Properties

Label 425.2.n.e.49.4
Level $425$
Weight $2$
Character 425.49
Analytic conductor $3.394$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [425,2,Mod(49,425)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(425, base_ring=CyclotomicField(8))
 
chi = DirichletCharacter(H, H._module([4, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("425.49");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 425 = 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 425.n (of order \(8\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.39364208590\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(6\) over \(\Q(\zeta_{8})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 49.4
Character \(\chi\) \(=\) 425.49
Dual form 425.2.n.e.399.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.187572 + 0.187572i) q^{2} +(-1.67148 + 0.692349i) q^{3} +1.92963i q^{4} +(0.183657 - 0.443388i) q^{6} +(-1.88562 + 4.55230i) q^{7} +(-0.737090 - 0.737090i) q^{8} +(0.193173 - 0.193173i) q^{9} +O(q^{10})\) \(q+(-0.187572 + 0.187572i) q^{2} +(-1.67148 + 0.692349i) q^{3} +1.92963i q^{4} +(0.183657 - 0.443388i) q^{6} +(-1.88562 + 4.55230i) q^{7} +(-0.737090 - 0.737090i) q^{8} +(0.193173 - 0.193173i) q^{9} +(1.50174 - 3.62553i) q^{11} +(-1.33598 - 3.22534i) q^{12} +2.07286 q^{13} +(-0.500194 - 1.20758i) q^{14} -3.58275 q^{16} +(-3.19465 - 2.60657i) q^{17} +0.0724676i q^{18} +(2.08750 + 2.08750i) q^{19} -8.91458i q^{21} +(0.398363 + 0.961734i) q^{22} +(-3.58060 - 1.48313i) q^{23} +(1.74235 + 0.721707i) q^{24} +(-0.388810 + 0.388810i) q^{26} +(1.88791 - 4.55781i) q^{27} +(-8.78427 - 3.63856i) q^{28} +(-3.22121 + 1.33427i) q^{29} +(2.23739 + 5.40154i) q^{31} +(2.14620 - 2.14620i) q^{32} +7.09972i q^{33} +(1.08815 - 0.110307i) q^{34} +(0.372752 + 0.372752i) q^{36} +(-1.88698 + 0.781612i) q^{37} -0.783113 q^{38} +(-3.46473 + 1.43514i) q^{39} +(-10.9410 - 4.53193i) q^{41} +(1.67213 + 1.67213i) q^{42} +(3.91060 + 3.91060i) q^{43} +(6.99594 + 2.89781i) q^{44} +(0.949815 - 0.393426i) q^{46} -0.453534 q^{47} +(5.98849 - 2.48051i) q^{48} +(-12.2181 - 12.2181i) q^{49} +(7.14444 + 2.14502i) q^{51} +3.99985i q^{52} +(4.60644 - 4.60644i) q^{53} +(0.500800 + 1.20904i) q^{54} +(4.74533 - 1.96558i) q^{56} +(-4.93448 - 2.04393i) q^{57} +(0.353938 - 0.854483i) q^{58} +(-4.92683 + 4.92683i) q^{59} +(-0.0429157 - 0.0177763i) q^{61} +(-1.43285 - 0.593507i) q^{62} +(0.515129 + 1.24363i) q^{63} -6.36037i q^{64} +(-1.33171 - 1.33171i) q^{66} +10.0472i q^{67} +(5.02973 - 6.16450i) q^{68} +7.01174 q^{69} +(5.85587 + 14.1373i) q^{71} -0.284771 q^{72} +(3.36399 + 8.12139i) q^{73} +(0.207336 - 0.500554i) q^{74} +(-4.02810 + 4.02810i) q^{76} +(13.6728 + 13.6728i) q^{77} +(0.380696 - 0.919080i) q^{78} +(0.991282 - 2.39317i) q^{79} +9.74493i q^{81} +(2.90230 - 1.20217i) q^{82} +(-1.09508 + 1.09508i) q^{83} +17.2019 q^{84} -1.46704 q^{86} +(4.46041 - 4.46041i) q^{87} +(-3.77926 + 1.56542i) q^{88} +10.2523i q^{89} +(-3.90863 + 9.43626i) q^{91} +(2.86190 - 6.90924i) q^{92} +(-7.47951 - 7.47951i) q^{93} +(0.0850703 - 0.0850703i) q^{94} +(-2.10141 + 5.07326i) q^{96} +(-4.07387 - 9.83519i) q^{97} +4.58356 q^{98} +(-0.410257 - 0.990448i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 4 q^{3} - 8 q^{6} - 12 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 24 q + 4 q^{3} - 8 q^{6} - 12 q^{9} + 4 q^{11} - 20 q^{12} + 16 q^{13} + 24 q^{14} - 24 q^{16} + 20 q^{19} + 12 q^{22} + 8 q^{23} - 16 q^{24} + 16 q^{26} + 16 q^{27} + 20 q^{28} - 4 q^{29} + 24 q^{31} + 60 q^{32} - 16 q^{34} + 60 q^{36} - 16 q^{37} - 48 q^{38} - 8 q^{39} - 20 q^{41} + 12 q^{42} - 32 q^{43} - 64 q^{44} - 40 q^{46} - 88 q^{47} + 4 q^{48} - 24 q^{49} + 16 q^{51} - 12 q^{53} + 20 q^{54} - 32 q^{56} - 56 q^{57} - 28 q^{58} + 16 q^{59} - 64 q^{61} + 16 q^{62} - 40 q^{63} - 72 q^{66} + 48 q^{68} + 48 q^{69} - 24 q^{71} + 120 q^{72} + 20 q^{73} - 32 q^{74} + 52 q^{76} + 24 q^{77} - 100 q^{78} + 48 q^{79} + 8 q^{82} + 12 q^{83} + 40 q^{84} - 16 q^{86} - 24 q^{87} + 80 q^{88} + 24 q^{91} - 56 q^{92} + 32 q^{93} + 40 q^{94} + 132 q^{96} - 24 q^{97} + 48 q^{98} + 80 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/425\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(326\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{8}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.187572 + 0.187572i −0.132634 + 0.132634i −0.770307 0.637673i \(-0.779897\pi\)
0.637673 + 0.770307i \(0.279897\pi\)
\(3\) −1.67148 + 0.692349i −0.965029 + 0.399728i −0.808859 0.588002i \(-0.799915\pi\)
−0.156169 + 0.987730i \(0.549915\pi\)
\(4\) 1.92963i 0.964817i
\(5\) 0 0
\(6\) 0.183657 0.443388i 0.0749778 0.181013i
\(7\) −1.88562 + 4.55230i −0.712699 + 1.72061i −0.0195547 + 0.999809i \(0.506225\pi\)
−0.693144 + 0.720799i \(0.743775\pi\)
\(8\) −0.737090 0.737090i −0.260601 0.260601i
\(9\) 0.193173 0.193173i 0.0643909 0.0643909i
\(10\) 0 0
\(11\) 1.50174 3.62553i 0.452793 1.09314i −0.518463 0.855100i \(-0.673496\pi\)
0.971256 0.238038i \(-0.0765043\pi\)
\(12\) −1.33598 3.22534i −0.385664 0.931076i
\(13\) 2.07286 0.574907 0.287453 0.957795i \(-0.407191\pi\)
0.287453 + 0.957795i \(0.407191\pi\)
\(14\) −0.500194 1.20758i −0.133683 0.322738i
\(15\) 0 0
\(16\) −3.58275 −0.895688
\(17\) −3.19465 2.60657i −0.774816 0.632186i
\(18\) 0.0724676i 0.0170808i
\(19\) 2.08750 + 2.08750i 0.478905 + 0.478905i 0.904781 0.425877i \(-0.140034\pi\)
−0.425877 + 0.904781i \(0.640034\pi\)
\(20\) 0 0
\(21\) 8.91458i 1.94532i
\(22\) 0.398363 + 0.961734i 0.0849313 + 0.205042i
\(23\) −3.58060 1.48313i −0.746606 0.309254i −0.0232502 0.999730i \(-0.507401\pi\)
−0.723356 + 0.690475i \(0.757401\pi\)
\(24\) 1.74235 + 0.721707i 0.355656 + 0.147318i
\(25\) 0 0
\(26\) −0.388810 + 0.388810i −0.0762520 + 0.0762520i
\(27\) 1.88791 4.55781i 0.363328 0.877151i
\(28\) −8.78427 3.63856i −1.66007 0.687624i
\(29\) −3.22121 + 1.33427i −0.598165 + 0.247768i −0.661159 0.750246i \(-0.729935\pi\)
0.0629942 + 0.998014i \(0.479935\pi\)
\(30\) 0 0
\(31\) 2.23739 + 5.40154i 0.401847 + 0.970146i 0.987217 + 0.159379i \(0.0509493\pi\)
−0.585370 + 0.810766i \(0.699051\pi\)
\(32\) 2.14620 2.14620i 0.379399 0.379399i
\(33\) 7.09972i 1.23590i
\(34\) 1.08815 0.110307i 0.186616 0.0189175i
\(35\) 0 0
