Properties

Label 425.2.m.d.76.1
Level $425$
Weight $2$
Character 425.76
Analytic conductor $3.394$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [425,2,Mod(26,425)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(425, base_ring=CyclotomicField(8))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("425.26");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 425 = 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 425.m (of order \(8\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.39364208590\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(6\) over \(\Q(\zeta_{8})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 76.1
Character \(\chi\) \(=\) 425.76
Dual form 425.2.m.d.151.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.91681 + 1.91681i) q^{2} +(-0.405091 + 0.977976i) q^{3} -5.34834i q^{4} +(-1.09811 - 2.65108i) q^{6} +(-1.31353 + 0.544082i) q^{7} +(6.41814 + 6.41814i) q^{8} +(1.32898 + 1.32898i) q^{9} +(1.82748 + 4.41194i) q^{11} +(5.23055 + 2.16656i) q^{12} -1.14504i q^{13} +(1.47489 - 3.56069i) q^{14} -13.9080 q^{16} +(0.876759 - 4.02881i) q^{17} -5.09482 q^{18} +(-5.07242 + 5.07242i) q^{19} -1.50500i q^{21} +(-11.9598 - 4.95391i) q^{22} +(1.83858 + 4.43872i) q^{23} +(-8.87671 + 3.67685i) q^{24} +(2.19483 + 2.19483i) q^{26} +(-4.77200 + 1.97663i) q^{27} +(2.90994 + 7.02521i) q^{28} +(-7.95673 - 3.29579i) q^{29} +(1.22724 - 2.96282i) q^{31} +(13.8228 - 13.8228i) q^{32} -5.05506 q^{33} +(6.04189 + 9.40305i) q^{34} +(7.10785 - 7.10785i) q^{36} +(-0.968027 + 2.33702i) q^{37} -19.4457i q^{38} +(1.11982 + 0.463846i) q^{39} +(5.63744 - 2.33510i) q^{41} +(2.88481 + 2.88481i) q^{42} +(-3.05931 - 3.05931i) q^{43} +(23.5965 - 9.77400i) q^{44} +(-12.0324 - 4.98399i) q^{46} +5.03535i q^{47} +(5.63402 - 13.6017i) q^{48} +(-3.52041 + 3.52041i) q^{49} +(3.58491 + 2.48948i) q^{51} -6.12408 q^{52} +(-3.89859 + 3.89859i) q^{53} +(5.35820 - 12.9358i) q^{54} +(-11.9224 - 4.93842i) q^{56} +(-2.90591 - 7.01549i) q^{57} +(21.5690 - 8.93416i) q^{58} +(-0.928288 - 0.928288i) q^{59} +(-6.05613 + 2.50853i) q^{61} +(3.32678 + 8.03155i) q^{62} +(-2.46873 - 1.02258i) q^{63} +25.1755i q^{64} +(9.68961 - 9.68961i) q^{66} -1.95325 q^{67} +(-21.5474 - 4.68921i) q^{68} -5.08575 q^{69} +(0.794980 - 1.91925i) q^{71} +17.0592i q^{72} +(3.27403 + 1.35615i) q^{73} +(-2.62411 - 6.33516i) q^{74} +(27.1290 + 27.1290i) q^{76} +(-4.80091 - 4.80091i) q^{77} +(-3.03560 + 1.25739i) q^{78} +(-0.477176 - 1.15200i) q^{79} +0.170782i q^{81} +(-6.32995 + 15.2819i) q^{82} +(2.88654 - 2.88654i) q^{83} -8.04927 q^{84} +11.7282 q^{86} +(6.44640 - 6.44640i) q^{87} +(-16.5874 + 40.0454i) q^{88} +8.34827i q^{89} +(0.622997 + 1.50405i) q^{91} +(23.7398 - 9.83334i) q^{92} +(2.40042 + 2.40042i) q^{93} +(-9.65181 - 9.65181i) q^{94} +(7.91890 + 19.1179i) q^{96} +(-2.47754 - 1.02623i) q^{97} -13.4959i q^{98} +(-3.43469 + 8.29208i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 8 q^{6} + 12 q^{9} + 4 q^{11} + 12 q^{12} - 24 q^{14} - 24 q^{16} - 4 q^{17} + 40 q^{18} - 20 q^{19} - 16 q^{22} - 8 q^{23} + 16 q^{24} + 16 q^{26} + 12 q^{27} - 48 q^{28} + 4 q^{29} + 24 q^{31}+ \cdots - 80 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/425\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(326\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{8}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.91681 + 1.91681i −1.35539 + 1.35539i −0.475882 + 0.879509i \(0.657871\pi\)
−0.879509 + 0.475882i \(0.842129\pi\)
\(3\) −0.405091 + 0.977976i −0.233879 + 0.564635i −0.996627 0.0820613i \(-0.973850\pi\)
0.762748 + 0.646696i \(0.223850\pi\)
\(4\) 5.34834i 2.67417i
\(5\) 0 0
\(6\) −1.09811 2.65108i −0.448303 1.08230i
\(7\) −1.31353 + 0.544082i −0.496468 + 0.205644i −0.616845 0.787084i \(-0.711590\pi\)
0.120377 + 0.992728i \(0.461590\pi\)
\(8\) 6.41814 + 6.41814i 2.26915 + 2.26915i
\(9\) 1.32898 + 1.32898i 0.442994 + 0.442994i
\(10\) 0 0
\(11\) 1.82748 + 4.41194i 0.551007 + 1.33025i 0.916723 + 0.399523i \(0.130824\pi\)
−0.365716 + 0.930726i \(0.619176\pi\)
\(12\) 5.23055 + 2.16656i 1.50993 + 0.625433i
\(13\) 1.14504i 0.317578i −0.987313 0.158789i \(-0.949241\pi\)
0.987313 0.158789i \(-0.0507589\pi\)
\(14\) 1.47489 3.56069i 0.394180 0.951636i
\(15\) 0 0
\(16\) −13.9080 −3.47701
\(17\) 0.876759 4.02881i 0.212645 0.977129i
\(18\) −5.09482 −1.20086
\(19\) −5.07242 + 5.07242i −1.16369 + 1.16369i −0.180031 + 0.983661i \(0.557620\pi\)
−0.983661 + 0.180031i \(0.942380\pi\)
\(20\) 0 0
\(21\) 1.50500i 0.328419i
\(22\) −11.9598 4.95391i −2.54984 1.05618i
\(23\) 1.83858 + 4.43872i 0.383370 + 0.925538i 0.991309 + 0.131554i \(0.0419966\pi\)
−0.607939 + 0.793984i \(0.708003\pi\)
\(24\) −8.87671 + 3.67685i −1.81195 + 0.750534i
\(25\) 0 0
\(26\) 2.19483 + 2.19483i 0.430442 + 0.430442i
\(27\) −4.77200 + 1.97663i −0.918372 + 0.380402i
\(28\) 2.90994 + 7.02521i 0.549926 + 1.32764i
\(29\) −7.95673 3.29579i −1.47753 0.612012i −0.508967 0.860786i \(-0.669972\pi\)
−0.968562 + 0.248774i \(0.919972\pi\)
\(30\) 0 0
\(31\) 1.22724 2.96282i 0.220419 0.532138i −0.774528 0.632539i \(-0.782013\pi\)
0.994947 + 0.100402i \(0.0320128\pi\)
\(32\) 13.8228 13.8228i 2.44356 2.44356i
\(33\) −5.05506 −0.879974
\(34\) 6.04189 + 9.40305i 1.03617 + 1.61261i
\(35\) 0 0
\(36\) 7.10785 7.10785i 1.18464 1.18464i
\(37\) −0.968027 + 2.33702i −0.159143 + 0.384204i −0.983258 0.182217i \(-0.941673\pi\)
0.824116 + 0.566422i \(0.191673\pi\)
\(38\) 19.4457i 3.15452i
\(39\) 1.11982 + 0.463846i 0.179315 + 0.0742749i
\(40\) 0 0
\(41\) 5.63744 2.33510i 0.880420 0.364682i 0.103760 0.994602i \(-0.466913\pi\)
0.776660 + 0.629921i \(0.216913\pi\)
\(42\) 2.88481 + 2.88481i 0.445136 + 0.445136i
\(43\) −3.05931 3.05931i −0.466541 0.466541i 0.434251 0.900792i \(-0.357013\pi\)
−0.900792 + 0.434251i \(0.857013\pi\)
\(44\) 23.5965 9.77400i 3.55731 1.47349i
\(45\) 0 0
\(46\) −12.0324 4.98399i −1.77408 0.734849i
\(47\) 5.03535i 0.734481i 0.930126 + 0.367240i \(0.119697\pi\)
−0.930126 + 0.367240i \(0.880303\pi\)
\(48\) 5.63402 13.6017i 0.813201 1.96324i
\(49\) −3.52041 + 3.52041i −0.502916 + 0.502916i
\(50\) 0 0
\(51\) 3.58491 + 2.48948i 0.501988 + 0.348597i
\(52\) −6.12408 −0.849257
\(53\) −3.89859 + 3.89859i −0.535512 + 0.535512i −0.922208 0.386695i \(-0.873617\pi\)
0.386695 + 0.922208i \(0.373617\pi\)
\(54\) 5.35820 12.9358i 0.729159 1.76035i
\(55\) 0 0
\(56\) −11.9224 4.93842i −1.59320 0.659925i
\(57\) −2.90591 7.01549i −0.384897 0.929224i
\(58\) 21.5690 8.93416i 2.83214 1.17311i
\(59\) −0.928288 0.928288i −0.120853 0.120853i 0.644094 0.764947i \(-0.277235\pi\)
−0.764947 + 0.644094i \(0.777235\pi\)
\(60\) 0 0
