Properties

Label 425.2.m.c.151.5
Level $425$
Weight $2$
Character 425.151
Analytic conductor $3.394$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [425,2,Mod(26,425)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(425, base_ring=CyclotomicField(8))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("425.26");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 425 = 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 425.m (of order \(8\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.39364208590\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(6\) over \(\Q(\zeta_{8})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 151.5
Character \(\chi\) \(=\) 425.151
Dual form 425.2.m.c.76.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.921271 + 0.921271i) q^{2} +(-0.128082 - 0.309218i) q^{3} -0.302521i q^{4} +(0.166875 - 0.402872i) q^{6} +(-3.60742 - 1.49424i) q^{7} +(2.12124 - 2.12124i) q^{8} +(2.04211 - 2.04211i) q^{9} +(0.0518326 - 0.125135i) q^{11} +(-0.0935451 + 0.0387477i) q^{12} -6.65628i q^{13} +(-1.94681 - 4.70001i) q^{14} +3.30344 q^{16} +(0.550463 + 4.08620i) q^{17} +3.76267 q^{18} +(3.65065 + 3.65065i) q^{19} +1.30686i q^{21} +(0.163035 - 0.0675313i) q^{22} +(-1.65462 + 3.99461i) q^{23} +(-0.927622 - 0.384234i) q^{24} +(6.13224 - 6.13224i) q^{26} +(-1.82067 - 0.754146i) q^{27} +(-0.452040 + 1.09132i) q^{28} +(1.98471 - 0.822093i) q^{29} +(-3.29770 - 7.96135i) q^{31} +(-1.19913 - 1.19913i) q^{32} -0.0453329 q^{33} +(-3.25737 + 4.27162i) q^{34} +(-0.617782 - 0.617782i) q^{36} +(-0.0897069 - 0.216572i) q^{37} +6.72648i q^{38} +(-2.05824 + 0.852553i) q^{39} +(7.70637 + 3.19208i) q^{41} +(-1.20398 + 1.20398i) q^{42} +(1.34097 - 1.34097i) q^{43} +(-0.0378560 - 0.0156805i) q^{44} +(-5.20447 + 2.15576i) q^{46} +9.86840i q^{47} +(-0.423112 - 1.02148i) q^{48} +(5.83095 + 5.83095i) q^{49} +(1.19302 - 0.693583i) q^{51} -2.01367 q^{52} +(1.01016 + 1.01016i) q^{53} +(-0.982557 - 2.37210i) q^{54} +(-10.8219 + 4.48256i) q^{56} +(0.661264 - 1.59643i) q^{57} +(2.58582 + 1.07108i) q^{58} +(-2.55310 + 2.55310i) q^{59} +(-5.04635 - 2.09027i) q^{61} +(4.29648 - 10.3726i) q^{62} +(-10.4181 + 4.31534i) q^{63} -8.81632i q^{64} +(-0.0417638 - 0.0417638i) q^{66} +8.10531 q^{67} +(1.23616 - 0.166527i) q^{68} +1.44714 q^{69} +(3.98597 + 9.62298i) q^{71} -8.66363i q^{72} +(-1.16860 + 0.484052i) q^{73} +(0.116877 - 0.282165i) q^{74} +(1.10440 - 1.10440i) q^{76} +(-0.373964 + 0.373964i) q^{77} +(-2.68163 - 1.11077i) q^{78} +(-4.65072 + 11.2278i) q^{79} -8.00436i q^{81} +(4.15888 + 10.0404i) q^{82} +(-1.01268 - 1.01268i) q^{83} +0.395354 q^{84} +2.47080 q^{86} +(-0.508412 - 0.508412i) q^{87} +(-0.155492 - 0.375392i) q^{88} -4.30811i q^{89} +(-9.94609 + 24.0120i) q^{91} +(1.20846 + 0.500559i) q^{92} +(-2.03942 + 2.03942i) q^{93} +(-9.09146 + 9.09146i) q^{94} +(-0.217205 + 0.524380i) q^{96} +(-0.437000 + 0.181011i) q^{97} +10.7438i q^{98} +(-0.149691 - 0.361387i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 8 q^{6} + 12 q^{9} + 4 q^{11} - 12 q^{12} - 24 q^{14} - 24 q^{16} + 4 q^{17} - 40 q^{18} - 20 q^{19} + 16 q^{22} + 8 q^{23} + 16 q^{24} + 16 q^{26} - 12 q^{27} + 48 q^{28} + 4 q^{29} + 24 q^{31}+ \cdots - 80 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/425\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(326\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{8}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.921271 + 0.921271i 0.651437 + 0.651437i 0.953339 0.301902i \(-0.0976216\pi\)
−0.301902 + 0.953339i \(0.597622\pi\)
\(3\) −0.128082 0.309218i −0.0739484 0.178527i 0.882583 0.470157i \(-0.155803\pi\)
−0.956531 + 0.291629i \(0.905803\pi\)
\(4\) 0.302521i 0.151261i
\(5\) 0 0
\(6\) 0.166875 0.402872i 0.0681265 0.164472i
\(7\) −3.60742 1.49424i −1.36348 0.564770i −0.423464 0.905913i \(-0.639186\pi\)
−0.940011 + 0.341143i \(0.889186\pi\)
\(8\) 2.12124 2.12124i 0.749973 0.749973i
\(9\) 2.04211 2.04211i 0.680703 0.680703i
\(10\) 0 0
\(11\) 0.0518326 0.125135i 0.0156281 0.0377296i −0.915873 0.401468i \(-0.868500\pi\)
0.931501 + 0.363739i \(0.118500\pi\)
\(12\) −0.0935451 + 0.0387477i −0.0270041 + 0.0111855i
\(13\) 6.65628i 1.84612i −0.384655 0.923060i \(-0.625680\pi\)
0.384655 0.923060i \(-0.374320\pi\)
\(14\) −1.94681 4.70001i −0.520306 1.25613i
\(15\) 0 0
\(16\) 3.30344 0.825860
\(17\) 0.550463 + 4.08620i 0.133507 + 0.991048i
\(18\) 3.76267 0.886870
\(19\) 3.65065 + 3.65065i 0.837517 + 0.837517i 0.988532 0.151014i \(-0.0482540\pi\)
−0.151014 + 0.988532i \(0.548254\pi\)
\(20\) 0 0
\(21\) 1.30686i 0.285181i
\(22\) 0.163035 0.0675313i 0.0347592 0.0143977i
\(23\) −1.65462 + 3.99461i −0.345013 + 0.832934i 0.652181 + 0.758064i \(0.273854\pi\)
−0.997193 + 0.0748706i \(0.976146\pi\)
\(24\) −0.927622 0.384234i −0.189350 0.0784313i
\(25\) 0 0
\(26\) 6.13224 6.13224i 1.20263 1.20263i
\(27\) −1.82067 0.754146i −0.350388 0.145136i
\(28\) −0.452040 + 1.09132i −0.0854275 + 0.206240i
\(29\) 1.98471 0.822093i 0.368551 0.152659i −0.190718 0.981645i \(-0.561082\pi\)
0.559269 + 0.828986i \(0.311082\pi\)
\(30\) 0 0
\(31\) −3.29770 7.96135i −0.592284 1.42990i −0.881291 0.472573i \(-0.843325\pi\)
0.289008 0.957327i \(-0.406675\pi\)
\(32\) −1.19913 1.19913i −0.211978 0.211978i
\(33\) −0.0453329 −0.00789144
\(34\) −3.25737 + 4.27162i −0.558634 + 0.732576i
\(35\) 0 0
\(36\) −0.617782 0.617782i −0.102964 0.102964i
\(37\) −0.0897069 0.216572i −0.0147477 0.0356041i 0.916334 0.400414i \(-0.131134\pi\)
−0.931082 + 0.364810i \(0.881134\pi\)
\(38\) 6.72648i 1.09118i
\(39\) −2.05824 + 0.852553i −0.329583 + 0.136518i
\(40\) 0 0
\(41\) 7.70637 + 3.19208i 1.20353 + 0.498520i 0.892139 0.451761i \(-0.149204\pi\)
0.311394 + 0.950281i \(0.399204\pi\)
\(42\) −1.20398 + 1.20398i −0.185778 + 0.185778i
\(43\) 1.34097 1.34097i 0.204497 0.204497i −0.597427 0.801923i \(-0.703810\pi\)
0.801923 + 0.597427i \(0.203810\pi\)
\(44\) −0.0378560 0.0156805i −0.00570701 0.00236392i
\(45\) 0 0
\(46\) −5.20447 + 2.15576i −0.767358 + 0.317850i
\(47\) 9.86840i 1.43945i 0.694257 + 0.719727i \(0.255733\pi\)
−0.694257 + 0.719727i \(0.744267\pi\)
\(48\) −0.423112 1.02148i −0.0610710 0.147438i
\(49\) 5.83095 + 5.83095i 0.832992 + 0.832992i
\(50\) 0 0
\(51\) 1.19302 0.693583i 0.167056 0.0971210i
\(52\) −2.01367 −0.279245
\(53\) 1.01016 + 1.01016i 0.138756 + 0.138756i 0.773073 0.634317i \(-0.218719\pi\)
−0.634317 + 0.773073i \(0.718719\pi\)
\(54\) −0.982557 2.37210i −0.133709 0.322802i
\(55\) 0 0
\(56\) −10.8219 + 4.48256i −1.44613 + 0.599008i
\(57\) 0.661264 1.59643i 0.0875866 0.211453i
\(58\) 2.58582 + 1.07108i 0.339535 + 0.140640i
\(59\) −2.55310 + 2.55310i −0.332385 + 0.332385i −0.853492 0.521107i \(-0.825519\pi\)
0.521107 + 0.853492i \(0.325519\pi\)
\(60\) 0 0
