Properties

Label 425.2.n.e.274.1
Level $425$
Weight $2$
Character 425.274
Analytic conductor $3.394$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [425,2,Mod(49,425)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(425, base_ring=CyclotomicField(8))
 
chi = DirichletCharacter(H, H._module([4, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("425.49");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 425 = 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 425.n (of order \(8\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.39364208590\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(6\) over \(\Q(\zeta_{8})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 274.1
Character \(\chi\) \(=\) 425.274
Dual form 425.2.n.e.349.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.71892 + 1.71892i) q^{2} +(0.281370 + 0.679288i) q^{3} -3.90934i q^{4} +(-1.65129 - 0.683987i) q^{6} +(-0.537508 - 0.222643i) q^{7} +(3.28199 + 3.28199i) q^{8} +(1.73906 - 1.73906i) q^{9} +(-1.34645 - 0.557719i) q^{11} +(2.65557 - 1.09997i) q^{12} +4.36532 q^{13} +(1.30663 - 0.541226i) q^{14} -3.46426 q^{16} +(-1.60415 + 3.79825i) q^{17} +5.97858i q^{18} +(2.93943 + 2.93943i) q^{19} -0.427768i q^{21} +(3.27311 - 1.35577i) q^{22} +(2.68413 - 6.48006i) q^{23} +(-1.30596 + 3.15288i) q^{24} +(-7.50361 + 7.50361i) q^{26} +(3.70851 + 1.53611i) q^{27} +(-0.870387 + 2.10130i) q^{28} +(3.44359 + 8.31356i) q^{29} +(7.14977 - 2.96153i) q^{31} +(-0.609218 + 0.609218i) q^{32} -1.07156i q^{33} +(-3.77147 - 9.28627i) q^{34} +(-6.79857 - 6.79857i) q^{36} +(0.606375 + 1.46392i) q^{37} -10.1053 q^{38} +(1.22827 + 2.96531i) q^{39} +(-1.55209 + 3.74708i) q^{41} +(0.735296 + 0.735296i) q^{42} +(-3.21091 - 3.21091i) q^{43} +(-2.18031 + 5.26375i) q^{44} +(6.52488 + 15.7525i) q^{46} -1.40493 q^{47} +(-0.974740 - 2.35323i) q^{48} +(-4.71040 - 4.71040i) q^{49} +(-3.03147 - 0.0209672i) q^{51} -17.0655i q^{52} +(-7.51728 + 7.51728i) q^{53} +(-9.01506 + 3.73416i) q^{54} +(-1.03338 - 2.49481i) q^{56} +(-1.16965 + 2.82379i) q^{57} +(-20.2095 - 8.37106i) q^{58} +(0.706970 - 0.706970i) q^{59} +(-2.24969 + 5.43124i) q^{61} +(-7.19923 + 17.3805i) q^{62} +(-1.32195 + 0.547568i) q^{63} -9.02291i q^{64} +(1.84191 + 1.84191i) q^{66} +1.24894i q^{67} +(14.8486 + 6.27118i) q^{68} +5.15706 q^{69} +(12.8111 - 5.30655i) q^{71} +11.4152 q^{72} +(8.32740 - 3.44932i) q^{73} +(-3.55866 - 1.47404i) q^{74} +(11.4912 - 11.4912i) q^{76} +(0.599557 + 0.599557i) q^{77} +(-7.20841 - 2.98582i) q^{78} +(6.93467 + 2.87243i) q^{79} -4.42683i q^{81} +(-3.77299 - 9.10882i) q^{82} +(11.1848 - 11.1848i) q^{83} -1.67229 q^{84} +11.0386 q^{86} +(-4.67838 + 4.67838i) q^{87} +(-2.58862 - 6.24949i) q^{88} +7.36714i q^{89} +(-2.34639 - 0.971907i) q^{91} +(-25.3327 - 10.4932i) q^{92} +(4.02347 + 4.02347i) q^{93} +(2.41495 - 2.41495i) q^{94} +(-0.585251 - 0.242419i) q^{96} +(12.0804 - 5.00387i) q^{97} +16.1936 q^{98} +(-3.31147 + 1.37165i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 4 q^{3} - 8 q^{6} - 12 q^{9} + 4 q^{11} - 20 q^{12} + 16 q^{13} + 24 q^{14} - 24 q^{16} + 20 q^{19} + 12 q^{22} + 8 q^{23} - 16 q^{24} + 16 q^{26} + 16 q^{27} + 20 q^{28} - 4 q^{29} + 24 q^{31} + 60 q^{32}+ \cdots + 80 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/425\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(326\)
\(\chi(n)\) \(-1\) \(e\left(\frac{7}{8}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.71892 + 1.71892i −1.21546 + 1.21546i −0.246251 + 0.969206i \(0.579199\pi\)
−0.969206 + 0.246251i \(0.920801\pi\)
\(3\) 0.281370 + 0.679288i 0.162449 + 0.392187i 0.984054 0.177870i \(-0.0569208\pi\)
−0.821605 + 0.570058i \(0.806921\pi\)
\(4\) 3.90934i 1.95467i
\(5\) 0 0
\(6\) −1.65129 0.683987i −0.674137 0.279237i
\(7\) −0.537508 0.222643i −0.203159 0.0841511i 0.278784 0.960354i \(-0.410069\pi\)
−0.481943 + 0.876203i \(0.660069\pi\)
\(8\) 3.28199 + 3.28199i 1.16036 + 1.16036i
\(9\) 1.73906 1.73906i 0.579686 0.579686i
\(10\) 0 0
\(11\) −1.34645 0.557719i −0.405971 0.168159i 0.170347 0.985384i \(-0.445511\pi\)
−0.576318 + 0.817225i \(0.695511\pi\)
\(12\) 2.65557 1.09997i 0.766597 0.317535i
\(13\) 4.36532 1.21072 0.605360 0.795952i \(-0.293029\pi\)
0.605360 + 0.795952i \(0.293029\pi\)
\(14\) 1.30663 0.541226i 0.349213 0.144649i
\(15\) 0 0
\(16\) −3.46426 −0.866065
\(17\) −1.60415 + 3.79825i −0.389064 + 0.921211i
\(18\) 5.97858i 1.40917i
\(19\) 2.93943 + 2.93943i 0.674351 + 0.674351i 0.958716 0.284365i \(-0.0917827\pi\)
−0.284365 + 0.958716i \(0.591783\pi\)
\(20\) 0 0
\(21\) 0.427768i 0.0933466i
\(22\) 3.27311 1.35577i 0.697830 0.289051i
\(23\) 2.68413 6.48006i 0.559679 1.35119i −0.350341 0.936622i \(-0.613934\pi\)
0.910021 0.414563i \(-0.136066\pi\)
\(24\) −1.30596 + 3.15288i −0.266579 + 0.643578i
\(25\) 0 0
\(26\) −7.50361 + 7.50361i −1.47158 + 1.47158i
\(27\) 3.70851 + 1.53611i 0.713702 + 0.295625i
\(28\) −0.870387 + 2.10130i −0.164488 + 0.397108i
\(29\) 3.44359 + 8.31356i 0.639458 + 1.54379i 0.827403 + 0.561609i \(0.189818\pi\)
−0.187944 + 0.982180i \(0.560182\pi\)
\(30\) 0 0
\(31\) 7.14977 2.96153i 1.28414 0.531907i 0.366904 0.930259i \(-0.380418\pi\)
0.917233 + 0.398352i \(0.130418\pi\)
\(32\) −0.609218 + 0.609218i −0.107696 + 0.107696i
\(33\) 1.07156i 0.186534i
\(34\) −3.77147 9.28627i −0.646801 1.59258i
\(35\) 0 0
\(36\) −6.79857 6.79857i −1.13309 1.13309i
\(37\) 0.606375 + 1.46392i 0.0996874 + 0.240667i 0.965853 0.259090i \(-0.0834227\pi\)
−0.866166 + 0.499757i \(0.833423\pi\)
\(38\) −10.1053 −1.63929
\(39\) 1.22827 + 2.96531i 0.196681 + 0.474829i
\(40\) 0 0
\(41\) −1.55209 + 3.74708i −0.242396 + 0.585195i −0.997520 0.0703870i \(-0.977577\pi\)
0.755124 + 0.655582i \(0.227577\pi\)
\(42\) 0.735296 + 0.735296i 0.113459 + 0.113459i
\(43\) −3.21091 3.21091i −0.489659 0.489659i 0.418540 0.908199i \(-0.362542\pi\)
−0.908199 + 0.418540i \(0.862542\pi\)
\(44\) −2.18031 + 5.26375i −0.328695 + 0.793540i
\(45\) 0 0
\(46\) 6.52488 + 15.7525i 0.962041 + 2.32257i
\(47\) −1.40493 −0.204930 −0.102465 0.994737i \(-0.532673\pi\)
−0.102465 + 0.994737i \(0.532673\pi\)
\(48\) −0.974740 2.35323i −0.140692 0.339660i
\(49\) −4.71040 4.71040i −0.672915 0.672915i
\(50\) 0 0
\(51\) −3.03147 0.0209672i −0.424490 0.00293599i
\(52\) 17.0655i 2.36656i
\(53\) −7.51728 + 7.51728i −1.03258 + 1.03258i −0.0331263 + 0.999451i \(0.510546\pi\)
−0.999451 + 0.0331263i \(0.989454\pi\)
\(54\) −9.01506 + 3.73416i −1.22679 + 0.508155i
\(55\) 0 0
\(56\) −1.03338 2.49481i −0.138092 0.333383i
\(57\) −1.16965 + 2.82379i −0.154924 + 0.374020i
\(58\) −20.2095 8.37106i −2.65364 1.09917i
\(59\) 0.706970 0.706970i 0.0920396 0.0920396i −0.659588 0.751627i \(-0.729269\pi\)