\(36\) 0.372752 + 0.372752i 0.0621254 + 0.0621254i
\(37\) −1.88698 + 0.781612i −0.310218 + 0.128496i −0.532360 0.846518i \(-0.678695\pi\)
0.222143 + 0.975014i \(0.428695\pi\)
\(38\) −0.783113 −0.127038
\(39\) −3.46473 + 1.43514i −0.554802 + 0.229806i
\(40\) 0 0
\(41\) −10.9410 4.53193i −1.70870 0.707768i −0.999997 0.00226326i \(-0.999280\pi\)
−0.708705 0.705505i \(-0.750720\pi\)
\(42\) 1.67213 + 1.67213i 0.258015 + 0.258015i
\(43\) 3.91060 + 3.91060i 0.596361 + 0.596361i 0.939342 0.342981i \(-0.111437\pi\)
−0.342981 + 0.939342i \(0.611437\pi\)
\(44\) 6.99594 + 2.89781i 1.05468 + 0.436862i
\(45\) 0 0
\(46\) 0.949815 0.393426i 0.140043 0.0580075i
\(47\) −0.453534 −0.0661547 −0.0330773 0.999453i \(-0.510531\pi\)
−0.0330773 + 0.999453i \(0.510531\pi\)
\(48\) 5.98849 2.48051i 0.864364 0.358031i
\(49\) −12.2181 12.2181i −1.74544 1.74544i
\(50\) 0 0
\(51\) 7.14444 + 2.14502i 1.00042 + 0.300362i
\(52\) 3.99985i 0.554680i
\(53\) 4.60644 4.60644i 0.632743 0.632743i −0.316012 0.948755i \(-0.602344\pi\)
0.948755 + 0.316012i \(0.102344\pi\)
\(54\) 0.500800 + 1.20904i 0.0681502 + 0.164529i
\(55\) 0 0
\(56\) 4.74533 1.96558i 0.634121 0.262662i
\(57\) −4.93448 2.04393i −0.653588 0.270725i
\(58\) 0.353938 0.854483i 0.0464744 0.112199i
\(59\) −4.92683 + 4.92683i −0.641418 + 0.641418i −0.950904 0.309486i \(-0.899843\pi\)
0.309486 + 0.950904i \(0.399843\pi\)
\(60\) 0 0
\(61\) −0.0429157 0.0177763i −0.00549480 0.00227602i 0.379934 0.925013i \(-0.375947\pi\)
−0.385429 + 0.922737i \(0.625947\pi\)
\(62\) −1.43285 0.593507i −0.181972 0.0753754i
\(63\) 0.515129 + 1.24363i 0.0649001 + 0.156683i
\(64\) 6.36037i 0.795046i
\(65\) 0 0
\(66\) −1.33171 1.33171i −0.163922 0.163922i
\(67\) 10.0472i 1.22746i 0.789515 + 0.613731i \(0.210332\pi\)
−0.789515 + 0.613731i \(0.789668\pi\)
\(68\) 5.02973 6.16450i 0.609944 0.747556i
\(69\) 7.01174 0.844114
\(70\) 0 0
\(71\) 5.85587 + 14.1373i 0.694964 + 1.67779i 0.734531 + 0.678575i \(0.237402\pi\)
−0.0395663 + 0.999217i \(0.512598\pi\)
\(72\) −0.284771 −0.0335606
\(73\) 3.36399 + 8.12139i 0.393725 + 0.950537i 0.989121 + 0.147105i \(0.0469954\pi\)
−0.595396 + 0.803433i \(0.703005\pi\)
\(74\) 0.207336 0.500554i 0.0241023 0.0581882i
\(75\) 0 0
\(76\) −4.02810 + 4.02810i −0.462055 + 0.462055i
\(77\) 13.6728 + 13.6728i 1.55816 + 1.55816i
\(78\) 0.380696 0.919080i 0.0431053 0.104065i
\(79\) 0.991282 2.39317i 0.111528 0.269252i −0.858254 0.513225i \(-0.828451\pi\)
0.969782 + 0.243973i \(0.0784507\pi\)
\(80\) 0 0
\(81\) 9.74493i 1.08277i
\(82\) 2.90230 1.20217i 0.320505 0.132758i
\(83\) −1.09508 + 1.09508i −0.120201 + 0.120201i −0.764649 0.644447i \(-0.777087\pi\)
0.644447 + 0.764649i \(0.277087\pi\)
\(84\) 17.2019 1.87688
\(85\) 0 0
\(86\) −1.46704 −0.158195
\(87\) 4.46041 4.46041i 0.478206 0.478206i
\(88\) −3.77926 + 1.56542i −0.402871 + 0.166874i
\(89\) 10.2523i 1.08674i 0.839493 + 0.543370i \(0.182852\pi\)
−0.839493 + 0.543370i \(0.817148\pi\)
\(90\) 0 0
\(91\) −3.90863 + 9.43626i −0.409736 + 0.989189i
\(92\) 2.86190 6.90924i 0.298374 0.720338i
\(93\) −7.47951 7.47951i −0.775589 0.775589i
\(94\) 0.0850703 0.0850703i 0.00877434 0.00877434i