\(61\) −5.04635 2.09027i −0.646119 0.267631i 0.0354651 0.999371i \(-0.488709\pi\)
−0.681584 + 0.731740i \(0.738709\pi\)
\(62\) 4.29648 10.3726i 0.545654 1.31732i
\(63\) −10.4181 + 4.31534i −1.31256 + 0.543681i
\(64\) 8.81632i 1.10204i
\(65\) 0 0
\(66\) −0.0417638 0.0417638i −0.00514077 0.00514077i
\(67\) 8.10531 0.990221 0.495110 0.868830i \(-0.335128\pi\)
0.495110 + 0.868830i \(0.335128\pi\)
\(68\) 1.23616 0.166527i 0.149907 0.0201943i
\(69\) 1.44714 0.174215
\(70\) 0 0
\(71\) 3.98597 + 9.62298i 0.473048 + 1.14204i 0.962809 + 0.270182i \(0.0870838\pi\)
−0.489762 + 0.871856i \(0.662916\pi\)
\(72\) 8.66363i 1.02102i
\(73\) −1.16860 + 0.484052i −0.136775 + 0.0566540i −0.450021 0.893018i \(-0.648584\pi\)
0.313246 + 0.949672i \(0.398584\pi\)
\(74\) 0.116877 0.282165i 0.0135866 0.0328010i
\(75\) 0 0
\(76\) 1.10440 1.10440i 0.126683 0.126683i
\(77\) −0.373964 + 0.373964i −0.0426171 + 0.0426171i
\(78\) −2.68163 1.11077i −0.303635 0.125770i
\(79\) −4.65072 + 11.2278i −0.523247 + 1.26323i 0.412628 + 0.910900i \(0.364611\pi\)
−0.935875 + 0.352331i \(0.885389\pi\)
\(80\) 0 0
\(81\) 8.00436i 0.889373i
\(82\) 4.15888 + 10.0404i 0.459272 + 1.10878i
\(83\) −1.01268 1.01268i −0.111156 0.111156i 0.649341 0.760497i \(-0.275045\pi\)
−0.760497 + 0.649341i \(0.775045\pi\)
\(84\) 0.395354 0.0431367
\(85\) 0 0
\(86\) 2.47080 0.266433
\(87\) −0.508412 0.508412i −0.0545075 0.0545075i
\(88\) −0.155492 0.375392i −0.0165755 0.0400169i
\(89\) 4.30811i 0.456658i −0.973584 0.228329i \(-0.926674\pi\)
0.973584 0.228329i \(-0.0733263\pi\)
\(90\) 0 0
\(91\) −9.94609 + 24.0120i −1.04263 + 2.51714i
\(92\) 1.20846 + 0.500559i 0.125990 + 0.0521868i
\(93\) −2.03942 + 2.03942i −0.211478 + 0.211478i
\(94\) −9.09146 + 9.09146i −0.937713 + 0.937713i
\(95\) 0 0
\(96\) −0.217205 + 0.524380i −0.0221684 + 0.0535193i
\(97\) −0.437000 + 0.181011i −0.0443706 + 0.0183789i −0.404758 0.914424i \(-0.632644\pi\)
0.360388 + 0.932803i \(0.382644\pi\)
\(98\) 10.7438i 1.08528i
\(99\) −0.149691 0.361387i −0.0150446 0.0363208i
\(100\) 0 0
\(101\) −12.0896 −1.20296 −0.601480 0.798888i \(-0.705422\pi\)
−0.601480 + 0.798888i \(0.705422\pi\)
\(102\) 1.73807 + 0.460118i 0.172095 + 0.0455585i
\(103\) −3.87759 −0.382070 −0.191035 0.981583i \(-0.561184\pi\)
−0.191035 + 0.981583i \(0.561184\pi\)
\(104\) −14.1196 14.1196i −1.38454 1.38454i
\(105\) 0 0
\(106\) 1.86126i 0.180782i
\(107\) 15.8039 6.54619i 1.52782 0.632844i 0.548682 0.836031i \(-0.315130\pi\)
0.979140 + 0.203187i \(0.0651299\pi\)
\(108\) −0.228145 + 0.550792i −0.0219533 + 0.0530000i
\(109\) 11.7677 + 4.87433i 1.12714 + 0.466876i 0.866807 0.498644i \(-0.166168\pi\)
0.260331 + 0.965520i \(0.416168\pi\)
\(110\) 0 0
\(111\) −0.0554780 + 0.0554780i −0.00526574 + 0.00526574i
\(112\) −11.9169 4.93613i −1.12604 0.466421i
\(113\) 5.36383 12.9494i 0.504586 1.21818i −0.442375 0.896830i \(-0.645864\pi\)
0.946961 0.321349i \(-0.104136\pi\)
\(114\) 2.07995 0.861543i 0.194805 0.0806909i
\(115\) 0 0
\(116\) −0.248701 0.600416i −0.0230913 0.0557472i
\(117\) −13.5929 13.5929i −1.25666 1.25666i
\(118\) −4.70418 −0.433055
\(119\) 4.12001 15.5631i 0.377681 1.42667i
\(120\) 0 0
\(121\) 7.76520 + 7.76520i 0.705927 + 0.705927i
\(122\) −2.72335 6.57476i −0.246561 0.595251i
\(123\) 2.79180i 0.251728i
\(124\) −2.40848 + 0.997624i −0.216288 + 0.0895892i
\(125\) 0 0
\(126\) −13.5735 5.62233i −1.20923 0.500877i
\(127\) 2.26901 2.26901i 0.201342 0.201342i −0.599233 0.800575i \(-0.704528\pi\)
0.800575 + 0.599233i \(0.204528\pi\)
\(128\) 5.72396 5.72396i 0.505931 0.505931i
\(129\) −0.586409 0.242899i −0.0516305 0.0213860i
\(130\) 0 0
\(131\) −9.02065 + 3.73648i −0.788138 + 0.326458i −0.740195 0.672393i \(-0.765267\pi\)
−0.0479434 + 0.998850i \(0.515267\pi\)
\(132\) 0.0137142i 0.00119366i
\(133\) −7.71447 18.6244i −0.668929 1.61494i
\(134\) 7.46718 + 7.46718i 0.645066 + 0.645066i
\(135\) 0 0
\(136\) 9.83549 + 7.50015i 0.843386 + 0.643133i
\(137\) 9.08620 0.776287 0.388143 0.921599i \(-0.373117\pi\)
0.388143 + 0.921599i \(0.373117\pi\)
\(138\) 1.33320 + 1.33320i 0.113490 + 0.113490i
\(139\) 3.02355 + 7.29950i 0.256454 + 0.619136i 0.998699 0.0509933i \(-0.0162387\pi\)
−0.742245 + 0.670129i \(0.766239\pi\)
\(140\) 0 0
\(141\) 3.05149 1.26397i 0.256982 0.106445i
\(142\) −5.19321 + 12.5375i −0.435805 + 1.05213i
\(143\) −0.832934 0.345013i −0.0696534 0.0288514i
\(144\) 6.74598 6.74598i 0.562165 0.562165i
\(145\) 0 0
\(146\) −1.52254 0.630658i −0.126007 0.0521936i
\(147\) 1.05619 2.54988i 0.0871134 0.210310i
\(148\) −0.0655175 + 0.0271382i −0.00538551 + 0.00223075i
\(149\) 5.90087i 0.483418i 0.970349 + 0.241709i \(0.0777079\pi\)
−0.970349 + 0.241709i \(0.922292\pi\)
\(150\) 0 0
\(151\) −0.994085 0.994085i −0.0808975 0.0808975i 0.665500 0.746398i \(-0.268218\pi\)
−0.746398 + 0.665500i \(0.768218\pi\)
\(152\) 15.4879 1.25623
\(153\) 9.46856 + 7.22035i 0.765488 + 0.583731i
\(154\) −0.689043 −0.0555247
\(155\) 0 0
\(156\) 0.257915 + 0.622663i 0.0206498 + 0.0498529i
\(157\) 21.1248i 1.68594i 0.537961 + 0.842970i \(0.319195\pi\)
−0.537961 + 0.842970i \(0.680805\pi\)
\(158\) −14.6285 + 6.05930i −1.16378 + 0.482052i
\(159\) 0.182976 0.441744i 0.0145110 0.0350325i
\(160\) 0 0
\(161\) 11.9378 11.9378i 0.940832 0.940832i
\(162\) 7.37418 7.37418i 0.579370 0.579370i
\(163\) 7.33924 + 3.04001i 0.574854 + 0.238112i 0.651119 0.758975i \(-0.274300\pi\)
−0.0762657 + 0.997088i \(0.524300\pi\)
\(164\) 0.965674 2.33134i 0.0754064 0.182047i
\(165\) 0 0
\(166\) 1.86591i 0.144823i
\(167\) 1.11637 + 2.69514i 0.0863870 + 0.208557i 0.961169 0.275960i \(-0.0889956\pi\)
−0.874782 + 0.484516i \(0.838996\pi\)
\(168\) 2.77218 + 2.77218i 0.213878 + 0.213878i
\(169\) −31.3061 −2.40816
\(170\) 0 0
\(171\) 14.9101 1.14020
\(172\) −0.405673 0.405673i −0.0309323 0.0309323i
\(173\) 6.93025 + 16.7311i 0.526897 + 1.27204i 0.933546 + 0.358458i \(0.116697\pi\)
−0.406649 + 0.913585i \(0.633303\pi\)
\(174\) 0.936770i 0.0710164i
\(175\) 0 0
\(176\) 0.171226 0.413376i 0.0129066 0.0311594i
\(177\) 1.11647 + 0.462457i 0.0839191 + 0.0347604i
\(178\) 3.96893 3.96893i 0.297484 0.297484i
\(179\) 4.22369 4.22369i 0.315693 0.315693i −0.531417 0.847110i \(-0.678340\pi\)
0.847110 + 0.531417i \(0.178340\pi\)
\(180\) 0 0
\(181\) 9.05185 21.8531i 0.672819 1.62433i −0.103980 0.994579i \(-0.533158\pi\)
0.776799 0.629749i \(-0.216842\pi\)
\(182\) −31.2846 + 12.9585i −2.31897 + 0.960547i
\(183\) 1.82815i 0.135141i
\(184\) 4.96369 + 11.9834i 0.365928 + 0.883429i
\(185\) 0 0
\(186\) −3.75771 −0.275529
\(187\) 0.539858 + 0.142916i 0.0394783 + 0.0104511i
\(188\) 2.98540 0.217733
\(189\) 5.44104 + 5.44104i 0.395777 + 0.395777i
\(190\) 0 0
\(191\) 14.2162i 1.02865i −0.857595 0.514326i \(-0.828042\pi\)
0.857595 0.514326i \(-0.171958\pi\)
