Properties

Label 425.2.m.e.151.5
Level $425$
Weight $2$
Character 425.151
Analytic conductor $3.394$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [425,2,Mod(26,425)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(425, base_ring=CyclotomicField(8))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("425.26");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 425 = 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 425.m (of order \(8\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.39364208590\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(6\) over \(\Q(\zeta_{8})\)
Twist minimal: no (minimal twist has level 85)
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 151.5
Character \(\chi\) \(=\) 425.151
Dual form 425.2.m.e.76.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.23200 + 1.23200i) q^{2} +(-0.229112 - 0.553124i) q^{3} +1.03565i q^{4} +(0.399184 - 0.963715i) q^{6} +(0.958968 + 0.397218i) q^{7} +(1.18808 - 1.18808i) q^{8} +(1.86787 - 1.86787i) q^{9} +(0.0292605 - 0.0706410i) q^{11} +(0.572843 - 0.237279i) q^{12} +2.86011i q^{13} +(0.692077 + 1.67082i) q^{14} +4.99873 q^{16} +(4.05747 + 0.732781i) q^{17} +4.60242 q^{18} +(-2.96308 - 2.96308i) q^{19} -0.621436i q^{21} +(0.123079 - 0.0509809i) q^{22} +(-2.27724 + 5.49775i) q^{23} +(-0.929359 - 0.384953i) q^{24} +(-3.52366 + 3.52366i) q^{26} +(-3.12049 - 1.29255i) q^{27} +(-0.411378 + 0.993155i) q^{28} +(-0.0817180 + 0.0338487i) q^{29} +(-0.928823 - 2.24238i) q^{31} +(3.78228 + 3.78228i) q^{32} -0.0457772 q^{33} +(4.09601 + 5.90159i) q^{34} +(1.93445 + 1.93445i) q^{36} +(3.63988 + 8.78745i) q^{37} -7.30103i q^{38} +(1.58200 - 0.655285i) q^{39} +(-7.74202 - 3.20685i) q^{41} +(0.765609 - 0.765609i) q^{42} +(0.612604 - 0.612604i) q^{43} +(0.0731594 + 0.0303036i) q^{44} +(-9.57880 + 3.96767i) q^{46} -8.33326i q^{47} +(-1.14527 - 2.76492i) q^{48} +(-4.18791 - 4.18791i) q^{49} +(-0.524293 - 2.41217i) q^{51} -2.96207 q^{52} +(-2.89277 - 2.89277i) q^{53} +(-2.25202 - 5.43686i) q^{54} +(1.61126 - 0.667405i) q^{56} +(-0.960076 + 2.31783i) q^{57} +(-0.142378 - 0.0589750i) q^{58} +(-6.48348 + 6.48348i) q^{59} +(-0.266392 - 0.110343i) q^{61} +(1.61830 - 3.90692i) q^{62} +(2.53317 - 1.04927i) q^{63} -0.677928i q^{64} +(-0.0563975 - 0.0563975i) q^{66} -12.8961 q^{67} +(-0.758905 + 4.20211i) q^{68} +3.56268 q^{69} +(5.05320 + 12.1995i) q^{71} -4.43835i q^{72} +(-6.04988 + 2.50594i) q^{73} +(-6.34181 + 15.3105i) q^{74} +(3.06871 - 3.06871i) q^{76} +(0.0561197 - 0.0561197i) q^{77} +(2.75633 + 1.14171i) q^{78} +(3.99465 - 9.64395i) q^{79} -5.90253i q^{81} +(-5.58733 - 13.4890i) q^{82} +(6.86298 + 6.86298i) q^{83} +0.643590 q^{84} +1.50946 q^{86} +(0.0374451 + 0.0374451i) q^{87} +(-0.0491634 - 0.118691i) q^{88} +0.106159i q^{89} +(-1.13609 + 2.74276i) q^{91} +(-5.69374 - 2.35843i) q^{92} +(-1.02751 + 1.02751i) q^{93} +(10.2666 - 10.2666i) q^{94} +(1.22551 - 2.95863i) q^{96} +(-7.91737 + 3.27948i) q^{97} -10.3190i q^{98} +(-0.0772933 - 0.186603i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 8 q^{9} + 24 q^{14} + 8 q^{16} + 24 q^{19} - 32 q^{24} - 16 q^{26} - 24 q^{29} - 24 q^{31} - 8 q^{34} + 8 q^{36} + 24 q^{39} - 48 q^{41} - 72 q^{44} - 16 q^{46} - 48 q^{49} - 32 q^{54} + 24 q^{56}+ \cdots + 80 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/425\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(326\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{8}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.23200 + 1.23200i 0.871156 + 0.871156i 0.992598 0.121443i \(-0.0387521\pi\)
−0.121443 + 0.992598i \(0.538752\pi\)
\(3\) −0.229112 0.553124i −0.132278 0.319347i 0.843838 0.536598i \(-0.180291\pi\)
−0.976116 + 0.217251i \(0.930291\pi\)
\(4\) 1.03565i 0.517825i
\(5\) 0 0
\(6\) 0.399184 0.963715i 0.162966 0.393435i
\(7\) 0.958968 + 0.397218i 0.362456 + 0.150134i 0.556477 0.830863i \(-0.312153\pi\)
−0.194021 + 0.980997i \(0.562153\pi\)
\(8\) 1.18808 1.18808i 0.420050 0.420050i
\(9\) 1.86787 1.86787i 0.622622 0.622622i
\(10\) 0 0
\(11\) 0.0292605 0.0706410i 0.00882236 0.0212991i −0.919407 0.393308i \(-0.871331\pi\)
0.928229 + 0.372008i \(0.121331\pi\)
\(12\) 0.572843 0.237279i 0.165366 0.0684966i
\(13\) 2.86011i 0.793252i 0.917980 + 0.396626i \(0.129819\pi\)
−0.917980 + 0.396626i \(0.870181\pi\)
\(14\) 0.692077 + 1.67082i 0.184965 + 0.446546i
\(15\) 0 0
\(16\) 4.99873 1.24968
\(17\) 4.05747 + 0.732781i 0.984080 + 0.177726i
\(18\) 4.60242 1.08480
\(19\) −2.96308 2.96308i −0.679777 0.679777i 0.280173 0.959950i \(-0.409608\pi\)
−0.959950 + 0.280173i \(0.909608\pi\)
\(20\) 0 0
\(21\) 0.621436i 0.135608i
\(22\) 0.123079 0.0509809i 0.0262405 0.0108692i
\(23\) −2.27724 + 5.49775i −0.474838 + 1.14636i 0.487162 + 0.873312i \(0.338032\pi\)
−0.962000 + 0.273049i \(0.911968\pi\)
\(24\) −0.929359 0.384953i −0.189705 0.0785782i
\(25\) 0 0
\(26\) −3.52366 + 3.52366i −0.691046 + 0.691046i
\(27\) −3.12049 1.29255i −0.600538 0.248751i
\(28\) −0.411378 + 0.993155i −0.0777432 + 0.187689i
\(29\) −0.0817180 + 0.0338487i −0.0151747 + 0.00628555i −0.390258 0.920706i \(-0.627614\pi\)
0.375083 + 0.926991i \(0.377614\pi\)
\(30\) 0 0
\(31\) −0.928823 2.24238i −0.166822 0.402743i 0.818256 0.574854i \(-0.194941\pi\)
−0.985078 + 0.172111i \(0.944941\pi\)
\(32\) 3.78228 + 3.78228i 0.668618 + 0.668618i
\(33\) −0.0457772 −0.00796879
\(34\) 4.09601 + 5.90159i 0.702460 + 1.01211i
\(35\) 0 0
\(36\) 1.93445 + 1.93445i 0.322409 + 0.322409i
\(37\) 3.63988 + 8.78745i 0.598393 + 1.44465i 0.875218 + 0.483728i \(0.160718\pi\)
−0.276826 + 0.960920i \(0.589282\pi\)
\(38\) 7.30103i 1.18438i
\(39\) 1.58200 0.655285i 0.253322 0.104930i
\(40\) 0 0
\(41\) −7.74202 3.20685i −1.20910 0.500826i −0.315172 0.949035i \(-0.602062\pi\)
−0.893929 + 0.448209i \(0.852062\pi\)
\(42\) 0.765609 0.765609i 0.118136 0.118136i
\(43\) 0.612604 0.612604i 0.0934212 0.0934212i −0.658852 0.752273i \(-0.728958\pi\)
0.752273 + 0.658852i \(0.228958\pi\)
\(44\) 0.0731594 + 0.0303036i 0.0110292 + 0.00456844i
\(45\) 0 0
\(46\) −9.57880 + 3.96767i −1.41232 + 0.585001i
\(47\) 8.33326i 1.21553i −0.794117 0.607765i \(-0.792066\pi\)
0.794117 0.607765i \(-0.207934\pi\)
\(48\) −1.14527 2.76492i −0.165305 0.399082i
\(49\) −4.18791 4.18791i −0.598273 0.598273i
\(50\) 0 0
\(51\) −0.524293 2.41217i −0.0734158 0.337772i
\(52\) −2.96207 −0.410766
\(53\) −2.89277 2.89277i −0.397353 0.397353i 0.479946 0.877298i \(-0.340656\pi\)
−0.877298 + 0.479946i \(0.840656\pi\)
\(54\) −2.25202 5.43686i −0.306461 0.739863i
\(55\) 0 0
\(56\) 1.61126 0.667405i 0.215313 0.0891857i
\(57\) −0.960076 + 2.31783i −0.127165 + 0.307004i
\(58\) −0.142378 0.0589750i −0.0186952 0.00774379i
\(59\) −6.48348 + 6.48348i −0.844078 + 0.844078i −0.989386 0.145309i \(-0.953582\pi\)
0.145309 + 0.989386i \(0.453582\pi\)
\(60\) 0 0
