869\) 0.337002i 0.0114320i
\(870\) 0 0
\(871\) 21.0359 0.712775
\(872\) −7.89602 + 7.89602i −0.267393 + 0.267393i
\(873\) −1.24986 1.24986i −0.0423012 0.0423012i
\(874\) 1.97730 1.97730i 0.0668833 0.0668833i
\(875\) 0 0
\(876\) 6.10714i 0.206341i
\(877\) −25.5743 25.5743i −0.863581 0.863581i 0.128171 0.991752i \(-0.459089\pi\)
−0.991752 + 0.128171i \(0.959089\pi\)
\(878\) −47.4582 47.4582i −1.60164 1.60164i
\(879\) −22.2070 22.2070i −0.749024 0.749024i
\(880\) 0 0
\(881\) −19.4396 19.4396i −0.654937 0.654937i 0.299241 0.954178i \(-0.403267\pi\)
−0.954178 + 0.299241i \(0.903267\pi\)
\(882\) 0.180673 0.00608359
\(883\) 45.3114i 1.52485i −0.647076 0.762426i \(-0.724008\pi\)
0.647076 0.762426i \(-0.275992\pi\)
\(884\) −11.7511 + 4.01322i −0.395234 + 0.134979i
\(885\) 0 0
\(886\) 50.0993i 1.68312i
\(887\) −27.7194 + 27.7194i −0.930728 + 0.930728i −0.997751 0.0670235i \(-0.978650\pi\)
0.0670235 + 0.997751i \(0.478650\pi\)
\(888\) 37.6535i 1.26357i
\(889\) −38.5232 38.5232i −1.29203 1.29203i
\(890\) 0 0
\(891\) −0.168484 + 0.168484i −0.00564442 + 0.00564442i
\(892\) 19.5962 0.656128
\(893\) 6.68950 0.223856
\(894\) 18.8021 18.8021i 0.628837 0.628837i
\(895\) 0 0
\(896\) 25.1577 + 25.1577i 0.840458 + 0.840458i
\(897\) 18.0241i 0.601806i
\(898\) −12.2171 + 12.2171i −0.407689 + 0.407689i
\(899\) 2.54666i 0.0849358i
\(900\) 0 0
\(901\) −2.74102 8.02599i −0.0913167 0.267385i
\(902\) 0.296851i 0.00988405i
\(903\) −59.1224 −1.96747
\(904\) 28.0451 + 28.0451i 0.932767 + 0.932767i
\(905\) 0 0
\(906\) 8.78550 + 8.78550i 0.291879 + 0.291879i
\(907\) −30.1151 30.1151i −0.999955 0.999955i 4.45993e−5 1.00000i \(-0.499986\pi\)
−1.00000 4.45993e-5i \(0.999986\pi\)
\(908\) 10.9167 + 10.9167i 0.362282 + 0.362282i
\(909\) 4.23272i 0.140390i
\(910\) 0 0
\(911\) 7.35767 7.35767i 0.243771 0.243771i −0.574637 0.818408i \(-0.694857\pi\)
0.818408 + 0.574637i \(0.194857\pi\)
\(912\) −3.82154 3.82154i −0.126544 0.126544i
\(913\) 0.211890 0.211890i 0.00701255 0.00701255i
\(914\) −34.7230 −1.14853
\(915\) 0 0
\(916\) 0.900875i 0.0297658i
\(917\) 29.0876i 0.960558i
\(918\) 15.1549 30.8750i 0.500187 1.01903i
\(919\) −8.24236 −0.271890 −0.135945 0.990716i \(-0.543407\pi\)
−0.135945 + 0.990716i \(0.543407\pi\)
\(920\) 0 0
\(921\) −3.32381 3.32381i −0.109523 0.109523i
\(922\) 15.4927i 0.510226i
\(923\) 13.9633 13.9633i 0.459607 0.459607i
\(924\) 0.0709527 0.0709527i 0.00233417 0.00233417i
\(925\) 0 0
\(926\) 32.2827i 1.06088i
\(927\) −0.584177 −0.0191869
\(928\) 13.3451 + 13.3451i 0.438073 + 0.438073i
\(929\) 20.1421 20.1421i 0.660843 0.660843i −0.294736 0.955579i \(-0.595232\pi\)
0.955579 + 0.294736i \(0.0952318\pi\)
\(930\) 0 0
\(931\) 0.260065 0.00852329
\(932\) 6.10278 6.10278i 0.199903 0.199903i
\(933\) −5.05196 −0.165394
\(934\) −21.6322 −0.707827
\(935\) 0 0
\(936\) −1.77867 −0.0581377
\(937\) −12.2683 −0.400786 −0.200393 0.979716i \(-0.564222\pi\)
−0.200393 + 0.979716i \(0.564222\pi\)
\(938\) 18.8006 18.8006i 0.613862 0.613862i
\(939\) 20.5464 0.670507
\(940\) 0 0
\(941\) 30.4772 30.4772i 0.993530 0.993530i −0.00644964 0.999979i \(-0.502053\pi\)
0.999979 + 0.00644964i \(0.00205300\pi\)
\(942\) −39.2968 39.2968i −1.28036 1.28036i
\(943\) 19.7673 0.643710
\(944\) 4.60733i 0.149956i
\(945\) 0 0
\(946\) −0.352120 + 0.352120i −0.0114484 + 0.0114484i