\(192\) −2.72617 + 1.12922i −0.196744 + 0.0814941i
\(193\) −4.45325 + 10.7511i −0.320552 + 0.773880i 0.678670 + 0.734443i \(0.262557\pi\)
−0.999222 + 0.0394372i \(0.987443\pi\)
\(194\) −0.569355 0.235835i −0.0408773 0.0169319i
\(195\) 0 0
\(196\) 1.76399 1.76399i 0.125999 0.125999i
\(197\) −17.3686 7.19431i −1.23746 0.512574i −0.334542 0.942381i \(-0.608581\pi\)
−0.902921 + 0.429807i \(0.858581\pi\)
\(198\) 0.195029 0.470842i 0.0138601 0.0334613i
\(199\) 4.96849 2.05802i 0.352207 0.145889i −0.199563 0.979885i \(-0.563952\pi\)
0.551771 + 0.833996i \(0.313952\pi\)
\(200\) 0 0
\(201\) −1.03815 2.50631i −0.0732252 0.176781i
\(202\) −11.1378 11.1378i −0.783652 0.783652i
\(203\) −8.38807 −0.588727
\(204\) −0.209824 0.360914i −0.0146906 0.0252691i
\(205\) 0 0
\(206\) −3.57231 3.57231i −0.248894 0.248894i
\(207\) 4.77852 + 11.5364i 0.332130 + 0.801832i
\(208\) 21.9886i 1.52464i
\(209\) 0.646047 0.267602i 0.0446880 0.0185104i
\(210\) 0 0
\(211\) −11.2112 4.64382i −0.771809 0.319694i −0.0382042 0.999270i \(-0.512164\pi\)
−0.733605 + 0.679576i \(0.762164\pi\)
\(212\) 0.305595 0.305595i 0.0209883 0.0209883i
\(213\) 2.46507 2.46507i 0.168904 0.168904i
\(214\) 20.5905 + 8.52886i 1.40754 + 0.583021i
\(215\) 0 0
\(216\) −5.46182 + 2.26236i −0.371630 + 0.153934i
\(217\) 33.6474i 2.28414i
\(218\) 6.35063 + 15.3318i 0.430119 + 1.03840i
\(219\) 0.299355 + 0.299355i 0.0202286 + 0.0202286i
\(220\) 0 0
\(221\) 27.1989 3.66404i 1.82959 0.246470i
\(222\) −0.102221 −0.00686059
\(223\) 6.30566 + 6.30566i 0.422258 + 0.422258i 0.885981 0.463722i \(-0.153486\pi\)
−0.463722 + 0.885981i \(0.653486\pi\)
\(224\) 2.53397 + 6.11755i 0.169308 + 0.408746i
\(225\) 0 0
\(226\) 16.8715 6.98839i 1.12227 0.464861i
\(227\) 1.14283 2.75903i 0.0758522 0.183123i −0.881405 0.472361i \(-0.843402\pi\)
0.957257 + 0.289238i \(0.0934018\pi\)
\(228\) −0.482955 0.200046i −0.0319845 0.0132484i
\(229\) 9.34813 9.34813i 0.617742 0.617742i −0.327210 0.944952i \(-0.606108\pi\)
0.944952 + 0.327210i \(0.106108\pi\)
\(230\) 0 0
\(231\) 0.163535 + 0.0677382i 0.0107598 + 0.00445685i
\(232\) 2.46619 5.95391i 0.161913 0.390893i
\(233\) 18.1457 7.51620i 1.18876 0.492403i 0.301412 0.953494i \(-0.402542\pi\)
0.887353 + 0.461091i \(0.152542\pi\)
\(234\) 25.0454i 1.63727i
\(235\) 0 0
\(236\) 0.772366 + 0.772366i 0.0502767 + 0.0502767i
\(237\) 4.06753 0.264214
\(238\) 18.1335 10.5422i 1.17542 0.683350i
\(239\) −16.0062 −1.03536 −0.517678 0.855575i \(-0.673204\pi\)
−0.517678 + 0.855575i \(0.673204\pi\)
\(240\) 0 0
\(241\) 3.80069 + 9.17567i 0.244824 + 0.591057i 0.997750 0.0670483i \(-0.0213582\pi\)
−0.752926 + 0.658105i \(0.771358\pi\)
\(242\) 14.3077i 0.919734i
\(243\) −7.93711 + 3.28766i −0.509166 + 0.210903i
\(244\) −0.632351 + 1.52663i −0.0404821 + 0.0977324i
\(245\) 0 0
\(246\) 2.57200 2.57200i 0.163985 0.163985i
\(247\) 24.2998 24.2998i 1.54616 1.54616i
\(248\) −23.8832 9.89274i −1.51658 0.628190i
\(249\) −0.183433 + 0.442847i −0.0116246 + 0.0280643i
\(250\) 0 0
\(251\) 25.5571i 1.61315i 0.591130 + 0.806576i \(0.298682\pi\)
−0.591130 + 0.806576i \(0.701318\pi\)
\(252\) 1.30548 + 3.15171i 0.0822376 + 0.198539i
\(253\) 0.414102 + 0.414102i 0.0260344 + 0.0260344i
\(254\) 4.18074 0.262323
\(255\) 0 0
\(256\) −7.08602 −0.442876
\(257\) 0.954995 + 0.954995i 0.0595710 + 0.0595710i 0.736265 0.676694i \(-0.236588\pi\)
−0.676694 + 0.736265i \(0.736588\pi\)
\(258\) −0.316466 0.764017i −0.0197023 0.0475656i
\(259\) 0.915307i 0.0568744i
\(260\) 0 0
\(261\) 2.37419 5.73179i 0.146958 0.354789i
\(262\) −11.7528 4.86816i −0.726088 0.300756i
\(263\) 12.6821 12.6821i 0.782014 0.782014i −0.198157 0.980170i \(-0.563496\pi\)
0.980170 + 0.198157i \(0.0634955\pi\)
\(264\) −0.0961621 + 0.0961621i −0.00591837 + 0.00591837i
\(265\) 0 0
\(266\) 10.0510 24.2652i 0.616265 1.48779i
\(267\) −1.33215 + 0.551793i −0.0815260 + 0.0337692i
\(268\) 2.45203i 0.149781i
\(269\) −6.86275 16.5681i −0.418429 1.01018i −0.982803 0.184658i \(-0.940882\pi\)
0.564374 0.825519i \(-0.309118\pi\)
\(270\) 0 0
\(271\) −11.6637 −0.708520 −0.354260 0.935147i \(-0.615267\pi\)
−0.354260 + 0.935147i \(0.615267\pi\)
\(272\) 1.81842 + 13.4985i 0.110258 + 0.818466i
\(273\) 8.69886 0.526479
\(274\) 8.37085 + 8.37085i 0.505702 + 0.505702i
\(275\) 0 0
\(276\) 0.437789i 0.0263518i
\(277\) −10.9399 + 4.53147i −0.657317 + 0.272270i −0.686309 0.727310i \(-0.740770\pi\)
0.0289920 + 0.999580i \(0.490770\pi\)
\(278\) −3.93931 + 9.51033i −0.236264 + 0.570392i
\(279\) −22.9922 9.52368i −1.37651 0.570168i
\(280\) 0 0
\(281\) 11.1238 11.1238i 0.663589 0.663589i −0.292635 0.956224i \(-0.594532\pi\)
0.956224 + 0.292635i \(0.0945322\pi\)
\(282\) 3.97570 + 1.64679i 0.236750 + 0.0980649i
\(283\) 5.76360 13.9146i 0.342611 0.827135i −0.654840 0.755768i \(-0.727264\pi\)
0.997450 0.0713671i \(-0.0227362\pi\)
\(284\) 2.91116 1.20584i 0.172745 0.0715535i
\(285\) 0 0
\(286\) −0.449508 1.08521i −0.0265799 0.0641697i
\(287\) −23.0304 23.0304i −1.35944 1.35944i
\(288\) −4.89751 −0.288588
\(289\) −16.3940 + 4.49860i −0.964352 + 0.264623i
\(290\) 0 0
\(291\) 0.111944 + 0.111944i 0.00656227 + 0.00656227i
\(292\) 0.146436 + 0.353528i 0.00856952 + 0.0206886i
\(293\) 4.85089i 0.283392i 0.989910 + 0.141696i \(0.0452555\pi\)
−0.989910 + 0.141696i \(0.954744\pi\)
\(294\) 3.32217 1.37609i 0.193753 0.0802550i
\(295\) 0 0
\(296\) −0.649692 0.269111i −0.0377626 0.0156418i
\(297\) −0.188740 + 0.188740i −0.0109518 + 0.0109518i
\(298\) −5.43630 + 5.43630i −0.314916 + 0.314916i
\(299\) 26.5893 + 11.0136i 1.53770 + 0.636935i
\(300\) 0 0
\(301\) −6.84119 + 2.83372i −0.394320 + 0.163333i
\(302\) 1.83164i 0.105399i
\(303\) 1.54846 + 3.73832i 0.0889569 + 0.214761i
\(304\) 12.0597 + 12.0597i 0.691672 + 0.691672i
\(305\) 0 0
\(306\) 2.07121 + 15.3750i 0.118403 + 0.878931i
\(307\) −6.92516 −0.395240 −0.197620 0.980279i \(-0.563321\pi\)
−0.197620 + 0.980279i \(0.563321\pi\)
\(308\) 0.113132 + 0.113132i 0.00644629 + 0.00644629i
\(309\) 0.496651 + 1.19902i 0.0282535 + 0.0682099i
\(310\) 0 0
\(311\) −26.9785 + 11.1748i −1.52981 + 0.633668i −0.979527 0.201312i \(-0.935480\pi\)
−0.550281 + 0.834979i \(0.685480\pi\)
\(312\) −2.55757 + 6.17451i −0.144794 + 0.349563i
\(313\) −21.0514 8.71976i −1.18989 0.492870i −0.302173 0.953253i \(-0.597712\pi\)
−0.887720 + 0.460383i \(0.847712\pi\)
\(314\) −19.4616 + 19.4616i −1.09828 + 1.09828i
\(315\) 0 0
\(316\) 3.39666 + 1.40694i 0.191077 + 0.0791467i
\(317\) 8.10639 19.5706i 0.455300 1.09919i −0.514979 0.857203i \(-0.672200\pi\)
0.970279 0.241989i \(-0.0777999\pi\)
\(318\) 0.575536 0.238395i 0.0322744 0.0133685i
\(319\) 0.290968i 0.0162911i
\(320\) 0 0
\(321\) −4.04841 4.04841i −0.225960 0.225960i
\(322\) 21.9959 1.22579
\(323\) −12.9077 + 16.9268i −0.718205 + 0.941834i