\(61\) −0.266392 0.110343i −0.0341080 0.0141280i 0.365564 0.930786i \(-0.380876\pi\)
−0.399672 + 0.916658i \(0.630876\pi\)
\(62\) 1.61830 3.90692i 0.205524 0.496179i
\(63\) 2.53317 1.04927i 0.319150 0.132196i
\(64\) 0.677928i 0.0847410i
\(65\) 0 0
\(66\) −0.0563975 0.0563975i −0.00694205 0.00694205i
\(67\) −12.8961 −1.57551 −0.787755 0.615988i \(-0.788757\pi\)
−0.787755 + 0.615988i \(0.788757\pi\)
\(68\) −0.758905 + 4.20211i −0.0920307 + 0.509581i
\(69\) 3.56268 0.428897
\(70\) 0 0
\(71\) 5.05320 + 12.1995i 0.599704 + 1.44781i 0.873883 + 0.486135i \(0.161594\pi\)
−0.274179 + 0.961679i \(0.588406\pi\)
\(72\) 4.43835i 0.523064i
\(73\) −6.04988 + 2.50594i −0.708085 + 0.293298i −0.707512 0.706701i \(-0.750182\pi\)
−0.000573207 1.00000i \(0.500182\pi\)
\(74\) −6.34181 + 15.3105i −0.737220 + 1.77981i
\(75\) 0 0
\(76\) 3.06871 3.06871i 0.352005 0.352005i
\(77\) 0.0561197 0.0561197i 0.00639544 0.00639544i
\(78\) 2.75633 + 1.14171i 0.312093 + 0.129273i
\(79\) 3.99465 9.64395i 0.449434 1.08503i −0.523101 0.852271i \(-0.675225\pi\)
0.972535 0.232758i \(-0.0747751\pi\)
\(80\) 0 0
\(81\) 5.90253i 0.655837i
\(82\) −5.58733 13.4890i −0.617018 1.48961i
\(83\) 6.86298 + 6.86298i 0.753310 + 0.753310i 0.975095 0.221786i \(-0.0711886\pi\)
−0.221786 + 0.975095i \(0.571189\pi\)
\(84\) 0.643590 0.0702214
\(85\) 0 0
\(86\) 1.50946 0.162769
\(87\) 0.0374451 + 0.0374451i 0.00401453 + 0.00401453i
\(88\) −0.0491634 0.118691i −0.00524084 0.0126525i
\(89\) 0.106159i 0.0112528i 0.999984 + 0.00562641i \(0.00179095\pi\)
−0.999984 + 0.00562641i \(0.998209\pi\)
\(90\) 0 0
\(91\) −1.13609 + 2.74276i −0.119094 + 0.287519i
\(92\) −5.69374 2.35843i −0.593614 0.245883i
\(93\) −1.02751 + 1.02751i −0.106548 + 0.106548i
\(94\) 10.2666 10.2666i 1.05892 1.05892i
\(95\) 0 0
\(96\) 1.22551 2.95863i 0.125078 0.301964i
\(97\) −7.91737 + 3.27948i −0.803888 + 0.332981i −0.746512 0.665372i \(-0.768273\pi\)
−0.0573752 + 0.998353i \(0.518273\pi\)
\(98\) 10.3190i 1.04238i
\(99\) −0.0772933 0.186603i −0.00776827 0.0187543i
\(100\) 0 0
\(101\) 8.51123 0.846899 0.423449 0.905920i \(-0.360819\pi\)
0.423449 + 0.905920i \(0.360819\pi\)
\(102\) 2.32587 3.61773i 0.230295 0.358208i
\(103\) −11.9713 −1.17956 −0.589782 0.807563i \(-0.700786\pi\)
−0.589782 + 0.807563i \(0.700786\pi\)
\(104\) 3.39804 + 3.39804i 0.333205 + 0.333205i
\(105\) 0 0
\(106\) 7.12779i 0.692312i
\(107\) −18.1985 + 7.53806i −1.75931 + 0.728732i −0.762677 + 0.646779i \(0.776116\pi\)
−0.996636 + 0.0819523i \(0.973884\pi\)
\(108\) 1.33863 3.23173i 0.128809 0.310973i
\(109\) 2.36163 + 0.978218i 0.226203 + 0.0936963i 0.492906 0.870082i \(-0.335934\pi\)
−0.266704 + 0.963779i \(0.585934\pi\)
\(110\) 0 0
\(111\) 4.02661 4.02661i 0.382189 0.382189i
\(112\) 4.79362 + 1.98558i 0.452955 + 0.187620i
\(113\) −0.337421 + 0.814605i −0.0317419 + 0.0766316i −0.938956 0.344038i \(-0.888205\pi\)
0.907214 + 0.420670i \(0.138205\pi\)
\(114\) −4.03838 + 1.67275i −0.378229 + 0.156667i
\(115\) 0 0
\(116\) −0.0350554 0.0846312i −0.00325481 0.00785781i
\(117\) 5.34230 + 5.34230i 0.493896 + 0.493896i
\(118\) −15.9753 −1.47065
\(119\) 3.59991 + 2.31441i 0.330003 + 0.212162i
\(120\) 0 0
\(121\) 7.77404 + 7.77404i 0.706731 + 0.706731i
\(122\) −0.192252 0.464137i −0.0174057 0.0420210i
\(123\) 5.01703i 0.452370i
\(124\) 2.32232 0.961935i 0.208550 0.0863843i
\(125\) 0 0
\(126\) 4.41358 + 1.82816i 0.393193 + 0.162866i
\(127\) 11.8681 11.8681i 1.05312 1.05312i 0.0546149 0.998507i \(-0.482607\pi\)
0.998507 0.0546149i \(-0.0173931\pi\)
\(128\) 8.39976 8.39976i 0.742441 0.742441i
\(129\) −0.479201 0.198491i −0.0421913 0.0174762i
\(130\) 0 0
\(131\) 7.85656 3.25429i 0.686431 0.284329i −0.0120814 0.999927i \(-0.503846\pi\)
0.698512 + 0.715598i \(0.253846\pi\)
\(132\) 0.0474091i 0.00412644i
\(133\) −1.66451 4.01849i −0.144331 0.348447i
\(134\) −15.8880 15.8880i −1.37252 1.37252i
\(135\) 0 0
\(136\) 5.69120 3.94999i 0.488016 0.338709i
\(137\) 15.5810 1.33117 0.665585 0.746322i \(-0.268182\pi\)
0.665585 + 0.746322i \(0.268182\pi\)
\(138\) 4.38923 + 4.38923i 0.373636 + 0.373636i
\(139\) 3.00131 + 7.24579i 0.254567 + 0.614580i 0.998562 0.0536052i \(-0.0170713\pi\)
−0.743995 + 0.668185i \(0.767071\pi\)
\(140\) 0 0
\(141\) −4.60933 + 1.90925i −0.388176 + 0.160788i
\(142\) −8.80424 + 21.2553i −0.738836 + 1.78371i
\(143\) 0.202041 + 0.0836882i 0.0168955 + 0.00699836i
\(144\) 9.33696 9.33696i 0.778080 0.778080i
\(145\) 0 0
\(146\) −10.5408 4.36613i −0.872361 0.361344i
\(147\) −1.35694 + 3.27593i −0.111918 + 0.270194i
\(148\) −9.10072 + 3.76964i −0.748075 + 0.309863i
\(149\) 20.5823i 1.68616i 0.537785 + 0.843082i \(0.319261\pi\)
−0.537785 + 0.843082i \(0.680739\pi\)
\(150\) 0 0
\(151\) −10.2462 10.2462i −0.833824 0.833824i 0.154213 0.988038i \(-0.450716\pi\)
−0.988038 + 0.154213i \(0.950716\pi\)
\(152\) −7.04075 −0.571080
\(153\) 8.94754 6.21007i 0.723366 0.502054i
\(154\) 0.138279 0.0111428
\(155\) 0 0
\(156\) 0.678645 + 1.63839i 0.0543351 + 0.131177i
\(157\) 11.6355i 0.928611i −0.885675 0.464306i \(-0.846304\pi\)
0.885675 0.464306i \(-0.153696\pi\)
\(158\) 16.8028 6.95993i 1.33676 0.553702i
\(159\) −0.937295 + 2.26283i −0.0743323 + 0.179454i
\(160\) 0 0
\(161\) −4.36761 + 4.36761i −0.344216 + 0.344216i
\(162\) 7.27192 7.27192i 0.571336 0.571336i
\(163\) −9.55043 3.95592i −0.748047 0.309851i −0.0241026 0.999709i \(-0.507673\pi\)
−0.723944 + 0.689858i \(0.757673\pi\)
\(164\) 3.32117 8.01802i 0.259340 0.626102i
\(165\) 0 0
\(166\) 16.9104i 1.31250i
\(167\) −5.06719 12.2333i −0.392111 0.946639i −0.989480 0.144672i \(-0.953787\pi\)
0.597369 0.801967i \(-0.296213\pi\)
\(168\) −0.738316 0.738316i −0.0569623 0.0569623i
\(169\) 4.81976 0.370751
\(170\) 0 0
\(171\) −11.0693 −0.846488
\(172\) 0.634443 + 0.634443i 0.0483758 + 0.0483758i
\(173\) 8.63998 + 20.8588i 0.656886 + 1.58586i 0.802588 + 0.596534i \(0.203456\pi\)
−0.145703 + 0.989328i \(0.546544\pi\)
\(174\) 0.0922647i 0.00699457i
\(175\) 0 0
\(176\) 0.146265 0.353115i 0.0110252 0.0266171i
\(177\) 5.07161 + 2.10073i 0.381206 + 0.157901i
\(178\) −0.130788 + 0.130788i −0.00980296 + 0.00980296i
\(179\) 3.77815 3.77815i 0.282392 0.282392i −0.551670 0.834062i \(-0.686009\pi\)
0.834062 + 0.551670i \(0.186009\pi\)
\(180\) 0 0
\(181\) 0.772220 1.86430i 0.0573987 0.138573i −0.892578 0.450892i \(-0.851106\pi\)
0.949977 + 0.312319i \(0.101106\pi\)
\(182\) −4.77874 + 1.97942i −0.354223 + 0.146724i
\(183\) 0.172629i 0.0127611i
\(184\) 3.82622 + 9.23732i 0.282073 + 0.680984i
\(185\) 0 0
\(186\) −2.53178 −0.185639
\(187\) 0.170488 0.265182i 0.0124673 0.0193920i
\(188\) 8.63034 0.629432
\(189\) −2.47902 2.47902i −0.180322 0.180322i
\(190\) 0 0
\(191\) 12.8742i 0.931547i 0.884904 + 0.465774i \(0.154224\pi\)
−0.884904 + 0.465774i \(0.845776\pi\)
\(192\) −0.374979 + 0.155321i −0.0270618 + 0.0112093i
\(193\) −1.01693 + 2.45509i −0.0732004 + 0.176721i −0.956245 0.292569i \(-0.905490\pi\)