0.751627 + 0.659588i \(0.229269\pi\)
\(60\) 0 0
\(61\) −2.24969 + 5.43124i −0.288044 + 0.695399i −0.999977 0.00684869i \(-0.997820\pi\)
0.711933 + 0.702247i \(0.247820\pi\)
\(62\) −7.19923 + 17.3805i −0.914303 + 2.20732i
\(63\) −1.32195 + 0.547568i −0.166549 + 0.0689870i
\(64\) 9.02291i 1.12786i
\(65\) 0 0
\(66\) 1.84191 + 1.84191i 0.226724 + 0.226724i
\(67\) 1.24894i 0.152582i 0.997086 + 0.0762909i \(0.0243078\pi\)
−0.997086 + 0.0762909i \(0.975692\pi\)
\(68\) 14.8486 + 6.27118i 1.80066 + 0.760492i
\(69\) 5.15706 0.620837
\(70\) 0 0
\(71\) 12.8111 5.30655i 1.52040 0.629771i 0.542730 0.839907i \(-0.317391\pi\)
0.977672 + 0.210136i \(0.0673907\pi\)
\(72\) 11.4152 1.34529
\(73\) 8.32740 3.44932i 0.974649 0.403713i 0.162208 0.986757i \(-0.448138\pi\)
0.812441 + 0.583044i \(0.198138\pi\)
\(74\) −3.55866 1.47404i −0.413686 0.171354i
\(75\) 0 0
\(76\) 11.4912 11.4912i 1.31813 1.31813i
\(77\) 0.599557 + 0.599557i 0.0683258 + 0.0683258i
\(78\) −7.20841 2.98582i −0.816191 0.338077i
\(79\) 6.93467 + 2.87243i 0.780211 + 0.323174i 0.737001 0.675892i \(-0.236241\pi\)
0.0432105 + 0.999066i \(0.486241\pi\)
\(80\) 0 0
\(81\) 4.42683i 0.491870i
\(82\) −3.77299 9.10882i −0.416658 1.00590i
\(83\) 11.1848 11.1848i 1.22769 1.22769i 0.262856 0.964835i \(-0.415335\pi\)
0.964835 0.262856i \(-0.0846646\pi\)
\(84\) −1.67229 −0.182462
\(85\) 0 0
\(86\) 11.0386 1.19032
\(87\) −4.67838 + 4.67838i −0.501575 + 0.501575i
\(88\) −2.58862 6.24949i −0.275948 0.666197i
\(89\) 7.36714i 0.780916i 0.920621 + 0.390458i \(0.127683\pi\)
−0.920621 + 0.390458i \(0.872317\pi\)
\(90\) 0 0
\(91\) −2.34639 0.971907i −0.245968 0.101883i
\(92\) −25.3327 10.4932i −2.64112 1.09399i
\(93\) 4.02347 + 4.02347i 0.417214 + 0.417214i
\(94\) 2.41495 2.41495i 0.249083 0.249083i
\(95\) 0 0
\(96\) −0.585251 0.242419i −0.0597319 0.0247418i
\(97\) 12.0804 5.00387i 1.22658 0.508066i 0.327084 0.944995i \(-0.393934\pi\)
0.899496 + 0.436929i \(0.143934\pi\)
\(98\) 16.1936 1.63580
\(99\) −3.31147 + 1.37165i −0.332815 + 0.137856i
\(100\) 0 0
\(101\) −10.3184 −1.02672 −0.513362 0.858172i \(-0.671600\pi\)
−0.513362 + 0.858172i \(0.671600\pi\)
\(102\) 5.24688 5.17479i 0.519518 0.512381i
\(103\) 12.3309i 1.21500i 0.794319 + 0.607501i \(0.207828\pi\)
−0.794319 + 0.607501i \(0.792172\pi\)
\(104\) 14.3269 + 14.3269i 1.40487 + 1.40487i
\(105\) 0 0
\(106\) 25.8431i 2.51011i
\(107\) 6.32699 2.62073i 0.611653 0.253355i −0.0552820 0.998471i \(-0.517606\pi\)
0.666935 + 0.745116i \(0.267606\pi\)
\(108\) 6.00519 14.4978i 0.577850 1.39505i
\(109\) −3.44354 + 8.31343i −0.329831 + 0.796282i 0.668773 + 0.743466i \(0.266820\pi\)
−0.998604 + 0.0528159i \(0.983180\pi\)
\(110\) 0 0
\(111\) −0.823806 + 0.823806i −0.0781922 + 0.0781922i
\(112\) 1.86207 + 0.771293i 0.175949 + 0.0728803i
\(113\) 1.64134 3.96255i 0.154404 0.372765i −0.827682 0.561198i \(-0.810341\pi\)
0.982086 + 0.188433i \(0.0603407\pi\)
\(114\) −2.84332 6.86439i −0.266301 0.642909i
\(115\) 0 0
\(116\) 32.5005 13.4622i 3.01760 1.24993i
\(117\) 7.59153 7.59153i 0.701837 0.701837i
\(118\) 2.43044i 0.223740i
\(119\) 1.70790 1.68443i 0.156563 0.154412i
\(120\) 0 0
\(121\) −6.27629 6.27629i −0.570572 0.570572i
\(122\) −5.46881 13.2029i −0.495123 1.19533i
\(123\) −2.98206 −0.268883
\(124\) −11.5776 27.9509i −1.03970 2.51006i
\(125\) 0 0
\(126\) 1.33109 3.21353i 0.118583 0.286284i
\(127\) −11.4261 11.4261i −1.01390 1.01390i −0.999902 0.0139969i \(-0.995545\pi\)
−0.0139969 0.999902i \(-0.504455\pi\)
\(128\) 14.2912 + 14.2912i 1.26317 + 1.26317i
\(129\) 1.27768 3.08459i 0.112493 0.271583i
\(130\) 0 0
\(131\) 3.44748 + 8.32295i 0.301208 + 0.727179i 0.999931 + 0.0117870i \(0.00375201\pi\)
−0.698723 + 0.715392i \(0.746248\pi\)
\(132\) −4.18908 −0.364612
\(133\) −0.925522 2.23441i −0.0802530 0.193748i
\(134\) −2.14681 2.14681i −0.185456 0.185456i
\(135\) 0 0
\(136\) −17.7307 + 7.20101i −1.52039 + 0.617482i
\(137\) 5.07497i 0.433584i −0.976218 0.216792i \(-0.930441\pi\)
0.976218 0.216792i \(-0.0695594\pi\)
\(138\) −8.86455 + 8.86455i −0.754601 + 0.754601i
\(139\) −0.893998 + 0.370306i −0.0758279 + 0.0314089i −0.420275 0.907397i \(-0.638066\pi\)
0.344447 + 0.938806i \(0.388066\pi\)
\(140\) 0 0
\(141\) −0.395305 0.954351i −0.0332907 0.0803709i
\(142\) −12.8998 + 31.1428i −1.08252 + 2.61344i
\(143\) −5.87770 2.43462i −0.491518 0.203593i
\(144\) −6.02455 + 6.02455i −0.502046 + 0.502046i
\(145\) 0 0
\(146\) −8.38501 + 20.2432i −0.693948 + 1.67534i
\(147\) 1.87435 4.52509i 0.154594 0.373223i
\(148\) 5.72295 2.37052i 0.470424 0.194856i
\(149\) 9.57035i 0.784033i −0.919958 0.392017i \(-0.871778\pi\)
0.919958 0.392017i \(-0.128222\pi\)
\(150\) 0 0
\(151\) −3.28367 3.28367i −0.267221 0.267221i 0.560758 0.827979i \(-0.310510\pi\)
−0.827979 + 0.560758i \(0.810510\pi\)
\(152\) 19.2944i 1.56498i
\(153\) 3.81566 + 9.39508i 0.308478 + 0.759548i
\(154\) −2.06117 −0.166094
\(155\) 0 0
\(156\) 11.5924 4.80173i 0.928134 0.384446i
\(157\) 2.89768 0.231260 0.115630 0.993292i \(-0.463111\pi\)
0.115630 + 0.993292i \(0.463111\pi\)
\(158\) −16.8576 + 6.98264i −1.34112 + 0.555509i
\(159\) −7.22154 2.99126i −0.572705 0.237222i
\(160\) 0 0
\(161\) −2.88548 + 2.88548i −0.227407 + 0.227407i
\(162\) 7.60935 + 7.60935i 0.597847 + 0.597847i
\(163\) −4.62958 1.91763i −0.362616 0.150201i 0.193934 0.981015i \(-0.437875\pi\)
−0.556550 + 0.830814i \(0.687875\pi\)
\(164\) 14.6486 + 6.06765i 1.14386 + 0.473803i
\(165\) 0 0
\(166\) 38.4515i 2.98441i
\(167\) 2.16295 + 5.22182i 0.167374 + 0.404077i 0.985205 0.171383i \(-0.0548234\pi\)
−0.817831 + 0.575459i \(0.804823\pi\)
\(168\) 1.40393 1.40393i 0.108316 0.108316i
\(169\) 6.05598 0.465844
\(170\) 0 0
\(171\) 10.2237 0.781824
\(172\) −12.5525 + 12.5525i −0.957122 + 0.957122i
\(173\) −5.11709 12.3538i −0.389045 0.939239i −0.990143 0.140063i \(-0.955270\pi\)
0.601097 0.799176i \(-0.294730\pi\)
\(174\) 16.0835i 1.21928i
\(175\) 0 0
\(176\) 4.66447 + 1.93209i 0.351597 + 0.145636i
\(177\) 0.679156 + 0.281316i 0.0510485 + 0.0211450i
\(178\) −12.6635 12.6635i −0.949169 0.949169i
\(179\) −18.2592 + 18.2592i −1.36475 + 1.36475i −0.497007 + 0.867746i \(0.665568\pi\)
−0.867746 + 0.497007i \(0.834432\pi\)
\(180\) 0 0
\(181\) −19.8785 8.23395i −1.47756 0.612024i −0.508989 0.860773i \(-0.669981\pi\)
−0.968568 + 0.248748i \(0.919981\pi\)
\(182\) 5.70387 2.36262i 0.422799 0.175129i
\(183\) −4.32237 −0.319519
\(184\) 30.0768 12.4582i 2.21729 0.918432i
\(185\) 0 0
\(186\) −13.8320 −1.01421
\(187\) 4.27827 4.21950i 0.312858 0.308560i
\(188\) 5.49234i 0.400570i
\(189\) −1.65134 1.65134i −0.120118 0.120118i
\(190\) 0 0
\(191\) 0.860224i 0.0622437i 0.999516 + 0.0311218i \(0.00990799\pi\)
−0.999516 + 0.0311218i \(0.990092\pi\)