\(61\) −6.05613 + 2.50853i −0.775408 + 0.321185i −0.735061 0.678001i \(-0.762846\pi\)
−0.0403474 + 0.999186i \(0.512846\pi\)
\(62\) 3.32678 + 8.03155i 0.422501 + 1.02001i
\(63\) −2.46873 1.02258i −0.311031 0.128833i
\(64\) 25.1755i 3.14694i
\(65\) 0 0
\(66\) 9.68961 9.68961i 1.19271 1.19271i
\(67\) −1.95325 −0.238628 −0.119314 0.992857i \(-0.538069\pi\)
−0.119314 + 0.992857i \(0.538069\pi\)
\(68\) −21.5474 4.68921i −2.61301 0.568650i
\(69\) −5.08575 −0.612253
\(70\) 0 0
\(71\) 0.794980 1.91925i 0.0943468 0.227773i −0.869660 0.493651i \(-0.835662\pi\)
0.964007 + 0.265878i \(0.0856619\pi\)
\(72\) 17.0592i 2.01044i
\(73\) 3.27403 + 1.35615i 0.383196 + 0.158725i 0.565962 0.824431i \(-0.308505\pi\)
−0.182766 + 0.983157i \(0.558505\pi\)
\(74\) −2.62411 6.33516i −0.305047 0.736448i
\(75\) 0 0
\(76\) 27.1290 + 27.1290i 3.11191 + 3.11191i
\(77\) −4.80091 4.80091i −0.547115 0.547115i
\(78\) −3.03560 + 1.25739i −0.343714 + 0.142371i
\(79\) −0.477176 1.15200i −0.0536865 0.129611i 0.894761 0.446546i \(-0.147346\pi\)
−0.948447 + 0.316936i \(0.897346\pi\)
\(80\) 0 0
\(81\) 0.170782i 0.0189758i
\(82\) −6.32995 + 15.2819i −0.699026 + 1.68760i
\(83\) 2.88654 2.88654i 0.316839 0.316839i −0.530713 0.847552i \(-0.678076\pi\)
0.847552 + 0.530713i \(0.178076\pi\)
\(84\) −8.04927 −0.878247
\(85\) 0 0
\(86\) 11.7282 1.26469
\(87\) 6.44640 6.44640i 0.691126 0.691126i
\(88\) −16.5874 + 40.0454i −1.76822 + 4.26886i
\(89\) 8.34827i 0.884914i 0.896790 + 0.442457i \(0.145893\pi\)
−0.896790 + 0.442457i \(0.854107\pi\)
\(90\) 0 0
\(91\) 0.622997 + 1.50405i 0.0653079 + 0.157667i
\(92\) 23.7398 9.83334i 2.47504 1.02520i
\(93\) 2.40042 + 2.40042i 0.248912 + 0.248912i
\(94\) −9.65181 9.65181i −0.995509 0.995509i
\(95\) 0 0
\(96\) 7.91890 + 19.1179i 0.808219 + 1.95121i
\(97\) −2.47754 1.02623i −0.251556 0.104198i 0.253342 0.967377i \(-0.418470\pi\)
−0.504899 + 0.863179i \(0.668470\pi\)
\(98\) 13.4959i 1.36329i
\(99\) −3.43469 + 8.29208i −0.345200 + 0.833385i
\(100\) 0 0
\(101\) −17.2825 −1.71967 −0.859836 0.510569i \(-0.829435\pi\)
−0.859836 + 0.510569i \(0.829435\pi\)
\(102\) −11.6435 + 2.09973i −1.15288 + 0.207904i
\(103\) −13.6466 −1.34464 −0.672322 0.740259i \(-0.734703\pi\)
−0.672322 + 0.740259i \(0.734703\pi\)
\(104\) 7.34904 7.34904i 0.720633 0.720633i
\(105\) 0 0
\(106\) 14.9457i 1.45166i
\(107\) 12.5201 + 5.18598i 1.21036 + 0.501348i 0.894333 0.447402i \(-0.147651\pi\)
0.316028 + 0.948750i \(0.397651\pi\)
\(108\) 10.5717 + 25.5223i 1.01726 + 2.45588i
\(109\) 6.80733 2.81969i 0.652024 0.270077i −0.0320540 0.999486i \(-0.510205\pi\)
0.684078 + 0.729409i \(0.260205\pi\)
\(110\) 0 0
\(111\) −1.89341 1.89341i −0.179715 0.179715i
\(112\) 18.2686 7.56712i 1.72622 0.715025i
\(113\) 6.14736 + 14.8410i 0.578295 + 1.39613i 0.894342 + 0.447384i \(0.147644\pi\)
−0.316047 + 0.948744i \(0.602356\pi\)
\(114\) 19.0175 + 7.87729i 1.78115 + 0.737776i
\(115\) 0 0
\(116\) −17.6270 + 42.5553i −1.63662 + 3.95116i
\(117\) 1.52174 1.52174i 0.140685 0.140685i
\(118\) 3.55871 0.327606
\(119\) 1.04035 + 5.76899i 0.0953689 + 0.528843i
\(120\) 0 0
\(121\) −8.34731 + 8.34731i −0.758847 + 0.758847i
\(122\) 6.80008 16.4169i 0.615651 1.48631i
\(123\) 6.45920i 0.582407i
\(124\) −15.8461 6.56369i −1.42303 0.589437i
\(125\) 0 0
\(126\) 6.69220 2.77200i 0.596189 0.246949i
\(127\) 6.00118 + 6.00118i 0.532518 + 0.532518i 0.921321 0.388803i \(-0.127111\pi\)
−0.388803 + 0.921321i \(0.627111\pi\)
\(128\) −20.6110 20.6110i −1.82177 1.82177i
\(129\) 4.23123 1.75263i 0.372539 0.154311i
\(130\) 0 0
\(131\) 12.8061 + 5.30445i 1.11887 + 0.463452i 0.863985 0.503518i \(-0.167961\pi\)
0.254888 + 0.966971i \(0.417961\pi\)
\(132\) 27.0362i 2.35320i
\(133\) 3.90296 9.42258i 0.338430 0.817042i
\(134\) 3.74402 3.74402i 0.323434 0.323434i
\(135\) 0 0
\(136\) 31.4846 20.2303i 2.69978 1.73473i
\(137\) 0.471082 0.0402473 0.0201236 0.999797i \(-0.493594\pi\)
0.0201236 + 0.999797i \(0.493594\pi\)
\(138\) 9.74844 9.74844i 0.829842 0.829842i
\(139\) 1.54005 3.71802i 0.130626 0.315358i −0.845012 0.534748i \(-0.820407\pi\)
0.975637 + 0.219390i \(0.0704066\pi\)
\(140\) 0 0
\(141\) −4.92445 2.03977i −0.414713 0.171780i
\(142\) 2.15502 + 5.20267i 0.180845 + 0.436599i
\(143\) 5.05186 2.09255i 0.422457 0.174988i
\(144\) −18.4835 18.4835i −1.54030 1.54030i
\(145\) 0 0
\(146\) −8.87519 + 3.67622i −0.734516 + 0.304246i
\(147\) −2.01679 4.86896i −0.166342 0.401585i
\(148\) 12.4992 + 5.17734i 1.02743 + 0.425574i
\(149\) 7.65894i 0.627445i −0.949515 0.313722i \(-0.898424\pi\)
0.949515 0.313722i \(-0.101576\pi\)
\(150\) 0 0
\(151\) 6.23341 6.23341i 0.507268 0.507268i −0.406419 0.913687i \(-0.633223\pi\)
0.913687 + 0.406419i \(0.133223\pi\)
\(152\) −65.1109 −5.28119
\(153\) 6.51941 4.18902i 0.527063 0.338662i
\(154\) 18.4049 1.48311
\(155\) 0 0
\(156\) 2.48081 5.98920i 0.198624 0.479520i
\(157\) 7.63116i 0.609033i −0.952507 0.304517i \(-0.901505\pi\)
0.952507 0.304517i \(-0.0984949\pi\)
\(158\) 3.12283 + 1.29352i 0.248439 + 0.102907i
\(159\) −2.23344 5.39201i −0.177124 0.427614i
\(160\) 0 0
\(161\) −4.83006 4.83006i −0.380662 0.380662i
\(162\) −0.327357 0.327357i −0.0257196 0.0257196i
\(163\) −22.1342 + 9.16827i −1.73368 + 0.718115i −0.734461 + 0.678651i \(0.762565\pi\)
−0.999221 + 0.0394639i \(0.987435\pi\)
\(164\) −12.4889 30.1509i −0.975221 2.35439i
\(165\) 0 0
\(166\) 11.0659i 0.858880i
\(167\) 1.79012 4.32172i 0.138523 0.334425i −0.839360 0.543576i \(-0.817070\pi\)
0.977883 + 0.209151i \(0.0670700\pi\)
\(168\) 9.65932 9.65932i 0.745233 0.745233i
\(169\) 11.6889 0.899144
\(170\) 0 0
\(171\) −13.4823 −1.03102
\(172\) −16.3622 + 16.3622i −1.24761 + 1.24761i
\(173\) 5.55646 13.4145i 0.422450 1.01988i −0.559172 0.829051i \(-0.688881\pi\)
0.981622 0.190833i \(-0.0611190\pi\)
\(174\) 24.7131i 1.87349i
\(175\) 0 0
\(176\) −25.4167 61.3614i −1.91586 4.62529i
\(177\) 1.28388 0.531802i 0.0965026 0.0399727i
\(178\) −16.0021 16.0021i −1.19941 1.19941i
\(179\) 13.5266 + 13.5266i 1.01103 + 1.01103i 0.999939 + 0.0110900i \(0.00353012\pi\)
0.0110900 + 0.999939i \(0.496470\pi\)
\(180\) 0 0
\(181\) −2.49861 6.03218i −0.185720 0.448368i 0.803407 0.595430i \(-0.203018\pi\)
−0.989127 + 0.147062i \(0.953018\pi\)
\(182\) −4.07715 1.68881i −0.302218 0.125183i
\(183\) 6.93893i 0.512941i
\(184\) −16.6881 + 40.2886i −1.23026 + 2.97011i
\(185\) 0 0
\(186\) −9.20231 −0.674746
\(187\) 19.3771 3.49438i 1.41699 0.255534i
\(188\) 26.9307 1.96413
\(189\) 5.19272 5.19272i 0.377715 0.377715i
\(190\) 0 0
\(191\) 19.3014i 1.39660i 0.715806 + 0.698299i \(0.246059\pi\)
−0.715806 + 0.698299i \(0.753941\pi\)
\(192\) −24.6210 10.1984i −1.77687 0.736003i