0.883044 + 0.469290i \(0.155490\pi\)
\(194\) −13.7945 5.71388i −0.990390 0.410233i
\(195\) 0 0
\(196\) 4.33721 4.33721i 0.309800 0.309800i
\(197\) 16.0056 + 6.62975i 1.14035 + 0.472350i 0.871288 0.490771i \(-0.163285\pi\)
0.269066 + 0.963122i \(0.413285\pi\)
\(198\) 0.134669 0.325120i 0.00957051 0.0231053i
\(199\) −21.1017 + 8.74062i −1.49586 + 0.619606i −0.972583 0.232556i \(-0.925291\pi\)
−0.523278 + 0.852162i \(0.675291\pi\)
\(200\) 0 0
\(201\) 2.95465 + 7.13315i 0.208405 + 0.503134i
\(202\) 10.4858 + 10.4858i 0.737781 + 0.737781i
\(203\) −0.0918103 −0.00644382
\(204\) 2.49817 0.542984i 0.174907 0.0380165i
\(205\) 0 0
\(206\) −14.7486 14.7486i −1.02758 1.02758i
\(207\) 6.01548 + 14.5226i 0.418105 + 1.00939i
\(208\) 14.2969i 0.991313i
\(209\) −0.296016 + 0.122614i −0.0204759 + 0.00848138i
\(210\) 0 0
\(211\) −2.75762 1.14224i −0.189843 0.0786354i 0.285737 0.958308i \(-0.407762\pi\)
−0.475580 + 0.879673i \(0.657762\pi\)
\(212\) 2.99590 2.99590i 0.205759 0.205759i
\(213\) 5.59009 5.59009i 0.383027 0.383027i
\(214\) −31.7074 13.1336i −2.16747 0.897797i
\(215\) 0 0
\(216\) −5.24304 + 2.17174i −0.356743 + 0.147768i
\(217\) 2.51931i 0.171022i
\(218\) 1.70436 + 4.11469i 0.115434 + 0.278682i
\(219\) 2.77220 + 2.77220i 0.187328 + 0.187328i
\(220\) 0 0
\(221\) −2.09584 + 11.6048i −0.140981 + 0.780624i
\(222\) 9.92158 0.665893
\(223\) −2.87618 2.87618i −0.192603 0.192603i 0.604217 0.796820i \(-0.293486\pi\)
−0.796820 + 0.604217i \(0.793486\pi\)
\(224\) 2.12470 + 5.12947i 0.141962 + 0.342727i
\(225\) 0 0
\(226\) −1.41930 + 0.587892i −0.0944102 + 0.0391060i
\(227\) −3.17460 + 7.66416i −0.210705 + 0.508688i −0.993532 0.113552i \(-0.963777\pi\)
0.782827 + 0.622240i \(0.213777\pi\)
\(228\) −2.40046 0.994302i −0.158974 0.0658492i
\(229\) 3.07003 3.07003i 0.202874 0.202874i −0.598356 0.801230i \(-0.704179\pi\)
0.801230 + 0.598356i \(0.204179\pi\)
\(230\) 0 0
\(231\) −0.0438989 0.0181835i −0.00288833 0.00119639i
\(232\) −0.0568726 + 0.137302i −0.00373387 + 0.00901435i
\(233\) −0.0251958 + 0.0104364i −0.00165063 + 0.000683713i −0.383509 0.923537i \(-0.625284\pi\)
0.381858 + 0.924221i \(0.375284\pi\)
\(234\) 13.1634i 0.860521i
\(235\) 0 0
\(236\) −6.71462 6.71462i −0.437084 0.437084i
\(237\) −6.24952 −0.405950
\(238\) 1.58373 + 7.28644i 0.102658 + 0.472310i
\(239\) 15.9333 1.03064 0.515320 0.856998i \(-0.327673\pi\)
0.515320 + 0.856998i \(0.327673\pi\)
\(240\) 0 0
\(241\) −5.46731 13.1993i −0.352180 0.850239i −0.996350 0.0853566i \(-0.972797\pi\)
0.644170 0.764882i \(-0.277203\pi\)
\(242\) 19.1552i 1.23135i
\(243\) −12.6263 + 5.22998i −0.809977 + 0.335503i
\(244\) 0.114277 0.275888i 0.00731582 0.0176619i
\(245\) 0 0
\(246\) −6.18098 + 6.18098i −0.394085 + 0.394085i
\(247\) 8.47474 8.47474i 0.539235 0.539235i
\(248\) −3.76764 1.56061i −0.239245 0.0990987i
\(249\) 2.22369 5.36847i 0.140921 0.340213i
\(250\) 0 0
\(251\) 8.16222i 0.515195i 0.966252 + 0.257597i \(0.0829308\pi\)
−0.966252 + 0.257597i \(0.917069\pi\)
\(252\) 1.08668 + 2.62348i 0.0684545 + 0.165264i
\(253\) 0.321734 + 0.321734i 0.0202272 + 0.0202272i
\(254\) 29.2430 1.83487
\(255\) 0 0
\(256\) 19.3412 1.20882
\(257\) 6.91898 + 6.91898i 0.431594 + 0.431594i 0.889170 0.457576i \(-0.151282\pi\)
−0.457576 + 0.889170i \(0.651282\pi\)
\(258\) −0.345834 0.834917i −0.0215307 0.0519796i
\(259\) 9.87271i 0.613461i
\(260\) 0 0
\(261\) −0.0894134 + 0.215863i −0.00553455 + 0.0133616i
\(262\) 13.6886 + 5.66999i 0.845683 + 0.350293i
\(263\) 10.0516 10.0516i 0.619809 0.619809i −0.325673 0.945482i \(-0.605591\pi\)
0.945482 + 0.325673i \(0.105591\pi\)
\(264\) −0.0543870 + 0.0543870i −0.00334729 + 0.00334729i
\(265\) 0 0
\(266\) 2.90010 7.00146i 0.177816 0.429287i
\(267\) 0.0587191 0.0243222i 0.00359355 0.00148850i
\(268\) 13.3559i 0.815839i
\(269\) −8.71283 21.0346i −0.531231 1.28250i −0.930709 0.365762i \(-0.880809\pi\)
0.399478 0.916743i \(-0.369191\pi\)
\(270\) 0 0
\(271\) −17.6024 −1.06927 −0.534636 0.845083i \(-0.679551\pi\)
−0.534636 + 0.845083i \(0.679551\pi\)
\(272\) 20.2822 + 3.66298i 1.22979 + 0.222101i
\(273\) 1.77738 0.107572
\(274\) 19.1957 + 19.1957i 1.15966 + 1.15966i
\(275\) 0 0
\(276\) 3.68969i 0.222093i
\(277\) −6.22351 + 2.57786i −0.373934 + 0.154889i −0.561732 0.827319i \(-0.689865\pi\)
0.187798 + 0.982208i \(0.439865\pi\)
\(278\) −5.22921 + 12.6244i −0.313627 + 0.757163i
\(279\) −5.92338 2.45354i −0.354623 0.146890i
\(280\) 0 0
\(281\) 16.2410 16.2410i 0.968854 0.968854i −0.0306751 0.999529i \(-0.509766\pi\)
0.999529 + 0.0306751i \(0.00976573\pi\)
\(282\) −8.03089 3.32650i −0.478232 0.198090i
\(283\) 7.41233 17.8949i 0.440617 1.06374i −0.535115 0.844779i \(-0.679732\pi\)
0.975733 0.218965i \(-0.0702681\pi\)
\(284\) −12.6344 + 5.23334i −0.749714 + 0.310542i
\(285\) 0 0
\(286\) 0.145811 + 0.352019i 0.00862198 + 0.0208153i
\(287\) −6.15054 6.15054i −0.363055 0.363055i
\(288\) 14.1296 0.832593
\(289\) 15.9261 + 5.94647i 0.936827 + 0.349792i
\(290\) 0 0
\(291\) 3.62792 + 3.62792i 0.212673 + 0.212673i
\(292\) −2.59528 6.26556i −0.151877 0.366664i
\(293\) 20.2095i 1.18065i −0.807164 0.590327i \(-0.798999\pi\)
0.807164 0.590327i \(-0.201001\pi\)
\(294\) −5.70770 + 2.36421i −0.332880 + 0.137883i
\(295\) 0 0
\(296\) 14.7647 + 6.11572i 0.858179 + 0.355469i
\(297\) −0.182614 + 0.182614i −0.0105963 + 0.0105963i
\(298\) −25.3573 + 25.3573i −1.46891 + 1.46891i
\(299\) −15.7242 6.51317i −0.909353 0.376666i
\(300\) 0 0
\(301\) 0.830805 0.344131i 0.0478868 0.0198354i
\(302\) 25.2466i 1.45278i
\(303\) −1.95002 4.70777i −0.112026 0.270454i
\(304\) −14.8116 14.8116i −0.849505 0.849505i
\(305\) 0 0
\(306\) 18.6742 + 3.37257i 1.06753 + 0.192797i
\(307\) −18.0835 −1.03208 −0.516039 0.856565i \(-0.672594\pi\)
−0.516039 + 0.856565i \(0.672594\pi\)
\(308\) 0.0581204 + 0.0581204i 0.00331172 + 0.00331172i
\(309\) 2.74276 + 6.62160i 0.156030 + 0.376690i
\(310\) 0 0
\(311\) 18.8979 7.82776i 1.07160 0.443872i 0.224046 0.974579i \(-0.428073\pi\)
0.847555 + 0.530707i \(0.178073\pi\)
\(312\) 1.10101 2.65807i 0.0623323 0.150484i
\(313\) 21.9797 + 9.10430i 1.24237 + 0.514606i 0.904454 0.426571i \(-0.140279\pi\)
0.337914 + 0.941177i \(0.390279\pi\)
\(314\) 14.3349 14.3349i 0.808965 0.808965i
\(315\) 0 0
\(316\) 9.98775 + 4.13706i 0.561855 + 0.232728i
\(317\) 2.00203 4.83333i 0.112445 0.271467i −0.857632 0.514264i \(-0.828065\pi\)
0.970077 + 0.242798i \(0.0780651\pi\)
\(318\) −3.94256 + 1.63306i −0.221088 + 0.0915774i
\(319\) 0.00676307i 0.000378659i
\(320\) 0 0
\(321\) 8.33897 + 8.33897i 0.465436 + 0.465436i
\(322\) −10.7618 −0.599731
\(323\) −9.85131 14.1939i −0.548141 0.789769i
\(324\) 6.11295 0.339608
\(325\) 0 0
\(326\) −6.89244 16.6398i −0.381737 0.921594i
\(327\) 1.53040i 0.0846310i
\(328\) −13.0081 + 5.38815i −0.718254 + 0.297511i
\(329\) 3.31012 7.99133i 0.182493 0.440576i