\(324\) −2.42149 −0.134527
\(325\) 0 0
\(326\) 3.96075 + 9.56210i 0.219366 + 0.529596i
\(327\) 4.26309i 0.235750i
\(328\) 23.1183 9.57591i 1.27649 0.528741i
\(329\) 14.7458 35.5994i 0.812960 1.96266i
\(330\) 0 0
\(331\) 0.486915 0.486915i 0.0267633 0.0267633i −0.693599 0.720362i \(-0.743976\pi\)
0.720362 + 0.693599i \(0.243976\pi\)
\(332\) −0.306358 + 0.306358i −0.0168136 + 0.0168136i
\(333\) −0.625454 0.259072i −0.0342747 0.0141970i
\(334\) −1.45448 + 3.51143i −0.0795858 + 0.192137i
\(335\) 0 0
\(336\) 4.31715i 0.235520i
\(337\) −0.495589 1.19646i −0.0269964 0.0651752i 0.909806 0.415033i \(-0.136230\pi\)
−0.936803 + 0.349858i \(0.886230\pi\)
\(338\) −28.8414 28.8414i −1.56876 1.56876i
\(339\) −4.69121 −0.254792
\(340\) 0 0
\(341\) −1.16717 −0.0632059
\(342\) 13.7362 + 13.7362i 0.742769 + 0.742769i
\(343\) −1.86213 4.49558i −0.100546 0.242738i
\(344\) 5.68907i 0.306734i
\(345\) 0 0
\(346\) −9.02924 + 21.7985i −0.485415 + 1.17190i
\(347\) −2.62317 1.08655i −0.140819 0.0583291i 0.311161 0.950357i \(-0.399282\pi\)
−0.451980 + 0.892028i \(0.649282\pi\)
\(348\) −0.153805 + 0.153805i −0.00824484 + 0.00824484i
\(349\) −2.95570 + 2.95570i −0.158215 + 0.158215i −0.781775 0.623560i \(-0.785686\pi\)
0.623560 + 0.781775i \(0.285686\pi\)
\(350\) 0 0
\(351\) −5.01981 + 12.1189i −0.267938 + 0.646859i
\(352\) −0.212207 + 0.0878991i −0.0113107 + 0.00468504i
\(353\) 1.12941i 0.0601125i −0.999548 0.0300562i \(-0.990431\pi\)
0.999548 0.0300562i \(-0.00956864\pi\)
\(354\) 0.602523 + 1.45462i 0.0320238 + 0.0773122i
\(355\) 0 0
\(356\) −1.30329 −0.0690745
\(357\) −5.34010 + 0.719381i −0.282628 + 0.0380737i
\(358\) 7.78232 0.411308
\(359\) −11.9203 11.9203i −0.629130 0.629130i 0.318719 0.947849i \(-0.396747\pi\)
−0.947849 + 0.318719i \(0.896747\pi\)
\(360\) 0 0
\(361\) 7.65453i 0.402870i
\(362\) 28.4718 11.7934i 1.49645 0.619848i
\(363\) 1.40656 3.39573i 0.0738251 0.178230i
\(364\) 7.26414 + 3.00890i 0.380744 + 0.157709i
\(365\) 0 0
\(366\) −1.68422 + 1.68422i −0.0880357 + 0.0880357i
\(367\) −20.3487 8.42869i −1.06219 0.439974i −0.217963 0.975957i \(-0.569941\pi\)
−0.844229 + 0.535983i \(0.819941\pi\)
\(368\) −5.46594 + 13.1960i −0.284932 + 0.687887i
\(369\) 22.2558 9.21867i 1.15859 0.479905i
\(370\) 0 0
\(371\) −2.13464 5.15349i −0.110825 0.267556i
\(372\) 0.616967 + 0.616967i 0.0319882 + 0.0319882i
\(373\) 19.3712 1.00300 0.501502 0.865157i \(-0.332781\pi\)
0.501502 + 0.865157i \(0.332781\pi\)
\(374\) 0.365691 + 0.629019i 0.0189094 + 0.0325258i
\(375\) 0 0
\(376\) 20.9333 + 20.9333i 1.07955 + 1.07955i
\(377\) −5.47208 13.2108i −0.281827 0.680389i
\(378\) 10.0253i 0.515648i
\(379\) −19.3174 + 8.00151i −0.992266 + 0.411010i −0.818955 0.573857i \(-0.805446\pi\)
−0.173310 + 0.984867i \(0.555446\pi\)
\(380\) 0 0
\(381\) −0.992240 0.410999i −0.0508340 0.0210561i
\(382\) 13.0970 13.0970i 0.670101 0.670101i
\(383\) 3.04778 3.04778i 0.155734 0.155734i −0.624939 0.780673i \(-0.714876\pi\)
0.780673 + 0.624939i \(0.214876\pi\)
\(384\) −2.50309 1.03681i −0.127735 0.0529097i
\(385\) 0 0
\(386\) −14.0073 + 5.80202i −0.712953 + 0.295315i
\(387\) 5.47684i 0.278403i
\(388\) 0.0547597 + 0.132202i 0.00278000 + 0.00671152i
\(389\) 10.3508 + 10.3508i 0.524804 + 0.524804i 0.919018 0.394214i \(-0.128983\pi\)
−0.394214 + 0.919018i \(0.628983\pi\)
\(390\) 0 0
\(391\) −17.2336 4.56222i −0.871539 0.230722i
\(392\) 24.7377 1.24944
\(393\) 2.31077 + 2.31077i 0.116563 + 0.116563i
\(394\) −9.37328 22.6291i −0.472219 1.14004i
\(395\) 0 0
\(396\) −0.109327 + 0.0452849i −0.00549390 + 0.00227565i
\(397\) −4.30511 + 10.3935i −0.216067 + 0.521633i −0.994334 0.106301i \(-0.966099\pi\)
0.778267 + 0.627934i \(0.216099\pi\)
\(398\) 6.47332 + 2.68134i 0.324478 + 0.134403i
\(399\) −4.77091 + 4.77091i −0.238844 + 0.238844i
\(400\) 0 0
\(401\) −28.9519 11.9923i −1.44579 0.598865i −0.484594 0.874739i \(-0.661032\pi\)
−0.961194 + 0.275875i \(0.911032\pi\)
\(402\) 1.35257 3.26540i 0.0674603 0.162863i
\(403\) −52.9930 + 21.9504i −2.63977 + 1.09343i
\(404\) 3.65736i 0.181960i
\(405\) 0 0
\(406\) −7.72768 7.72768i −0.383518 0.383518i
\(407\) −0.0317504 −0.00157381
\(408\) 1.05943 4.00195i 0.0524497 0.198126i
\(409\) −11.1397 −0.550823 −0.275412 0.961326i \(-0.588814\pi\)
−0.275412 + 0.961326i \(0.588814\pi\)
\(410\) 0 0
\(411\) −1.16378 2.80962i −0.0574052 0.138588i
\(412\) 1.17305i 0.0577921i
\(413\) 13.0250 5.39514i 0.640919 0.265477i
\(414\) −6.22580 + 15.0304i −0.305981 + 0.738704i
\(415\) 0 0
\(416\) −7.98175 + 7.98175i −0.391337 + 0.391337i
\(417\) 1.86988 1.86988i 0.0915682 0.0915682i
\(418\) 0.841718 + 0.348651i 0.0411698 + 0.0170531i
\(419\) −12.7585 + 30.8017i −0.623293 + 1.50476i 0.224520 + 0.974469i \(0.427918\pi\)
−0.847814 + 0.530294i \(0.822082\pi\)
\(420\) 0 0
\(421\) 2.41522i 0.117711i −0.998267 0.0588553i \(-0.981255\pi\)
0.998267 0.0588553i \(-0.0187451\pi\)
\(422\) −6.05031 14.6067i −0.294524 0.711045i
\(423\) 20.1523 + 20.1523i 0.979841 + 0.979841i
\(424\) 4.28559 0.208127
\(425\) 0 0
\(426\) 4.54199 0.220060
\(427\) 15.0809 + 15.0809i 0.729817 + 0.729817i
\(428\) −1.98036 4.78102i −0.0957245 0.231099i
\(429\) 0.301748i 0.0145686i
\(430\) 0 0
\(431\) −5.42084 + 13.0871i −0.261113 + 0.630382i −0.999008 0.0445336i \(-0.985820\pi\)
0.737895 + 0.674915i \(0.235820\pi\)
\(432\) −6.01447 2.49128i −0.289371 0.119862i
\(433\) −25.3112 + 25.3112i −1.21638 + 1.21638i −0.247485 + 0.968892i \(0.579604\pi\)
−0.968892 + 0.247485i \(0.920396\pi\)
\(434\) −30.9984 + 30.9984i −1.48797 + 1.48797i
\(435\) 0 0
\(436\) 1.47459 3.55997i 0.0706199 0.170492i
\(437\) −20.6234 + 8.54249i −0.986551 + 0.408643i
\(438\) 0.551574i 0.0263552i
\(439\) −4.80085 11.5903i −0.229132 0.553174i 0.766940 0.641719i \(-0.221778\pi\)
−0.996072 + 0.0885450i \(0.971778\pi\)
\(440\) 0 0
\(441\) 23.8149 1.13404
\(442\) 28.4331 + 21.6819i 1.35242 + 1.03131i
\(443\) −6.21505 −0.295286 −0.147643 0.989041i \(-0.547169\pi\)
−0.147643 + 0.989041i \(0.547169\pi\)
\(444\) 0.0167833 + 0.0167833i 0.000796499 + 0.000796499i
\(445\) 0 0
\(446\) 11.6184i 0.550149i
\(447\) 1.82466 0.755797i 0.0863033 0.0357480i
\(448\) −13.1737 + 31.8041i −0.622399 + 1.50260i
\(449\) 29.0859 + 12.0478i 1.37265 + 0.568569i 0.942505 0.334192i \(-0.108463\pi\)
0.430142 + 0.902761i \(0.358463\pi\)
\(450\) 0 0
\(451\) 0.798883 0.798883i 0.0376179 0.0376179i
\(452\) −3.91748 1.62267i −0.184263 0.0763241i
\(453\) −0.180064 + 0.434714i −0.00846017 + 0.0204246i
\(454\) 3.59467 1.48896i 0.168706 0.0698804i
\(455\) 0 0
\(456\) −1.98372 4.78913i −0.0928963 0.224271i
\(457\) 4.93483 + 4.93483i 0.230842 + 0.230842i 0.813044 0.582202i \(-0.197809\pi\)
−0.582202 + 0.813044i \(0.697809\pi\)
\(458\) 17.2243 0.804839
\(459\) 2.07938 7.85475i 0.0970570 0.366628i
\(460\) 0 0