\(193\) 0.802917 + 1.93841i 0.0577952 + 0.139530i 0.950139 0.311826i \(-0.100941\pi\)
−0.892344 + 0.451356i \(0.850941\pi\)
\(194\) 6.71608 2.78189i 0.482186 0.199728i
\(195\) 0 0
\(196\) 18.8283 + 18.8283i 1.34488 + 1.34488i
\(197\) 14.4140 5.97048i 1.02696 0.425379i 0.195343 0.980735i \(-0.437418\pi\)
0.831613 + 0.555356i \(0.187418\pi\)
\(198\) −9.31070 22.4780i −0.661683 1.59744i
\(199\) 23.4064 + 9.69526i 1.65924 + 0.687278i 0.998019 0.0629154i \(-0.0200398\pi\)
0.661218 + 0.750194i \(0.270040\pi\)
\(200\) 0 0
\(201\) 0.791244 1.91023i 0.0558101 0.134737i
\(202\) 33.1273 33.1273i 2.33083 2.33083i
\(203\) 12.2446 0.859402
\(204\) 13.3146 19.1733i 0.932208 1.34240i
\(205\) 0 0
\(206\) 26.1581 26.1581i 1.82252 1.82252i
\(207\) −3.45554 + 8.34242i −0.240177 + 0.579838i
\(208\) 15.9253i 1.10422i
\(209\) −31.6489 13.1094i −2.18920 0.906798i
\(210\) 0 0
\(211\) 3.14022 1.30072i 0.216182 0.0895453i −0.271964 0.962307i \(-0.587673\pi\)
0.488146 + 0.872762i \(0.337673\pi\)
\(212\) 20.8510 + 20.8510i 1.43205 + 1.43205i
\(213\) 1.55494 + 1.55494i 0.106543 + 0.106543i
\(214\) −33.9392 + 14.0581i −2.32003 + 0.960990i
\(215\) 0 0
\(216\) −43.3136 17.9411i −2.94712 1.22074i
\(217\) 4.55947i 0.309517i
\(218\) −7.64356 + 18.4532i −0.517687 + 1.24981i
\(219\) −2.65256 + 2.65256i −0.179243 + 0.179243i
\(220\) 0 0
\(221\) −4.61316 1.00393i −0.310315 0.0675314i
\(222\) 7.25864 0.487168
\(223\) 7.58368 7.58368i 0.507841 0.507841i −0.406022 0.913863i \(-0.633085\pi\)
0.913863 + 0.406022i \(0.133085\pi\)
\(224\) −10.6360 + 25.6775i −0.710645 + 1.71565i
\(225\) 0 0
\(226\) −40.2308 16.6642i −2.67611 1.10848i
\(227\) 4.04015 + 9.75380i 0.268154 + 0.647382i 0.999397 0.0347359i \(-0.0110590\pi\)
−0.731242 + 0.682118i \(0.761059\pi\)
\(228\) −37.5212 + 15.5418i −2.48490 + 1.02928i
\(229\) 9.07841 + 9.07841i 0.599918 + 0.599918i 0.940291 0.340372i \(-0.110553\pi\)
−0.340372 + 0.940291i \(0.610553\pi\)
\(230\) 0 0
\(231\) 6.63998 2.75037i 0.436879 0.180961i
\(232\) −29.9146 72.2202i −1.96399 4.74149i
\(233\) 24.8035 + 10.2740i 1.62493 + 0.673070i 0.994651 0.103295i \(-0.0329387\pi\)
0.630283 + 0.776365i \(0.282939\pi\)
\(234\) 5.83379i 0.381367i
\(235\) 0 0
\(236\) −4.96480 + 4.96480i −0.323181 + 0.323181i
\(237\) 1.31993 0.0857388
\(238\) −13.0522 9.06391i −0.846051 0.587526i
\(239\) −4.40382 −0.284860 −0.142430 0.989805i \(-0.545491\pi\)
−0.142430 + 0.989805i \(0.545491\pi\)
\(240\) 0 0
\(241\) 2.68549 6.48334i 0.172987 0.417629i −0.813478 0.581595i \(-0.802429\pi\)
0.986466 + 0.163966i \(0.0524288\pi\)
\(242\) 32.0005i 2.05707i
\(243\) −14.4830 5.99906i −0.929086 0.384840i
\(244\) 13.4165 + 32.3902i 0.858902 + 2.07357i
\(245\) 0 0
\(246\) −12.3811 12.3811i −0.789389 0.789389i
\(247\) 5.80813 + 5.80813i 0.369563 + 0.369563i
\(248\) 26.8923 11.1392i 1.70767 0.707338i
\(249\) 1.65365 + 3.99227i 0.104796 + 0.253000i
\(250\) 0 0
\(251\) 15.3498i 0.968873i 0.874826 + 0.484437i \(0.160975\pi\)
−0.874826 + 0.484437i \(0.839025\pi\)
\(252\) −5.46912 + 13.2036i −0.344522 + 0.831750i
\(253\) −16.2234 + 16.2234i −1.01996 + 1.01996i
\(254\) −23.0063 −1.44354
\(255\) 0 0
\(256\) 28.6638 1.79149
\(257\) −7.20084 + 7.20084i −0.449176 + 0.449176i −0.895080 0.445905i \(-0.852882\pi\)
0.445905 + 0.895080i \(0.352882\pi\)
\(258\) −4.75101 + 11.4699i −0.295785 + 0.714088i
\(259\) 3.59644i 0.223472i
\(260\) 0 0
\(261\) −6.19431 14.9544i −0.383418 0.925654i
\(262\) −34.7145 + 14.3792i −2.14467 + 0.888351i
\(263\) 0.108060 + 0.108060i 0.00666326 + 0.00666326i 0.710431 0.703767i \(-0.248500\pi\)
−0.703767 + 0.710431i \(0.748500\pi\)
\(264\) −32.4441 32.4441i −1.99680 1.99680i
\(265\) 0 0
\(266\) 10.5801 + 25.5426i 0.648706 + 1.56612i
\(267\) −8.16440 3.38181i −0.499653 0.206963i
\(268\) 10.4467i 0.638131i
\(269\) 6.28235 15.1669i 0.383042 0.924745i −0.608332 0.793682i \(-0.708161\pi\)
0.991374 0.131062i \(-0.0418388\pi\)
\(270\) 0 0
\(271\) 11.0378 0.670499 0.335249 0.942129i \(-0.391179\pi\)
0.335249 + 0.942129i \(0.391179\pi\)
\(272\) −12.1940 + 56.0328i −0.739370 + 3.39749i
\(273\) −1.72329 −0.104298
\(274\) −0.902976 + 0.902976i −0.0545508 + 0.0545508i
\(275\) 0 0
\(276\) 27.2003i 1.63727i
\(277\) −2.60167 1.07765i −0.156319 0.0647496i 0.303152 0.952942i \(-0.401961\pi\)
−0.459471 + 0.888193i \(0.651961\pi\)
\(278\) 4.17475 + 10.0787i 0.250385 + 0.604482i
\(279\) 5.56851 2.30655i 0.333378 0.138090i
\(280\) 0 0
\(281\) 2.64770 + 2.64770i 0.157949 + 0.157949i 0.781657 0.623708i \(-0.214375\pi\)
−0.623708 + 0.781657i \(0.714375\pi\)
\(282\) 13.3491 5.52938i 0.794927 0.329270i
\(283\) −9.46151 22.8421i −0.562428 1.35782i −0.907819 0.419363i \(-0.862253\pi\)
0.345390 0.938459i \(-0.387747\pi\)
\(284\) −10.2648 4.25182i −0.609104 0.252299i
\(285\) 0 0
\(286\) −5.67244 + 13.6945i −0.335418 + 0.809772i
\(287\) −6.13446 + 6.13446i −0.362106 + 0.362106i
\(288\) 36.7406 2.16496
\(289\) −15.4626 7.06459i −0.909564 0.415564i
\(290\) 0 0
\(291\) 2.00726 2.00726i 0.117668 0.117668i
\(292\) 7.25314 17.5106i 0.424458 1.02473i
\(293\) 5.52823i 0.322963i −0.986876 0.161481i \(-0.948373\pi\)
0.986876 0.161481i \(-0.0516272\pi\)
\(294\) 13.1987 + 5.46708i 0.769763 + 0.318846i
\(295\) 0 0
\(296\) −21.2123 + 8.78641i −1.23294 + 0.510700i
\(297\) −17.4415 17.4415i −1.01206 1.01206i
\(298\) 14.6807 + 14.6807i 0.850433 + 0.850433i
\(299\) 5.08253 2.10525i 0.293930 0.121750i
\(300\) 0 0
\(301\) 5.68302 + 2.35398i 0.327564 + 0.135681i
\(302\) 23.8966i 1.37509i
\(303\) 7.00098 16.9019i 0.402196 0.970987i
\(304\) 70.5474 70.5474i 4.04617 4.04617i
\(305\) 0 0
\(306\) −4.46693 + 20.5260i −0.255357 + 1.17340i
\(307\) 24.0823 1.37445 0.687224 0.726446i \(-0.258829\pi\)
0.687224 + 0.726446i \(0.258829\pi\)
\(308\) −25.6769 + 25.6769i −1.46308 + 1.46308i
\(309\) 5.52813 13.3461i 0.314484 0.759232i
\(310\) 0 0
\(311\) −1.44060 0.596714i −0.0816887 0.0338366i 0.341465 0.939895i \(-0.389077\pi\)
−0.423154 + 0.906058i \(0.639077\pi\)
\(312\) 4.21015 + 10.1642i 0.238353 + 0.575435i
\(313\) 18.9492 7.84901i 1.07107 0.443652i 0.223703 0.974657i \(-0.428185\pi\)
0.847369 + 0.531005i \(0.178185\pi\)
\(314\) 14.6275 + 14.6275i 0.825478 + 0.825478i
\(315\) 0 0
\(316\) −6.16131 + 2.55210i −0.346601 + 0.143567i
\(317\) 8.01624 + 19.3529i 0.450237 + 1.08697i 0.972232 + 0.234019i \(0.0751878\pi\)
−0.521995 + 0.852948i \(0.674812\pi\)
\(318\) 14.6166 + 6.05438i 0.819656 + 0.339513i
\(319\) 41.1276i 2.30270i
\(320\) 0 0
\(321\) −10.1435 + 10.1435i −0.566157 + 0.566157i
\(322\) 18.5166 1.03189
\(323\) 15.9885 + 24.8831i 0.889624 + 1.38453i
\(324\) 0.913401 0.0507445
\(325\) 0 0
\(326\) 24.8532 60.0009i 1.37649 3.32314i
\(327\) 7.79963i 0.431321i