\(330\) 0 0
\(331\) 17.8508 17.8508i 0.981168 0.981168i −0.0186578 0.999826i \(-0.505939\pi\)
0.999826 + 0.0186578i \(0.00593929\pi\)
\(332\) −7.10764 + 7.10764i −0.390082 + 0.390082i
\(333\) 23.2126 + 9.61497i 1.27204 + 0.526897i
\(334\) 8.82862 21.3142i 0.483080 1.16626i
\(335\) 0 0
\(336\) 3.10639i 0.169467i
\(337\) 0.227143 + 0.548372i 0.0123733 + 0.0298717i 0.929945 0.367698i \(-0.119854\pi\)
−0.917572 + 0.397569i \(0.869854\pi\)
\(338\) 5.93795 + 5.93795i 0.322982 + 0.322982i
\(339\) 0.527885 0.0286708
\(340\) 0 0
\(341\) −0.185582 −0.0100498
\(342\) −13.6373 13.6373i −0.737423 0.737423i
\(343\) −5.13308 12.3924i −0.277161 0.669125i
\(344\) 1.45564i 0.0784831i
\(345\) 0 0
\(346\) −15.0535 + 36.3425i −0.809283 + 1.95378i
\(347\) −1.87926 0.778415i −0.100884 0.0417875i 0.331671 0.943395i \(-0.392388\pi\)
−0.432555 + 0.901608i \(0.642388\pi\)
\(348\) −0.0387800 + 0.0387800i −0.00207883 + 0.00207883i
\(349\) −2.09333 + 2.09333i −0.112053 + 0.112053i −0.760910 0.648857i \(-0.775247\pi\)
0.648857 + 0.760910i \(0.275247\pi\)
\(350\) 0 0
\(351\) 3.69683 8.92493i 0.197322 0.476378i
\(352\) 0.377855 0.156513i 0.0201397 0.00834215i
\(353\) 16.0575i 0.854656i 0.904097 + 0.427328i \(0.140545\pi\)
−0.904097 + 0.427328i \(0.859455\pi\)
\(354\) 3.66013 + 8.83633i 0.194534 + 0.469646i
\(355\) 0 0
\(356\) −0.109943 −0.00582699
\(357\) 0.455377 2.52146i 0.0241011 0.133450i
\(358\) 9.30937 0.492015
\(359\) 14.3396 + 14.3396i 0.756815 + 0.756815i 0.975741 0.218926i \(-0.0702555\pi\)
−0.218926 + 0.975741i \(0.570255\pi\)
\(360\) 0 0
\(361\) 1.44032i 0.0758063i
\(362\) 3.24820 1.34545i 0.170722 0.0707152i
\(363\) 2.51889 6.08113i 0.132207 0.319177i
\(364\) −2.84053 1.17659i −0.148884 0.0616700i
\(365\) 0 0
\(366\) −0.212678 + 0.212678i −0.0111169 + 0.0111169i
\(367\) −18.9978 7.86915i −0.991678 0.410767i −0.172939 0.984933i \(-0.555326\pi\)
−0.818739 + 0.574166i \(0.805326\pi\)
\(368\) −11.3833 + 27.4818i −0.593397 + 1.43259i
\(369\) −20.4510 + 8.47109i −1.06464 + 0.440987i
\(370\) 0 0
\(371\) −1.62502 3.92314i −0.0843667 0.203679i
\(372\) −1.06414 1.06414i −0.0551731 0.0551731i
\(373\) −5.43210 −0.281264 −0.140632 0.990062i \(-0.544913\pi\)
−0.140632 + 0.990062i \(0.544913\pi\)
\(374\) 0.536745 0.116663i 0.0277544 0.00603252i
\(375\) 0 0
\(376\) −9.90058 9.90058i −0.510583 0.510583i
\(377\) −0.0968111 0.233723i −0.00498602 0.0120373i
\(378\) 6.10832i 0.314178i
\(379\) 18.0688 7.48435i 0.928133 0.384445i 0.133163 0.991094i \(-0.457487\pi\)
0.794970 + 0.606649i \(0.207487\pi\)
\(380\) 0 0
\(381\) −9.28364 3.84541i −0.475616 0.197006i
\(382\) −15.8611 + 15.8611i −0.811523 + 0.811523i
\(383\) 7.79547 7.79547i 0.398330 0.398330i −0.479314 0.877644i \(-0.659114\pi\)
0.877644 + 0.479314i \(0.159114\pi\)
\(384\) −6.57059 2.72163i −0.335304 0.138888i
\(385\) 0 0
\(386\) −4.27753 + 1.77181i −0.217721 + 0.0901829i
\(387\) 2.28852i 0.116332i
\(388\) −3.39640 8.19962i −0.172426 0.416273i
\(389\) −7.61741 7.61741i −0.386218 0.386218i 0.487118 0.873336i \(-0.338048\pi\)
−0.873336 + 0.487118i \(0.838048\pi\)
\(390\) 0 0
\(391\) −13.2685 + 20.6382i −0.671016 + 1.04372i
\(392\) −9.95114 −0.502609
\(393\) −3.60006 3.60006i −0.181599 0.181599i
\(394\) 11.5511 + 27.8868i 0.581936 + 1.40492i
\(395\) 0 0
\(396\) 0.193255 0.0800488i 0.00971143 0.00402260i
\(397\) 2.52765 6.10228i 0.126859 0.306265i −0.847671 0.530522i \(-0.821996\pi\)
0.974530 + 0.224258i \(0.0719958\pi\)
\(398\) −36.7658 15.2289i −1.84290 0.763355i
\(399\) −1.84136 + 1.84136i −0.0921835 + 0.0921835i
\(400\) 0 0
\(401\) −12.9334 5.35717i −0.645861 0.267524i 0.0356143 0.999366i \(-0.488661\pi\)
−0.681475 + 0.731841i \(0.738661\pi\)
\(402\) −5.14792 + 12.4282i −0.256755 + 0.619861i
\(403\) 6.41345 2.65654i 0.319477 0.132332i
\(404\) 8.81465i 0.438545i
\(405\) 0 0
\(406\) −0.113110 0.113110i −0.00561357 0.00561357i
\(407\) 0.727259 0.0360489
\(408\) −3.48876 2.24295i −0.172719 0.111043i
\(409\) −24.5879 −1.21579 −0.607896 0.794016i \(-0.707986\pi\)
−0.607896 + 0.794016i \(0.707986\pi\)
\(410\) 0 0
\(411\) −3.56978 8.61821i −0.176084 0.425105i
\(412\) 12.3980i 0.610807i
\(413\) −8.79281 + 3.64210i −0.432666 + 0.179216i
\(414\) −10.4808 + 25.3030i −0.515105 + 1.24357i
\(415\) 0 0
\(416\) −10.8177 + 10.8177i −0.530383 + 0.530383i
\(417\) 3.32019 3.32019i 0.162590 0.162590i
\(418\) −0.515752 0.213632i −0.0252263 0.0104491i
\(419\) 11.4857 27.7290i 0.561115 1.35465i −0.347760 0.937583i \(-0.613058\pi\)
0.908875 0.417068i \(-0.136942\pi\)
\(420\) 0 0
\(421\) 2.84004i 0.138415i 0.997602 + 0.0692076i \(0.0220471\pi\)
−0.997602 + 0.0692076i \(0.977953\pi\)
\(422\) −1.99015 4.80464i −0.0968788 0.233886i
\(423\) −15.5654 15.5654i −0.756816 0.756816i
\(424\) −6.87369 −0.333816
\(425\) 0 0
\(426\) 13.7740 0.667352
\(427\) −0.211631 0.211631i −0.0102415 0.0102415i
\(428\) −7.80679 18.8472i −0.377355 0.911016i
\(429\) 0.130928i 0.00632126i
\(430\) 0 0
\(431\) 2.29953 5.55155i 0.110764 0.267409i −0.858771 0.512359i \(-0.828772\pi\)
0.969536 + 0.244950i \(0.0787717\pi\)
\(432\) −15.5985 6.46109i −0.750481 0.310860i
\(433\) 7.04962 7.04962i 0.338783 0.338783i −0.517126 0.855909i \(-0.672998\pi\)
0.855909 + 0.517126i \(0.172998\pi\)
\(434\) 3.10380 3.10380i 0.148987 0.148987i
\(435\) 0 0
\(436\) −1.01309 + 2.44582i −0.0485183 + 0.117133i
\(437\) 23.0379 9.54262i 1.10205 0.456486i
\(438\) 6.83069i 0.326383i
\(439\) 0.481202 + 1.16173i 0.0229665 + 0.0554461i 0.934947 0.354788i \(-0.115447\pi\)
−0.911980 + 0.410234i \(0.865447\pi\)
\(440\) 0 0
\(441\) −15.6449 −0.744995
\(442\) −16.8792 + 11.7151i −0.802861 + 0.557228i
\(443\) −2.22305 −0.105620 −0.0528100 0.998605i \(-0.516818\pi\)
−0.0528100 + 0.998605i \(0.516818\pi\)
\(444\) 4.17016 + 4.17016i 0.197907 + 0.197907i
\(445\) 0 0
\(446\) 7.08691i 0.335575i
\(447\) 11.3845 4.71563i 0.538471 0.223042i
\(448\) 0.269285 0.650112i 0.0127225 0.0307149i
\(449\) 5.00234 + 2.07204i 0.236075 + 0.0977855i 0.497585 0.867415i \(-0.334220\pi\)
−0.261510 + 0.965201i \(0.584220\pi\)
\(450\) 0 0
\(451\) −0.453070 + 0.453070i −0.0213343 + 0.0213343i
\(452\) −0.843646 0.349449i −0.0396818 0.0164367i
\(453\) −3.31990 + 8.01495i −0.155983 + 0.376575i
\(454\) −13.3533 + 5.53114i −0.626704 + 0.259589i
\(455\) 0 0
\(456\) 1.61312 + 3.89441i 0.0755412 + 0.182373i
\(457\) 0.754799 + 0.754799i 0.0353080 + 0.0353080i 0.724540 0.689232i \(-0.242052\pi\)
−0.689232 + 0.724540i \(0.742052\pi\)
\(458\) 7.56457 0.353469
\(459\) −11.7141 7.53110i −0.546768 0.351522i
\(460\) 0 0
\(461\) 20.9215 + 20.9215i 0.974413 + 0.974413i 0.999681 0.0252675i \(-0.00804376\pi\)
−0.0252675 + 0.999681i \(0.508044\pi\)
\(462\) −0.0316813 0.0764855i −0.00147395 0.00355843i
\(463\) 1.89160i 0.0879099i −0.999034 0.0439549i \(-0.986004\pi\)
0.999034 0.0439549i \(-0.0139958\pi\)