\(947\) 18.8745 18.8745i 0.613338 0.613338i −0.330476 0.943814i \(-0.607209\pi\)
0.943814 + 0.330476i \(0.107209\pi\)
\(948\) 20.4954i 0.665661i
\(949\) −10.4721 10.4721i −0.339939 0.339939i
\(950\) 0 0
\(951\) 38.3081 1.24222
\(952\) 9.74739 19.8582i 0.315915 0.643609i
\(953\) 37.6493i 1.21958i 0.792563 + 0.609790i \(0.208746\pi\)
−0.792563 + 0.609790i \(0.791254\pi\)
\(954\) 0.861908i 0.0279053i
\(955\) 0 0
\(956\) 10.7761 0.348525
\(957\) −0.133693 + 0.133693i −0.00432167 + 0.00432167i
\(958\) −25.0835 25.0835i −0.810410 0.810410i
\(959\) −31.8240 + 31.8240i −1.02765 + 1.02765i
\(960\) 0 0
\(961\) 30.6432i 0.988491i
\(962\) 45.8088 + 45.8088i 1.47693 + 1.47693i
\(963\) 0.602253 + 0.602253i 0.0194073 + 0.0194073i
\(964\) −7.47054 7.47054i −0.240610 0.240610i
\(965\) 0 0
\(966\) −16.1088 16.1088i −0.518292 0.518292i
\(967\) 47.6174 1.53127 0.765636 0.643274i \(-0.222425\pi\)
0.765636 + 0.643274i \(0.222425\pi\)
\(968\) 21.6486i 0.695813i
\(969\) −1.97514 + 4.02392i −0.0634505 + 0.129267i
\(970\) 0 0
\(971\) 30.9090i 0.991917i 0.868346 + 0.495958i \(0.165183\pi\)
−0.868346 + 0.495958i \(0.834817\pi\)
\(972\) −1.51546 + 1.51546i −0.0486085 + 0.0486085i
\(973\) 28.5989i 0.916840i
\(974\) 35.1104 + 35.1104i 1.12501 + 1.12501i
\(975\) 0 0
\(976\) −41.8287 + 41.8287i −1.33891 + 1.33891i
\(977\) 16.2675 0.520442 0.260221 0.965549i \(-0.416205\pi\)
0.260221 + 0.965549i \(0.416205\pi\)
\(978\) −40.0483 −1.28060
\(979\) −0.123816 + 0.123816i −0.00395718 + 0.00395718i
\(980\) 0 0
\(981\) −0.999264 0.999264i −0.0319040 0.0319040i
\(982\) 14.0751i 0.449154i
\(983\) 18.8915 18.8915i 0.602544 0.602544i −0.338443 0.940987i \(-0.609900\pi\)
0.940987 + 0.338443i \(0.109900\pi\)
\(984\) 25.4458i 0.811183i
\(985\) 0 0
\(986\) 13.0309 26.5476i 0.414987 0.845448i
\(987\) 54.4984i 1.73470i
\(988\) 1.81648 0.0577898
\(989\) 23.4476 + 23.4476i 0.745592 + 0.745592i
\(990\) 0 0
\(991\) 33.9667 + 33.9667i 1.07899 + 1.07899i 0.996600 + 0.0823867i \(0.0262542\pi\)
0.0823867 + 0.996600i \(0.473746\pi\)
\(992\) 1.86955 + 1.86955i 0.0593583 + 0.0593583i
\(993\) −8.73109 8.73109i −0.277073 0.277073i
\(994\) 24.9590i 0.791652i
\(995\) 0 0
\(996\) 12.8865 12.8865i 0.408325 0.408325i
\(997\) 30.5318 + 30.5318i 0.966951 + 0.966951i 0.999471 0.0325205i \(-0.0103534\pi\)
−0.0325205 + 0.999471i \(0.510353\pi\)
\(998\) −13.0847 + 13.0847i −0.414189 + 0.414189i
\(999\) −52.6287 −1.66510
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 425.2.j.d.149.5 12
5.2 odd 4 425.2.e.c.251.5 12
5.3 odd 4 425.2.e.e.251.2 yes 12
5.4 even 2 425.2.j.a.149.2 12
17.4 even 4 425.2.j.a.174.2 12
85.2 odd 8 7225.2.a.bm.1.4 12
85.4 even 4 inner 425.2.j.d.174.5 12
85.32 odd 8 7225.2.a.bm.1.3 12
85.38 odd 4 425.2.e.e.276.5 yes 12
85.53 odd 8 7225.2.a.br.1.9 12
85.72 odd 4 425.2.e.c.276.2 yes 12
85.83 odd 8 7225.2.a.br.1.10 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
425.2.e.c.251.5 12 5.2 odd 4
425.2.e.c.276.2 yes 12 85.72 odd 4
425.2.e.e.251.2 yes 12 5.3 odd 4
425.2.e.e.276.5 yes 12 85.38 odd 4
425.2.j.a.149.2 12 5.4 even 2
425.2.j.a.174.2 12 17.4 even 4
425.2.j.d.149.5 12 1.1 even 1 trivial
425.2.j.d.174.5 12 85.4 even 4 inner
7225.2.a.bm.1.3 12 85.32 odd 8
7225.2.a.bm.1.4 12 85.2 odd 8
7225.2.a.br.1.9 12 85.53 odd 8
7225.2.a.br.1.10 12 85.83 odd 8