\(328\) 51.1688 + 21.1948i 2.82533 + 1.17029i
\(329\) −2.73964 6.61408i −0.151041 0.364646i
\(330\) 0 0
\(331\) 1.14575 + 1.14575i 0.0629760 + 0.0629760i 0.737893 0.674917i \(-0.235821\pi\)
−0.674917 + 0.737893i \(0.735821\pi\)
\(332\) −15.4382 15.4382i −0.847280 0.847280i
\(333\) −4.39235 + 1.81937i −0.240700 + 0.0997010i
\(334\) 4.85261 + 11.7152i 0.265523 + 0.641030i
\(335\) 0 0
\(336\) 20.9317i 1.14192i
\(337\) −3.83641 + 9.26190i −0.208982 + 0.504528i −0.993264 0.115878i \(-0.963032\pi\)
0.784281 + 0.620406i \(0.213032\pi\)
\(338\) −22.4054 + 22.4054i −1.21869 + 1.21869i
\(339\) −17.0044 −0.923553
\(340\) 0 0
\(341\) 15.3145 0.829328
\(342\) 25.8430 25.8430i 1.39743 1.39743i
\(343\) 6.51735 15.7343i 0.351904 0.849571i
\(344\) 39.2701i 2.11730i
\(345\) 0 0
\(346\) 15.0624 + 36.3637i 0.809757 + 1.95493i
\(347\) −11.2116 + 4.64398i −0.601869 + 0.249302i −0.662747 0.748843i \(-0.730610\pi\)
0.0608788 + 0.998145i \(0.480610\pi\)
\(348\) −34.4775 34.4775i −1.84819 1.84819i
\(349\) 19.1558 + 19.1558i 1.02539 + 1.02539i 0.999669 + 0.0257160i \(0.00818655\pi\)
0.0257160 + 0.999669i \(0.491813\pi\)
\(350\) 0 0
\(351\) 2.26332 + 5.46414i 0.120807 + 0.291654i
\(352\) 86.2465 + 35.7245i 4.59695 + 1.90412i
\(353\) 18.6941i 0.994986i 0.867468 + 0.497493i \(0.165746\pi\)
−0.867468 + 0.497493i \(0.834254\pi\)
\(354\) −1.44160 + 3.48033i −0.0766202 + 0.184977i
\(355\) 0 0
\(356\) 44.6494 2.36641
\(357\) −6.06337 1.31953i −0.320908 0.0698367i
\(358\) −51.8561 −2.74068
\(359\) −0.959920 + 0.959920i −0.0506626 + 0.0506626i −0.731984 0.681322i \(-0.761406\pi\)
0.681322 + 0.731984i \(0.261406\pi\)
\(360\) 0 0
\(361\) 32.4588i 1.70836i
\(362\) 16.3519 + 6.77318i 0.859437 + 0.355991i
\(363\) −4.78205 11.5449i −0.250993 0.605950i
\(364\) 8.04416 3.33200i 0.421629 0.174644i
\(365\) 0 0
\(366\) 13.3006 + 13.3006i 0.695235 + 0.695235i
\(367\) −31.4726 + 13.0364i −1.64285 + 0.680493i −0.996582 0.0826132i \(-0.973673\pi\)
−0.646273 + 0.763106i \(0.723673\pi\)
\(368\) −25.5710 61.7339i −1.33298 3.21810i
\(369\) 10.5954 + 4.38874i 0.551573 + 0.228469i
\(370\) 0 0
\(371\) 2.99976 7.24207i 0.155740 0.375989i
\(372\) 12.8383 12.8383i 0.665632 0.665632i
\(373\) 0.465809 0.0241187 0.0120593 0.999927i \(-0.496161\pi\)
0.0120593 + 0.999927i \(0.496161\pi\)
\(374\) −30.4442 + 43.8403i −1.57423 + 2.26693i
\(375\) 0 0
\(376\) −32.3175 + 32.3175i −1.66665 + 1.66665i
\(377\) −3.77382 + 9.11080i −0.194361 + 0.469230i
\(378\) 19.9069i 1.02390i
\(379\) −12.1522 5.03360i −0.624216 0.258559i 0.0480776 0.998844i \(-0.484691\pi\)
−0.672293 + 0.740285i \(0.734691\pi\)
\(380\) 0 0
\(381\) −8.30003 + 3.43798i −0.425223 + 0.176133i
\(382\) −36.9971 36.9971i −1.89294 1.89294i
\(383\) −0.650971 0.650971i −0.0332631 0.0332631i 0.690280 0.723543i \(-0.257488\pi\)
−0.723543 + 0.690280i \(0.757488\pi\)
\(384\) 28.5064 11.8077i 1.45471 0.602561i
\(385\) 0 0
\(386\) −5.25462 2.17653i −0.267453 0.110783i
\(387\) 8.13154i 0.413349i
\(388\) −5.48864 + 13.2507i −0.278643 + 0.672704i
\(389\) −14.5372 + 14.5372i −0.737064 + 0.737064i −0.972009 0.234945i \(-0.924509\pi\)
0.234945 + 0.972009i \(0.424509\pi\)
\(390\) 0 0
\(391\) 19.4948 3.51559i 0.985892 0.177791i
\(392\) −45.1889 −2.28239
\(393\) −10.3753 + 10.3753i −0.523362 + 0.523362i
\(394\) −16.1847 + 39.0732i −0.815372 + 1.96848i
\(395\) 0 0
\(396\) 44.3488 + 18.3699i 2.22861 + 0.923122i
\(397\) −11.4107 27.5479i −0.572687 1.38259i −0.899259 0.437416i \(-0.855894\pi\)
0.326572 0.945172i \(-0.394106\pi\)
\(398\) −63.4497 + 26.2817i −3.18045 + 1.31738i
\(399\) 7.63401 + 7.63401i 0.382178 + 0.382178i
\(400\) 0 0
\(401\) 4.40094 1.82293i 0.219773 0.0910328i −0.270081 0.962838i \(-0.587050\pi\)
0.489853 + 0.871805i \(0.337050\pi\)
\(402\) 2.14489 + 5.17823i 0.106977 + 0.258266i
\(403\) −3.39255 1.40524i −0.168995 0.0700000i
\(404\) 92.4327i 4.59870i
\(405\) 0 0
\(406\) −23.4706 + 23.4706i −1.16483 + 1.16483i
\(407\) −12.0799 −0.598776
\(408\) 7.03060 + 38.9863i 0.348066 + 1.93011i
\(409\) −32.0852 −1.58651 −0.793256 0.608888i \(-0.791616\pi\)
−0.793256 + 0.608888i \(0.791616\pi\)
\(410\) 0 0
\(411\) −0.190831 + 0.460707i −0.00941301 + 0.0227250i
\(412\) 72.9869i 3.59581i
\(413\) 1.72440 + 0.714270i 0.0848522 + 0.0351469i
\(414\) −9.36723 22.6145i −0.460374 1.11144i
\(415\) 0 0
\(416\) −15.8277 15.8277i −0.776019 0.776019i
\(417\) 3.01227 + 3.01227i 0.147511 + 0.147511i
\(418\) 85.7934 35.5368i 4.19629 1.73816i
\(419\) 6.70745 + 16.1932i 0.327680 + 0.791090i 0.998764 + 0.0497086i \(0.0158292\pi\)
−0.671083 + 0.741382i \(0.734171\pi\)
\(420\) 0 0
\(421\) 27.4320i 1.33695i −0.743733 0.668477i \(-0.766946\pi\)
0.743733 0.668477i \(-0.233054\pi\)
\(422\) −3.52597 + 8.51245i −0.171642 + 0.414379i
\(423\) −6.69189 + 6.69189i −0.325371 + 0.325371i
\(424\) −50.0433 −2.43032
\(425\) 0 0
\(426\) −5.96107 −0.288815
\(427\) 6.59007 6.59007i 0.318916 0.318916i
\(428\) 27.7364 66.9616i 1.34069 3.23671i
\(429\) 5.78827i 0.279460i
\(430\) 0 0
\(431\) 3.33847 + 8.05979i 0.160809 + 0.388226i 0.983661 0.180028i \(-0.0576189\pi\)
−0.822853 + 0.568255i \(0.807619\pi\)
\(432\) 66.3692 27.4910i 3.19319 1.32266i
\(433\) −6.86854 6.86854i −0.330081 0.330081i 0.522536 0.852617i \(-0.324986\pi\)
−0.852617 + 0.522536i \(0.824986\pi\)
\(434\) −8.73964 8.73964i −0.419516 0.419516i
\(435\) 0 0
\(436\) −15.0806 36.4079i −0.722232 1.74362i
\(437\) −31.8411 13.1890i −1.52317 0.630916i
\(438\) 10.1689i 0.485890i
\(439\) 8.84357 21.3503i 0.422080 1.01899i −0.559652 0.828727i \(-0.689065\pi\)
0.981733 0.190265i \(-0.0609347\pi\)
\(440\) 0 0
\(441\) −9.35713 −0.445577
\(442\) 10.7669 6.91822i 0.512129 0.329066i
\(443\) −0.787522 −0.0374163 −0.0187081 0.999825i \(-0.505955\pi\)
−0.0187081 + 0.999825i \(0.505955\pi\)
\(444\) −10.1266 + 10.1266i −0.480588 + 0.480588i
\(445\) 0 0
\(446\) 29.0730i 1.37665i
\(447\) 7.49025 + 3.10257i 0.354277 + 0.146746i
\(448\) −13.6975 33.0688i −0.647147 1.56235i
\(449\) 18.6440 7.72258i 0.879863 0.364451i 0.103419 0.994638i \(-0.467022\pi\)
0.776444 + 0.630187i \(0.217022\pi\)
\(450\) 0 0
\(451\) 20.6046 + 20.6046i 0.970235 + 0.970235i
\(452\) 79.3749 32.8782i 3.73348 1.54646i
\(453\) 3.57103 + 8.62123i 0.167782 + 0.405061i
\(454\) −26.4404 10.9520i −1.24091 0.514002i
\(455\) 0 0
\(456\) 26.3758 63.6769i 1.23516 2.98194i
\(457\) −4.91406 + 4.91406i −0.229870 + 0.229870i −0.812638 0.582768i \(-0.801970\pi\)
0.582768 + 0.812638i \(0.301970\pi\)
\(458\) −34.8032 −1.62625
\(459\) 3.77955 + 20.9585i 0.176414 + 0.978259i
\(460\) 0 0
\(461\) −4.93835 + 4.93835i −0.230002 + 0.230002i −0.812693 0.582692i \(-0.802000\pi\)
0.582692 + 0.812693i \(0.302000\pi\)