\(461\) −16.8525 16.8525i −0.784899 0.784899i 0.195754 0.980653i \(-0.437285\pi\)
−0.980653 + 0.195754i \(0.937285\pi\)
\(462\) 0.0882543 + 0.213065i 0.00410596 + 0.00991267i
\(463\) 27.8631i 1.29491i 0.762104 + 0.647454i \(0.224166\pi\)
−0.762104 + 0.647454i \(0.775834\pi\)
\(464\) 6.55636 2.71573i 0.304371 0.126075i
\(465\) 0 0
\(466\) 23.6416 + 9.79265i 1.09517 + 0.453636i
\(467\) −24.8120 + 24.8120i −1.14816 + 1.14816i −0.161247 + 0.986914i \(0.551552\pi\)
−0.986914 + 0.161247i \(0.948448\pi\)
\(468\) −4.11213 + 4.11213i −0.190083 + 0.190083i
\(469\) −29.2392 12.1113i −1.35014 0.559247i
\(470\) 0 0
\(471\) 6.53216 2.70571i 0.300986 0.124673i
\(472\) 10.8315i 0.498560i
\(473\) −0.0982967 0.237309i −0.00451969 0.0109115i
\(474\) 3.74729 + 3.74729i 0.172119 + 0.172119i
\(475\) 0 0
\(476\) −4.70818 1.24639i −0.215799 0.0571282i
\(477\) 4.12571 0.188903
\(478\) −14.7461 14.7461i −0.674469 0.674469i
\(479\) −2.94944 7.12058i −0.134763 0.325347i 0.842064 0.539378i \(-0.181341\pi\)
−0.976827 + 0.214031i \(0.931341\pi\)
\(480\) 0 0
\(481\) −1.44156 + 0.597114i −0.0657295 + 0.0272261i
\(482\) −4.95181 + 11.9547i −0.225549 + 0.544523i
\(483\) −5.22042 2.16237i −0.237537 0.0983912i
\(484\) 2.34914 2.34914i 0.106779 0.106779i
\(485\) 0 0
\(486\) −10.3410 4.28340i −0.469079 0.194299i
\(487\) 14.5641 35.1609i 0.659964 1.59329i −0.137893 0.990447i \(-0.544033\pi\)
0.797857 0.602847i \(-0.205967\pi\)
\(488\) −15.1385 + 6.27058i −0.685289 + 0.283856i
\(489\) 2.65880i 0.120235i
\(490\) 0 0
\(491\) −21.6157 21.6157i −0.975505 0.975505i 0.0242025 0.999707i \(-0.492295\pi\)
−0.999707 + 0.0242025i \(0.992295\pi\)
\(492\) −0.844579 −0.0380766
\(493\) 4.45174 + 7.65737i 0.200496 + 0.344871i
\(494\) 44.7733 2.01445
\(495\) 0 0
\(496\) −10.8937 26.2998i −0.489143 1.18090i
\(497\) 40.6701i 1.82430i
\(498\) −0.576973 + 0.238990i −0.0258548 + 0.0107094i
\(499\) −0.427196 + 1.03134i −0.0191239 + 0.0461692i −0.933153 0.359479i \(-0.882954\pi\)
0.914029 + 0.405649i \(0.132954\pi\)
\(500\) 0 0
\(501\) 0.690401 0.690401i 0.0308449 0.0308449i
\(502\) −23.5450 + 23.5450i −1.05087 + 1.05087i
\(503\) 20.2920 + 8.40521i 0.904774 + 0.374770i 0.786054 0.618158i \(-0.212121\pi\)
0.118720 + 0.992928i \(0.462121\pi\)
\(504\) −12.9455 + 31.2533i −0.576640 + 1.39213i
\(505\) 0 0
\(506\) 0.763001i 0.0339195i
\(507\) 4.00976 + 9.68042i 0.178080 + 0.429922i
\(508\) −0.686424 0.686424i −0.0304551 0.0304551i
\(509\) 25.0162 1.10882 0.554411 0.832243i \(-0.312944\pi\)
0.554411 + 0.832243i \(0.312944\pi\)
\(510\) 0 0
\(511\) 4.93893 0.218485
\(512\) −17.9761 17.9761i −0.794437 0.794437i
\(513\) −3.89351 9.39976i −0.171903 0.415010i
\(514\) 1.75962i 0.0776134i
\(515\) 0 0
\(516\) −0.0734820 + 0.177401i −0.00323487 + 0.00780966i
\(517\) 1.23488 + 0.511505i 0.0543100 + 0.0224960i
\(518\) −0.843246 + 0.843246i −0.0370501 + 0.0370501i
\(519\) 4.28592 4.28592i 0.188131 0.188131i
\(520\) 0 0
\(521\) −5.06417 + 12.2260i −0.221865 + 0.535630i −0.995143 0.0984369i \(-0.968616\pi\)
0.773278 + 0.634067i \(0.218616\pi\)
\(522\) 7.46780 3.09326i 0.326857 0.135388i
\(523\) 12.6357i 0.552522i 0.961083 + 0.276261i \(0.0890955\pi\)
−0.961083 + 0.276261i \(0.910905\pi\)
\(524\) 1.13036 + 2.72894i 0.0493802 + 0.119214i
\(525\) 0 0
\(526\) 23.3673 1.01886
\(527\) 30.7164 17.8575i 1.33803 0.777883i
\(528\) −0.149754 −0.00651722
\(529\) 3.04431 + 3.04431i 0.132361 + 0.132361i
\(530\) 0 0
\(531\) 10.4274i 0.452511i
\(532\) −5.63427 + 2.33379i −0.244277 + 0.101183i
\(533\) 21.2474 51.2958i 0.920328 2.22187i
\(534\) −1.73562 0.718916i −0.0751075 0.0311105i
\(535\) 0 0
\(536\) 17.1933 17.1933i 0.742639 0.742639i
\(537\) −1.84702 0.765061i −0.0797049 0.0330148i
\(538\) 8.94129 21.5862i 0.385486 0.930647i
\(539\) 1.03189 0.427422i 0.0444466 0.0184104i
\(540\) 0 0
\(541\) 15.4030 + 37.1862i 0.662228 + 1.59876i 0.794305 + 0.607519i \(0.207835\pi\)
−0.132077 + 0.991239i \(0.542165\pi\)
\(542\) −10.7454 10.7454i −0.461556 0.461556i
\(543\) −7.91676 −0.339741
\(544\) 4.23980 5.55995i 0.181780 0.238381i
\(545\) 0 0
\(546\) 8.01400 + 8.01400i 0.342968 + 0.342968i
\(547\) 4.92726 + 11.8954i 0.210674 + 0.508613i 0.993527 0.113594i \(-0.0362363\pi\)
−0.782853 + 0.622207i \(0.786236\pi\)
\(548\) 2.74877i 0.117422i
\(549\) −14.5738 + 6.03665i −0.621993 + 0.257638i
\(550\) 0 0
\(551\) 10.2467 + 4.24430i 0.436522 + 0.180813i
\(552\) 3.06973 3.06973i 0.130656 0.130656i
\(553\) 33.5542 33.5542i 1.42687 1.42687i
\(554\) −14.2533 5.90393i −0.605567 0.250834i
\(555\) 0 0
\(556\) 2.20826 0.914689i 0.0936509 0.0387915i
\(557\) 31.7092i 1.34356i 0.740749 + 0.671782i \(0.234471\pi\)
−0.740749 + 0.671782i \(0.765529\pi\)
\(558\) −12.4081 29.9559i −0.525279 1.26814i
\(559\) −8.92591 8.92591i −0.377526 0.377526i
\(560\) 0 0
\(561\) −0.0249541 0.185239i −0.00105356 0.00782079i
\(562\) 20.4960 0.864572
\(563\) 9.36930 + 9.36930i 0.394869 + 0.394869i 0.876419 0.481550i \(-0.159926\pi\)
−0.481550 + 0.876419i \(0.659926\pi\)
\(564\) −0.382377 0.923140i −0.0161010 0.0388712i
\(565\) 0 0
\(566\) 18.1289 7.50924i 0.762015 0.315637i
\(567\) −11.9604 + 28.8751i −0.502291 + 1.21264i
\(568\) 28.8679 + 11.9575i 1.21127 + 0.501725i
\(569\) −16.0326 + 16.0326i −0.672122 + 0.672122i −0.958205 0.286083i \(-0.907647\pi\)
0.286083 + 0.958205i \(0.407647\pi\)
\(570\) 0 0
\(571\) −21.9759 9.10272i −0.919663 0.380937i −0.127915 0.991785i \(-0.540829\pi\)
−0.791748 + 0.610848i \(0.790829\pi\)
\(572\) −0.104374 + 0.251980i −0.00436408 + 0.0105358i
\(573\) −4.39592 + 1.82085i −0.183642 + 0.0760671i
\(574\) 42.4344i 1.77118i
\(575\) 0 0
\(576\) −18.0039 18.0039i −0.750162 0.750162i
\(577\) −19.5196 −0.812613 −0.406307 0.913737i \(-0.633184\pi\)
−0.406307 + 0.913737i \(0.633184\pi\)
\(578\) −19.2477 10.9589i −0.800600 0.455829i
\(579\) 3.89482 0.161863
\(580\) 0 0
\(581\) 2.13997 + 5.16636i 0.0887811 + 0.214337i
\(582\) 0.206261i 0.00854980i
\(583\) 0.178766 0.0740471i 0.00740371 0.00306672i
\(584\) −1.45210 + 3.50569i −0.0600885 + 0.145066i
\(585\) 0 0
\(586\) −4.46898 + 4.46898i −0.184612 + 0.184612i
\(587\) 12.9236 12.9236i 0.533415 0.533415i −0.388172 0.921587i \(-0.626893\pi\)
0.921587 + 0.388172i \(0.126893\pi\)
\(588\) −0.771392 0.319521i −0.0318117 0.0131768i
\(589\) 17.0254 41.1029i 0.701518 1.69361i
\(590\) 0 0
\(591\) 6.29216i 0.258825i
\(592\) −0.296341 0.715431i −0.0121795 0.0294040i
\(593\) −5.56675 5.56675i −0.228599 0.228599i 0.583508 0.812107i \(-0.301680\pi\)
−0.812107 + 0.583508i \(0.801680\pi\)
\(594\) −0.347762 −0.0142688
\(595\) 0 0
\(596\) 1.78514 0.0731221
\(597\) −1.27275 1.27275i −0.0520903 0.0520903i
\(598\) 14.3494 + 34.6424i 0.586789 + 1.41663i
\(599\) 9.39234i 0.383760i −0.981418 0.191880i \(-0.938541\pi\)
0.981418 0.191880i \(-0.0614585\pi\)