\(192\) 6.12916 2.53878i 0.442334 0.183221i
\(193\) −9.11970 + 22.0169i −0.656450 + 1.58481i 0.146798 + 0.989166i \(0.453103\pi\)
−0.803248 + 0.595644i \(0.796897\pi\)
\(194\) −12.1640 + 29.3664i −0.873322 + 2.10839i
\(195\) 0 0
\(196\) −18.4146 + 18.4146i −1.31533 + 1.31533i
\(197\) 1.71416 + 0.710026i 0.122128 + 0.0505873i 0.442911 0.896566i \(-0.353946\pi\)
−0.320782 + 0.947153i \(0.603946\pi\)
\(198\) 3.33437 8.04989i 0.236964 0.572081i
\(199\) −0.874896 2.11219i −0.0620198 0.149729i 0.889831 0.456289i \(-0.150822\pi\)
−0.951851 + 0.306560i \(0.900822\pi\)
\(200\) 0 0
\(201\) −0.848387 + 0.351413i −0.0598406 + 0.0247868i
\(202\) 17.7365 17.7365i 1.24794 1.24794i
\(203\) 5.23529i 0.367445i
\(204\) −0.0819679 + 11.8510i −0.00573890 + 0.829738i
\(205\) 0 0
\(206\) −21.1958 21.1958i −1.47678 1.47678i
\(207\) −6.60134 15.9370i −0.458825 1.10770i
\(208\) −15.1226 −1.04856
\(209\) −2.31843 5.59718i −0.160369 0.387165i
\(210\) 0 0
\(211\) 8.18558 19.7617i 0.563518 1.36045i −0.343417 0.939183i \(-0.611584\pi\)
0.906935 0.421270i \(-0.138416\pi\)
\(212\) 29.3876 + 29.3876i 2.01835 + 2.01835i
\(213\) 7.20935 + 7.20935i 0.493976 + 0.493976i
\(214\) −6.37076 + 15.3804i −0.435496 + 1.05138i
\(215\) 0 0
\(216\) 7.12978 + 17.2128i 0.485120 + 1.17118i
\(217\) −4.50242 −0.305644
\(218\) −8.37094 20.2092i −0.566951 1.36874i
\(219\) 4.68617 + 4.68617i 0.316662 + 0.316662i
\(220\) 0 0
\(221\) −7.00263 + 16.5806i −0.471048 + 1.11533i
\(222\) 2.83211i 0.190079i
\(223\) −4.76919 + 4.76919i −0.319368 + 0.319368i −0.848524 0.529156i \(-0.822509\pi\)
0.529156 + 0.848524i \(0.322509\pi\)
\(224\) 0.463098 0.191821i 0.0309420 0.0128166i
\(225\) 0 0
\(226\) 3.98996 + 9.63261i 0.265408 + 0.640752i
\(227\) 7.34398 17.7299i 0.487437 1.17678i −0.468568 0.883427i \(-0.655230\pi\)
0.956005 0.293350i \(-0.0947701\pi\)
\(228\) 11.0391 + 4.57257i 0.731086 + 0.302826i
\(229\) 16.9779 16.9779i 1.12193 1.12193i 0.130480 0.991451i \(-0.458348\pi\)
0.991451 0.130480i \(-0.0416517\pi\)
\(230\) 0 0
\(231\) −0.238574 + 0.575969i −0.0156970 + 0.0378960i
\(232\) −15.9832 + 38.5869i −1.04935 + 2.53335i
\(233\) 3.26965 1.35433i 0.214202 0.0887253i −0.273002 0.962013i \(-0.588017\pi\)
0.487204 + 0.873288i \(0.338017\pi\)
\(234\) 26.0984i 1.70611i
\(235\) 0 0
\(236\) −2.76378 2.76378i −0.179907 0.179907i
\(237\) 5.51886i 0.358488i
\(238\) −0.0403311 + 5.83113i −0.00261428 + 0.377976i
\(239\) −29.1160 −1.88336 −0.941680 0.336509i \(-0.890754\pi\)
−0.941680 + 0.336509i \(0.890754\pi\)
\(240\) 0 0
\(241\) −16.5574 + 6.85828i −1.06655 + 0.441781i −0.845773 0.533543i \(-0.820860\pi\)
−0.220780 + 0.975324i \(0.570860\pi\)
\(242\) 21.5768 1.38701
\(243\) 14.1326 5.85392i 0.906607 0.375529i
\(244\) 21.2326 + 8.79481i 1.35928 + 0.563030i
\(245\) 0 0
\(246\) 5.12590 5.12590i 0.326816 0.326816i
\(247\) 12.8315 + 12.8315i 0.816451 + 0.816451i
\(248\) 33.1852 + 13.7458i 2.10727 + 0.872858i
\(249\) 10.7448 + 4.45063i 0.680923 + 0.282047i
\(250\) 0 0
\(251\) 2.37527i 0.149926i −0.997186 0.0749630i \(-0.976116\pi\)
0.997186 0.0749630i \(-0.0238839\pi\)
\(252\) 2.14063 + 5.16793i 0.134847 + 0.325549i
\(253\) −7.22811 + 7.22811i −0.454427 + 0.454427i
\(254\) 39.2809 2.46470
\(255\) 0 0
\(256\) −31.0848 −1.94280
\(257\) −7.35458 + 7.35458i −0.458766 + 0.458766i −0.898250 0.439484i \(-0.855161\pi\)
0.439484 + 0.898250i \(0.355161\pi\)
\(258\) 3.10592 + 7.49836i 0.193366 + 0.466828i
\(259\) 0.921872i 0.0572823i
\(260\) 0 0
\(261\) 20.4463 + 8.46915i 1.26560 + 0.524227i
\(262\) −20.2324 8.38052i −1.24996 0.517750i
\(263\) −16.7118 16.7118i −1.03049 1.03049i −0.999520 0.0309719i \(-0.990140\pi\)
−0.0309719 0.999520i \(-0.509860\pi\)
\(264\) 3.51684 3.51684i 0.216447 0.216447i
\(265\) 0 0
\(266\) 5.43165 + 2.24986i 0.333036 + 0.137948i
\(267\) −5.00441 + 2.07290i −0.306265 + 0.126859i
\(268\) 4.88251 0.298247
\(269\) −22.3788 + 9.26961i −1.36446 + 0.565178i −0.940281 0.340399i \(-0.889438\pi\)
−0.424180 + 0.905578i \(0.639438\pi\)
\(270\) 0 0
\(271\) 7.98498 0.485053 0.242526 0.970145i \(-0.422024\pi\)
0.242526 + 0.970145i \(0.422024\pi\)
\(272\) 5.55720 13.1581i 0.336955 0.797828i
\(273\) 1.86734i 0.113017i
\(274\) 8.72345 + 8.72345i 0.527003 + 0.527003i
\(275\) 0 0
\(276\) 20.1607i 1.21353i
\(277\) −13.3194 + 5.51708i −0.800286 + 0.331489i −0.745071 0.666985i \(-0.767585\pi\)
−0.0552152 + 0.998474i \(0.517585\pi\)
\(278\) 0.900182 2.17323i 0.0539893 0.130342i
\(279\) 7.28359 17.5841i 0.436057 1.05273i
\(280\) 0 0
\(281\) −8.11070 + 8.11070i −0.483844 + 0.483844i −0.906357 0.422513i \(-0.861148\pi\)
0.422513 + 0.906357i \(0.361148\pi\)
\(282\) 2.31995 + 0.960953i 0.138151 + 0.0572239i
\(283\) −5.28429 + 12.7574i −0.314119 + 0.758350i 0.685425 + 0.728143i \(0.259616\pi\)
−0.999544 + 0.0302064i \(0.990384\pi\)
\(284\) −20.7451 50.0831i −1.23099 2.97188i
\(285\) 0 0
\(286\) 14.2882 5.91835i 0.844877 0.349960i
\(287\) 1.66852 1.66852i 0.0984896 0.0984896i
\(288\) 2.11893i 0.124859i
\(289\) −11.8534 12.1859i −0.697258 0.716820i
\(290\) 0 0
\(291\) 6.79814 + 6.79814i 0.398514 + 0.398514i
\(292\) −13.4846 32.5546i −0.789125 1.90512i
\(293\) 9.85034 0.575463 0.287731 0.957711i \(-0.407099\pi\)
0.287731 + 0.957711i \(0.407099\pi\)
\(294\) 4.55639 + 11.0001i 0.265734 + 0.641539i
\(295\) 0 0
\(296\) −2.81445 + 6.79469i −0.163587 + 0.394933i
\(297\) −4.13661 4.13661i −0.240031 0.240031i
\(298\) 16.4506 + 16.4506i 0.952959 + 0.952959i
\(299\) 11.7171 28.2875i 0.677615 1.63591i
\(300\) 0 0
\(301\) 1.01100 + 2.44077i 0.0582732 + 0.140684i
\(302\) 11.2887 0.649591
\(303\) −2.90331 7.00920i −0.166791 0.402668i
\(304\) −10.1829 10.1829i −0.584032 0.584032i
\(305\) 0 0
\(306\) −22.7081 9.59056i −1.29814 0.548256i
\(307\) 7.64510i 0.436329i 0.975912 + 0.218164i \(0.0700069\pi\)
−0.975912 + 0.218164i \(0.929993\pi\)
\(308\) 2.34387 2.34387i 0.133554 0.133554i
\(309\) −8.37625 + 3.46956i −0.476508 + 0.197376i
\(310\) 0 0
\(311\) −9.84019 23.7563i −0.557986 1.34710i −0.911358 0.411614i \(-0.864965\pi\)
0.353372 0.935483i \(-0.385035\pi\)
\(312\) −5.70095 + 13.7633i −0.322752 + 0.779193i
\(313\) 29.0276 + 12.0236i 1.64074 + 0.679616i 0.996372 0.0851015i \(-0.0271215\pi\)
0.644366 + 0.764717i \(0.277121\pi\)
\(314\) −4.98087 + 4.98087i −0.281087 + 0.281087i
\(315\) 0 0
\(316\) 11.2293 27.1100i 0.631699 1.52506i
\(317\) −1.17145 + 2.82814i −0.0657953 + 0.158844i −0.953357 0.301845i \(-0.902398\pi\)
0.887562 + 0.460689i \(0.152398\pi\)
\(318\) 17.5549 7.27149i 0.984432 0.407765i
\(319\) 13.1144i 0.734264i
\(320\) 0 0
\(321\) 3.56046 + 3.56046i 0.198725 + 0.198725i
\(322\) 9.91978i 0.552808i
\(323\) −15.8800 + 6.44939i −0.883586 + 0.358854i
\(324\) −17.3060 −0.961444