\(462\) −7.45565 + 17.9995i −0.346868 + 0.837414i
\(463\) 8.07063i 0.375074i 0.982258 + 0.187537i \(0.0600505\pi\)
−0.982258 + 0.187537i \(0.939950\pi\)
\(464\) 110.663 + 45.8379i 5.13738 + 2.12797i
\(465\) 0 0
\(466\) −67.2370 + 27.8505i −3.11469 + 1.29015i
\(467\) −3.66051 3.66051i −0.169388 0.169388i 0.617322 0.786710i \(-0.288217\pi\)
−0.786710 + 0.617322i \(0.788217\pi\)
\(468\) −8.13879 8.13879i −0.376216 0.376216i
\(469\) 2.56566 1.06273i 0.118471 0.0490723i
\(470\) 0 0
\(471\) 7.46309 + 3.09131i 0.343881 + 0.142440i
\(472\) 11.9158i 0.548467i
\(473\) 7.90665 19.0883i 0.363548 0.877682i
\(474\) −2.53006 + 2.53006i −0.116210 + 0.116210i
\(475\) 0 0
\(476\) 30.8545 5.56416i 1.41421 0.255033i
\(477\) −10.3623 −0.474458
\(478\) 8.44130 8.44130i 0.386096 0.386096i
\(479\) 10.8407 26.1717i 0.495323 1.19581i −0.456654 0.889644i \(-0.650952\pi\)
0.951977 0.306171i \(-0.0990478\pi\)
\(480\) 0 0
\(481\) 2.67599 + 1.10843i 0.122015 + 0.0505402i
\(482\) 7.27977 + 17.5749i 0.331585 + 0.800516i
\(483\) 6.68029 2.76707i 0.303964 0.125906i
\(484\) 44.6443 + 44.6443i 2.02928 + 2.02928i
\(485\) 0 0
\(486\) 39.2603 16.2621i 1.78088 0.737666i
\(487\) −7.07109 17.0711i −0.320422 0.773567i −0.999229 0.0392506i \(-0.987503\pi\)
0.678808 0.734316i \(-0.262497\pi\)
\(488\) −54.9692 22.7690i −2.48834 1.03070i
\(489\) 25.3607i 1.14685i
\(490\) 0 0
\(491\) −10.1423 + 10.1423i −0.457714 + 0.457714i −0.897905 0.440190i \(-0.854911\pi\)
0.440190 + 0.897905i \(0.354911\pi\)
\(492\) 34.5460 1.55745
\(493\) −20.2542 + 29.1665i −0.912205 + 1.31359i
\(494\) −22.2662 −1.00180
\(495\) 0 0
\(496\) −17.0685 + 41.2070i −0.766398 + 1.85025i
\(497\) 2.95353i 0.132484i
\(498\) −10.8222 4.48269i −0.484953 0.200874i
\(499\) 12.7071 + 30.6775i 0.568846 + 1.37332i 0.902529 + 0.430630i \(0.141709\pi\)
−0.333683 + 0.942685i \(0.608291\pi\)
\(500\) 0 0
\(501\) 3.50138 + 3.50138i 0.156430 + 0.156430i
\(502\) −29.4228 29.4228i −1.31320 1.31320i
\(503\) −4.11079 + 1.70275i −0.183291 + 0.0759217i −0.472442 0.881362i \(-0.656627\pi\)
0.289150 + 0.957284i \(0.406627\pi\)
\(504\) −9.28159 22.4077i −0.413435 0.998120i
\(505\) 0 0
\(506\) 62.1944i 2.76488i
\(507\) −4.73506 + 11.4314i −0.210291 + 0.507688i
\(508\) 32.0963 32.0963i 1.42404 1.42404i
\(509\) −31.7678 −1.40808 −0.704041 0.710159i \(-0.748623\pi\)
−0.704041 + 0.710159i \(0.748623\pi\)
\(510\) 0 0
\(511\) −5.03840 −0.222886
\(512\) −13.7212 + 13.7212i −0.606398 + 0.606398i
\(513\) 14.1793 34.2318i 0.626031 1.51137i
\(514\) 27.6053i 1.21762i
\(515\) 0 0
\(516\) −9.37368 22.6301i −0.412653 0.996233i
\(517\) −22.2156 + 9.20202i −0.977042 + 0.404704i
\(518\) 6.89370 + 6.89370i 0.302892 + 0.302892i
\(519\) 10.8682 + 10.8682i 0.477060 + 0.477060i
\(520\) 0 0
\(521\) −14.7255 35.5506i −0.645137 1.55750i −0.819663 0.572846i \(-0.805839\pi\)
0.174526 0.984653i \(-0.444161\pi\)
\(522\) 40.5381 + 16.7914i 1.77430 + 0.734941i
\(523\) 13.6513i 0.596930i −0.954421 0.298465i \(-0.903525\pi\)
0.954421 0.298465i \(-0.0964746\pi\)
\(524\) 28.3700 68.4913i 1.23935 2.99206i
\(525\) 0 0
\(526\) −0.414261 −0.0180627
\(527\) −10.8606 7.54199i −0.473096 0.328534i
\(528\) 70.3061 3.05968
\(529\) −0.0584274 + 0.0584274i −0.00254032 + 0.00254032i
\(530\) 0 0
\(531\) 2.46736i 0.107074i
\(532\) −50.3952 20.8744i −2.18491 0.905018i
\(533\) −2.67379 6.45511i −0.115815 0.279602i
\(534\) 22.1319 9.16734i 0.957742 0.396710i
\(535\) 0 0
\(536\) −12.5362 12.5362i −0.541483 0.541483i
\(537\) −18.7082 + 7.74921i −0.807320 + 0.334403i
\(538\) 17.0301 + 41.1143i 0.734219 + 1.77256i
\(539\) −21.9653 9.09833i −0.946113 0.391893i
\(540\) 0 0
\(541\) 2.59149 6.25641i 0.111417 0.268984i −0.858329 0.513099i \(-0.828497\pi\)
0.969746 + 0.244115i \(0.0784974\pi\)
\(542\) −21.1574 + 21.1574i −0.908788 + 0.908788i
\(543\) 6.91149 0.296600
\(544\) −43.5703 67.8089i −1.86806 2.90728i
\(545\) 0 0
\(546\) 3.30323 3.30323i 0.141365 0.141365i
\(547\) −5.21748 + 12.5961i −0.223084 + 0.538571i −0.995306 0.0967813i \(-0.969145\pi\)
0.772222 + 0.635353i \(0.219145\pi\)
\(548\) 2.51951i 0.107628i
\(549\) −11.3823 4.71470i −0.485784 0.201218i
\(550\) 0 0
\(551\) 57.0775 23.6423i 2.43158 1.00719i
\(552\) −32.6411 32.6411i −1.38930 1.38930i
\(553\) 1.25357 + 1.25357i 0.0533072 + 0.0533072i
\(554\) 7.05257 2.92127i 0.299635 0.124113i
\(555\) 0 0
\(556\) −19.8852 8.23672i −0.843321 0.349315i
\(557\) 37.3500i 1.58257i 0.611448 + 0.791285i \(0.290587\pi\)
−0.611448 + 0.791285i \(0.709413\pi\)
\(558\) −6.25256 + 15.0950i −0.264692 + 0.639023i
\(559\) −3.50304 + 3.50304i −0.148163 + 0.148163i
\(560\) 0 0
\(561\) −4.43208 + 20.3659i −0.187122 + 0.859848i
\(562\) −10.1503 −0.428165
\(563\) −21.1992 + 21.1992i −0.893440 + 0.893440i −0.994845 0.101405i \(-0.967666\pi\)
0.101405 + 0.994845i \(0.467666\pi\)
\(564\) −10.9094 + 26.3376i −0.459368 + 1.10901i
\(565\) 0 0
\(566\) 61.9200 + 25.6481i 2.60269 + 1.07807i
\(567\) −0.0929195 0.224328i −0.00390225 0.00942087i
\(568\) 17.4203 7.21573i 0.730940 0.302765i
\(569\) −9.38514 9.38514i −0.393446 0.393446i 0.482468 0.875914i \(-0.339740\pi\)
−0.875914 + 0.482468i \(0.839740\pi\)
\(570\) 0 0
\(571\) −10.1419 + 4.20092i −0.424426 + 0.175803i −0.584664 0.811275i \(-0.698774\pi\)
0.160238 + 0.987078i \(0.448774\pi\)
\(572\) −11.1917 27.0190i −0.467946 1.12972i
\(573\) −18.8763 7.81881i −0.788568 0.326635i
\(574\) 23.5172i 0.981589i
\(575\) 0 0
\(576\) −33.4578 + 33.4578i −1.39407 + 1.39407i
\(577\) 35.5804 1.48123 0.740615 0.671930i \(-0.234534\pi\)
0.740615 + 0.671930i \(0.234534\pi\)
\(578\) 43.1804 16.0974i 1.79607 0.669563i
\(579\) −2.22098 −0.0923006
\(580\) 0 0
\(581\) −2.22104 + 5.36207i −0.0921443 + 0.222456i
\(582\) 7.69508i 0.318971i
\(583\) −24.3249 10.0757i −1.00744 0.417294i
\(584\) 12.3092 + 29.7171i 0.509360 + 1.22970i
\(585\) 0 0
\(586\) 10.5966 + 10.5966i 0.437741 + 0.437741i
\(587\) −5.84325 5.84325i −0.241177 0.241177i 0.576160 0.817337i \(-0.304551\pi\)
−0.817337 + 0.576160i \(0.804551\pi\)
\(588\) −26.0409 + 10.7865i −1.07391 + 0.444827i
\(589\) 8.80357 + 21.2537i 0.362745 + 0.875744i
\(590\) 0 0
\(591\) 16.5151i 0.679342i
\(592\) 13.4634 32.5034i 0.553341 1.33588i
\(593\) 2.13713 2.13713i 0.0877612 0.0877612i −0.661863 0.749625i \(-0.730234\pi\)
0.749625 + 0.661863i \(0.230234\pi\)
\(594\) 66.8642 2.74347
\(595\) 0 0
\(596\) −40.9626 −1.67789
\(597\) −18.9634 + 18.9634i −0.776122 + 0.776122i
\(598\) −5.70688 + 13.7776i −0.233372 + 0.563409i
\(599\) 18.9682i 0.775020i −0.921865 0.387510i \(-0.873335\pi\)
0.921865 0.387510i \(-0.126665\pi\)
\(600\) 0 0
\(601\) −0.590707 1.42609i −0.0240954 0.0581716i 0.911374 0.411580i \(-0.135023\pi\)