\(95\) 0 0
\(96\) −2.10141 + 5.07326i −0.214474 + 0.517787i
\(97\) −4.07387 9.83519i −0.413639 0.998612i −0.984153 0.177324i \(-0.943256\pi\)
0.570514 0.821288i \(-0.306744\pi\)
\(98\) 4.58356 0.463009
\(99\) −0.410257 0.990448i −0.0412324 0.0995438i
\(100\) 0 0
\(101\) 9.59803 0.955040 0.477520 0.878621i \(-0.341536\pi\)
0.477520 + 0.878621i \(0.341536\pi\)
\(102\) −1.74244 + 0.937754i −0.172528 + 0.0928515i
\(103\) 0.147643i 0.0145477i 0.999974 + 0.00727384i \(0.00231536\pi\)
−0.999974 + 0.00727384i \(0.997685\pi\)
\(104\) −1.52788 1.52788i −0.149821 0.149821i
\(105\) 0 0
\(106\) 1.72808i 0.167846i
\(107\) 2.40932 + 5.81660i 0.232917 + 0.562312i 0.996518 0.0833763i \(-0.0265704\pi\)
−0.763601 + 0.645689i \(0.776570\pi\)
\(108\) 8.79490 + 3.64297i 0.846290 + 0.350545i
\(109\) −10.5342 4.36339i −1.00899 0.417937i −0.183904 0.982944i \(-0.558873\pi\)
−0.825086 + 0.565007i \(0.808873\pi\)
\(110\) 0 0
\(111\) 2.61290 2.61290i 0.248005 0.248005i
\(112\) 6.75572 16.3098i 0.638356 1.54113i
\(113\) −5.92270 2.45326i −0.557160 0.230783i 0.0862915 0.996270i \(-0.472498\pi\)
−0.643452 + 0.765487i \(0.722498\pi\)
\(114\) 1.30896 0.542187i 0.122595 0.0507805i
\(115\) 0 0
\(116\) −2.57465 6.21576i −0.239051 0.577119i
\(117\) 0.400419 0.400419i 0.0370188 0.0370188i
\(118\) 1.84827i 0.170147i
\(119\) 17.8898 9.62799i 1.63996 0.882596i
\(120\) 0 0
\(121\) −3.11105 3.11105i −0.282823 0.282823i
\(122\) 0.0113841 0.00471546i 0.00103067 0.000426918i
\(123\) 21.4254 1.93186
\(124\) −10.4230 + 4.31735i −0.936013 + 0.387709i
\(125\) 0 0
\(126\) −0.329894 0.136647i −0.0293893 0.0121735i
\(127\) 3.78861 + 3.78861i 0.336185 + 0.336185i 0.854929 0.518745i \(-0.173600\pi\)
−0.518745 + 0.854929i \(0.673600\pi\)
\(128\) 5.48544 + 5.48544i 0.484849 + 0.484849i
\(129\) −9.24398 3.82898i −0.813887 0.337123i
\(130\) 0 0
\(131\) −12.9546 + 5.36598i −1.13185 + 0.468827i −0.868409 0.495848i \(-0.834857\pi\)
−0.263440 + 0.964676i \(0.584857\pi\)
\(132\) −13.6999 −1.19242
\(133\) −13.4391 + 5.56668i −1.16532 + 0.482692i
\(134\) −1.88458 1.88458i −0.162803 0.162803i
\(135\) 0 0
\(136\) 0.433466 + 4.27602i 0.0371694 + 0.366666i
\(137\) 5.83746i 0.498728i −0.968410 0.249364i \(-0.919778\pi\)
0.968410 0.249364i \(-0.0802216\pi\)
\(138\) −1.31521 + 1.31521i −0.111958 + 0.111958i
\(139\) −5.82739 14.0686i −0.494273 1.19328i −0.952526 0.304459i \(-0.901524\pi\)
0.458252 0.888822i \(-0.348476\pi\)
\(140\) 0 0
\(141\) 0.758072 0.314004i 0.0638412 0.0264439i
\(142\) −3.75017 1.55337i −0.314707 0.130356i
\(143\) 3.11290 7.51520i 0.260314 0.628452i
\(144\) −0.692089 + 0.692089i −0.0576741 + 0.0576741i
\(145\) 0 0
\(146\) −2.15434 0.892357i −0.178294 0.0738520i
\(147\) 28.8815 + 11.9631i 2.38211 + 0.986701i
\(148\) −1.50823 3.64118i −0.123975 0.299303i
\(149\) 20.6226i 1.68947i 0.535188 + 0.844733i \(0.320241\pi\)
−0.535188 + 0.844733i \(0.679759\pi\)
\(150\) 0 0
\(151\) −3.64333 3.64333i −0.296490 0.296490i 0.543148 0.839637i \(-0.317232\pi\)
−0.839637 + 0.543148i \(0.817232\pi\)
\(152\) 3.07735i 0.249606i
\(153\) −1.12064 + 0.113601i −0.0905981 + 0.00918406i
\(154\) −5.12926 −0.413328