\(325\) 0 0
\(326\) 11.2541 4.66160i 0.623307 0.258182i
\(327\) −6.61612 −0.365873
\(328\) −17.3918 + 7.20393i −0.960303 + 0.397771i
\(329\) 0.755159 + 0.312797i 0.0416333 + 0.0172451i
\(330\) 0 0
\(331\) 3.50849 3.50849i 0.192844 0.192844i −0.604080 0.796924i \(-0.706459\pi\)
0.796924 + 0.604080i \(0.206459\pi\)
\(332\) −43.7252 43.7252i −2.39973 2.39973i
\(333\) 3.60036 + 1.49132i 0.197298 + 0.0817236i
\(334\) −12.6938 5.25794i −0.694573 0.287702i
\(335\) 0 0
\(336\) 1.48190i 0.0808442i
\(337\) 5.27926 + 12.7453i 0.287580 + 0.694279i 0.999972 0.00750257i \(-0.00238816\pi\)
−0.712392 + 0.701782i \(0.752388\pi\)
\(338\) −10.4097 + 10.4097i −0.566214 + 0.566214i
\(339\) 3.15354 0.171277
\(340\) 0 0
\(341\) −11.2785 −0.610767
\(342\) −17.5736 + 17.5736i −0.950273 + 0.950273i
\(343\) 3.04164 + 7.34317i 0.164233 + 0.396494i
\(344\) 21.0764i 1.13636i
\(345\) 0 0
\(346\) 30.0309 + 12.4392i 1.61447 + 0.668736i
\(347\) −18.7598 7.77056i −1.00708 0.417146i −0.182691 0.983170i \(-0.558481\pi\)
−0.824388 + 0.566025i \(0.808481\pi\)
\(348\) 18.2894 + 18.2894i 0.980413 + 0.980413i
\(349\) 10.7204 10.7204i 0.573849 0.573849i −0.359353 0.933202i \(-0.617003\pi\)
0.933202 + 0.359353i \(0.117003\pi\)
\(350\) 0 0
\(351\) 16.1888 + 6.70562i 0.864094 + 0.357919i
\(352\) 1.16006 0.480511i 0.0618312 0.0256113i
\(353\) −16.1876 −0.861579 −0.430789 0.902453i \(-0.641765\pi\)
−0.430789 + 0.902453i \(0.641765\pi\)
\(354\) −1.65097 + 0.683854i −0.0877481 + 0.0363465i
\(355\) 0 0
\(356\) 28.8007 1.52643
\(357\) 1.62477 + 0.686205i 0.0859919 + 0.0363178i
\(358\) 62.7719i 3.31760i
\(359\) −12.5642 12.5642i −0.663111 0.663111i 0.293001 0.956112i \(-0.405346\pi\)
−0.956112 + 0.293001i \(0.905346\pi\)
\(360\) 0 0
\(361\) 1.71951i 0.0905006i
\(362\) 48.3229 20.0160i 2.53980 1.05202i
\(363\) 2.49745 6.02937i 0.131082 0.316460i
\(364\) −3.79951 + 9.17284i −0.199149 + 0.480787i
\(365\) 0 0
\(366\) 7.42979 7.42979i 0.388362 0.388362i
\(367\) −32.1994 13.3374i −1.68080 0.696208i −0.681432 0.731881i \(-0.738643\pi\)
−0.999364 + 0.0356729i \(0.988643\pi\)
\(368\) −9.29852 + 22.4486i −0.484719 + 1.17021i
\(369\) 3.81721 + 9.21555i 0.198716 + 0.479742i
\(370\) 0 0
\(371\) 5.71426 2.36692i 0.296670 0.122885i
\(372\) 15.7291 15.7291i 0.815516 0.815516i
\(373\) 1.40363i 0.0726771i −0.999340 0.0363386i \(-0.988431\pi\)
0.999340 0.0363386i \(-0.0115695\pi\)
\(374\) −0.101029 + 14.6070i −0.00522410 + 0.755308i
\(375\) 0 0
\(376\) −4.61097 4.61097i −0.237792 0.237792i
\(377\) 15.0323 + 36.2913i 0.774205 + 1.86910i
\(378\) 5.67704 0.291996
\(379\) 13.3140 + 32.1427i 0.683892 + 1.65106i 0.756738 + 0.653718i \(0.226792\pi\)
−0.0728466 + 0.997343i \(0.523208\pi\)
\(380\) 0 0
\(381\) 4.54663 10.9765i 0.232931 0.562345i
\(382\) −1.47865 1.47865i −0.0756545 0.0756545i
\(383\) −6.31207 6.31207i −0.322531 0.322531i 0.527206 0.849738i \(-0.323240\pi\)
−0.849738 + 0.527206i \(0.823240\pi\)
\(384\) −5.68672 + 13.7289i −0.290199 + 0.700602i
\(385\) 0 0
\(386\) −22.1692 53.5212i −1.12838 2.72416i
\(387\) −11.1679 −0.567697
\(388\) −19.5618 47.2264i −0.993101 2.39756i
\(389\) 3.80596 + 3.80596i 0.192970 + 0.192970i 0.796978 0.604008i \(-0.206431\pi\)
−0.604008 + 0.796978i \(0.706431\pi\)
\(390\) 0 0
\(391\) 20.3071 + 20.5900i 1.02698 + 1.04128i
\(392\) 30.9190i 1.56165i
\(393\) −4.68366 + 4.68366i −0.236260 + 0.236260i
\(394\) −4.16696 + 1.72601i −0.209929 + 0.0869553i
\(395\) 0 0
\(396\) 5.36226 + 12.9456i 0.269464 + 0.650543i
\(397\) −9.26583 + 22.3697i −0.465039 + 1.12270i 0.501264 + 0.865295i \(0.332869\pi\)
−0.966303 + 0.257409i \(0.917131\pi\)
\(398\) 5.13454 + 2.12680i 0.257371 + 0.106607i
\(399\) 1.25739 1.25739i 0.0629484 0.0629484i
\(400\) 0 0
\(401\) 3.82490 9.23412i 0.191006 0.461130i −0.799144 0.601140i \(-0.794713\pi\)
0.990150 + 0.140010i \(0.0447135\pi\)
\(402\) 0.854256 2.06236i 0.0426064 0.102861i
\(403\) 31.2110 12.9280i 1.55473 0.643991i
\(404\) 40.3383i 2.00691i
\(405\) 0 0
\(406\) 8.99902 + 8.99902i 0.446614 + 0.446614i
\(407\) 2.30928i 0.114467i
\(408\) −9.88044 10.0181i −0.489155 0.495968i
\(409\) 17.4563 0.863158 0.431579 0.902075i \(-0.357957\pi\)
0.431579 + 0.902075i \(0.357957\pi\)
\(410\) 0 0
\(411\) 3.44737 1.42795i 0.170046 0.0704355i
\(412\) 48.2058 2.37493
\(413\) −0.537403 + 0.222600i −0.0264439 + 0.0109534i
\(414\) 38.7416 + 16.0473i 1.90404 + 0.788681i
\(415\) 0 0
\(416\) −2.65943 + 2.65943i −0.130389 + 0.130389i
\(417\) −0.503089 0.503089i −0.0246364 0.0246364i
\(418\) 13.6063 + 5.63590i 0.665504 + 0.275661i
\(419\) 23.0525 + 9.54866i 1.12619 + 0.466483i 0.866484 0.499205i \(-0.166375\pi\)
0.259705 + 0.965688i \(0.416375\pi\)
\(420\) 0 0
\(421\) 18.9333i 0.922750i 0.887205 + 0.461375i \(0.152644\pi\)
−0.887205 + 0.461375i \(0.847356\pi\)
\(422\) 19.8984 + 48.0391i 0.968640 + 2.33850i
\(423\) −2.44325 + 2.44325i −0.118795 + 0.118795i
\(424\) −49.3433 −2.39632
\(425\) 0 0
\(426\) −24.7845 −1.20081
\(427\) 2.41845 2.41845i 0.117037 0.117037i
\(428\) −10.2453 24.7344i −0.495226 1.19558i
\(429\) 4.67768i 0.225841i
\(430\) 0 0
\(431\) −0.261041 0.108127i −0.0125739 0.00520828i 0.376388 0.926462i \(-0.377166\pi\)
−0.388962 + 0.921254i \(0.627166\pi\)
\(432\) −12.8472 5.32150i −0.618112 0.256031i
\(433\) −18.5844 18.5844i −0.893109 0.893109i 0.101706 0.994815i \(-0.467570\pi\)
−0.994815 + 0.101706i \(0.967570\pi\)
\(434\) 7.73928 7.73928i 0.371497 0.371497i
\(435\) 0 0
\(436\) 32.5000 + 13.4620i 1.55647 + 0.644711i
\(437\) 26.9375 11.1579i 1.28859 0.533753i
\(438\) −16.1103 −0.769778
\(439\) −24.5435 + 10.1662i −1.17140 + 0.485208i −0.881654 0.471896i \(-0.843570\pi\)
−0.289743 + 0.957105i \(0.593570\pi\)
\(440\) 0 0
\(441\) −16.3833 −0.780158
\(442\) −16.4636 40.5375i −0.783095 1.92817i
\(443\) 12.5642i 0.596943i −0.954419 0.298471i \(-0.903523\pi\)
0.954419 0.298471i \(-0.0964767\pi\)
\(444\) 3.22054 + 3.22054i 0.152840 + 0.152840i
\(445\) 0 0
\(446\) 16.3957i 0.776357i
\(447\) 6.50102 2.69281i 0.307488 0.127366i
\(448\) −2.00889 + 4.84988i −0.0949110 + 0.229135i
\(449\) 7.09318 17.1244i 0.334748 0.808153i −0.663454 0.748217i \(-0.730910\pi\)
0.998202 0.0599359i \(-0.0190896\pi\)
\(450\) 0 0
\(451\) 4.17963 4.17963i 0.196811 0.196811i
\(452\) −15.4909 6.41656i −0.728633 0.301810i
\(453\) 1.30663 3.15448i 0.0613908 0.148211i
\(454\) 17.8526 + 43.0999i 0.837863 + 2.02278i
\(455\) 0 0
\(456\) −13.1064 + 5.42887i −0.613766 + 0.254230i
\(457\) −13.9029 + 13.9029i −0.650351 + 0.650351i −0.953077 0.302726i \(-0.902103\pi\)
0.302726 + 0.953077i \(0.402103\pi\)
\(458\) 58.3671i 2.72732i
\(459\) −11.7835 + 11.6217i −0.550009 + 0.542453i
\(460\) 0 0
\(461\) 14.0208 + 14.0208i 0.653012 + 0.653012i 0.953717 0.300705i \(-0.0972220\pi\)