−0.935469 + 0.353408i \(0.885023\pi\)
\(602\) −15.4054 + 6.38113i −0.627878 + 0.260076i
\(603\) −2.59584 2.59584i −0.105711 0.105711i
\(604\) −33.3384 33.3384i −1.35652 1.35652i
\(605\) 0 0
\(606\) 18.9781 + 45.8173i 0.770934 + 1.86120i
\(607\) 34.0864 + 14.1190i 1.38352 + 0.573074i 0.945421 0.325851i \(-0.105651\pi\)
0.438102 + 0.898925i \(0.355651\pi\)
\(608\) 140.230i 5.68709i
\(609\) −4.96017 + 11.9749i −0.200996 + 0.485248i
\(610\) 0 0
\(611\) 5.76569 0.233255
\(612\) −22.4043 34.8680i −0.905639 1.40946i
\(613\) 20.1267 0.812911 0.406455 0.913671i \(-0.366765\pi\)
0.406455 + 0.913671i \(0.366765\pi\)
\(614\) −46.1612 + 46.1612i −1.86291 + 1.86291i
\(615\) 0 0
\(616\) 61.6258i 2.48297i
\(617\) 26.3211 + 10.9026i 1.05965 + 0.438921i 0.843327 0.537401i \(-0.180594\pi\)
0.216322 + 0.976322i \(0.430594\pi\)
\(618\) 14.9856 + 36.1783i 0.602807 + 1.45531i
\(619\) 10.0301 4.15459i 0.403142 0.166987i −0.171893 0.985116i \(-0.554988\pi\)
0.575035 + 0.818129i \(0.304988\pi\)
\(620\) 0 0
\(621\) −17.5474 17.5474i −0.704153 0.704153i
\(622\) 3.90514 1.61756i 0.156582 0.0648583i
\(623\) −4.54214 10.9657i −0.181977 0.439332i
\(624\) −15.5746 6.45120i −0.623482 0.258255i
\(625\) 0 0
\(626\) −21.2770 + 51.3671i −0.850398 + 2.05304i
\(627\) 25.6414 25.6414i 1.02402 1.02402i
\(628\) −40.8140 −1.62866
\(629\) 8.56669 + 5.94900i 0.341576 + 0.237202i
\(630\) 0 0
\(631\) −23.8783 + 23.8783i −0.950579 + 0.950579i −0.998835 0.0482559i \(-0.984634\pi\)
0.0482559 + 0.998835i \(0.484634\pi\)
\(632\) 4.33114 10.4563i 0.172283 0.415929i
\(633\) 3.59797i 0.143006i
\(634\) −52.4615 21.7303i −2.08351 0.863019i
\(635\) 0 0
\(636\) −28.8383 + 11.9452i −1.14351 + 0.473658i
\(637\) 4.03102 + 4.03102i 0.159715 + 0.159715i
\(638\) 78.8339 + 78.8339i 3.12106 + 3.12106i
\(639\) 3.60717 1.49414i 0.142697 0.0591072i
\(640\) 0 0
\(641\) 13.5542 + 5.61433i 0.535359 + 0.221753i 0.633948 0.773375i \(-0.281433\pi\)
−0.0985897 + 0.995128i \(0.531433\pi\)
\(642\) 38.8865i 1.53473i
\(643\) −9.71032 + 23.4428i −0.382938 + 0.924493i 0.608457 + 0.793587i \(0.291789\pi\)
−0.991395 + 0.130906i \(0.958211\pi\)
\(644\) −25.8328 + 25.8328i −1.01795 + 1.01795i
\(645\) 0 0
\(646\) −78.3431 17.0492i −3.08237 0.670793i
\(647\) 37.8459 1.48788 0.743939 0.668248i \(-0.232955\pi\)
0.743939 + 0.668248i \(0.232955\pi\)
\(648\) −1.09610 + 1.09610i −0.0430590 + 0.0430590i
\(649\) 2.39912 5.79198i 0.0941736 0.227355i
\(650\) 0 0
\(651\) −4.45905 1.84700i −0.174764 0.0723896i
\(652\) 49.0350 + 118.381i 1.92036 + 4.63616i
\(653\) 30.3372 12.5661i 1.18718 0.491748i 0.300348 0.953830i \(-0.402897\pi\)
0.886837 + 0.462082i \(0.152897\pi\)
\(654\) −14.9504 14.9504i −0.584608 0.584608i
\(655\) 0 0
\(656\) −78.4057 + 32.4767i −3.06123 + 1.26800i
\(657\) 2.54883 + 6.15343i 0.0994394 + 0.240068i
\(658\) 17.9293 + 7.42657i 0.698958 + 0.289518i
\(659\) 35.5896i 1.38638i −0.720757 0.693188i \(-0.756206\pi\)
0.720757 0.693188i \(-0.243794\pi\)
\(660\) 0 0
\(661\) −2.10600 + 2.10600i −0.0819139 + 0.0819139i −0.746877 0.664963i \(-0.768447\pi\)
0.664963 + 0.746877i \(0.268447\pi\)
\(662\) −4.39236 −0.170714
\(663\) 2.85056 4.10487i 0.110707 0.159420i
\(664\) 37.0524 1.43791
\(665\) 0 0
\(666\) 4.93192 11.9067i 0.191108 0.461376i
\(667\) 41.3773i 1.60213i
\(668\) −23.1140 9.57415i −0.894309 0.370435i
\(669\) 4.34457 + 10.4887i 0.167971 + 0.405518i
\(670\) 0 0
\(671\) −22.1350 22.1350i −0.854511 0.854511i
\(672\) −20.8034 20.8034i −0.802509 0.802509i
\(673\) −29.9359 + 12.3999i −1.15394 + 0.477979i −0.875854 0.482576i \(-0.839701\pi\)
−0.278090 + 0.960555i \(0.589701\pi\)
\(674\) −10.3997 25.1070i −0.400580 0.967086i
\(675\) 0 0
\(676\) 62.5161i 2.40446i
\(677\) 15.5710 37.5918i 0.598443 1.44477i −0.276725 0.960949i \(-0.589249\pi\)
0.875168 0.483820i \(-0.160751\pi\)
\(678\) 32.5943 32.5943i 1.25178 1.25178i
\(679\) 3.81268 0.146317
\(680\) 0 0
\(681\) −11.1756 −0.428250
\(682\) −29.3551 + 29.3551i −1.12406 + 1.12406i
\(683\) −8.46078 + 20.4261i −0.323743 + 0.781584i 0.675288 + 0.737554i \(0.264020\pi\)
−0.999030 + 0.0440293i \(0.985980\pi\)
\(684\) 72.1079i 2.75711i
\(685\) 0 0
\(686\) 17.6671 + 42.6522i 0.674533 + 1.62847i
\(687\) −12.5560 + 5.20088i −0.479043 + 0.198426i
\(688\) 42.5490 + 42.5490i 1.62217 + 1.62217i
\(689\) 4.46405 + 4.46405i 0.170067 + 0.170067i
\(690\) 0 0
\(691\) 2.80528 + 6.77255i 0.106718 + 0.257640i 0.968214 0.250125i \(-0.0804718\pi\)
−0.861496 + 0.507765i \(0.830472\pi\)
\(692\) −71.7452 29.7178i −2.72734 1.12970i
\(693\) 12.7607i 0.484737i
\(694\) 12.5888 30.3921i 0.477865 1.15367i
\(695\) 0 0
\(696\) 82.7477 3.13654
\(697\) −4.46500 24.7595i −0.169124 0.937832i
\(698\) −73.4361 −2.77960
\(699\) −20.0954 + 20.0954i −0.760077 + 0.760077i
\(700\) 0 0
\(701\) 45.6656i 1.72477i 0.506255 + 0.862384i \(0.331029\pi\)
−0.506255 + 0.862384i \(0.668971\pi\)
\(702\) −14.8121 6.13537i −0.559047 0.231565i
\(703\) −6.94412 16.7646i −0.261903 0.632289i
\(704\) −111.073 + 46.0078i −4.18621 + 1.73398i
\(705\) 0 0
\(706\) −35.8331 35.8331i −1.34859 1.34859i
\(707\) 22.7011 9.40310i 0.853762 0.353640i
\(708\) −2.84426 6.86665i −0.106894 0.258064i
\(709\) 42.2410 + 17.4968i 1.58639 + 0.657105i 0.989410 0.145149i \(-0.0463661\pi\)
0.596983 + 0.802254i \(0.296366\pi\)
\(710\) 0 0
\(711\) 0.896835 2.16515i 0.0336339 0.0811995i
\(712\) −53.5803 + 53.5803i −2.00801 + 2.00801i
\(713\) 15.4075 0.577015
\(714\) 14.1516 9.09306i 0.529611 0.340299i
\(715\) 0 0
\(716\) 72.3450 72.3450i 2.70366 2.70366i
\(717\) 1.78395 4.30683i 0.0666227 0.160842i
\(718\) 3.67997i 0.137335i
\(719\) 0.497733 + 0.206168i 0.0185623 + 0.00768877i 0.391945 0.919989i \(-0.371802\pi\)
−0.373383 + 0.927677i \(0.621802\pi\)
\(720\) 0 0
\(721\) 17.9253 7.42490i 0.667572 0.276518i
\(722\) 62.2174 + 62.2174i 2.31549 + 2.31549i
\(723\) 5.25268 + 5.25268i 0.195349 + 0.195349i
\(724\) −32.2621 + 13.3634i −1.19901 + 0.496647i
\(725\) 0 0
\(726\) 31.2957 + 12.9631i 1.16149 + 0.481106i
\(727\) 42.2238i 1.56600i 0.622025 + 0.782998i \(0.286310\pi\)
−0.622025 + 0.782998i \(0.713690\pi\)
\(728\) −5.65471 + 13.6517i −0.209577 + 0.505965i
\(729\) 11.3716 11.3716i 0.421170 0.421170i
\(730\) 0 0
\(731\) −15.0077 + 9.64310i −0.555078 + 0.356663i
\(732\) −37.1118 −1.37169
\(733\) −2.67745 + 2.67745i −0.0988939 + 0.0988939i −0.754823 0.655929i \(-0.772277\pi\)
0.655929 + 0.754823i \(0.272277\pi\)
\(734\) 35.3387 85.3153i 1.30438 3.14904i
\(735\) 0 0
\(736\) 86.7701 + 35.9414i 3.19839 + 1.32482i
\(737\) −3.56954 8.61762i −0.131486 0.317434i
\(738\) −28.7217 + 11.8969i −1.05726 + 0.437932i