\(155\) 0 0
\(156\) −2.76929 6.68567i −0.221721 0.535282i
\(157\) −2.57467 −0.205481 −0.102741 0.994708i \(-0.532761\pi\)
−0.102741 + 0.994708i \(0.532761\pi\)
\(158\) 0.262955 + 0.634828i 0.0209195 + 0.0505042i
\(159\) −4.51030 + 10.8888i −0.357690 + 0.863540i
\(160\) 0 0
\(161\) 13.5033 13.5033i 1.06421 1.06421i
\(162\) −1.82788 1.82788i −0.143612 0.143612i
\(163\) −5.90686 + 14.2604i −0.462661 + 1.11696i 0.504640 + 0.863330i \(0.331625\pi\)
−0.967301 + 0.253632i \(0.918375\pi\)
\(164\) 8.74495 21.1122i 0.682866 1.64858i
\(165\) 0 0
\(166\) 0.410815i 0.0318854i
\(167\) −18.2229 + 7.54817i −1.41013 + 0.584095i −0.952360 0.304975i \(-0.901352\pi\)
−0.457770 + 0.889070i \(0.651352\pi\)
\(168\) −6.57085 + 6.57085i −0.506952 + 0.506952i
\(169\) −8.70327 −0.669482
\(170\) 0 0
\(171\) 0.806495 0.0616742
\(172\) −7.54602 + 7.54602i −0.575379 + 0.575379i
\(173\) −10.8573 + 4.49724i −0.825466 + 0.341919i −0.755106 0.655602i \(-0.772415\pi\)
−0.0703598 + 0.997522i \(0.522415\pi\)
\(174\) 1.67330i 0.126852i
\(175\) 0 0
\(176\) −5.38037 + 12.9894i −0.405561 + 0.979110i
\(177\) 4.82400 11.6462i 0.362594 0.875380i
\(178\) −1.92304 1.92304i −0.144138 0.144138i
\(179\) −5.77603 + 5.77603i −0.431721 + 0.431721i −0.889213 0.457493i \(-0.848748\pi\)
0.457493 + 0.889213i \(0.348748\pi\)
\(180\) 0 0
\(181\) 3.88138 9.37049i 0.288501 0.696503i −0.711480 0.702707i \(-0.751975\pi\)
0.999981 + 0.00620363i \(0.00197469\pi\)
\(182\) −1.03683 2.50313i −0.0768550 0.185544i
\(183\) 0.0840401 0.00621243
\(184\) 1.54602 + 3.73242i 0.113974 + 0.275158i
\(185\) 0 0
\(186\) 2.80589 0.205738
\(187\) −14.2477 + 7.66789i −1.04190 + 0.560732i
\(188\) 0.875154i 0.0638272i
\(189\) 17.1886 + 17.1886i 1.25029 + 1.25029i
\(190\) 0 0
\(191\) 13.6729i 0.989338i 0.869082 + 0.494669i \(0.164711\pi\)
−0.869082 + 0.494669i \(0.835289\pi\)
\(192\) 4.40359 + 10.6312i 0.317802 + 0.767242i
\(193\) −1.38495 0.573664i −0.0996906 0.0412932i 0.332281 0.943181i \(-0.392182\pi\)
−0.431971 + 0.901887i \(0.642182\pi\)
\(194\) 2.60895 + 1.08066i 0.187312 + 0.0775871i
\(195\) 0 0
\(196\) 23.5765 23.5765i 1.68403 1.68403i
\(197\) 3.84727 9.28813i 0.274107 0.661752i −0.725544 0.688176i \(-0.758412\pi\)
0.999651 + 0.0264236i \(0.00841187\pi\)
\(198\) 0.262733 + 0.108828i 0.0186717 + 0.00773405i
\(199\) 4.76877 1.97529i 0.338049 0.140024i −0.207200 0.978299i \(-0.566435\pi\)
0.545249 + 0.838274i \(0.316435\pi\)
\(200\) 0 0
\(201\) −6.95618 16.7937i −0.490651 1.18454i
\(202\) −1.80032 + 1.80032i −0.126670 + 0.126670i
\(203\) 17.1799i 1.20579i
\(204\) −4.13909 + 13.7862i −0.289795 + 0.965224i
\(205\) 0 0
\(206\) −0.0276937 0.0276937i −0.00192951 0.00192951i
\(207\) −0.978174 + 0.405173i −0.0679878 + 0.0281615i
\(208\) −7.42653 −0.514937
\(209\) 10.7032 4.43340i 0.740353 0.306664i
\(210\) 0 0
\(211\) 19.3231 + 8.00388i 1.33026 + 0.551010i 0.930728 0.365712i \(-0.119174\pi\)
0.399527 + 0.916721i \(0.369174\pi\)
\(212\) 8.88874 + 8.88874i 0.610481 + 0.610481i
\(213\) −19.5759 19.5759i −1.34132 1.34132i
\(214\) −1.54295 0.639113i −0.105474 0.0436888i
\(215\) 0 0
\(216\) −4.75107 + 1.96796i −0.323270 + 0.133903i