−0.300705 + 0.953717i \(0.597222\pi\)
\(462\) −0.579954 1.40013i −0.0269819 0.0651400i
\(463\) −22.7218 −1.05597 −0.527985 0.849253i \(-0.677052\pi\)
−0.527985 + 0.849253i \(0.677052\pi\)
\(464\) −11.9295 28.8003i −0.553812 1.33702i
\(465\) 0 0
\(466\) −3.29227 + 7.94823i −0.152511 + 0.368195i
\(467\) 2.47172 + 2.47172i 0.114377 + 0.114377i 0.761979 0.647602i \(-0.224228\pi\)
−0.647602 + 0.761979i \(0.724228\pi\)
\(468\) −29.6779 29.6779i −1.37186 1.37186i
\(469\) 0.278067 0.671312i 0.0128399 0.0309983i
\(470\) 0 0
\(471\) 0.815322 + 1.96836i 0.0375680 + 0.0906973i
\(472\) 4.64054 0.213598
\(473\) 2.53255 + 6.11413i 0.116447 + 0.281128i
\(474\) −9.48645 9.48645i −0.435727 0.435727i
\(475\) 0 0
\(476\) −6.58503 6.67675i −0.301824 0.306028i
\(477\) 26.1459i 1.19714i
\(478\) 50.0480 50.0480i 2.28914 2.28914i
\(479\) −5.66030 + 2.34457i −0.258626 + 0.107126i −0.508229 0.861222i \(-0.669700\pi\)
0.249603 + 0.968348i \(0.419700\pi\)
\(480\) 0 0
\(481\) 2.64702 + 6.39046i 0.120694 + 0.291380i
\(482\) 16.6719 40.2495i 0.759384 1.83331i
\(483\) −2.77196 1.14818i −0.126128 0.0522441i
\(484\) −24.5361 + 24.5361i −1.11528 + 1.11528i
\(485\) 0 0
\(486\) −14.2304 + 34.3552i −0.645503 + 1.55838i
\(487\) 2.74668 6.63108i 0.124464 0.300483i −0.849350 0.527831i \(-0.823006\pi\)
0.973814 + 0.227348i \(0.0730055\pi\)
\(488\) −25.2088 + 10.4418i −1.14115 + 0.472679i
\(489\) 3.68438i 0.166614i
\(490\) 0 0
\(491\) 1.84574 + 1.84574i 0.0832970 + 0.0832970i 0.747528 0.664231i \(-0.231241\pi\)
−0.664231 + 0.747528i \(0.731241\pi\)
\(492\) 11.6579i 0.525577i
\(493\) −37.1010 0.256610i −1.67095 0.0115571i
\(494\) −44.1126 −1.98472
\(495\) 0 0
\(496\) −24.7687 + 10.2595i −1.11215 + 0.460666i
\(497\) −8.06755 −0.361879
\(498\) −26.1196 + 10.8191i −1.17045 + 0.484816i
\(499\) 11.1511 + 4.61895i 0.499193 + 0.206773i 0.618050 0.786139i \(-0.287923\pi\)
−0.118857 + 0.992911i \(0.537923\pi\)
\(500\) 0 0
\(501\) −2.93853 + 2.93853i −0.131284 + 0.131284i
\(502\) 4.08289 + 4.08289i 0.182229 + 0.182229i
\(503\) −2.82632 1.17070i −0.126019 0.0521989i 0.318783 0.947828i \(-0.396726\pi\)
−0.444802 + 0.895629i \(0.646726\pi\)
\(504\) −6.13573 2.54150i −0.273307 0.113208i
\(505\) 0 0
\(506\) 24.8490i 1.10467i
\(507\) 1.70397 + 4.11376i 0.0756761 + 0.182698i
\(508\) −44.6684 + 44.6684i −1.98184 + 1.98184i
\(509\) −11.2636 −0.499252 −0.249626 0.968342i \(-0.580308\pi\)
−0.249626 + 0.968342i \(0.580308\pi\)
\(510\) 0 0
\(511\) −5.24401 −0.231981
\(512\) 24.8499 24.8499i 1.09822 1.09822i
\(513\) 6.38559 + 15.4162i 0.281931 + 0.680641i
\(514\) 25.2838i 1.11522i
\(515\) 0 0
\(516\) −12.0587 4.99488i −0.530855 0.219887i
\(517\) 1.89167 + 0.783556i 0.0831956 + 0.0344607i
\(518\) 1.58462 + 1.58462i 0.0696242 + 0.0696242i
\(519\) 6.95196 6.95196i 0.305157 0.305157i
\(520\) 0 0
\(521\) 19.3137 + 7.99998i 0.846146 + 0.350485i 0.763274 0.646075i \(-0.223591\pi\)
0.0828724 + 0.996560i \(0.473591\pi\)
\(522\) −49.7033 + 20.5878i −2.17545 + 0.901103i
\(523\) 7.12885 0.311723 0.155861 0.987779i \(-0.450185\pi\)
0.155861 + 0.987779i \(0.450185\pi\)
\(524\) 32.5372 13.4774i 1.42140 0.588761i
\(525\) 0 0
\(526\) 57.4523 2.50504
\(527\) −0.220688 + 31.9074i −0.00961331 + 1.38991i
\(528\) 3.71215i 0.161551i
\(529\) −18.5231 18.5231i −0.805354 0.805354i
\(530\) 0 0
\(531\) 2.45892i 0.106708i
\(532\) −8.73506 + 3.61818i −0.378713 + 0.156868i
\(533\) −6.77536 + 16.3572i −0.293473 + 0.708507i
\(534\) 5.03903 12.1653i 0.218060 0.526444i
\(535\) 0 0
\(536\) −4.09900 + 4.09900i −0.177050 + 0.177050i
\(537\) −17.5408 7.26565i −0.756942 0.313536i
\(538\) 22.5336 54.4010i 0.971494 2.34539i
\(539\) 3.71526 + 8.96942i 0.160027 + 0.386340i
\(540\) 0 0
\(541\) −8.26139 + 3.42198i −0.355185 + 0.147122i −0.553139 0.833089i \(-0.686570\pi\)
0.197954 + 0.980211i \(0.436570\pi\)
\(542\) −13.7255 + 13.7255i −0.589561 + 0.589561i
\(543\) 15.8200i 0.678902i
\(544\) −1.33668 3.29124i −0.0573098 0.141111i
\(545\) 0 0
\(546\) 3.20980 + 3.20980i 0.137367 + 0.137367i
\(547\) 4.45519 + 10.7558i 0.190490 + 0.459884i 0.990052 0.140699i \(-0.0449351\pi\)
−0.799562 + 0.600583i \(0.794935\pi\)
\(548\) −19.8398 −0.847514
\(549\) 5.53289 + 13.3576i 0.236138 + 0.570087i
\(550\) 0 0
\(551\) −14.3149 + 34.5593i −0.609837 + 1.47228i
\(552\) 16.9254 + 16.9254i 0.720395 + 0.720395i
\(553\) −3.08791 3.08791i −0.131311 0.131311i
\(554\) 13.4116 32.3784i 0.569802 1.37562i
\(555\) 0 0
\(556\) 1.44765 + 3.49494i 0.0613941 + 0.148218i
\(557\) 6.24826 0.264747 0.132374 0.991200i \(-0.457740\pi\)
0.132374 + 0.991200i \(0.457740\pi\)
\(558\) 17.7058 + 42.7455i 0.749545 + 1.80956i
\(559\) −14.0166 14.0166i −0.592840 0.592840i
\(560\) 0 0
\(561\) 4.07004 + 1.71894i 0.171837 + 0.0725737i
\(562\) 27.8832i 1.17618i
\(563\) −1.86751 + 1.86751i −0.0787061 + 0.0787061i −0.745364 0.666658i \(-0.767724\pi\)
0.666658 + 0.745364i \(0.267724\pi\)
\(564\) −3.73088 + 1.54538i −0.157099 + 0.0650723i
\(565\) 0 0
\(566\) −12.8457 31.0122i −0.539943 1.30354i
\(567\) −0.985603 + 2.37946i −0.0413914 + 0.0999278i
\(568\) 59.4621 + 24.6300i 2.49498 + 1.03345i
\(569\) 26.6868 26.6868i 1.11877 1.11877i 0.126848 0.991922i \(-0.459514\pi\)
0.991922 0.126848i \(-0.0404862\pi\)
\(570\) 0 0
\(571\) 13.1716 31.7991i 0.551215 1.33075i −0.365351 0.930870i \(-0.619051\pi\)
0.916567 0.399882i \(-0.130949\pi\)
\(572\) −9.51776 + 22.9779i −0.397958 + 0.960755i
\(573\) −0.584340 + 0.242042i −0.0244112 + 0.0101114i
\(574\) 5.73609i 0.239420i
\(575\) 0 0
\(576\) −15.6914 15.6914i −0.653806 0.653806i
\(577\) 1.57974i 0.0657654i 0.999459 + 0.0328827i \(0.0104688\pi\)
−0.999459 + 0.0328827i \(0.989531\pi\)
\(578\) 41.3216 + 0.571630i 1.71875 + 0.0237767i
\(579\) −17.5218 −0.728183
\(580\) 0 0
\(581\) −8.50213 + 3.52170i −0.352728 + 0.146105i
\(582\) −23.3709 −0.968753
\(583\) 14.3142 5.92913i 0.592834 0.245560i
\(584\) 38.6511 + 16.0098i 1.59940 + 0.662491i
\(585\) 0 0
\(586\) −16.9319 + 16.9319i −0.699450 + 0.699450i
\(587\) −24.7661 24.7661i −1.02221 1.02221i −0.999748 0.0224603i \(-0.992850\pi\)
−0.0224603 0.999748i \(-0.507150\pi\)
\(588\) −17.6901 7.32749i −0.729528 0.302180i
\(589\) 29.7215 + 12.3110i 1.22465 + 0.507267i
\(590\) 0 0
\(591\) 1.36419i 0.0561151i
\(592\) −2.10064 5.07139i −0.0863357 0.208433i
\(593\) 24.1126 24.1126i 0.990184 0.990184i −0.00976794 0.999952i \(-0.503109\pi\)
0.999952 + 0.00976794i \(0.00310928\pi\)
\(594\) 14.2210 0.583493
\(595\) 0 0
\(596\) −37.4137 −1.53253
\(597\) 1.18861 1.18861i 0.0486467 0.0486467i
\(598\) 28.4832 + 68.7644i 1.16476 + 2.81199i
\(599\) 5.92805i 0.242213i 0.992639 + 0.121107i \(0.0386443\pi\)
−0.992639 + 0.121107i \(0.961356\pi\)