\(464\) −0.408486 + 0.169200i −0.0189635 + 0.00785494i
\(465\) 0 0
\(466\) −0.0438989 0.0181835i −0.00203358 0.000842335i
\(467\) −12.2334 + 12.2334i −0.566092 + 0.566092i −0.931031 0.364939i \(-0.881090\pi\)
0.364939 + 0.931031i \(0.381090\pi\)
\(468\) −5.53276 + 5.53276i −0.255752 + 0.255752i
\(469\) −12.3670 5.12256i −0.571053 0.236538i
\(470\) 0 0
\(471\) −6.43586 + 2.66582i −0.296549 + 0.122835i
\(472\) 15.4058i 0.709109i
\(473\) −0.0253499 0.0612000i −0.00116559 0.00281398i
\(474\) −7.69942 7.69942i −0.353646 0.353646i
\(475\) 0 0
\(476\) −2.39692 + 3.72824i −0.109863 + 0.170884i
\(477\) −10.8066 −0.494801
\(478\) 19.6299 + 19.6299i 0.897849 + 0.897849i
\(479\) −9.92773 23.9676i −0.453609 1.09511i −0.970940 0.239324i \(-0.923074\pi\)
0.517330 0.855786i \(-0.326926\pi\)
\(480\) 0 0
\(481\) −25.1331 + 10.4105i −1.14597 + 0.474676i
\(482\) 9.52576 22.9972i 0.433886 1.04749i
\(483\) 3.41650 + 1.41516i 0.155456 + 0.0643921i
\(484\) −8.05118 + 8.05118i −0.365963 + 0.365963i
\(485\) 0 0
\(486\) −21.9989 9.11225i −0.997892 0.413340i
\(487\) 9.03010 21.8006i 0.409193 0.987879i −0.576158 0.817339i \(-0.695449\pi\)
0.985351 0.170541i \(-0.0545514\pi\)
\(488\) −0.447591 + 0.185398i −0.0202615 + 0.00839258i
\(489\) 6.18892i 0.279873i
\(490\) 0 0
\(491\) −13.2555 13.2555i −0.598211 0.598211i 0.341626 0.939836i \(-0.389023\pi\)
−0.939836 + 0.341626i \(0.889023\pi\)
\(492\) −5.19588 −0.234248
\(493\) −0.356372 + 0.0774585i −0.0160502 + 0.00348856i
\(494\) 20.8818 0.939515
\(495\) 0 0
\(496\) −4.64294 11.2090i −0.208474 0.503301i
\(497\) 13.7062i 0.614805i
\(498\) 9.35354 3.87436i 0.419142 0.173614i
\(499\) −2.30180 + 5.55703i −0.103043 + 0.248767i −0.966990 0.254816i \(-0.917985\pi\)
0.863947 + 0.503583i \(0.167985\pi\)
\(500\) 0 0
\(501\) −5.60557 + 5.60557i −0.250438 + 0.250438i
\(502\) −10.0559 + 10.0559i −0.448815 + 0.448815i
\(503\) −3.95467 1.63808i −0.176330 0.0730382i 0.292772 0.956182i \(-0.405422\pi\)
−0.469102 + 0.883144i \(0.655422\pi\)
\(504\) 1.76299 4.25624i 0.0785298 0.189588i
\(505\) 0 0
\(506\) 0.792752i 0.0352421i
\(507\) −1.10426 2.66593i −0.0490421 0.118398i
\(508\) 12.2912 + 12.2912i 0.545333 + 0.545333i
\(509\) 23.6694 1.04913 0.524563 0.851371i \(-0.324229\pi\)
0.524563 + 0.851371i \(0.324229\pi\)
\(510\) 0 0
\(511\) −6.79705 −0.300684
\(512\) 7.02879 + 7.02879i 0.310632 + 0.310632i
\(513\) 5.41633 + 13.0762i 0.239137 + 0.577327i
\(514\) 17.0484i 0.751971i
\(515\) 0 0
\(516\) 0.205568 0.496284i 0.00904961 0.0218477i
\(517\) −0.588670 0.243835i −0.0258897 0.0107239i
\(518\) −12.1632 + 12.1632i −0.534420 + 0.534420i
\(519\) 9.55797 9.55797i 0.419548 0.419548i
\(520\) 0 0
\(521\) 5.50494 13.2901i 0.241176 0.582250i −0.756224 0.654312i \(-0.772958\pi\)
0.997400 + 0.0720626i \(0.0229581\pi\)
\(522\) −0.376101 + 0.155786i −0.0164615 + 0.00681857i
\(523\) 21.3063i 0.931658i 0.884875 + 0.465829i \(0.154244\pi\)
−0.884875 + 0.465829i \(0.845756\pi\)
\(524\) 3.37031 + 8.13664i 0.147233 + 0.355451i
\(525\) 0 0
\(526\) 24.7672 1.07990
\(527\) −2.12550 9.77900i −0.0925881 0.425980i
\(528\) −0.228828 −0.00995845
\(529\) −8.77599 8.77599i −0.381565 0.381565i
\(530\) 0 0
\(531\) 24.2206i 1.05108i
\(532\) 4.16174 1.72385i 0.180435 0.0747384i
\(533\) 9.17195 22.1430i 0.397281 0.959122i
\(534\) 0.102307 + 0.0423769i 0.00442725 + 0.00183383i
\(535\) 0 0
\(536\) −15.3216 + 15.3216i −0.661793 + 0.661793i
\(537\) −2.95541 1.22417i −0.127535 0.0528268i
\(538\) 15.1805 36.6489i 0.654477 1.58005i
\(539\) −0.418378 + 0.173298i −0.0180208 + 0.00746447i
\(540\) 0 0
\(541\) −4.39065 10.6000i −0.188769 0.455728i 0.800954 0.598726i \(-0.204326\pi\)
−0.989723 + 0.142997i \(0.954326\pi\)
\(542\) −21.6862 21.6862i −0.931502 0.931502i
\(543\) −1.20812 −0.0518453
\(544\) 12.5749 + 18.1180i 0.539143 + 0.776804i
\(545\) 0 0
\(546\) 2.18973 + 2.18973i 0.0937117 + 0.0937117i
\(547\) −6.34430 15.3165i −0.271263 0.654886i 0.728275 0.685285i \(-0.240322\pi\)
−0.999538 + 0.0303990i \(0.990322\pi\)
\(548\) 16.1364i 0.689313i
\(549\) −0.703690 + 0.291478i −0.0300327 + 0.0124400i
\(550\) 0 0
\(551\) 0.342433 + 0.141841i 0.0145881 + 0.00604261i
\(552\) 4.23275 4.23275i 0.180158 0.180158i
\(553\) 7.66149 7.66149i 0.325800 0.325800i
\(554\) −10.8433 4.49144i −0.460687 0.190823i
\(555\) 0 0
\(556\) −7.50410 + 3.10830i −0.318245 + 0.131821i
\(557\) 31.0825i 1.31701i 0.752577 + 0.658504i \(0.228811\pi\)
−0.752577 + 0.658504i \(0.771189\pi\)
\(558\) −4.27484 10.3204i −0.180968 0.436896i
\(559\) 1.75211 + 1.75211i 0.0741065 + 0.0741065i
\(560\) 0 0
\(561\) −0.185739 0.0335447i −0.00784192 0.00141626i
\(562\) 40.0177 1.68805
\(563\) 3.78472 + 3.78472i 0.159507 + 0.159507i 0.782348 0.622841i \(-0.214022\pi\)
−0.622841 + 0.782348i \(0.714022\pi\)
\(564\) −1.97731 4.77365i −0.0832598 0.201007i
\(565\) 0 0
\(566\) 31.1786 12.9146i 1.31053 0.542841i
\(567\) 2.34459 5.66034i 0.0984635 0.237712i
\(568\) 20.4976 + 8.49038i 0.860060 + 0.356248i
\(569\) 10.5211 10.5211i 0.441066 0.441066i −0.451304 0.892370i \(-0.649041\pi\)
0.892370 + 0.451304i \(0.149041\pi\)
\(570\) 0 0
\(571\) 39.2053 + 16.2393i 1.64069 + 0.679595i 0.996367 0.0851594i \(-0.0271399\pi\)
0.644321 + 0.764755i \(0.277140\pi\)
\(572\) −0.0866717 + 0.209244i −0.00362392 + 0.00874893i
\(573\) 7.12106 2.94964i 0.297486 0.123223i
\(574\) 15.1549i 0.632554i
\(575\) 0 0
\(576\) −1.26628 1.26628i −0.0527616 0.0527616i
\(577\) 41.2914 1.71898 0.859491 0.511151i \(-0.170781\pi\)
0.859491 + 0.511151i \(0.170781\pi\)
\(578\) 12.2949 + 26.9470i 0.511399 + 1.12085i
\(579\) 1.59096 0.0661181
\(580\) 0 0
\(581\) 3.85528 + 9.30747i 0.159944 + 0.386139i
\(582\) 8.93921i 0.370542i
\(583\) −0.288992 + 0.119705i −0.0119688 + 0.00495765i
\(584\) −4.21048 + 10.1650i −0.174231 + 0.420631i
\(585\) 0 0
\(586\) 24.8982 24.8982i 1.02853 1.02853i
\(587\) −12.1282 + 12.1282i −0.500586 + 0.500586i −0.911620 0.411034i \(-0.865168\pi\)
0.411034 + 0.911620i \(0.365168\pi\)
\(588\) −3.39272 1.40531i −0.139913 0.0579540i
\(589\) −3.89217 + 9.39652i −0.160374 + 0.387177i
\(590\) 0 0
\(591\) 10.3721i 0.426650i
\(592\) 18.1948 + 43.9261i 0.747801 + 1.80535i
\(593\) −22.6078 22.6078i −0.928392 0.928392i 0.0692104 0.997602i \(-0.477952\pi\)
−0.997602 + 0.0692104i \(0.977952\pi\)
\(594\) −0.449960 −0.0184621
\(595\) 0 0
\(596\) −21.3160 −0.873138
\(597\) 9.66930 + 9.66930i 0.395738 + 0.395738i
\(598\) −11.3480 27.3964i −0.464053 1.12032i
\(599\) 18.5632i 0.758473i −0.925300 0.379237i \(-0.876187\pi\)
0.925300 0.379237i \(-0.123813\pi\)
\(600\) 0 0
\(601\) 8.19864 19.7933i 0.334430 0.807384i −0.663800 0.747910i \(-0.731058\pi\)
0.998230 0.0594745i \(-0.0189425\pi\)
\(602\) 1.44752 + 0.599583i 0.0589965 + 0.0244372i
\(603\) −24.0882 + 24.0882i −0.980948 + 0.980948i
\(604\) 10.6115 10.6115i 0.431775 0.431775i
\(605\) 0 0
\(606\) 3.39754 8.20240i 0.138016 0.333200i