\(739\) −12.9186 12.9186i −0.475219 0.475219i 0.428380 0.903599i \(-0.359084\pi\)
−0.903599 + 0.428380i \(0.859084\pi\)
\(740\) 0 0
\(741\) −8.03304 + 3.32739i −0.295101 + 0.122235i
\(742\) 8.13170 + 19.6317i 0.298524 + 0.720701i
\(743\) 12.2614 + 5.07884i 0.449827 + 0.186325i 0.596084 0.802922i \(-0.296723\pi\)
−0.146257 + 0.989247i \(0.546723\pi\)
\(744\) 30.8124i 1.12964i
\(745\) 0 0
\(746\) −0.892868 + 0.892868i −0.0326902 + 0.0326902i
\(747\) 7.67231 0.280715
\(748\) −18.6891 103.635i −0.683341 3.78928i
\(749\) −19.2671 −0.704004
\(750\) 0 0
\(751\) −1.13681 + 2.74450i −0.0414828 + 0.100148i −0.943263 0.332047i \(-0.892261\pi\)
0.901780 + 0.432195i \(0.142261\pi\)
\(752\) 70.0318i 2.55380i
\(753\) −15.0118 6.21808i −0.547059 0.226599i
\(754\) −10.2300 24.6974i −0.372554 0.899426i
\(755\) 0 0
\(756\) −27.7724 27.7724i −1.01007 1.01007i
\(757\) −23.3928 23.3928i −0.850226 0.850226i 0.139934 0.990161i \(-0.455311\pi\)
−0.990161 + 0.139934i \(0.955311\pi\)
\(758\) 32.9419 13.6450i 1.19650 0.495608i
\(759\) −9.29414 22.4380i −0.337356 0.814449i
\(760\) 0 0
\(761\) 2.82578i 0.102434i 0.998688 + 0.0512172i \(0.0163101\pi\)
−0.998688 + 0.0512172i \(0.983690\pi\)
\(762\) 9.31962 22.4996i 0.337614 0.815073i
\(763\) −7.40749 + 7.40749i −0.268169 + 0.268169i
\(764\) 103.230 3.73474
\(765\) 0 0
\(766\) 2.49558 0.0901690
\(767\) −1.06293 + 1.06293i −0.0383802 + 0.0383802i
\(768\) −11.6115 + 28.0325i −0.418992 + 1.01154i
\(769\) 35.5112i 1.28057i 0.768139 + 0.640283i \(0.221183\pi\)
−0.768139 + 0.640283i \(0.778817\pi\)
\(770\) 0 0
\(771\) −4.12525 9.95923i −0.148567 0.358673i
\(772\) 10.3673 4.29427i 0.373127 0.154554i
\(773\) 37.8124 + 37.8124i 1.36002 + 1.36002i 0.873886 + 0.486132i \(0.161592\pi\)
0.486132 + 0.873886i \(0.338408\pi\)
\(774\) 15.5866 + 15.5866i 0.560250 + 0.560250i
\(775\) 0 0
\(776\) −9.31471 22.4877i −0.334379 0.807262i
\(777\) 3.51723 + 1.45688i 0.126180 + 0.0522654i
\(778\) 55.7301i 1.99802i
\(779\) −16.7508 + 40.4400i −0.600160 + 1.44891i
\(780\) 0 0
\(781\) 9.92043 0.354981
\(782\) −30.6291 + 44.1065i −1.09529 + 1.57725i
\(783\) 44.4841 1.58973
\(784\) 48.9620 48.9620i 1.74864 1.74864i
\(785\) 0 0
\(786\) 39.7748i 1.41872i
\(787\) 9.29791 + 3.85132i 0.331435 + 0.137285i 0.542194 0.840253i \(-0.317594\pi\)
−0.210760 + 0.977538i \(0.567594\pi\)
\(788\) −31.9321 77.0910i −1.13754 2.74625i
\(789\) −0.149454 + 0.0619059i −0.00532071 + 0.00220391i
\(790\) 0 0
\(791\) −16.1495 16.1495i −0.574210 0.574210i
\(792\) −75.2640 + 31.1754i −2.67439 + 1.10777i
\(793\) 2.87238 + 6.93453i 0.102001 + 0.246252i
\(794\) 74.6763 + 30.9319i 2.65016 + 1.09773i
\(795\) 0 0
\(796\) 51.8535 125.185i 1.83790 4.43708i
\(797\) 6.45088 6.45088i 0.228502 0.228502i −0.583565 0.812067i \(-0.698343\pi\)
0.812067 + 0.583565i \(0.198343\pi\)
\(798\) −29.2659 −1.03600
\(799\) 20.2864 + 4.41479i 0.717683 + 0.156184i
\(800\) 0 0
\(801\) −11.0947 + 11.0947i −0.392012 + 0.392012i
\(802\) −4.94157 + 11.9300i −0.174493 + 0.421263i
\(803\) 16.9232i 0.597205i
\(804\) −10.2166 4.23184i −0.360311 0.149246i
\(805\) 0 0
\(806\) 9.19647 3.80930i 0.323932 0.134177i
\(807\) 12.2880 + 12.2880i 0.432557 + 0.432557i
\(808\) −110.921 110.921i −3.90220 3.90220i
\(809\) 5.24543 2.17273i 0.184419 0.0763890i −0.288563 0.957461i \(-0.593177\pi\)
0.472982 + 0.881072i \(0.343177\pi\)
\(810\) 0 0
\(811\) −4.12057 1.70680i −0.144693 0.0599338i 0.309162 0.951009i \(-0.399952\pi\)
−0.453855 + 0.891076i \(0.649952\pi\)
\(812\) 65.4882i 2.29819i
\(813\) −4.47131 + 10.7947i −0.156816 + 0.378587i
\(814\) 23.1548 23.1548i 0.811576 0.811576i
\(815\) 0 0
\(816\) −49.8591 34.6238i −1.74542 1.21208i
\(817\) 31.0362 1.08582
\(818\) 61.5013 61.5013i 2.15034 2.15034i
\(819\) −1.17090 + 2.82681i −0.0409146 + 0.0987766i
\(820\) 0 0
\(821\) −45.1566 18.7045i −1.57598 0.652791i −0.588207 0.808710i \(-0.700166\pi\)
−0.987770 + 0.155919i \(0.950166\pi\)
\(822\) −0.517302 1.24888i −0.0180430 0.0435596i
\(823\) 44.1829 18.3012i 1.54012 0.637939i 0.558625 0.829421i \(-0.311329\pi\)
0.981496 + 0.191482i \(0.0613293\pi\)
\(824\) −87.5860 87.5860i −3.05120 3.05120i
\(825\) 0 0
\(826\) −4.67447 + 1.93623i −0.162646 + 0.0673700i
\(827\) −7.47877 18.0554i −0.260062 0.627846i 0.738879 0.673838i \(-0.235355\pi\)
−0.998942 + 0.0459914i \(0.985355\pi\)
\(828\) 44.6181 + 18.4814i 1.55059 + 0.642274i
\(829\) 0.116023i 0.00402965i −0.999998 0.00201483i \(-0.999359\pi\)
0.999998 0.00201483i \(-0.000641340\pi\)
\(830\) 0 0
\(831\) 2.10783 2.10783i 0.0731197 0.0731197i
\(832\) 28.8270 0.999397
\(833\) 11.0965 + 17.2696i 0.384471 + 0.598357i
\(834\) −11.5479 −0.399871
\(835\) 0 0
\(836\) −70.1136 + 169.269i −2.42493 + 5.85430i
\(837\) 16.5643i 0.572548i
\(838\) −43.8963 18.1824i −1.51637 0.628102i
\(839\) 14.9656 + 36.1301i 0.516670 + 1.24735i 0.939938 + 0.341346i \(0.110883\pi\)
−0.423268 + 0.906005i \(0.639117\pi\)
\(840\) 0 0
\(841\) 31.9413 + 31.9413i 1.10142 + 1.10142i
\(842\) 52.5820 + 52.5820i 1.81210 + 1.81210i
\(843\) −3.66195 + 1.51683i −0.126124 + 0.0522424i
\(844\) −6.95670 16.7950i −0.239459 0.578106i
\(845\) 0 0
\(846\) 25.6542i 0.882009i
\(847\) 6.42283 15.5061i 0.220691 0.532795i
\(848\) 54.2217 54.2217i 1.86198 1.86198i
\(849\) 26.1718 0.898214
\(850\) 0 0
\(851\) −12.1532 −0.416606
\(852\) 8.31636 8.31636i 0.284914 0.284914i
\(853\) −9.57677 + 23.1204i −0.327902 + 0.791626i 0.670845 + 0.741597i \(0.265931\pi\)
−0.998748 + 0.0500291i \(0.984069\pi\)
\(854\) 25.2638i 0.864511i
\(855\) 0 0
\(856\) 47.0712 + 113.640i 1.60886 + 3.88413i
\(857\) 34.9820 14.4900i 1.19496 0.494970i 0.305596 0.952161i \(-0.401144\pi\)
0.889368 + 0.457191i \(0.151144\pi\)
\(858\) −11.0950 11.0950i −0.378778 0.378778i
\(859\) 12.1975 + 12.1975i 0.416172 + 0.416172i 0.883882 0.467710i \(-0.154921\pi\)
−0.467710 + 0.883882i \(0.654921\pi\)
\(860\) 0 0
\(861\) −3.51434 8.48436i −0.119768 0.289146i
\(862\) −21.8483 9.04988i −0.744157 0.308240i
\(863\) 49.4684i 1.68392i −0.539537 0.841962i \(-0.681401\pi\)
0.539537 0.841962i \(-0.318599\pi\)
\(864\) −38.6400 + 93.2851i −1.31456 + 3.17363i
\(865\) 0 0
\(866\) 26.3314 0.894778
\(867\) 13.1728 12.2602i 0.447370 0.416379i
\(868\) 24.3856 0.827700
\(869\) 4.21054 4.21054i 0.142833 0.142833i
\(870\) 0 0
\(871\) 2.23656i 0.0757829i
\(872\) 61.7875 + 25.5932i 2.09239 + 0.866696i
\(873\) −1.92877 4.65646i −0.0652789 0.157597i
\(874\) 86.3142 35.7525i 2.91962 1.20935i
\(875\) 0 0
\(876\) 14.1868 + 14.1868i 0.479327 + 0.479327i
\(877\) 51.3470 21.2686i 1.73387 0.718191i 0.734657 0.678439i \(-0.237343\pi\)
0.999210 0.0397521i \(-0.0126568\pi\)
\(878\) 23.9730 + 57.8759i 0.809049 + 1.95322i
\(879\) 5.40648 + 2.23944i 0.182356 + 0.0755343i