\(600\) 0 0
\(601\) −13.8906 5.75367i −0.566609 0.234697i 0.0809424 0.996719i \(-0.474207\pi\)
−0.647552 + 0.762022i \(0.724207\pi\)
\(602\) −5.93331 2.45766i −0.241824 0.100167i
\(603\) 2.17197 + 2.17197i 0.0884494 + 0.0884494i
\(604\) −12.8370 + 12.8370i −0.522329 + 0.522329i
\(605\) 0 0
\(606\) 17.0388 + 7.05769i 0.692152 + 0.286699i
\(607\) −11.7701 + 4.87535i −0.477735 + 0.197884i −0.608539 0.793524i \(-0.708244\pi\)
0.130804 + 0.991408i \(0.458244\pi\)
\(608\) −3.58151 −0.145249
\(609\) 3.55627 1.47306i 0.144107 0.0596912i
\(610\) 0 0
\(611\) −6.13295 −0.248113
\(612\) 36.7286 14.9167i 1.48466 0.602972i
\(613\) 23.8212i 0.962129i 0.876685 + 0.481064i \(0.159750\pi\)
−0.876685 + 0.481064i \(0.840250\pi\)
\(614\) −13.1413 13.1413i −0.530339 0.530339i
\(615\) 0 0
\(616\) 3.93548i 0.158565i
\(617\) 26.5455 10.9955i 1.06868 0.442663i 0.222157 0.975011i \(-0.428690\pi\)
0.846526 + 0.532348i \(0.178690\pi\)
\(618\) 8.43419 20.3619i 0.339273 0.819077i
\(619\) −6.91812 + 16.7018i −0.278063 + 0.671303i −0.999782 0.0208833i \(-0.993352\pi\)
0.721719 + 0.692186i \(0.243352\pi\)
\(620\) 0 0
\(621\) 19.9082 19.9082i 0.798889 0.798889i
\(622\) 57.7496 + 23.9207i 2.31555 + 0.959131i
\(623\) 1.64024 3.95990i 0.0657149 0.158650i
\(624\) −4.25505 10.2726i −0.170338 0.411233i
\(625\) 0 0
\(626\) −70.5636 + 29.2284i −2.82029 + 1.16820i
\(627\) 3.14976 3.14976i 0.125789 0.125789i
\(628\) 11.3280i 0.452037i
\(629\) −6.53304 0.0451859i −0.260489 0.00180168i
\(630\) 0 0
\(631\) 15.7534 + 15.7534i 0.627132 + 0.627132i 0.947345 0.320214i \(-0.103755\pi\)
−0.320214 + 0.947345i \(0.603755\pi\)
\(632\) 13.3322 + 32.1869i 0.530328 + 1.28032i
\(633\) 15.7271 0.625096
\(634\) −2.84770 6.87496i −0.113097 0.273039i
\(635\) 0 0
\(636\) −11.6938 + 28.2314i −0.463691 + 1.11945i
\(637\) −20.5624 20.5624i −0.814712 0.814712i
\(638\) 22.5425 + 22.5425i 0.892466 + 0.892466i
\(639\) 13.0509 31.5077i 0.516286 1.24642i
\(640\) 0 0
\(641\) −14.4463 34.8765i −0.570596 1.37754i −0.901049 0.433718i \(-0.857201\pi\)
0.330453 0.943823i \(-0.392799\pi\)
\(642\) −12.2402 −0.483084
\(643\) 17.2486 + 41.6419i 0.680219 + 1.64219i 0.763610 + 0.645677i \(0.223425\pi\)
−0.0833911 + 0.996517i \(0.526575\pi\)
\(644\) 11.2803 + 11.2803i 0.444507 + 0.444507i
\(645\) 0 0
\(646\) 16.2104 38.3823i 0.637789 1.51013i
\(647\) 0.426429i 0.0167647i −0.999965 0.00838233i \(-0.997332\pi\)
0.999965 0.00838233i \(-0.00266821\pi\)
\(648\) 14.5288 14.5288i 0.570747 0.570747i
\(649\) −1.34619 + 0.557611i −0.0528427 + 0.0218882i
\(650\) 0 0
\(651\) −1.26685 3.05844i −0.0496517 0.119870i
\(652\) −7.49668 + 18.0986i −0.293593 + 0.708795i
\(653\) 12.1450 + 5.03061i 0.475269 + 0.196863i 0.607442 0.794364i \(-0.292196\pi\)
−0.132173 + 0.991227i \(0.542196\pi\)
\(654\) 11.3726 11.3726i 0.444702 0.444702i
\(655\) 0 0
\(656\) 5.37684 12.9808i 0.209930 0.506817i
\(657\) 8.48326 20.4804i 0.330963 0.799016i
\(658\) −1.83573 + 0.760383i −0.0715641 + 0.0296428i
\(659\) 16.3369i 0.636395i 0.948025 + 0.318197i \(0.103077\pi\)
−0.948025 + 0.318197i \(0.896923\pi\)
\(660\) 0 0
\(661\) −6.68312 6.68312i −0.259943 0.259943i 0.565088 0.825031i \(-0.308842\pi\)
−0.825031 + 0.565088i \(0.808842\pi\)
\(662\) 12.0616i 0.468788i
\(663\) −13.2333 0.0915284i −0.513939 0.00355467i
\(664\) 73.4169 2.84913
\(665\) 0 0
\(666\) −8.75216 + 3.62526i −0.339139 + 0.140476i
\(667\) 63.1154 2.44384
\(668\) 20.4139 8.45570i 0.789836 0.327161i
\(669\) −4.58156 1.89774i −0.177133 0.0733710i
\(670\) 0 0
\(671\) 6.05821 6.05821i 0.233875 0.233875i
\(672\) 0.260604 + 0.260604i 0.0100530 + 0.0100530i
\(673\) 25.4833 + 10.5555i 0.982311 + 0.406886i 0.815281 0.579066i \(-0.196582\pi\)
0.167030 + 0.985952i \(0.446582\pi\)
\(674\) −30.9827 12.8334i −1.19341 0.494325i
\(675\) 0 0
\(676\) 23.6749i 0.910572i
\(677\) 0.683020 + 1.64896i 0.0262506 + 0.0633745i 0.936461 0.350771i \(-0.114080\pi\)
−0.910211 + 0.414146i \(0.864080\pi\)
\(678\) −5.42066 + 5.42066i −0.208179 + 0.208179i
\(679\) −7.60739 −0.291945
\(680\) 0 0
\(681\) 14.1101 0.540701
\(682\) 19.3869 19.3869i 0.742361 0.742361i
\(683\) −3.08452 7.44669i −0.118026 0.284940i 0.853815 0.520576i \(-0.174283\pi\)
−0.971841 + 0.235636i \(0.924283\pi\)
\(684\) 39.9678i 1.52821i
\(685\) 0 0
\(686\) −17.8506 7.39396i −0.681539 0.282303i
\(687\) 16.3100 + 6.75581i 0.622264 + 0.257750i
\(688\) 11.1234 + 11.1234i 0.424076 + 0.424076i
\(689\) −32.8153 + 32.8153i −1.25016 + 1.25016i
\(690\) 0 0
\(691\) −44.7175 18.5226i −1.70113 0.704632i −0.701167 0.712997i \(-0.747337\pi\)
−0.999965 + 0.00836486i \(0.997337\pi\)
\(692\) −48.2950 + 20.0045i −1.83590 + 0.760456i
\(693\) 2.08533 0.0792150
\(694\) 45.6035 18.8896i 1.73108 0.717038i
\(695\) 0 0
\(696\) −30.7088 −1.16401
\(697\) −11.7425 11.9061i −0.444780 0.450976i
\(698\) 36.8548i 1.39498i
\(699\) 1.83996 + 1.83996i 0.0695939 + 0.0695939i
\(700\) 0 0
\(701\) 26.0994i 0.985761i 0.870097 + 0.492880i \(0.164056\pi\)
−0.870097 + 0.492880i \(0.835944\pi\)
\(702\) −39.3536 + 16.3008i −1.48530 + 0.615233i
\(703\) −2.52069 + 6.08548i −0.0950695 + 0.229518i
\(704\) −5.03225 + 12.1489i −0.189660 + 0.457880i
\(705\) 0 0
\(706\) 27.8251 27.8251i 1.04721 1.04721i
\(707\) 5.54624 + 2.29733i 0.208588 + 0.0864000i
\(708\) 1.09976 2.65505i 0.0413315 0.0997830i
\(709\) 16.9696 + 40.9683i 0.637307 + 1.53860i 0.830253 + 0.557386i \(0.188196\pi\)
−0.192946 + 0.981209i \(0.561804\pi\)
\(710\) 0 0
\(711\) 17.0551 7.06446i 0.639617 0.264938i
\(712\) −24.1789 + 24.1789i −0.906143 + 0.906143i
\(713\) 54.2801i 2.03280i
\(714\) −3.97237 + 1.61331i −0.148662 + 0.0603767i
\(715\) 0 0
\(716\) 71.3813 + 71.3813i 2.66764 + 2.66764i
\(717\) −8.19239 19.7782i −0.305951 0.738630i
\(718\) 43.1935 1.61197
\(719\) −10.6254 25.6519i −0.396259 0.956653i −0.988545 0.150926i \(-0.951775\pi\)
0.592286 0.805728i \(-0.298225\pi\)
\(720\) 0 0
\(721\) 2.74539 6.62796i 0.102244 0.246838i
\(722\) 2.95569 + 2.95569i 0.110000 + 0.110000i
\(723\) −9.31750 9.31750i −0.346522 0.346522i
\(724\) −32.1893 + 77.7118i −1.19631 + 2.88814i
\(725\) 0 0
\(726\) 6.07108 + 14.6569i 0.225319 + 0.543968i
\(727\) −38.4267 −1.42517 −0.712584 0.701586i \(-0.752475\pi\)
−0.712584 + 0.701586i \(0.752475\pi\)
\(728\) −4.51105 10.8906i −0.167191 0.403634i
\(729\) −1.43773 1.43773i −0.0532494 0.0532494i
\(730\) 0 0
\(731\) 17.3466 7.04504i 0.641588 0.260570i
\(732\) 16.8976i 0.624554i
\(733\) −8.69424 + 8.69424i −0.321129 + 0.321129i −0.849200 0.528071i \(-0.822915\pi\)
0.528071 + 0.849200i \(0.322915\pi\)
\(734\) 78.2740 32.4221i 2.88915 1.19672i
\(735\) 0 0
\(736\) 2.31255 + 5.58299i 0.0852417 + 0.205792i
\(737\) 0.696555 1.68163i 0.0256579 0.0619438i