\(600\) 0 0
\(601\) 15.1883 36.6678i 0.619544 1.49571i −0.232690 0.972551i \(-0.574753\pi\)
0.852234 0.523161i \(-0.175247\pi\)
\(602\) −8.91321 3.69197i −0.363275 0.150474i
\(603\) 16.5519 16.5519i 0.674046 0.674046i
\(604\) −0.300732 + 0.300732i −0.0122366 + 0.0122366i
\(605\) 0 0
\(606\) −2.01745 + 4.87056i −0.0819534 + 0.197853i
\(607\) −9.65164 + 3.99784i −0.391748 + 0.162267i −0.569858 0.821743i \(-0.693002\pi\)
0.178110 + 0.984011i \(0.443002\pi\)
\(608\) 8.75521i 0.355071i
\(609\) 1.07436 + 2.59374i 0.0435354 + 0.105104i
\(610\) 0 0
\(611\) 65.6868 2.65740
\(612\) 2.18431 2.86444i 0.0882955 0.115788i
\(613\) −3.66845 −0.148167 −0.0740836 0.997252i \(-0.523603\pi\)
−0.0740836 + 0.997252i \(0.523603\pi\)
\(614\) −6.37995 6.37995i −0.257474 0.257474i
\(615\) 0 0
\(616\) 1.58654i 0.0639234i
\(617\) −43.0594 + 17.8358i −1.73351 + 0.718042i −0.734276 + 0.678851i \(0.762478\pi\)
−0.999232 + 0.0391908i \(0.987522\pi\)
\(618\) −0.647073 + 1.56217i −0.0260291 + 0.0628398i
\(619\) 10.3175 + 4.27364i 0.414695 + 0.171772i 0.580269 0.814425i \(-0.302948\pi\)
−0.165574 + 0.986197i \(0.552948\pi\)
\(620\) 0 0
\(621\) 6.02505 6.02505i 0.241777 0.241777i
\(622\) −35.1495 14.5594i −1.40937 0.583779i
\(623\) −6.43735 + 15.5411i −0.257907 + 0.622642i
\(624\) −6.79928 + 2.81636i −0.272189 + 0.112744i
\(625\) 0 0
\(626\) −11.3607 27.4273i −0.454067 1.09621i
\(627\) −0.165495 0.165495i −0.00660922 0.00660922i
\(628\) 6.39069 0.255016
\(629\) 0.835573 0.485774i 0.0333165 0.0193691i
\(630\) 0 0
\(631\) −9.85360 9.85360i −0.392266 0.392266i 0.483229 0.875494i \(-0.339464\pi\)
−0.875494 + 0.483229i \(0.839464\pi\)
\(632\) 13.9517 + 33.6823i 0.554968 + 1.33981i
\(633\) 4.06149i 0.161430i
\(634\) 25.4980 10.5616i 1.01265 0.419455i
\(635\) 0 0
\(636\) −0.133637 0.0553542i −0.00529904 0.00219494i
\(637\) 38.8124 38.8124i 1.53780 1.53780i
\(638\) 0.268060 0.268060i 0.0106126 0.0106126i
\(639\) 27.7910 + 11.5114i 1.09939 + 0.455384i
\(640\) 0 0
\(641\) 0.998509 0.413596i 0.0394387 0.0163361i −0.362877 0.931837i \(-0.618205\pi\)
0.402316 + 0.915501i \(0.368205\pi\)
\(642\) 7.45935i 0.294397i
\(643\) −1.47605 3.56349i −0.0582095 0.140530i 0.892099 0.451840i \(-0.149232\pi\)
−0.950308 + 0.311310i \(0.899232\pi\)
\(644\) −3.61145 3.61145i −0.142311 0.142311i
\(645\) 0 0
\(646\) −27.4857 + 3.70268i −1.08141 + 0.145680i
\(647\) −37.1748 −1.46149 −0.730746 0.682649i \(-0.760828\pi\)
−0.730746 + 0.682649i \(0.760828\pi\)
\(648\) −16.9792 16.9792i −0.667006 0.667006i
\(649\) 0.187148 + 0.451815i 0.00734620 + 0.0177353i
\(650\) 0 0
\(651\) 10.4044 4.30964i 0.407781 0.168908i
\(652\) 0.919669 2.22028i 0.0360170 0.0869527i
\(653\) −23.6453 9.79421i −0.925313 0.383277i −0.131414 0.991328i \(-0.541952\pi\)
−0.793898 + 0.608050i \(0.791952\pi\)
\(654\) 3.92746 3.92746i 0.153576 0.153576i
\(655\) 0 0
\(656\) 25.4575 + 10.5449i 0.993950 + 0.411707i
\(657\) −1.39793 + 3.37491i −0.0545385 + 0.131668i
\(658\) 46.3815 19.2119i 1.80814 0.748956i
\(659\) 31.9659i 1.24521i 0.782535 + 0.622607i \(0.213926\pi\)
−0.782535 + 0.622607i \(0.786074\pi\)
\(660\) 0 0
\(661\) −5.09233 5.09233i −0.198069 0.198069i 0.601103 0.799172i \(-0.294728\pi\)
−0.799172 + 0.601103i \(0.794728\pi\)
\(662\) 0.897161 0.0348692
\(663\) −4.61668 7.94109i −0.179297 0.308406i
\(664\) −4.29629 −0.166729
\(665\) 0 0
\(666\) −0.337537 0.814887i −0.0130793 0.0315762i
\(667\) 9.28839i 0.359648i
\(668\) 0.815339 0.337724i 0.0315464 0.0130669i
\(669\) 1.14218 2.75747i 0.0441593 0.106610i
\(670\) 0 0
\(671\) −0.523131 + 0.523131i −0.0201953 + 0.0201953i
\(672\) 1.56710 1.56710i 0.0604522 0.0604522i
\(673\) −20.0780 8.31658i −0.773950 0.320581i −0.0394787 0.999220i \(-0.512570\pi\)
−0.734471 + 0.678640i \(0.762570\pi\)
\(674\) 0.645689 1.55883i 0.0248710 0.0600439i
\(675\) 0 0
\(676\) 9.47076i 0.364260i
\(677\) 3.07525 + 7.42431i 0.118192 + 0.285340i 0.971893 0.235423i \(-0.0756476\pi\)
−0.853701 + 0.520763i \(0.825648\pi\)
\(678\) −4.32187 4.32187i −0.165981 0.165981i
\(679\) 1.84691 0.0708780
\(680\) 0 0
\(681\) −0.999519 −0.0383017
\(682\) −1.07528 1.07528i −0.0411746 0.0411746i
\(683\) −17.3337 41.8473i −0.663256 1.60124i −0.792670 0.609651i \(-0.791310\pi\)
0.129414 0.991591i \(-0.458690\pi\)
\(684\) 4.51061i 0.172468i
\(685\) 0 0
\(686\) 2.42612 5.85717i 0.0926296 0.223628i
\(687\) −4.08794 1.69328i −0.155965 0.0646027i
\(688\) 4.42983 4.42983i 0.168886 0.168886i
\(689\) 6.72391 6.72391i 0.256161 0.256161i
\(690\) 0 0
\(691\) 8.60500 20.7743i 0.327350 0.790292i −0.671438 0.741061i \(-0.734323\pi\)
0.998787 0.0492308i \(-0.0156770\pi\)
\(692\) 5.06152 2.09655i 0.192410 0.0796988i
\(693\) 1.52735i 0.0580192i
\(694\) −1.41564 3.41765i −0.0537369 0.129732i
\(695\) 0 0
\(696\) −2.15693 −0.0817584
\(697\) −8.80141 + 33.2469i −0.333377 + 1.25932i
\(698\) −5.44600 −0.206134
\(699\) −4.64829 4.64829i −0.175815 0.175815i
\(700\) 0 0
\(701\) 27.9289i 1.05486i 0.849599 + 0.527429i \(0.176844\pi\)
−0.849599 + 0.527429i \(0.823156\pi\)
\(702\) −15.7894 + 6.54018i −0.595932 + 0.246843i
\(703\) 0.463139 1.11812i 0.0174676 0.0421706i
\(704\) −1.10323 0.456973i −0.0415796 0.0172228i
\(705\) 0 0
\(706\) 1.04049 1.04049i 0.0391595 0.0391595i
\(707\) 43.6122 + 18.0648i 1.64021 + 0.679395i
\(708\) 0.139903 0.337756i 0.00525788 0.0126937i
\(709\) 20.5831 8.52578i 0.773013 0.320193i 0.0389210 0.999242i \(-0.487608\pi\)
0.734092 + 0.679050i \(0.237608\pi\)
\(710\) 0 0
\(711\) 13.4312 + 32.4258i 0.503709 + 1.21606i
\(712\) −9.13855 9.13855i −0.342482 0.342482i
\(713\) 37.2589 1.39536
\(714\) −5.58243 4.25694i −0.208917 0.159312i
\(715\) 0 0
\(716\) −1.27776 1.27776i −0.0477520 0.0477520i
\(717\) 2.05012 + 4.94942i 0.0765630 + 0.184839i
\(718\) 21.9637i 0.819677i
\(719\) −1.26482 + 0.523906i −0.0471698 + 0.0195384i −0.406144 0.913809i \(-0.633127\pi\)
0.358974 + 0.933348i \(0.383127\pi\)
\(720\) 0 0
\(721\) 13.9881 + 5.79405i 0.520943 + 0.215782i
\(722\) −7.05189 + 7.05189i −0.262444 + 0.262444i
\(723\) 2.35048 2.35048i 0.0874154 0.0874154i
\(724\) −6.61103 2.73838i −0.245697 0.101771i
\(725\) 0 0
\(726\) 4.42420 1.83257i 0.164198 0.0680129i
\(727\) 42.8600i 1.58959i −0.606878 0.794795i \(-0.707578\pi\)
0.606878 0.794795i \(-0.292422\pi\)
\(728\) 29.8372 + 72.0334i 1.10584 + 2.66973i
\(729\) −14.9466 14.9466i −0.553578 0.553578i
\(730\) 0 0
\(731\) 6.21764 + 4.74133i 0.229968 + 0.175364i
\(732\) 0.553055 0.0204415
\(733\) 22.9957 + 22.9957i 0.849367 + 0.849367i 0.990054 0.140687i \(-0.0449312\pi\)
−0.140687 + 0.990054i \(0.544931\pi\)
\(734\) −10.9815 26.5117i −0.405335 0.978566i
\(735\) 0 0
\(736\) 6.77416 2.80595i 0.249699 0.103429i
\(737\) 0.420119 1.01426i 0.0154753 0.0373607i
\(738\) 28.9965 + 12.0108i 1.06738 + 0.442122i