\(607\) 3.29333 1.36414i 0.133672 0.0553688i −0.314845 0.949143i \(-0.601952\pi\)
0.448517 + 0.893774i \(0.351952\pi\)
\(608\) 22.4144i 0.909023i
\(609\) 0.0210348 + 0.0507825i 0.000852373 + 0.00205781i
\(610\) 0 0
\(611\) 23.8340 0.964222
\(612\) 6.43145 + 9.26652i 0.259976 + 0.374577i
\(613\) −19.4457 −0.785402 −0.392701 0.919666i \(-0.628459\pi\)
−0.392701 + 0.919666i \(0.628459\pi\)
\(614\) −22.2788 22.2788i −0.899101 0.899101i
\(615\) 0 0
\(616\) 0.133349i 0.00537280i
\(617\) 6.54562 2.71129i 0.263517 0.109152i −0.247013 0.969012i \(-0.579449\pi\)
0.510530 + 0.859860i \(0.329449\pi\)
\(618\) −4.77874 + 11.5369i −0.192229 + 0.464082i
\(619\) −7.48218 3.09922i −0.300734 0.124568i 0.227214 0.973845i \(-0.427038\pi\)
−0.527948 + 0.849277i \(0.677038\pi\)
\(620\) 0 0
\(621\) 14.2122 14.2122i 0.570316 0.570316i
\(622\) 32.9260 + 13.6384i 1.32021 + 0.546850i
\(623\) −0.0421682 + 0.101803i −0.00168943 + 0.00407865i
\(624\) 7.90798 3.27559i 0.316572 0.131129i
\(625\) 0 0
\(626\) 15.8625 + 38.2955i 0.633994 + 1.53060i
\(627\) 0.135641 + 0.135641i 0.00541700 + 0.00541700i
\(628\) 12.0503 0.480858
\(629\) 8.32941 + 38.3220i 0.332116 + 1.52800i
\(630\) 0 0
\(631\) −5.93919 5.93919i −0.236436 0.236436i 0.578937 0.815372i \(-0.303468\pi\)
−0.815372 + 0.578937i \(0.803468\pi\)
\(632\) −6.71181 16.2038i −0.266982 0.644551i
\(633\) 1.78701i 0.0710273i
\(634\) 8.42116 3.48816i 0.334447 0.138533i
\(635\) 0 0
\(636\) −2.34350 0.970709i −0.0929258 0.0384911i
\(637\) 11.9779 11.9779i 0.474581 0.474581i
\(638\) −0.00833211 + 0.00833211i −0.000329871 + 0.000329871i
\(639\) 32.2257 + 13.3483i 1.27483 + 0.528052i
\(640\) 0 0
\(641\) −1.23638 + 0.512124i −0.0488340 + 0.0202277i −0.406967 0.913443i \(-0.633414\pi\)
0.358133 + 0.933671i \(0.383414\pi\)
\(642\) 20.5472i 0.810934i
\(643\) 16.7357 + 40.4035i 0.659991 + 1.59336i 0.797815 + 0.602902i \(0.205989\pi\)
−0.137825 + 0.990457i \(0.544011\pi\)
\(644\) −4.52331 4.52331i −0.178243 0.178243i
\(645\) 0 0
\(646\) 5.35006 29.6237i 0.210495 1.16553i
\(647\) −25.4968 −1.00238 −0.501191 0.865337i \(-0.667105\pi\)
−0.501191 + 0.865337i \(0.667105\pi\)
\(648\) −7.01268 7.01268i −0.275484 0.275484i
\(649\) 0.268290 + 0.647710i 0.0105313 + 0.0254248i
\(650\) 0 0
\(651\) −1.39349 + 0.577204i −0.0546153 + 0.0226224i
\(652\) 4.09694 9.89090i 0.160449 0.387357i
\(653\) 7.60853 + 3.15156i 0.297745 + 0.123330i 0.526555 0.850141i \(-0.323483\pi\)
−0.228810 + 0.973471i \(0.573483\pi\)
\(654\) 1.88545 1.88545i 0.0737268 0.0737268i
\(655\) 0 0
\(656\) −38.7003 16.0302i −1.51099 0.625873i
\(657\) −6.61960 + 15.9811i −0.258255 + 0.623483i
\(658\) 13.9234 5.76726i 0.542790 0.224831i
\(659\) 30.4524i 1.18626i 0.805108 + 0.593129i \(0.202107\pi\)
−0.805108 + 0.593129i \(0.797893\pi\)
\(660\) 0 0
\(661\) 13.8024 + 13.8024i 0.536850 + 0.536850i 0.922602 0.385752i \(-0.126058\pi\)
−0.385752 + 0.922602i \(0.626058\pi\)
\(662\) 43.9844 1.70950
\(663\) 6.89908 1.49954i 0.267938 0.0582372i
\(664\) 16.3075 0.632855
\(665\) 0 0
\(666\) 16.7523 + 40.4436i 0.649137 + 1.56716i
\(667\) 0.526347i 0.0203802i
\(668\) 12.6694 5.24783i 0.490193 0.203045i
\(669\) −0.931919 + 2.24985i −0.0360301 + 0.0869842i
\(670\) 0 0
\(671\) −0.0155895 + 0.0155895i −0.000601826 + 0.000601826i
\(672\) 2.35044 2.35044i 0.0906703 0.0906703i
\(673\) −28.1304 11.6520i −1.08435 0.449151i −0.232314 0.972641i \(-0.574630\pi\)
−0.852032 + 0.523490i \(0.824630\pi\)
\(674\) −0.395754 + 0.955435i −0.0152439 + 0.0368020i
\(675\) 0 0
\(676\) 4.99159i 0.191984i
\(677\) 16.7122 + 40.3468i 0.642302 + 1.55066i 0.823566 + 0.567220i \(0.191981\pi\)
−0.181264 + 0.983435i \(0.558019\pi\)
\(678\) 0.650355 + 0.650355i 0.0249767 + 0.0249767i
\(679\) −8.89518 −0.341366
\(680\) 0 0
\(681\) 4.96657 0.190319
\(682\) −0.228637 0.228637i −0.00875495 0.00875495i
\(683\) 16.1714 + 39.0413i 0.618783 + 1.49387i 0.853118 + 0.521719i \(0.174709\pi\)
−0.234334 + 0.972156i \(0.575291\pi\)
\(684\) 11.4639i 0.438333i
\(685\) 0 0
\(686\) 8.94343 21.5914i 0.341462 0.824362i
\(687\) −2.40149 0.994730i −0.0916226 0.0379513i
\(688\) 3.06224 3.06224i 0.116747 0.116747i
\(689\) 8.27365 8.27365i 0.315201 0.315201i
\(690\) 0 0
\(691\) 0.281277 0.679063i 0.0107003 0.0258328i −0.918439 0.395562i \(-0.870550\pi\)
0.929139 + 0.369730i \(0.120550\pi\)
\(692\) −21.6024 + 8.94799i −0.821199 + 0.340152i
\(693\) 0.209648i 0.00796388i
\(694\) −1.35624 3.27426i −0.0514822 0.124289i
\(695\) 0 0
\(696\) 0.0889755 0.00337261
\(697\) −29.0631 18.6849i −1.10084 0.707741i
\(698\) −5.15797 −0.195232
\(699\) 0.0115453 + 0.0115453i 0.000436683 + 0.000436683i
\(700\) 0 0
\(701\) 14.1492i 0.534409i −0.963640 0.267204i \(-0.913900\pi\)
0.963640 0.267204i \(-0.0860999\pi\)
\(702\) 15.5500 6.44103i 0.586898 0.243101i
\(703\) 15.2527 36.8232i 0.575265 1.38881i
\(704\) −0.0478896 0.0198365i −0.00180491 0.000747616i
\(705\) 0 0
\(706\) −19.7829 + 19.7829i −0.744539 + 0.744539i
\(707\) 8.16200 + 3.38081i 0.306964 + 0.127148i
\(708\) −2.17562 + 5.25242i −0.0817649 + 0.197398i
\(709\) 25.8317 10.6998i 0.970129 0.401841i 0.159369 0.987219i \(-0.449054\pi\)
0.810760 + 0.585378i \(0.199054\pi\)
\(710\) 0 0
\(711\) −10.5521 25.4751i −0.395736 0.955390i
\(712\) 0.126125 + 0.126125i 0.00472675 + 0.00472675i
\(713\) 14.4432 0.540902
\(714\) 3.66746 2.54541i 0.137251 0.0952596i
\(715\) 0 0
\(716\) 3.91284 + 3.91284i 0.146230 + 0.146230i
\(717\) −3.65051 8.81311i −0.136331 0.329132i
\(718\) 35.3328i 1.31861i
\(719\) −38.3914 + 15.9022i −1.43176 + 0.593054i −0.957785 0.287485i \(-0.907181\pi\)
−0.473974 + 0.880539i \(0.657181\pi\)
\(720\) 0 0
\(721\) −11.4801 4.75520i −0.427540 0.177093i
\(722\) 1.77447 1.77447i 0.0660391 0.0660391i
\(723\) −6.04821 + 6.04821i −0.224935 + 0.224935i
\(724\) 1.93077 + 0.799750i 0.0717564 + 0.0297225i
\(725\) 0 0
\(726\) 10.5952 4.38869i 0.393226 0.162879i
\(727\) 25.9162i 0.961177i 0.876946 + 0.480589i \(0.159577\pi\)
−0.876946 + 0.480589i \(0.840423\pi\)
\(728\) 1.90885 + 4.60838i 0.0707468 + 0.170798i
\(729\) −6.73550 6.73550i −0.249463 0.249463i
\(730\) 0 0
\(731\) 2.93452 2.03671i 0.108537 0.0753306i
\(732\) −0.178783 −0.00660800
\(733\) −2.02367 2.02367i −0.0747458 0.0747458i 0.668746 0.743491i \(-0.266832\pi\)
−0.743491 + 0.668746i \(0.766832\pi\)
\(734\) −13.7105 33.1001i −0.506064 1.22175i
\(735\) 0 0
\(736\) −29.4072 + 12.1809i −1.08396 + 0.448992i
\(737\) −0.377346 + 0.910995i −0.0138997 + 0.0335569i
\(738\) −35.6321 14.7593i −1.31163 0.543297i
\(739\) −20.3671 + 20.3671i −0.749214 + 0.749214i −0.974332 0.225118i \(-0.927723\pi\)
0.225118 + 0.974332i \(0.427723\pi\)
\(740\) 0 0
\(741\) −6.62924 2.74592i −0.243531 0.100874i
\(742\) 2.83129 6.83533i 0.103940 0.250933i
\(743\) 13.1194 5.43425i 0.481306 0.199363i −0.128820 0.991668i \(-0.541119\pi\)
0.610126 + 0.792305i \(0.291119\pi\)