\(738\) −22.4022 9.27930i −0.824637 0.341576i
\(739\) 25.5096 25.5096i 0.938385 0.938385i −0.0598241 0.998209i \(-0.519054\pi\)
0.998209 + 0.0598241i \(0.0190540\pi\)
\(740\) 0 0
\(741\) −5.10590 + 12.3267i −0.187570 + 0.452834i
\(742\) −5.75379 + 13.8909i −0.211228 + 0.509950i
\(743\) −30.0236 + 12.4362i −1.10146 + 0.456239i −0.857988 0.513669i \(-0.828286\pi\)
−0.243470 + 0.969908i \(0.578286\pi\)
\(744\) 26.4100i 0.968238i
\(745\) 0 0
\(746\) 2.41272 + 2.41272i 0.0883359 + 0.0883359i
\(747\) 38.9020i 1.42335i
\(748\) −16.4955 16.7252i −0.603134 0.611535i
\(749\) −3.98429 −0.145583
\(750\) 0 0
\(751\) −41.0781 + 17.0151i −1.49896 + 0.620890i −0.973245 0.229771i \(-0.926202\pi\)
−0.525715 + 0.850661i \(0.676202\pi\)
\(752\) 4.86704 0.177483
\(753\) 1.61350 0.668332i 0.0587991 0.0243554i
\(754\) −88.2210 36.5423i −3.21282 1.33079i
\(755\) 0 0
\(756\) −6.45567 + 6.45567i −0.234790 + 0.234790i
\(757\) 21.4158 + 21.4158i 0.778370 + 0.778370i 0.979554 0.201183i \(-0.0644787\pi\)
−0.201183 + 0.979554i \(0.564479\pi\)
\(758\) −78.1362 32.3651i −2.83803 1.17555i
\(759\) −6.94374 2.87619i −0.252042 0.104399i
\(760\) 0 0
\(761\) 9.85150i 0.357117i −0.983929 0.178558i \(-0.942857\pi\)
0.983929 0.178558i \(-0.0571433\pi\)
\(762\) 11.0525 + 26.6830i 0.400389 + 0.966624i
\(763\) 3.70185 3.70185i 0.134016 0.134016i
\(764\) 3.36291 0.121666
\(765\) 0 0
\(766\) 21.6998 0.784046
\(767\) 3.08615 3.08615i 0.111434 0.111434i
\(768\) −8.74636 21.1156i −0.315607 0.761943i
\(769\) 35.4042i 1.27671i 0.769743 + 0.638353i \(0.220384\pi\)
−0.769743 + 0.638353i \(0.779616\pi\)
\(770\) 0 0
\(771\) −7.06524 2.92652i −0.254448 0.105396i
\(772\) 86.0715 + 35.6520i 3.09778 + 1.28314i
\(773\) −11.0242 11.0242i −0.396513 0.396513i 0.480488 0.877001i \(-0.340459\pi\)
−0.877001 + 0.480488i \(0.840459\pi\)
\(774\) 19.1967 19.1967i 0.690011 0.690011i
\(775\) 0 0
\(776\) 56.0705 + 23.2252i 2.01281 + 0.833735i
\(777\) 0.626217 0.259387i 0.0224654 0.00930547i
\(778\) −13.0842 −0.469093
\(779\) −15.5765 + 6.45201i −0.558087 + 0.231167i
\(780\) 0 0
\(781\) −20.2092 −0.723141
\(782\) −70.2987 0.486222i −2.51387 0.0173873i
\(783\) 36.1206i 1.29085i
\(784\) 16.3181 + 16.3181i 0.582788 + 0.582788i
\(785\) 0 0
\(786\) 16.1016i 0.574326i
\(787\) 15.1089 6.25833i 0.538575 0.223085i −0.0967790 0.995306i \(-0.530854\pi\)
0.635354 + 0.772221i \(0.280854\pi\)
\(788\) 2.77573 6.70122i 0.0988814 0.238721i
\(789\) 6.64991 16.0543i 0.236743 0.571549i
\(790\) 0 0
\(791\) −1.76447 + 1.76447i −0.0627372 + 0.0627372i
\(792\) −15.3700 6.36645i −0.546148 0.226222i
\(793\) −9.82062 + 23.7091i −0.348740 + 0.841934i
\(794\) −22.5244 54.3788i −0.799363 1.92983i
\(795\) 0 0
\(796\) −8.25725 + 3.42027i −0.292671 + 0.121228i
\(797\) −5.55459 + 5.55459i −0.196754 + 0.196754i −0.798607 0.601853i \(-0.794429\pi\)
0.601853 + 0.798607i \(0.294429\pi\)
\(798\) 4.32270i 0.153022i
\(799\) 2.25372 5.33627i 0.0797308 0.188784i
\(800\) 0 0
\(801\) 12.8119 + 12.8119i 0.452686 + 0.452686i
\(802\) 9.29799 + 22.4473i 0.328323 + 0.792643i
\(803\) −13.1362 −0.463567
\(804\) 1.37379 + 3.31663i 0.0484500 + 0.116969i
\(805\) 0 0
\(806\) −31.4269 + 75.8713i −1.10697 + 2.67245i
\(807\) −12.5935 12.5935i −0.443312 0.443312i
\(808\) −33.8651 33.8651i −1.19137 1.19137i
\(809\) −9.55001 + 23.0558i −0.335760 + 0.810597i 0.662353 + 0.749192i \(0.269558\pi\)
−0.998113 + 0.0614049i \(0.980442\pi\)
\(810\) 0 0
\(811\) −8.19051 19.7736i −0.287608 0.694347i 0.712364 0.701810i \(-0.247624\pi\)
−0.999972 + 0.00746314i \(0.997624\pi\)
\(812\) −20.4665 −0.718234
\(813\) 2.24674 + 5.42410i 0.0787965 + 0.190232i
\(814\) 3.96946 + 3.96946i 0.139130 + 0.139130i
\(815\) 0 0
\(816\) 10.5018 + 0.0726358i 0.367636 + 0.00254276i
\(817\) 18.8765i 0.660404i
\(818\) −30.0059 + 30.0059i −1.04913 + 1.04913i
\(819\) −5.77071 + 2.39031i −0.201645 + 0.0835240i
\(820\) 0 0
\(821\) −16.0151 38.6638i −0.558930 1.34938i −0.910614 0.413258i \(-0.864391\pi\)
0.351684 0.936119i \(-0.385609\pi\)
\(822\) −3.47122 + 8.38026i −0.121073 + 0.292295i
\(823\) 12.0322 + 4.98390i 0.419416 + 0.173728i 0.582403 0.812900i \(-0.302113\pi\)
−0.162987 + 0.986628i \(0.552113\pi\)
\(824\) −40.4700 + 40.4700i −1.40984 + 1.40984i
\(825\) 0 0
\(826\) 0.541121 1.30638i 0.0188280 0.0454548i
\(827\) 17.7000 42.7316i 0.615489 1.48592i −0.241402 0.970425i \(-0.577607\pi\)
0.856891 0.515497i \(-0.172393\pi\)
\(828\) −62.3033 + 25.8069i −2.16519 + 0.896851i
\(829\) 45.9531i 1.59602i −0.602646 0.798009i \(-0.705887\pi\)
0.602646 0.798009i \(-0.294113\pi\)
\(830\) 0 0
\(831\) −7.49538 7.49538i −0.260012 0.260012i
\(832\) 39.3878i 1.36553i
\(833\) 25.4475 10.3351i 0.881703 0.358089i
\(834\) 1.72953 0.0598889
\(835\) 0 0
\(836\) −21.8813 + 9.06353i −0.756780 + 0.313469i
\(837\) 31.0642 1.07374
\(838\) −56.0386 + 23.2120i −1.93582 + 0.801844i
\(839\) −28.6890 11.8834i −0.990455 0.410260i −0.172167 0.985068i \(-0.555077\pi\)
−0.818288 + 0.574808i \(0.805077\pi\)
\(840\) 0 0
\(841\) −36.7508 + 36.7508i −1.26727 + 1.26727i
\(842\) −32.5447 32.5447i −1.12156 1.12156i
\(843\) −7.79161 3.22739i −0.268357 0.111157i
\(844\) −77.2553 32.0002i −2.65924 1.10149i
\(845\) 0 0
\(846\) 8.39948i 0.288780i
\(847\) 1.97618 + 4.77092i 0.0679024 + 0.163931i
\(848\) 26.0418 26.0418i 0.894279 0.894279i
\(849\) −10.1528 −0.348443
\(850\) 0 0
\(851\) 11.1139 0.380978
\(852\) 28.1838 28.1838i 0.965561 0.965561i
\(853\) −9.98231 24.0994i −0.341788 0.825149i −0.997535 0.0701683i \(-0.977646\pi\)
0.655747 0.754980i \(-0.272354\pi\)
\(854\) 8.31423i 0.284507i
\(855\) 0 0
\(856\) 29.3663 + 12.1639i 1.00372 + 0.415755i
\(857\) 12.0510 + 4.99167i 0.411653 + 0.170512i 0.578892 0.815404i \(-0.303485\pi\)
−0.167239 + 0.985916i \(0.553485\pi\)
\(858\) 8.04054 + 8.04054i 0.274499 + 0.274499i
\(859\) −32.4780 + 32.4780i −1.10814 + 1.10814i −0.114741 + 0.993395i \(0.536604\pi\)
−0.993395 + 0.114741i \(0.963396\pi\)
\(860\) 0 0
\(861\) 1.60288 + 0.663934i 0.0546259 + 0.0226268i
\(862\) 0.634568 0.262847i 0.0216135 0.00895259i
\(863\) 22.8031 0.776228 0.388114 0.921611i \(-0.373127\pi\)
0.388114 + 0.921611i \(0.373127\pi\)
\(864\) −3.19512 + 1.32346i −0.108700 + 0.0450251i
\(865\) 0 0
\(866\) 63.8900 2.17107
\(867\) 4.94257 11.4806i 0.167859 0.389903i
\(868\) 17.6015i 0.597434i
\(869\) −7.73520 7.73520i −0.262399 0.262399i
\(870\) 0 0
\(871\) 5.45200i 0.184734i
\(872\) −38.5863 + 15.9830i −1.30670 + 0.541252i
\(873\) 12.3065 29.7105i 0.416512 1.00555i
\(874\) −27.1238 + 65.4827i −0.917476 + 2.21498i
\(875\) 0 0
\(876\) 18.3198 18.3198i 0.618970 0.618970i
\(877\) −22.1575 9.17794i −0.748206 0.309917i −0.0241964 0.999707i \(-0.507703\pi\)
−0.724009 + 0.689790i \(0.757703\pi\)