\(217\) −28.8083 −1.95564
\(218\) 2.79437 1.15746i 0.189258 0.0783934i
\(219\) −11.2457 11.2457i −0.759913 0.759913i
\(220\) 0 0
\(221\) −6.62205 5.40305i −0.445447 0.363448i
\(222\) 0.980214i 0.0657876i
\(223\) 15.1525 15.1525i 1.01468 1.01468i 0.0147944 0.999891i \(-0.495291\pi\)
0.999891 0.0147944i \(-0.00470939\pi\)
\(224\) 5.72323 + 13.8171i 0.382399 + 0.923194i
\(225\) 0 0
\(226\) 1.57110 0.650770i 0.104508 0.0432886i
\(227\) −24.6868 10.2256i −1.63852 0.678697i −0.642372 0.766393i \(-0.722050\pi\)
−0.996147 + 0.0876956i \(0.972050\pi\)
\(228\) 3.94403 9.52174i 0.261200 0.630593i
\(229\) 4.38424 4.38424i 0.289719 0.289719i −0.547250 0.836969i \(-0.684325\pi\)
0.836969 + 0.547250i \(0.184325\pi\)
\(230\) 0 0
\(231\) −32.3201 13.3874i −2.12650 0.880827i
\(232\) 3.35780 + 1.39085i 0.220451 + 0.0913136i
\(233\) 9.14665 + 22.0820i 0.599217 + 1.44664i 0.874381 + 0.485241i \(0.161268\pi\)
−0.275164 + 0.961397i \(0.588732\pi\)
\(234\) 0.150215i 0.00981986i
\(235\) 0 0
\(236\) −9.50697 9.50697i −0.618851 0.618851i
\(237\) 4.68644i 0.304417i
\(238\) −1.54969 + 5.16157i −0.100451 + 0.334575i
\(239\) 14.3945 0.931105 0.465552 0.885020i \(-0.345856\pi\)
0.465552 + 0.885020i \(0.345856\pi\)
\(240\) 0 0
\(241\) −0.580797 1.40217i −0.0374124 0.0903215i 0.904069 0.427387i \(-0.140566\pi\)
−0.941481 + 0.337065i \(0.890566\pi\)
\(242\) 1.16709 0.0750236
\(243\) −1.08318 2.61502i −0.0694857 0.167753i
\(244\) 0.0343017 0.0828116i 0.00219594 0.00530147i
\(245\) 0 0
\(246\) −4.01881 + 4.01881i −0.256230 + 0.256230i
\(247\) 4.32708 + 4.32708i 0.275326 + 0.275326i
\(248\) 2.33226 5.63058i 0.148099 0.357542i
\(249\) 1.07223 2.58859i 0.0679498 0.164045i
\(250\) 0 0
\(251\) 28.3303i 1.78819i −0.447874 0.894097i \(-0.647819\pi\)
0.447874 0.894097i \(-0.352181\pi\)
\(252\) −2.39975 + 0.994010i −0.151170 + 0.0626167i
\(253\) −10.7543 + 10.7543i −0.676115 + 0.676115i
\(254\) −1.42128 −0.0891788
\(255\) 0 0
\(256\) 10.6629 0.666431
\(257\) −5.96067 + 5.96067i −0.371816 + 0.371816i −0.868138 0.496322i \(-0.834684\pi\)
0.496322 + 0.868138i \(0.334684\pi\)
\(258\) 2.45212 1.01570i 0.152663 0.0632349i
\(259\) 10.0639i 0.625342i
\(260\) 0 0
\(261\) −0.364506 + 0.879995i −0.0225623 + 0.0544703i
\(262\) 1.42342 3.43643i 0.0879390 0.212304i
\(263\) 16.7208 + 16.7208i 1.03105 + 1.03105i 0.999502 + 0.0315459i \(0.0100431\pi\)
0.0315459 + 0.999502i \(0.489957\pi\)
\(264\) 5.23313 5.23313i 0.322077 0.322077i
\(265\) 0 0
\(266\) 1.47666 3.56496i 0.0905396 0.218582i
\(267\) −7.09816 17.1365i −0.434400 1.04873i
\(268\) −19.3874 −1.18428
\(269\) −0.398793 0.962770i −0.0243148 0.0587011i 0.911256 0.411841i \(-0.135114\pi\)
−0.935571 + 0.353140i \(0.885114\pi\)
\(270\) 0 0
\(271\) 20.0622 1.21869 0.609345 0.792905i \(-0.291432\pi\)
0.609345 + 0.792905i \(0.291432\pi\)
\(272\) 11.4456 + 9.33870i 0.693994 + 0.566242i
\(273\) 18.4786i 1.11838i
\(274\) 1.09495 + 1.09495i 0.0661481 + 0.0661481i
\(275\) 0 0
\(276\) 13.5301i 0.814415i
\(277\) 3.30605 + 7.98151i 0.198641 + 0.479563i 0.991542 0.129789i \(-0.0414299\pi\)
−0.792900 + 0.609351i \(0.791430\pi\)