\(739\) 25.4716 25.4716i 0.936989 0.936989i −0.0611400 0.998129i \(-0.519474\pi\)
0.998129 + 0.0611400i \(0.0194736\pi\)
\(740\) 0 0
\(741\) −10.6263 4.40156i −0.390367 0.161695i
\(742\) 2.78117 6.71434i 0.102100 0.246491i
\(743\) 30.2631 12.5354i 1.11024 0.459879i 0.249223 0.968446i \(-0.419825\pi\)
0.861022 + 0.508568i \(0.169825\pi\)
\(744\) 8.65220i 0.317205i
\(745\) 0 0
\(746\) 17.8461 + 17.8461i 0.653393 + 0.653393i
\(747\) −4.13602 −0.151329
\(748\) 0.0432351 0.163319i 0.00158083 0.00597152i
\(749\) −66.7929 −2.44056
\(750\) 0 0
\(751\) −17.6375 42.5806i −0.643600 1.55379i −0.821789 0.569792i \(-0.807024\pi\)
0.178189 0.983996i \(-0.442976\pi\)
\(752\) 32.5996i 1.18879i
\(753\) 7.90274 3.27342i 0.287992 0.119290i
\(754\) 7.12943 17.2120i 0.259638 0.626823i
\(755\) 0 0
\(756\) 1.64603 1.64603i 0.0598655 0.0598655i
\(757\) 21.7165 21.7165i 0.789301 0.789301i −0.192079 0.981379i \(-0.561523\pi\)
0.981379 + 0.192079i \(0.0615230\pi\)
\(758\) −25.1681 10.4250i −0.914145 0.378651i
\(759\) 0.0750088 0.181087i 0.00272265 0.00657305i
\(760\) 0 0
\(761\) 22.0653i 0.799865i −0.916545 0.399932i \(-0.869034\pi\)
0.916545 0.399932i \(-0.130966\pi\)
\(762\) −0.535480 1.29276i −0.0193984 0.0468318i
\(763\) −35.1674 35.1674i −1.27315 1.27315i
\(764\) −4.30072 −0.155594
\(765\) 0 0
\(766\) 5.61565 0.202902
\(767\) 16.9941 + 16.9941i 0.613622 + 0.613622i
\(768\) 0.907594 + 2.19113i 0.0327500 + 0.0790654i
\(769\) 29.4440i 1.06178i 0.847441 + 0.530889i \(0.178142\pi\)
−0.847441 + 0.530889i \(0.821858\pi\)
\(770\) 0 0
\(771\) 0.172984 0.417620i 0.00622986 0.0150402i
\(772\) 3.25243 + 1.34720i 0.117058 + 0.0484869i
\(773\) −5.63855 + 5.63855i −0.202805 + 0.202805i −0.801201 0.598396i \(-0.795805\pi\)
0.598396 + 0.801201i \(0.295805\pi\)
\(774\) 5.04565 5.04565i 0.181362 0.181362i
\(775\) 0 0
\(776\) −0.543014 + 1.31095i −0.0194931 + 0.0470604i
\(777\) 0.283030 0.117235i 0.0101536 0.00420577i
\(778\) 19.0717i 0.683753i
\(779\) 16.4801 + 39.7865i 0.590461 + 1.42550i
\(780\) 0 0
\(781\) 1.41078 0.0504815
\(782\) −11.6737 20.0798i −0.417452 0.718053i
\(783\) −4.23348 −0.151292
\(784\) 19.2622 + 19.2622i 0.687935 + 0.687935i
\(785\) 0 0
\(786\) 4.25770i 0.151867i
\(787\) 3.00460 1.24455i 0.107103 0.0443633i −0.328489 0.944508i \(-0.606539\pi\)
0.435591 + 0.900145i \(0.356539\pi\)
\(788\) −2.17643 + 5.25437i −0.0775322 + 0.187179i
\(789\) −5.54590 2.29719i −0.197439 0.0817821i
\(790\) 0 0
\(791\) −38.6991 + 38.6991i −1.37598 + 1.37598i
\(792\) −1.08412 0.449059i −0.0385226 0.0159566i
\(793\) −13.9134 + 33.5900i −0.494080 + 1.19281i
\(794\) −13.5414 + 5.60902i −0.480565 + 0.199056i
\(795\) 0 0
\(796\) −0.622594 1.50308i −0.0220673 0.0532751i
\(797\) 27.8278 + 27.8278i 0.985713 + 0.985713i 0.999899 0.0141865i \(-0.00451586\pi\)
−0.0141865 + 0.999899i \(0.504516\pi\)
\(798\) −8.79060 −0.311184
\(799\) −40.3242 + 5.43219i −1.42657 + 0.192177i
\(800\) 0 0
\(801\) −8.79763 8.79763i −0.310849 0.310849i
\(802\) −15.6244 37.7206i −0.551716 1.33196i
\(803\) 0.171323i 0.00604586i
\(804\) −0.758212 + 0.314062i −0.0267401 + 0.0110761i
\(805\) 0 0
\(806\) −69.0431 28.5986i −2.43194 1.00734i
\(807\) −4.24417 + 4.24417i −0.149402 + 0.149402i
\(808\) −25.6450 + 25.6450i −0.902187 + 0.902187i
\(809\) 39.9675 + 16.5551i 1.40518 + 0.582045i 0.951091 0.308910i \(-0.0999643\pi\)
0.454091 + 0.890956i \(0.349964\pi\)
\(810\) 0 0
\(811\) −10.7333 + 4.44587i −0.376896 + 0.156115i −0.563086 0.826398i \(-0.690386\pi\)
0.186190 + 0.982514i \(0.440386\pi\)
\(812\) 2.53757i 0.0890512i
\(813\) 1.49392 + 3.60663i 0.0523939 + 0.126490i
\(814\) −0.0292507 0.0292507i −0.00102524 0.00102524i
\(815\) 0 0
\(816\) 3.94107 2.29121i 0.137965 0.0802083i
\(817\) 9.79087 0.342539
\(818\) −10.2627 10.2627i −0.358826 0.358826i
\(819\) 28.7241 + 69.3461i 1.00370 + 2.42315i
\(820\) 0 0
\(821\) 42.2106 17.4842i 1.47316 0.610203i 0.505583 0.862778i \(-0.331277\pi\)
0.967577 + 0.252575i \(0.0812775\pi\)
\(822\) 1.51626 3.66058i 0.0528857 0.127677i
\(823\) −19.5158 8.08372i −0.680279 0.281781i 0.0156645 0.999877i \(-0.495014\pi\)
−0.695944 + 0.718096i \(0.745014\pi\)
\(824\) −8.22531 + 8.22531i −0.286542 + 0.286542i
\(825\) 0 0
\(826\) 16.9700 + 7.02918i 0.590460 + 0.244577i
\(827\) −7.17270 + 17.3164i −0.249419 + 0.602151i −0.998155 0.0607172i \(-0.980661\pi\)
0.748736 + 0.662869i \(0.230661\pi\)
\(828\) 3.48999 1.44560i 0.121286 0.0502382i
\(829\) 34.5201i 1.19893i 0.800401 + 0.599466i \(0.204620\pi\)
−0.800401 + 0.599466i \(0.795380\pi\)
\(830\) 0 0
\(831\) 2.80243 + 2.80243i 0.0972151 + 0.0972151i
\(832\) −58.6839 −2.03450
\(833\) −20.6167 + 27.0361i −0.714325 + 0.936746i
\(834\) 3.44532 0.119302
\(835\) 0 0
\(836\) −0.0809552 0.195443i −0.00279989 0.00675954i
\(837\) 16.9819i 0.586982i
\(838\) −40.1308 + 16.6227i −1.38629 + 0.574222i
\(839\) 14.2356 34.3677i 0.491467 1.18651i −0.462507 0.886616i \(-0.653050\pi\)
0.953974 0.299890i \(-0.0969499\pi\)
\(840\) 0 0
\(841\) −17.2429 + 17.2429i −0.594582 + 0.594582i
\(842\) 2.22507 2.22507i 0.0766810 0.0766810i
\(843\) −4.86444 2.01492i −0.167540 0.0693974i
\(844\) −1.40485 + 3.39162i −0.0483571 + 0.116744i
\(845\) 0 0
\(846\) 37.1315i 1.27661i
\(847\) −16.4092 39.6154i −0.563828 1.36120i
\(848\) 3.33700 + 3.33700i 0.114593 + 0.114593i
\(849\) −5.04085 −0.173002
\(850\) 0 0
\(851\) 1.01355 0.0347441
\(852\) −0.745736 0.745736i −0.0255485 0.0255485i
\(853\) 9.04063 + 21.8260i 0.309545 + 0.747309i 0.999720 + 0.0236657i \(0.00753372\pi\)
−0.690175 + 0.723643i \(0.742466\pi\)
\(854\) 27.7872i 0.950860i
\(855\) 0 0
\(856\) 19.6379 47.4100i 0.671209 1.62044i
\(857\) −4.05182 1.67832i −0.138407 0.0573303i 0.312405 0.949949i \(-0.398866\pi\)
−0.450812 + 0.892619i \(0.648866\pi\)
\(858\) −0.277992 + 0.277992i −0.00949049 + 0.00949049i
\(859\) 25.3082 25.3082i 0.863506 0.863506i −0.128238 0.991743i \(-0.540932\pi\)
0.991743 + 0.128238i \(0.0409321\pi\)
\(860\) 0 0
\(861\) −4.17162 + 10.0712i −0.142169 + 0.343225i
\(862\) −17.0508 + 7.06267i −0.580752 + 0.240555i
\(863\) 41.4427i 1.41073i 0.708846 + 0.705363i \(0.249216\pi\)
−0.708846 + 0.705363i \(0.750784\pi\)
\(864\) 1.27890 + 3.08754i 0.0435091 + 0.105040i
\(865\) 0 0
\(866\) −46.6369 −1.58479
\(867\) 3.49083 + 4.49313i 0.118555 + 0.152595i
\(868\) 10.1791 0.345500
\(869\) 1.16394 + 1.16394i 0.0394838 + 0.0394838i
\(870\) 0 0
\(871\) 53.9512i 1.82807i
\(872\) 35.3017 14.6225i 1.19547 0.495179i
\(873\) −0.522756 + 1.26205i −0.0176926 + 0.0427138i
\(874\) −26.8697 11.1298i −0.908880 0.376470i
\(875\) 0 0
\(876\) 0.0905614 0.0905614i 0.00305978 0.00305978i
\(877\) 45.6223 + 18.8974i 1.54056 + 0.638119i 0.981578 0.191063i \(-0.0611935\pi\)
0.558978 + 0.829182i \(0.311193\pi\)
\(878\) 6.25490 15.1007i 0.211093 0.509623i