\(878\) 24.7133 59.6631i 0.834032 2.01353i
\(879\) 2.77159 + 6.69122i 0.0934835 + 0.225689i
\(880\) 0 0
\(881\) 14.4244 5.97478i 0.485970 0.201295i −0.126226 0.992002i \(-0.540286\pi\)
0.612196 + 0.790706i \(0.290286\pi\)
\(882\) 28.1615 28.1615i 0.948248 0.948248i
\(883\) 30.7396i 1.03447i −0.855844 0.517235i \(-0.826961\pi\)
0.855844 0.517235i \(-0.173039\pi\)
\(884\) 64.8190 + 27.3757i 2.18010 + 0.920743i
\(885\) 0 0
\(886\) 21.5968 + 21.5968i 0.725558 + 0.725558i
\(887\) 3.95243 + 9.54202i 0.132710 + 0.320390i 0.976240 0.216692i \(-0.0695267\pi\)
−0.843530 + 0.537082i \(0.819527\pi\)
\(888\) −5.40746 −0.181462
\(889\) 3.59766 + 8.68552i 0.120662 + 0.291303i
\(890\) 0 0
\(891\) −2.46893 + 5.96053i −0.0827123 + 0.199685i
\(892\) 18.6444 + 18.6444i 0.624260 + 0.624260i
\(893\) −4.12969 4.12969i −0.138195 0.138195i
\(894\) −6.54599 + 15.8034i −0.218931 + 0.528546i
\(895\) 0 0
\(896\) −4.49979 10.8634i −0.150327 0.362922i
\(897\) 22.5122 0.751660
\(898\) 17.2429 + 41.6280i 0.575403 + 1.38915i
\(899\) 49.2417 + 49.2417i 1.64230 + 1.64230i
\(900\) 0 0
\(901\) −16.4936 40.6113i −0.549482 1.35296i
\(902\) 14.3689i 0.478431i
\(903\) −1.37352 + 1.37352i −0.0457080 + 0.0457080i
\(904\) 18.3919 7.61818i 0.611706 0.253377i
\(905\) 0 0
\(906\) 3.17630 + 7.66828i 0.105526 + 0.254761i
\(907\) −9.25140 + 22.3349i −0.307188 + 0.741617i 0.692606 + 0.721316i \(0.256462\pi\)
−0.999794 + 0.0203010i \(0.993538\pi\)
\(908\) −69.3124 28.7101i −2.30021 0.952779i
\(909\) −17.9444 + 17.9444i −0.595177 + 0.595177i
\(910\) 0 0
\(911\) −9.83038 + 23.7326i −0.325695 + 0.786298i 0.673207 + 0.739454i \(0.264916\pi\)
−0.998902 + 0.0468436i \(0.985084\pi\)
\(912\) 4.05198 9.78234i 0.134174 0.323926i
\(913\) −21.2978 + 8.82184i −0.704854 + 0.291960i
\(914\) 47.7959i 1.58095i
\(915\) 0 0
\(916\) −66.3724 66.3724i −2.19300 2.19300i
\(917\) 5.24120i 0.173080i
\(918\) 0.278262 40.2316i 0.00918403 1.32784i
\(919\) 44.4217 1.46534 0.732669 0.680585i \(-0.238274\pi\)
0.732669 + 0.680585i \(0.238274\pi\)
\(920\) 0 0
\(921\) −5.19323 + 2.15110i −0.171123 + 0.0708813i
\(922\) −48.2010 −1.58742
\(923\) 55.9246 23.1647i 1.84078 0.762477i
\(924\) 2.25166 + 0.932668i 0.0740742 + 0.0306825i
\(925\) 0 0
\(926\) 39.0568 39.0568i 1.28349 1.28349i
\(927\) 21.4442 + 21.4442i 0.704319 + 0.704319i
\(928\) −7.16267 2.96687i −0.235126 0.0973924i
\(929\) 45.9061 + 19.0149i 1.50613 + 0.623860i 0.974755 0.223277i \(-0.0716754\pi\)
0.531375 + 0.847137i \(0.321675\pi\)
\(930\) 0 0
\(931\) 27.6918i 0.907562i
\(932\) −5.29455 12.7822i −0.173429 0.418694i
\(933\) 13.3687 13.3687i 0.437670 0.437670i
\(934\) −8.49735 −0.278042
\(935\) 0 0
\(936\) 49.8307 1.62877
\(937\) 7.67880 7.67880i 0.250855 0.250855i −0.570466 0.821321i \(-0.693237\pi\)
0.821321 + 0.570466i \(0.193237\pi\)
\(938\) 0.675956 + 1.63190i 0.0220707 + 0.0532835i
\(939\) 23.1012i 0.753880i
\(940\) 0 0
\(941\) 21.4179 + 8.87157i 0.698202 + 0.289205i 0.703413 0.710782i \(-0.251659\pi\)
−0.00521060 + 0.999986i \(0.501659\pi\)
\(942\) −4.78491 1.98198i −0.155901 0.0645763i
\(943\) 20.1153 + 20.1153i 0.655043 + 0.655043i
\(944\) −2.44913 + 2.44913i −0.0797123 + 0.0797123i
\(945\) 0 0
\(946\) −14.8629 6.15642i −0.483235 0.200162i
\(947\) 15.1465 6.27390i 0.492197 0.203874i −0.122759 0.992437i \(-0.539174\pi\)
0.614955 + 0.788562i \(0.289174\pi\)
\(948\) 21.5751 0.700726
\(949\) 36.3517 15.0574i 1.18003 0.488783i
\(950\) 0 0
\(951\) −2.25073 −0.0729850
\(952\) 11.1336 + 0.0770058i 0.360842 + 0.00249577i
\(953\) 53.6804i 1.73888i 0.494039 + 0.869440i \(0.335520\pi\)
−0.494039 + 0.869440i \(0.664480\pi\)
\(954\) −44.9427 44.9427i −1.45507 1.45507i
\(955\) 0 0
\(956\) 113.825i 3.68135i
\(957\) 8.90844 3.69000i 0.287969 0.119281i
\(958\) 5.69946 13.7597i 0.184141 0.444556i
\(959\) −1.12991 + 2.72784i −0.0364866 + 0.0880864i
\(960\) 0 0
\(961\) 20.4283 20.4283i 0.658976 0.658976i
\(962\) −15.5347 6.43467i −0.500858 0.207462i
\(963\) 6.44541 15.5606i 0.207700 0.501433i
\(964\) 26.8114 + 64.7284i 0.863536 + 2.08476i
\(965\) 0 0
\(966\) 6.73839 2.79113i 0.216804 0.0898032i
\(967\) 23.5810 23.5810i 0.758314 0.758314i −0.217702 0.976015i \(-0.569856\pi\)
0.976015 + 0.217702i \(0.0698560\pi\)
\(968\) 41.1975i 1.32414i
\(969\) −8.84915 8.97241i −0.284276 0.288235i
\(970\) 0 0
\(971\) −1.59646 1.59646i −0.0512330 0.0512330i 0.681026 0.732259i \(-0.261534\pi\)
−0.732259 + 0.681026i \(0.761534\pi\)
\(972\) −22.8850 55.2492i −0.734036 1.77212i
\(973\) 0.562976 0.0180482
\(974\) 6.67695 + 16.1196i 0.213943 + 0.516504i
\(975\) 0 0
\(976\) 7.79352 18.8152i 0.249464 0.602261i
\(977\) −13.5336 13.5336i −0.432978 0.432978i 0.456663 0.889640i \(-0.349045\pi\)
−0.889640 + 0.456663i \(0.849045\pi\)
\(978\) 6.33314 + 6.33314i 0.202512 + 0.202512i
\(979\) 4.10880 9.91952i 0.131318 0.317029i
\(980\) 0 0
\(981\) 8.46902 + 20.4460i 0.270395 + 0.652792i
\(982\) −6.34534 −0.202488
\(983\) 18.1286 + 43.7663i 0.578213 + 1.39593i 0.894415 + 0.447238i \(0.147592\pi\)
−0.316202 + 0.948692i \(0.602408\pi\)
\(984\) −9.78709 9.78709i −0.312001 0.312001i
\(985\) 0 0
\(986\) 64.2146 63.3324i 2.04501 2.01691i
\(987\) 0.600983i 0.0191295i
\(988\) 50.1628 50.1628i 1.59589 1.59589i
\(989\) −29.4254 + 12.1884i −0.935672 + 0.387568i
\(990\) 0 0
\(991\) −12.8543 31.0330i −0.408330 0.985795i −0.985577 0.169226i \(-0.945873\pi\)
0.577248 0.816569i \(-0.304127\pi\)
\(992\) −2.55155 + 6.15999i −0.0810119 + 0.195580i
\(993\) 3.37046 + 1.39609i 0.106958 + 0.0443036i
\(994\) 13.8674 13.8674i 0.439848 0.439848i
\(995\) 0 0
\(996\) 17.3990 42.0050i 0.551310 1.33098i
\(997\) −0.162023 + 0.391159i −0.00513133 + 0.0123881i −0.926424 0.376481i \(-0.877134\pi\)
0.921293 + 0.388869i \(0.127134\pi\)
\(998\) −27.1074 + 11.2283i −0.858071 + 0.355425i
\(999\) 6.36041i 0.201234i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 425.2.n.e.274.1 24
5.2 odd 4 425.2.m.d.376.1 yes 24
5.3 odd 4 425.2.m.c.376.6 yes 24
5.4 even 2 425.2.n.d.274.6 24
17.9 even 8 425.2.n.d.349.6 24
85.3 even 16 7225.2.a.bx.1.23 24
85.9 even 8 inner 425.2.n.e.349.1 24
85.37 even 16 7225.2.a.cb.1.2 24
85.43 odd 8 425.2.m.c.26.6 24
85.48 even 16 7225.2.a.bx.1.24 24
85.77 odd 8 425.2.m.d.26.1 yes 24
85.82 even 16 7225.2.a.cb.1.1 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
425.2.m.c.26.6 24 85.43 odd 8
425.2.m.c.376.6 yes 24 5.3 odd 4
425.2.m.d.26.1 yes 24 85.77 odd 8
425.2.m.d.376.1 yes 24 5.2 odd 4
425.2.n.d.274.6 24 5.4 even 2
425.2.n.d.349.6 24 17.9 even 8
425.2.n.e.274.1 24 1.1 even 1 trivial
425.2.n.e.349.1 24 85.9 even 8 inner
7225.2.a.bx.1.23 24 85.3 even 16
7225.2.a.bx.1.24 24 85.48 even 16
7225.2.a.cb.1.1 24 85.82 even 16
7225.2.a.cb.1.2 24 85.37 even 16