\(278\) 3.73193 + 1.54582i 0.223826 + 0.0927119i
\(279\) 1.47563 + 0.611227i 0.0883438 + 0.0365932i
\(280\) 0 0
\(281\) 4.46534 4.46534i 0.266380 0.266380i −0.561260 0.827640i \(-0.689683\pi\)
0.827640 + 0.561260i \(0.189683\pi\)
\(282\) −0.0832949 + 0.201092i −0.00496014 + 0.0119748i
\(283\) −1.73799 0.719900i −0.103313 0.0427936i 0.330428 0.943831i \(-0.392807\pi\)
−0.433741 + 0.901037i \(0.642807\pi\)
\(284\) −27.2799 + 11.2997i −1.61876 + 0.670513i
\(285\) 0 0
\(286\) 0.825749 + 1.99354i 0.0488276 + 0.117880i
\(287\) 41.2614 41.2614i 2.43558 2.43558i
\(288\) 0.829176i 0.0488597i
\(289\) 3.41157 + 16.6542i 0.200681 + 0.979657i
\(290\) 0 0
\(291\) 13.6188 + 13.6188i 0.798346 + 0.798346i
\(292\) −15.6713 + 6.49127i −0.917094 + 0.379873i
\(293\) −1.89223 −0.110545 −0.0552726 0.998471i \(-0.517603\pi\)
−0.0552726 + 0.998471i \(0.517603\pi\)
\(294\) −7.66131 + 3.17342i −0.446817 + 0.185078i
\(295\) 0 0
\(296\) 1.96699 + 0.814755i 0.114329 + 0.0473567i
\(297\) −13.6893 13.6893i −0.794335 0.794335i
\(298\) −3.86822 3.86822i −0.224080 0.224080i
\(299\) −7.42206 3.07432i −0.429229 0.177792i
\(300\) 0 0
\(301\) −25.1761 + 10.4283i −1.45113 + 0.601077i
\(302\) 1.36677 0.0786490
\(303\) −16.0429 + 6.64519i −0.921641 + 0.381756i
\(304\) −7.47898 7.47898i −0.428949 0.428949i
\(305\) 0 0
\(306\) 0.188892 0.231509i 0.0107982 0.0132345i
\(307\) 18.5816i 1.06051i 0.847838 + 0.530255i \(0.177904\pi\)
−0.847838 + 0.530255i \(0.822096\pi\)
\(308\) −26.3834 + 26.3834i −1.50334 + 1.50334i
\(309\) −0.102220 0.246782i −0.00581511 0.0140389i
\(310\) 0 0
\(311\) −14.7175 + 6.09618i −0.834552 + 0.345683i −0.758703 0.651436i \(-0.774167\pi\)
−0.0758491 + 0.997119i \(0.524167\pi\)
\(312\) 3.61165 + 1.49599i 0.204469 + 0.0846940i
\(313\) −12.1296 + 29.2835i −0.685608 + 1.65520i 0.0678401 + 0.997696i \(0.478389\pi\)
−0.753448 + 0.657508i \(0.771611\pi\)
\(314\) 0.482937 0.482937i 0.0272537 0.0272537i
\(315\) 0 0
\(316\) 4.61793 + 1.91281i 0.259779 + 0.107604i
\(317\) 4.62307 + 1.91494i 0.259658 + 0.107554i 0.508715 0.860935i \(-0.330121\pi\)
−0.249057 + 0.968489i \(0.580121\pi\)
\(318\) −1.19643 2.88845i −0.0670927 0.161976i
\(319\) 13.6823i 0.766064i
\(320\) 0 0
\(321\) −8.05424 8.05424i −0.449544 0.449544i
\(322\) 5.06570i 0.282300i
\(323\) −1.22761 12.1100i −0.0683061 0.673820i
\(324\) −18.8041 −1.04467
\(325\) 0 0
\(326\) −1.56690 3.78282i −0.0867823 0.209511i
\(327\) 20.6286 1.14076
\(328\) 4.72409 + 11.4050i 0.260844 + 0.629734i
\(329\) 0.855194 2.06462i 0.0471484 0.113826i
\(330\) 0 0
\(331\) −7.16008 + 7.16008i −0.393553 + 0.393553i −0.875952 0.482398i \(-0.839766\pi\)
0.482398 + 0.875952i \(0.339766\pi\)
\(332\) −2.11311 2.11311i −0.115972 0.115972i
\(333\) −0.213527 + 0.515499i −0.0117012 + 0.0282492i
\(334\) 2.00228 4.83394i 0.109560 0.264501i
\(335\) 0 0
\(336\) 31.9387i 1.74240i
\(337\) 14.8146 6.13639i 0.807000 0.334271i 0.0592439 0.998244i \(-0.481131\pi\)
0.747757 + 0.663973i \(0.231131\pi\)
\(338\) 1.63249 1.63249i 0.0887958 0.0887958i
\(339\) 11.5982 0.629926
\(340\) 0 0
\(341\) 22.9434 1.24246
\(342\) −0.151276 + 0.151276i −0.00818007 + 0.00818007i