\(744\) 2.44153i 0.0895107i
\(745\) 0 0
\(746\) −6.69235 6.69235i −0.245024 0.245024i
\(747\) 25.6382 0.938054
\(748\) 0.274636 + 0.176566i 0.0100417 + 0.00645588i
\(749\) −20.4460 −0.747081
\(750\) 0 0
\(751\) 17.9916 + 43.4356i 0.656523 + 1.58499i 0.803138 + 0.595793i \(0.203162\pi\)
−0.146615 + 0.989194i \(0.546838\pi\)
\(752\) 41.6557i 1.51903i
\(753\) 4.51472 1.87006i 0.164526 0.0681488i
\(754\) 0.168675 0.407218i 0.00614278 0.0148300i
\(755\) 0 0
\(756\) 2.56740 2.56740i 0.0933754 0.0933754i
\(757\) −9.35712 + 9.35712i −0.340090 + 0.340090i −0.856401 0.516311i \(-0.827305\pi\)
0.516311 + 0.856401i \(0.327305\pi\)
\(758\) 31.4815 + 13.0401i 1.14346 + 0.473637i
\(759\) 0.104246 0.251672i 0.00378388 0.00913510i
\(760\) 0 0
\(761\) 29.0026i 1.05134i 0.850688 + 0.525672i \(0.176186\pi\)
−0.850688 + 0.525672i \(0.823814\pi\)
\(762\) −6.69990 16.1750i −0.242712 0.585958i
\(763\) 1.87616 + 1.87616i 0.0679216 + 0.0679216i
\(764\) −13.3332 −0.482378
\(765\) 0 0
\(766\) 19.2081 0.694015
\(767\) −18.5435 18.5435i −0.669566 0.669566i
\(768\) −4.43128 10.6981i −0.159900 0.386033i
\(769\) 32.5187i 1.17265i 0.810075 + 0.586327i \(0.199427\pi\)
−0.810075 + 0.586327i \(0.800573\pi\)
\(770\) 0 0
\(771\) 2.24184 5.41227i 0.0807378 0.194918i
\(772\) −2.54261 1.05318i −0.0915107 0.0379050i
\(773\) −13.7423 + 13.7423i −0.494275 + 0.494275i −0.909650 0.415375i \(-0.863650\pi\)
0.415375 + 0.909650i \(0.363650\pi\)
\(774\) 2.81946 2.81946i 0.101343 0.101343i
\(775\) 0 0
\(776\) −5.51018 + 13.3028i −0.197804 + 0.477541i
\(777\) 5.46084 2.26195i 0.195906 0.0811471i
\(778\) 18.7693i 0.672912i
\(779\) 13.4381 + 32.4424i 0.481469 + 1.16237i
\(780\) 0 0
\(781\) 1.00964 0.0361279
\(782\) −41.7731 + 9.07951i −1.49380 + 0.324683i
\(783\) 0.298751 0.0106765
\(784\) −20.9342 20.9342i −0.747651 0.747651i
\(785\) 0 0
\(786\) 8.87055i 0.316402i
\(787\) 17.2673 7.15233i 0.615511 0.254953i −0.0530716 0.998591i \(-0.516901\pi\)
0.668583 + 0.743638i \(0.266901\pi\)
\(788\) −6.86610 + 16.5762i −0.244595 + 0.590504i
\(789\) −7.86274 3.25685i −0.279921 0.115947i
\(790\) 0 0
\(791\) −0.647151 + 0.647151i −0.0230101 + 0.0230101i
\(792\) −0.313530 0.129868i −0.0111408 0.00461466i
\(793\) 0.315593 0.761910i 0.0112070 0.0270562i
\(794\) 10.6321 4.40395i 0.377318 0.156290i
\(795\) 0 0
\(796\) −9.05222 21.8540i −0.320847 0.774594i
\(797\) −10.2971 10.2971i −0.364743 0.364743i 0.500813 0.865556i \(-0.333034\pi\)
−0.865556 + 0.500813i \(0.833034\pi\)
\(798\) −4.53712 −0.160612
\(799\) 6.10646 33.8119i 0.216031 1.19618i
\(800\) 0 0
\(801\) 0.198291 + 0.198291i 0.00700625 + 0.00700625i
\(802\) −9.33386 22.5339i −0.329590 0.795701i
\(803\) 0.500695i 0.0176691i
\(804\) −7.38745 + 3.05998i −0.260535 + 0.107917i
\(805\) 0 0
\(806\) 11.1742 + 4.62852i 0.393595 + 0.163033i
\(807\) −9.63856 + 9.63856i −0.339293 + 0.339293i
\(808\) 10.1120 10.1120i 0.355740 0.355740i
\(809\) 18.7042 + 7.74755i 0.657606 + 0.272389i 0.686431 0.727195i \(-0.259176\pi\)
−0.0288248 + 0.999584i \(0.509176\pi\)
\(810\) 0 0
\(811\) −36.4099 + 15.0815i −1.27852 + 0.529582i −0.915545 0.402215i \(-0.868240\pi\)
−0.362979 + 0.931797i \(0.618240\pi\)
\(812\) 0.0950833i 0.00333677i
\(813\) 4.03292 + 9.73633i 0.141441 + 0.341468i
\(814\) 0.895984 + 0.895984i 0.0314042 + 0.0314042i
\(815\) 0 0
\(816\) −2.62080 12.0578i −0.0917464 0.422107i
\(817\) −3.63039 −0.127011
\(818\) −30.2923 30.2923i −1.05914 1.05914i
\(819\) 3.00104 + 7.24516i 0.104865 + 0.253166i
\(820\) 0 0
\(821\) −17.2968 + 7.16455i −0.603661 + 0.250045i −0.663516 0.748163i \(-0.730936\pi\)
0.0598545 + 0.998207i \(0.480936\pi\)
\(822\) 6.21966 15.0156i 0.216936 0.523729i
\(823\) 46.6517 + 19.3237i 1.62617 + 0.673583i 0.994796 0.101891i \(-0.0324893\pi\)
0.631379 + 0.775475i \(0.282489\pi\)
\(824\) −14.2228 + 14.2228i −0.495476 + 0.495476i
\(825\) 0 0
\(826\) −15.3198 6.34568i −0.533045 0.220794i
\(827\) −11.5136 + 27.7963i −0.400367 + 0.966571i 0.587210 + 0.809434i \(0.300226\pi\)
−0.987577 + 0.157136i \(0.949774\pi\)
\(828\) −15.0404 + 6.22993i −0.522689 + 0.216505i
\(829\) 15.6619i 0.543959i −0.962303 0.271980i \(-0.912322\pi\)
0.962303 0.271980i \(-0.0876784\pi\)
\(830\) 0 0
\(831\) 2.85175 + 2.85175i 0.0989263 + 0.0989263i
\(832\) 1.93895 0.0672210
\(833\) −13.9235 20.0611i −0.482420 0.695077i
\(834\) 8.18095 0.283283
\(835\) 0 0
\(836\) −0.126985 0.306569i −0.00439187 0.0106029i
\(837\) 8.19785i 0.283359i
\(838\) 48.3126 20.0117i 1.66893 0.691294i
\(839\) −5.46594 + 13.1959i −0.188705 + 0.455575i −0.989711 0.143082i \(-0.954299\pi\)
0.801006 + 0.598657i \(0.204299\pi\)
\(840\) 0 0
\(841\) −20.5006 + 20.5006i −0.706916 + 0.706916i
\(842\) −3.49894 + 3.49894i −0.120581 + 0.120581i
\(843\) −12.7043 5.26228i −0.437558 0.181242i
\(844\) 1.18297 2.85593i 0.0407193 0.0983052i
\(845\) 0 0
\(846\) 38.3532i 1.31861i
\(847\) 4.36707 + 10.5430i 0.150054 + 0.362263i
\(848\) −14.4602 14.4602i −0.496565 0.496565i
\(849\) −11.5964 −0.397987
\(850\) 0 0
\(851\) −56.6001 −1.94023
\(852\) 5.78938 + 5.78938i 0.198341 + 0.198341i
\(853\) −9.54040 23.0326i −0.326657 0.788620i −0.998836 0.0482315i \(-0.984641\pi\)
0.672179 0.740389i \(-0.265359\pi\)
\(854\) 0.521459i 0.0178440i
\(855\) 0 0
\(856\) −12.6654 + 30.5771i −0.432896 + 1.04510i
\(857\) −6.35764 2.63342i −0.217173 0.0899559i 0.271445 0.962454i \(-0.412499\pi\)
−0.488617 + 0.872498i \(0.662499\pi\)
\(858\) 0.161303 0.161303i 0.00550680 0.00550680i
\(859\) 28.0355 28.0355i 0.956560 0.956560i −0.0425346 0.999095i \(-0.513543\pi\)
0.999095 + 0.0425346i \(0.0135433\pi\)
\(860\) 0 0
\(861\) −1.99285 + 4.81117i −0.0679162 + 0.163964i
\(862\) 9.67253 4.00649i 0.329448 0.136462i
\(863\) 11.0858i 0.377364i 0.982038 + 0.188682i \(0.0604216\pi\)
−0.982038 + 0.188682i \(0.939578\pi\)
\(864\) −6.91376 16.6913i −0.235211 0.567850i
\(865\) 0 0
\(866\) 17.3703 0.590266
\(867\) −0.359708 10.1715i −0.0122163 0.345442i
\(868\) 2.60913 0.0885595
\(869\) −0.564373 0.564373i −0.0191450 0.0191450i
\(870\) 0 0
\(871\) 36.8843i 1.24978i
\(872\) 3.96800 1.64360i 0.134374 0.0556594i
\(873\) −8.66296 + 20.9142i −0.293197 + 0.707839i
\(874\) 40.1393 + 16.6262i 1.35773 + 0.562390i
\(875\) 0 0
\(876\) −2.87102 + 2.87102i −0.0970029 + 0.0970029i
\(877\) −35.2441 14.5986i −1.19011 0.492959i −0.302318 0.953207i \(-0.597760\pi\)
−0.887790 + 0.460248i \(0.847760\pi\)
\(878\) −0.838404 + 2.02409i −0.0282948 + 0.0683096i
\(879\) −11.1784 + 4.63024i −0.377038 + 0.156174i
\(880\) 0 0
\(881\) −1.47285 3.55578i −0.0496216 0.119797i 0.897125 0.441777i \(-0.145652\pi\)
−0.946747 + 0.321980i \(0.895652\pi\)
\(882\) −19.2745 19.2745i −0.649007 0.649007i
\(883\) −44.4321 −1.49526 −0.747629 0.664116i \(-0.768808\pi\)
−0.747629 + 0.664116i \(0.768808\pi\)
\(884\) −12.0185 2.17055i −0.404226 0.0730036i
\(885\) 0 0
\(886\) −2.73879 2.73879i −0.0920115 0.0920115i