\(879\) 1.49998 0.621313i 0.0505932 0.0209564i
\(880\) 0 0
\(881\) 10.7287 + 25.9015i 0.361461 + 0.872643i 0.995087 + 0.0990039i \(0.0315656\pi\)
−0.633627 + 0.773639i \(0.718434\pi\)
\(882\) 21.9399 + 21.9399i 0.738756 + 0.738756i
\(883\) −4.33207 −0.145786 −0.0728929 0.997340i \(-0.523223\pi\)
−0.0728929 + 0.997340i \(0.523223\pi\)
\(884\) −1.10845 8.22824i −0.0372812 0.276746i
\(885\) 0 0
\(886\) −5.72574 5.72574i −0.192360 0.192360i
\(887\) 11.7656 + 28.4047i 0.395051 + 0.953738i 0.988822 + 0.149103i \(0.0476387\pi\)
−0.593771 + 0.804634i \(0.702361\pi\)
\(888\) 0.235365i 0.00789833i
\(889\) −11.5757 + 4.79482i −0.388237 + 0.160813i
\(890\) 0 0
\(891\) −1.00163 0.414887i −0.0335557 0.0138992i
\(892\) 1.90760 1.90760i 0.0638710 0.0638710i
\(893\) −36.0261 + 36.0261i −1.20557 + 1.20557i
\(894\) 2.37730 + 0.984708i 0.0795087 + 0.0329336i
\(895\) 0 0
\(896\) −29.2017 + 12.0957i −0.975559 + 0.404090i
\(897\) 9.63254i 0.321621i
\(898\) 15.6967 + 37.8952i 0.523806 + 1.26458i
\(899\) −13.0899 13.0899i −0.436574 0.436574i
\(900\) 0 0
\(901\) −3.57165 + 4.68377i −0.118989 + 0.156039i
\(902\) 1.47197 0.0490114
\(903\) 1.75247 + 1.75247i 0.0583187 + 0.0583187i
\(904\) −16.0909 38.8469i −0.535176 1.29203i
\(905\) 0 0
\(906\) −0.566377 + 0.234601i −0.0188166 + 0.00779410i
\(907\) 13.3891 32.3241i 0.444577 1.07330i −0.529747 0.848156i \(-0.677713\pi\)
0.974324 0.225149i \(-0.0722868\pi\)
\(908\) −0.834666 0.345730i −0.0276994 0.0114735i
\(909\) −24.6883 + 24.6883i −0.818858 + 0.818858i
\(910\) 0 0
\(911\) 44.9596 + 18.6229i 1.48958 + 0.617003i 0.971225 0.238164i \(-0.0765456\pi\)
0.518352 + 0.855167i \(0.326546\pi\)
\(912\) 2.18445 5.27372i 0.0723342 0.174630i
\(913\) −0.179212 + 0.0742320i −0.00593105 + 0.00245672i
\(914\) 9.09262i 0.300757i
\(915\) 0 0
\(916\) −2.82801 2.82801i −0.0934400 0.0934400i
\(917\) 38.1244 1.25898
\(918\) 9.15201 5.32068i 0.302061 0.175608i
\(919\) −3.76108 −0.124067 −0.0620334 0.998074i \(-0.519759\pi\)
−0.0620334 + 0.998074i \(0.519759\pi\)
\(920\) 0 0
\(921\) 0.886992 + 2.14139i 0.0292274 + 0.0705611i
\(922\) 31.0514i 1.02262i
\(923\) 64.0533 26.5317i 2.10834 0.873303i
\(924\) 0.0204923 0.0494727i 0.000674146 0.00162753i
\(925\) 0 0
\(926\) −25.6695 + 25.6695i −0.843551 + 0.843551i
\(927\) −7.91846 + 7.91846i −0.260076 + 0.260076i
\(928\) −3.36572 1.39413i −0.110485 0.0457644i
\(929\) −0.250915 + 0.605762i −0.00823225 + 0.0198744i −0.927942 0.372724i \(-0.878424\pi\)
0.919710 + 0.392598i \(0.128424\pi\)
\(930\) 0 0
\(931\) 42.5735i 1.39529i
\(932\) −2.27381 5.48946i −0.0744811 0.179813i
\(933\) 6.91093 + 6.91093i 0.226254 + 0.226254i
\(934\) −45.7171 −1.49591
\(935\) 0 0
\(936\) −57.6676 −1.88492
\(937\) −13.7961 13.7961i −0.450698 0.450698i 0.444888 0.895586i \(-0.353244\pi\)
−0.895586 + 0.444888i \(0.853244\pi\)
\(938\) −15.7795 38.0950i −0.515218 1.24385i
\(939\) 7.62631i 0.248875i
\(940\) 0 0
\(941\) −5.66685 + 13.6810i −0.184734 + 0.445988i −0.988931 0.148375i \(-0.952596\pi\)
0.804197 + 0.594363i \(0.202596\pi\)
\(942\) 8.51058 + 3.52520i 0.277290 + 0.114857i
\(943\) −25.5023 + 25.5023i −0.830468 + 0.830468i
\(944\) −8.43400 + 8.43400i −0.274503 + 0.274503i
\(945\) 0 0
\(946\) 0.128068 0.309184i 0.00416385 0.0100524i
\(947\) 11.8904 4.92517i 0.386386 0.160046i −0.181030 0.983478i \(-0.557943\pi\)
0.567416 + 0.823431i \(0.307943\pi\)
\(948\) 1.23051i 0.0399652i
\(949\) 3.22199 + 7.77856i 0.104590 + 0.252503i
\(950\) 0 0
\(951\) −7.08986 −0.229905
\(952\) −24.2737 41.7528i −0.786714 1.35321i
\(953\) −43.1347 −1.39727 −0.698635 0.715478i \(-0.746209\pi\)
−0.698635 + 0.715478i \(0.746209\pi\)
\(954\) 3.80090 + 3.80090i 0.123059 + 0.123059i
\(955\) 0 0
\(956\) 4.84223i 0.156609i
\(957\) −0.0899725 + 0.0372678i −0.00290840 + 0.00120470i
\(958\) 3.84274 9.27721i 0.124153 0.299733i
\(959\) −32.7777 13.5770i −1.05845 0.438423i
\(960\) 0 0
\(961\) −30.5879 + 30.5879i −0.986707 + 0.986707i
\(962\) −1.87817 0.777964i −0.0605547 0.0250826i
\(963\) 18.9053 45.6414i 0.609214 1.47077i
\(964\) 2.77584 1.14979i 0.0894037 0.0370322i
\(965\) 0 0
\(966\) −2.81729 6.80154i −0.0906449 0.218836i
\(967\) −1.13385 1.13385i −0.0364621 0.0364621i 0.688641 0.725103i \(-0.258208\pi\)
−0.725103 + 0.688641i \(0.758208\pi\)
\(968\) 32.9438 1.05885
\(969\) 6.88734 + 1.82328i 0.221253 + 0.0585721i
\(970\) 0 0
\(971\) 22.0166 + 22.0166i 0.706546 + 0.706546i 0.965807 0.259261i \(-0.0834791\pi\)
−0.259261 + 0.965807i \(0.583479\pi\)
\(972\) 0.994586 + 2.40114i 0.0319014 + 0.0770167i
\(973\) 30.8503i 0.989014i
\(974\) 45.8102 18.9752i 1.46786 0.608005i
\(975\) 0 0
\(976\) −16.6703 6.90507i −0.533604 0.221026i
\(977\) 4.87861 4.87861i 0.156081 0.156081i −0.624747 0.780827i \(-0.714798\pi\)
0.780827 + 0.624747i \(0.214798\pi\)
\(978\) 2.44947 2.44947i 0.0783255 0.0783255i
\(979\) −0.539095 0.223300i −0.0172296 0.00713671i
\(980\) 0 0
\(981\) 33.9848 14.0769i 1.08505 0.449442i
\(982\) 39.8279i 1.27096i
\(983\) −11.5969 27.9974i −0.369884 0.892978i −0.993769 0.111462i \(-0.964447\pi\)
0.623885 0.781516i \(-0.285553\pi\)
\(984\) −5.92209 5.92209i −0.188789 0.188789i
\(985\) 0 0
\(986\) −2.95325 + 11.1558i −0.0940507 + 0.355272i
\(987\) −12.8967 −0.410505
\(988\) −7.35120 7.35120i −0.233873 0.233873i
\(989\) 3.13787 + 7.57548i 0.0997784 + 0.240886i
\(990\) 0 0
\(991\) 8.21733 3.40373i 0.261032 0.108123i −0.248330 0.968676i \(-0.579882\pi\)
0.509362 + 0.860553i \(0.329882\pi\)
\(992\) −5.59232 + 13.5011i −0.177556 + 0.428659i
\(993\) −0.212928 0.0881978i −0.00675708 0.00279887i
\(994\) 37.4682 37.4682i 1.18842 1.18842i
\(995\) 0 0
\(996\) 0.133971 + 0.0554924i 0.00424502 + 0.00175834i
\(997\) −10.9328 + 26.3941i −0.346245 + 0.835909i 0.650812 + 0.759239i \(0.274429\pi\)
−0.997057 + 0.0766701i \(0.975571\pi\)
\(998\) −1.34371 + 0.556582i −0.0425343 + 0.0176183i
\(999\) 0.461958i 0.0146157i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 425.2.m.c.151.5 yes 24
5.2 odd 4 425.2.n.e.49.2 24
5.3 odd 4 425.2.n.d.49.5 24
5.4 even 2 425.2.m.d.151.2 yes 24
17.5 odd 16 7225.2.a.bx.1.10 24
17.8 even 8 inner 425.2.m.c.76.5 24
17.12 odd 16 7225.2.a.bx.1.9 24
85.8 odd 8 425.2.n.e.399.2 24
85.29 odd 16 7225.2.a.cb.1.16 24
85.39 odd 16 7225.2.a.cb.1.15 24
85.42 odd 8 425.2.n.d.399.5 24
85.59 even 8 425.2.m.d.76.2 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
425.2.m.c.76.5 24 17.8 even 8 inner
425.2.m.c.151.5 yes 24 1.1 even 1 trivial
425.2.m.d.76.2 yes 24 85.59 even 8
425.2.m.d.151.2 yes 24 5.4 even 2
425.2.n.d.49.5 24 5.3 odd 4
425.2.n.d.399.5 24 85.42 odd 8
425.2.n.e.49.2 24 5.2 odd 4
425.2.n.e.399.2 24 85.8 odd 8
7225.2.a.bx.1.9 24 17.12 odd 16
7225.2.a.bx.1.10 24 17.5 odd 16
7225.2.a.cb.1.15 24 85.39 odd 16
7225.2.a.cb.1.16 24 85.29 odd 16