\(880\) 0 0
\(881\) 14.9186 36.0167i 0.502621 1.21343i −0.445431 0.895316i \(-0.646949\pi\)
0.948051 0.318117i \(-0.103051\pi\)
\(882\) 17.9359 17.9359i 0.603932 0.603932i
\(883\) −27.2502 −0.917042 −0.458521 0.888684i \(-0.651621\pi\)
−0.458521 + 0.888684i \(0.651621\pi\)
\(884\) −5.36934 + 24.6727i −0.180590 + 0.829834i
\(885\) 0 0
\(886\) 1.50953 1.50953i 0.0507137 0.0507137i
\(887\) −16.0719 + 38.8009i −0.539640 + 1.30281i 0.385334 + 0.922777i \(0.374086\pi\)
−0.924974 + 0.380030i \(0.875914\pi\)
\(888\) 24.3044i 0.815601i
\(889\) −11.1479 4.61760i −0.373887 0.154869i
\(890\) 0 0
\(891\) −0.753480 + 0.312102i −0.0252425 + 0.0104558i
\(892\) −40.5601 40.5601i −1.35805 1.35805i
\(893\) −25.5414 25.5414i −0.854709 0.854709i
\(894\) −20.3044 + 8.41038i −0.679082 + 0.281285i
\(895\) 0 0
\(896\) 38.2872 + 15.8591i 1.27909 + 0.529815i
\(897\) 5.82341i 0.194438i
\(898\) −20.9342 + 50.5397i −0.698585 + 1.68653i
\(899\) −19.5296 + 19.5296i −0.651349 + 0.651349i
\(900\) 0 0
\(901\) 12.2885 + 19.1248i 0.409391 + 0.637139i
\(902\) −78.9905 −2.63010
\(903\) −4.60427 + 4.60427i −0.153221 + 0.153221i
\(904\) −55.7972 + 134.706i −1.85579 + 4.48027i
\(905\) 0 0
\(906\) −23.3703 9.68028i −0.776425 0.321606i
\(907\) −9.89680 23.8930i −0.328618 0.793353i −0.998695 0.0510624i \(-0.983739\pi\)
0.670078 0.742291i \(-0.266261\pi\)
\(908\) 52.1666 21.6081i 1.73121 0.717090i
\(909\) −22.9681 22.9681i −0.761805 0.761805i
\(910\) 0 0
\(911\) −34.0518 + 14.1047i −1.12819 + 0.467310i −0.867164 0.498023i \(-0.834059\pi\)
−0.261021 + 0.965333i \(0.584059\pi\)
\(912\) 40.4155 + 97.5717i 1.33829 + 3.23092i
\(913\) 18.0103 + 7.46012i 0.596054 + 0.246894i
\(914\) 18.8387i 0.623128i
\(915\) 0 0
\(916\) 48.5544 48.5544i 1.60428 1.60428i
\(917\) −19.7072 −0.650791
\(918\) −47.4182 32.9288i −1.56503 1.08681i
\(919\) −9.71950 −0.320617 −0.160308 0.987067i \(-0.551249\pi\)
−0.160308 + 0.987067i \(0.551249\pi\)
\(920\) 0 0
\(921\) −9.75550 + 23.5519i −0.321455 + 0.776060i
\(922\) 18.9318i 0.623485i
\(923\) −2.19763 0.910286i −0.0723357 0.0299624i
\(924\) −14.7099 35.5129i −0.483921 1.16829i
\(925\) 0 0
\(926\) −15.4699 15.4699i −0.508372 0.508372i
\(927\) −18.1361 18.1361i −0.595669 0.595669i
\(928\) −155.542 + 64.4275i −5.10591 + 2.11494i
\(929\) 0.943781 + 2.27849i 0.0309644 + 0.0747548i 0.938605 0.344993i \(-0.112119\pi\)
−0.907641 + 0.419748i \(0.862119\pi\)
\(930\) 0 0
\(931\) 35.7140i 1.17048i
\(932\) 54.9486 132.658i 1.79990 4.34535i
\(933\) 1.16714 1.16714i 0.0382106 0.0382106i
\(934\) 14.0330 0.459174
\(935\) 0 0
\(936\) 19.5335 0.638472
\(937\) 35.8516 35.8516i 1.17122 1.17122i 0.189302 0.981919i \(-0.439377\pi\)
0.981919 0.189302i \(-0.0606225\pi\)
\(938\) −2.88083 + 6.95493i −0.0940624 + 0.227087i
\(939\) 21.7114i 0.708525i
\(940\) 0 0
\(941\) 6.50204 + 15.6973i 0.211960 + 0.511718i 0.993724 0.111857i \(-0.0356798\pi\)
−0.781764 + 0.623575i \(0.785680\pi\)
\(942\) −20.2308 + 8.37988i −0.659156 + 0.273031i
\(943\) 20.7297 + 20.7297i 0.675053 + 0.675053i
\(944\) 12.9107 + 12.9107i 0.420207 + 0.420207i
\(945\) 0 0
\(946\) 21.4332 + 51.7443i 0.696853 + 1.68235i
\(947\) −18.6520 7.72593i −0.606110 0.251059i 0.0584545 0.998290i \(-0.481383\pi\)
−0.664564 + 0.747231i \(0.731383\pi\)
\(948\) 7.05944i 0.229280i
\(949\) 1.55285 3.74891i 0.0504076 0.121695i
\(950\) 0 0
\(951\) −22.1740 −0.719040
\(952\) −30.3490 + 43.7033i −0.983618 + 1.41643i
\(953\) −60.7088 −1.96655 −0.983275 0.182129i \(-0.941701\pi\)
−0.983275 + 0.182129i \(0.941701\pi\)
\(954\) 19.8626 19.8626i 0.643076 0.643076i
\(955\) 0 0
\(956\) 23.5531i 0.761762i
\(957\) 40.2218 + 16.6604i 1.30019 + 0.538555i
\(958\) 29.3867 + 70.9457i 0.949441 + 2.29215i
\(959\) −0.618781 + 0.256308i −0.0199815 + 0.00827660i
\(960\) 0 0
\(961\) 14.6481 + 14.6481i 0.472521 + 0.472521i
\(962\) −7.25403 + 3.00472i −0.233879 + 0.0968760i
\(963\) 9.74687 + 23.5310i 0.314089 + 0.758277i
\(964\) −34.6751 14.3629i −1.11681 0.462598i
\(965\) 0 0
\(966\) −7.50092 + 18.1088i −0.241338 + 0.582642i
\(967\) −32.8967 + 32.8967i −1.05789 + 1.05789i −0.0596681 + 0.998218i \(0.519004\pi\)
−0.998218 + 0.0596681i \(0.980996\pi\)
\(968\) −107.148 −3.44388
\(969\) −30.8118 + 5.55646i −0.989819 + 0.178499i
\(970\) 0 0
\(971\) −13.9209 + 13.9209i −0.446742 + 0.446742i −0.894270 0.447528i \(-0.852305\pi\)
0.447528 + 0.894270i \(0.352305\pi\)
\(972\) −32.0850 + 77.4601i −1.02913 + 2.48453i
\(973\) 5.72164i 0.183427i
\(974\) 46.2761 + 19.1682i 1.48278 + 0.614189i
\(975\) 0 0
\(976\) 84.2289 34.8888i 2.69610 1.11676i
\(977\) −6.17874 6.17874i −0.197676 0.197676i 0.601327 0.799003i \(-0.294639\pi\)
−0.799003 + 0.601327i \(0.794639\pi\)
\(978\) 48.6116 + 48.6116i 1.55443 + 1.55443i
\(979\) −36.8320 + 15.2563i −1.17716 + 0.487594i
\(980\) 0 0
\(981\) 12.7941 + 5.29950i 0.408485 + 0.169200i
\(982\) 38.8817i 1.24076i
\(983\) 4.81531 11.6252i 0.153584 0.370786i −0.828295 0.560292i \(-0.810689\pi\)
0.981879 + 0.189507i \(0.0606888\pi\)
\(984\) −41.4560 + 41.4560i −1.32157 + 1.32157i
\(985\) 0 0
\(986\) −17.0832 94.7303i −0.544040 3.01683i
\(987\) 7.57821 0.241217
\(988\) 31.0639 31.0639i 0.988273 0.988273i
\(989\) 7.95465 19.2042i 0.252943 0.610659i
\(990\) 0 0
\(991\) 19.7383 + 8.17588i 0.627009 + 0.259716i 0.673482 0.739204i \(-0.264798\pi\)
−0.0464728 + 0.998920i \(0.514798\pi\)
\(992\) −23.9906 57.9184i −0.761703 1.83891i
\(993\) −1.58464 + 0.656381i −0.0502872 + 0.0208296i
\(994\) −5.66136 5.66136i −0.179568 0.179568i
\(995\) 0 0
\(996\) 21.3520 8.84430i 0.676565 0.280242i
\(997\) 11.6951 + 28.2345i 0.370388 + 0.894197i 0.993684 + 0.112211i \(0.0357932\pi\)
−0.623296 + 0.781986i \(0.714207\pi\)
\(998\) −83.1601 34.4461i −2.63239 1.09037i
\(999\) 13.0657i 0.413381i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 425.2.m.d.76.1 yes 24
5.2 odd 4 425.2.n.e.399.1 24
5.3 odd 4 425.2.n.d.399.6 24
5.4 even 2 425.2.m.c.76.6 24
17.7 odd 16 7225.2.a.cb.1.24 24
17.10 odd 16 7225.2.a.cb.1.23 24
17.15 even 8 inner 425.2.m.d.151.1 yes 24
85.24 odd 16 7225.2.a.bx.1.1 24
85.32 odd 8 425.2.n.d.49.6 24
85.44 odd 16 7225.2.a.bx.1.2 24
85.49 even 8 425.2.m.c.151.6 yes 24
85.83 odd 8 425.2.n.e.49.1 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
425.2.m.c.76.6 24 5.4 even 2
425.2.m.c.151.6 yes 24 85.49 even 8
425.2.m.d.76.1 yes 24 1.1 even 1 trivial
425.2.m.d.151.1 yes 24 17.15 even 8 inner
425.2.n.d.49.6 24 85.32 odd 8
425.2.n.d.399.6 24 5.3 odd 4
425.2.n.e.49.1 24 85.83 odd 8
425.2.n.e.399.1 24 5.2 odd 4
7225.2.a.bx.1.1 24 85.24 odd 16
7225.2.a.bx.1.2 24 85.44 odd 16
7225.2.a.cb.1.23 24 17.10 odd 16
7225.2.a.cb.1.24 24 17.7 odd 16