\(887\) 1.07118 + 2.58606i 0.0359667 + 0.0868314i 0.940842 0.338845i \(-0.110036\pi\)
−0.904875 + 0.425676i \(0.860036\pi\)
\(888\) 9.56788i 0.321077i
\(889\) 16.0953 6.66691i 0.539820 0.223601i
\(890\) 0 0
\(891\) −0.416961 0.172711i −0.0139687 0.00578603i
\(892\) 2.97871 2.97871i 0.0997347 0.0997347i
\(893\) −24.6921 + 24.6921i −0.826290 + 0.826290i
\(894\) 19.8354 + 8.21610i 0.663396 + 0.274788i
\(895\) 0 0
\(896\) 11.3916 4.71857i 0.380568 0.157636i
\(897\) 10.1897i 0.340223i
\(898\) 3.61014 + 8.71564i 0.120472 + 0.290845i
\(899\) 0.151803 + 0.151803i 0.00506292 + 0.00506292i
\(900\) 0 0
\(901\) −9.61755 13.8571i −0.320407 0.461647i
\(902\) −1.11637 −0.0371709
\(903\) −0.380694 0.380694i −0.0126687 0.0126687i
\(904\) 0.566934 + 1.36870i 0.0188559 + 0.0455223i
\(905\) 0 0
\(906\) −13.9645 + 5.78430i −0.463941 + 0.192171i
\(907\) 15.4777 37.3664i 0.513928 1.24073i −0.427653 0.903943i \(-0.640659\pi\)
0.941580 0.336788i \(-0.109341\pi\)
\(908\) −7.93738 3.28777i −0.263411 0.109108i
\(909\) 15.8978 15.8978i 0.527298 0.527298i
\(910\) 0 0
\(911\) 31.3733 + 12.9953i 1.03944 + 0.430552i 0.836113 0.548558i \(-0.184823\pi\)
0.203332 + 0.979110i \(0.434823\pi\)
\(912\) −4.79916 + 11.5862i −0.158916 + 0.383657i
\(913\) 0.685622 0.283994i 0.0226908 0.00939882i
\(914\) 1.85982i 0.0615175i
\(915\) 0 0
\(916\) 3.17948 + 3.17948i 0.105053 + 0.105053i
\(917\) 8.82686 0.291489
\(918\) −5.15347 23.7101i −0.170090 0.782550i
\(919\) −17.7466 −0.585407 −0.292703 0.956203i \(-0.594555\pi\)
−0.292703 + 0.956203i \(0.594555\pi\)
\(920\) 0 0
\(921\) 4.14313 + 10.0024i 0.136521 + 0.329591i
\(922\) 51.5507i 1.69773i
\(923\) −34.8919 + 14.4527i −1.14848 + 0.475717i
\(924\) 0.0188317 0.0454639i 0.000619519 0.00149565i
\(925\) 0 0
\(926\) 2.33045 2.33045i 0.0765832 0.0765832i
\(927\) −22.3607 + 22.3607i −0.734422 + 0.734422i
\(928\) −0.437105 0.181055i −0.0143487 0.00594342i
\(929\) −21.2208 + 51.2316i −0.696233 + 1.68085i 0.0355957 + 0.999366i \(0.488667\pi\)
−0.731829 + 0.681489i \(0.761333\pi\)
\(930\) 0 0
\(931\) 24.8182i 0.813384i
\(932\) −0.0108085 0.0260940i −0.000354044 0.000854737i
\(933\) −8.65945 8.65945i −0.283498 0.283498i
\(934\) −30.1430 −0.986309
\(935\) 0 0
\(936\) 12.6942 0.414922
\(937\) −17.0689 17.0689i −0.557618 0.557618i 0.371010 0.928629i \(-0.379011\pi\)
−0.928629 + 0.371010i \(0.879011\pi\)
\(938\) −8.92510 21.5471i −0.291415 0.703538i
\(939\) 14.2434i 0.464817i
\(940\) 0 0
\(941\) 13.0818 31.5822i 0.426453 1.02955i −0.553950 0.832550i \(-0.686880\pi\)
0.980404 0.197000i \(-0.0631198\pi\)
\(942\) −11.2133 4.64469i −0.365348 0.151332i
\(943\) 35.2609 35.2609i 1.14825 1.14825i
\(944\) −32.4092 + 32.4092i −1.05483 + 1.05483i
\(945\) 0 0
\(946\) 0.0441674 0.106630i 0.00143601 0.00346682i
\(947\) 14.6757 6.07889i 0.476897 0.197537i −0.131269 0.991347i \(-0.541905\pi\)
0.608167 + 0.793809i \(0.291905\pi\)
\(948\) 6.47232i 0.210211i
\(949\) −7.16728 17.3033i −0.232660 0.561690i
\(950\) 0 0
\(951\) −3.13212 −0.101566
\(952\) 7.02669 1.52727i 0.227736 0.0494992i
\(953\) −2.52080 −0.0816568 −0.0408284 0.999166i \(-0.513000\pi\)
−0.0408284 + 0.999166i \(0.513000\pi\)
\(954\) −13.3138 13.3138i −0.431049 0.431049i
\(955\) 0 0
\(956\) 16.5013i 0.533691i
\(957\) 0.00374082 0.00154950i 0.000120924 5.00882e-5i
\(958\) 17.2972 41.7591i 0.558847 1.34918i
\(959\) 14.9416 + 6.18903i 0.482491 + 0.199854i
\(960\) 0 0
\(961\) 17.7548 17.7548i 0.572734 0.572734i
\(962\) −43.7897 18.1383i −1.41184 0.584801i
\(963\) −19.9122 + 48.0724i −0.641663 + 1.54911i
\(964\) 13.6698 5.66222i 0.440275 0.182368i
\(965\) 0 0
\(966\) 2.46565 + 5.95261i 0.0793310 + 0.191522i
\(967\) −21.6277 21.6277i −0.695499 0.695499i 0.267938 0.963436i \(-0.413658\pi\)
−0.963436 + 0.267938i \(0.913658\pi\)
\(968\) 18.4724 0.593724
\(969\) −5.59393 + 8.70098i −0.179703 + 0.279516i
\(970\) 0 0
\(971\) 19.9547 + 19.9547i 0.640376 + 0.640376i 0.950648 0.310272i \(-0.100420\pi\)
−0.310272 + 0.950648i \(0.600420\pi\)
\(972\) −5.41643 13.0764i −0.173732 0.419426i
\(973\) 8.14066i 0.260978i
\(974\) 37.9834 15.7332i 1.21707 0.504126i
\(975\) 0 0
\(976\) −1.33162 0.551575i −0.0426241 0.0176555i
\(977\) −27.0094 + 27.0094i −0.864109 + 0.864109i −0.991812 0.127704i \(-0.959239\pi\)
0.127704 + 0.991812i \(0.459239\pi\)
\(978\) −7.62475 + 7.62475i −0.243813 + 0.243813i
\(979\) 0.00749918 + 0.00310626i 0.000239675 + 9.92765e-5i
\(980\) 0 0
\(981\) 6.23838 2.58402i 0.199176 0.0825015i
\(982\) 32.6615i 1.04227i
\(983\) 1.56112 + 3.76887i 0.0497919 + 0.120208i 0.946818 0.321769i \(-0.104277\pi\)
−0.897026 + 0.441977i \(0.854277\pi\)
\(984\) 5.96063 + 5.96063i 0.190018 + 0.190018i
\(985\) 0 0
\(986\) −0.534479 0.343621i −0.0170213 0.0109431i
\(987\) −5.17859 −0.164836
\(988\) 8.77686 + 8.77686i 0.279229 + 0.279229i
\(989\) 1.97290 + 4.76299i 0.0627344 + 0.151454i
\(990\) 0 0
\(991\) 41.6209 17.2400i 1.32213 0.547645i 0.393732 0.919225i \(-0.371184\pi\)
0.928401 + 0.371580i \(0.121184\pi\)
\(992\) 4.96822 11.9944i 0.157741 0.380821i
\(993\) −13.9635 5.78388i −0.443119 0.183546i
\(994\) −16.8860 + 16.8860i −0.535591 + 0.535591i
\(995\) 0 0
\(996\) 5.55985 + 2.30297i 0.176171 + 0.0729723i
\(997\) 9.47110 22.8653i 0.299953 0.724150i −0.699997 0.714146i \(-0.746815\pi\)
0.999950 0.0100043i \(-0.00318452\pi\)
\(998\) −9.68208 + 4.01045i −0.306481 + 0.126949i
\(999\) 32.1258i 1.01642i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 425.2.m.e.151.5 24
5.2 odd 4 85.2.m.a.49.2 24
5.3 odd 4 85.2.m.a.49.5 yes 24
5.4 even 2 inner 425.2.m.e.151.2 24
15.2 even 4 765.2.bh.b.559.5 24
15.8 even 4 765.2.bh.b.559.2 24
17.5 odd 16 7225.2.a.by.1.6 24
17.8 even 8 inner 425.2.m.e.76.5 24
17.12 odd 16 7225.2.a.by.1.5 24
85.8 odd 8 85.2.m.a.59.2 yes 24
85.12 even 16 1445.2.b.i.579.6 24
85.22 even 16 1445.2.b.i.579.5 24
85.29 odd 16 7225.2.a.by.1.20 24
85.39 odd 16 7225.2.a.by.1.19 24
85.42 odd 8 85.2.m.a.59.5 yes 24
85.59 even 8 inner 425.2.m.e.76.2 24
85.63 even 16 1445.2.b.i.579.19 24
85.73 even 16 1445.2.b.i.579.20 24
255.8 even 8 765.2.bh.b.739.5 24
255.212 even 8 765.2.bh.b.739.2 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.m.a.49.2 24 5.2 odd 4
85.2.m.a.49.5 yes 24 5.3 odd 4
85.2.m.a.59.2 yes 24 85.8 odd 8
85.2.m.a.59.5 yes 24 85.42 odd 8
425.2.m.e.76.2 24 85.59 even 8 inner
425.2.m.e.76.5 24 17.8 even 8 inner
425.2.m.e.151.2 24 5.4 even 2 inner
425.2.m.e.151.5 24 1.1 even 1 trivial
765.2.bh.b.559.2 24 15.8 even 4
765.2.bh.b.559.5 24 15.2 even 4
765.2.bh.b.739.2 24 255.212 even 8
765.2.bh.b.739.5 24 255.8 even 8
1445.2.b.i.579.5 24 85.22 even 16
1445.2.b.i.579.6 24 85.12 even 16
1445.2.b.i.579.19 24 85.63 even 16
1445.2.b.i.579.20 24 85.73 even 16
7225.2.a.by.1.5 24 17.12 odd 16
7225.2.a.by.1.6 24 17.5 odd 16
7225.2.a.by.1.19 24 85.39 odd 16
7225.2.a.by.1.20 24 85.29 odd 16