\(343\) 46.7932 19.3824i 2.52659 1.04655i
\(344\) 5.76493i 0.310824i
\(345\) 0 0
\(346\) 1.19297 2.88009i 0.0641345 0.154834i
\(347\) 5.43890 13.1307i 0.291976 0.704891i −0.708024 0.706189i \(-0.750413\pi\)
0.999999 + 0.00129748i \(0.000413002\pi\)
\(348\) 8.60696 + 8.60696i 0.461381 + 0.461381i
\(349\) 17.3032 17.3032i 0.926221 0.926221i −0.0712379 0.997459i \(-0.522695\pi\)
0.997459 + 0.0712379i \(0.0226950\pi\)
\(350\) 0 0
\(351\) 3.91336 9.44768i 0.208880 0.504280i
\(352\) −4.55808 11.0042i −0.242946 0.586524i
\(353\) 25.3622 1.34989 0.674947 0.737866i \(-0.264166\pi\)
0.674947 + 0.737866i \(0.264166\pi\)
\(354\) 1.27965 + 3.08935i 0.0680126 + 0.164197i
\(355\) 0 0
\(356\) −19.7831 −1.04850
\(357\) −23.2365 + 28.4790i −1.22981 + 1.50727i
\(358\) 2.16685i 0.114521i
\(359\) −18.7611 18.7611i −0.990171 0.990171i 0.00978160 0.999952i \(-0.496886\pi\)
−0.999952 + 0.00978160i \(0.996886\pi\)
\(360\) 0 0
\(361\) 10.2847i 0.541301i
\(362\) 1.02960 + 2.48568i 0.0541148 + 0.130645i
\(363\) 7.35398 + 3.04612i 0.385984 + 0.159880i
\(364\) −18.2085 7.54222i −0.954386 0.395320i
\(365\) 0 0
\(366\) −0.0157636 + 0.0157636i −0.000823976 + 0.000823976i
\(367\) 1.43961 3.47553i 0.0751471 0.181421i −0.881842 0.471545i \(-0.843697\pi\)
0.956989 + 0.290124i \(0.0936965\pi\)
\(368\) 12.8284 + 5.31369i 0.668726 + 0.276995i
\(369\) −2.98895 + 1.23806i −0.155599 + 0.0644511i
\(370\) 0 0
\(371\) 12.2839 + 29.6559i 0.637747 + 1.53966i
\(372\) 14.4327 14.4327i 0.748301 0.748301i
\(373\) 10.8498i 0.561779i −0.959740 0.280890i \(-0.909370\pi\)
0.959740 0.280890i \(-0.0906295\pi\)
\(374\) 1.23420 4.11076i 0.0638188 0.212563i
\(375\) 0 0
\(376\) 0.334295 + 0.334295i 0.0172400 + 0.0172400i
\(377\) −6.67711 + 2.76575i −0.343889 + 0.142443i
\(378\) −6.44822 −0.331661
\(379\) 27.7148 11.4798i 1.42361 0.589680i 0.467848 0.883809i \(-0.345030\pi\)
0.955766 + 0.294129i \(0.0950295\pi\)
\(380\) 0 0
\(381\) −8.95562 3.70954i −0.458810 0.190045i
\(382\) −2.56466 2.56466i −0.131219 0.131219i
\(383\) −9.57167 9.57167i −0.489089 0.489089i 0.418929 0.908019i \(-0.362405\pi\)
−0.908019 + 0.418929i \(0.862405\pi\)
\(384\) −12.9666 5.37095i −0.661700 0.274085i
\(385\) 0 0
\(386\) 0.367381 0.152174i 0.0186992 0.00774546i
\(387\) 1.51084 0.0768004
\(388\) 18.9783 7.86107i 0.963477 0.399085i
\(389\) 14.5777 + 14.5777i 0.739120 + 0.739120i 0.972408 0.233288i \(-0.0749485\pi\)
−0.233288 + 0.972408i \(0.574948\pi\)
\(390\) 0 0
\(391\) 7.57286 + 14.0712i 0.382976 + 0.711610i
\(392\) 18.0117i 0.909728i
\(393\) 17.9382 17.9382i 0.904864 0.904864i
\(394\) 1.02055 + 2.46384i 0.0514148 + 0.124126i
\(395\) 0 0
\(396\) 1.91120 0.791646i 0.0960415 0.0397817i
\(397\) 11.8052 + 4.88987i 0.592486 + 0.245416i 0.658720 0.752389i \(-0.271098\pi\)
−0.0662339 + 0.997804i \(0.521098\pi\)
\(398\) −0.523979 + 1.26500i −0.0262647 + 0.0634086i
\(399\) 18.6092 18.6092i 0.931623 0.931623i
\(400\) 0 0
\(401\) −0.000809576 0 0.000335338i −4.04283e−5 0 1.67460e-5i 0.382663 0.923888i \(-0.375007\pi\)
−0.382704 + 0.923871i \(0.625007\pi\)
\(402\) 4.45482 + 1.84525i 0.222186 + 0.0920325i
\(403\) 4.63779 + 11.1966i 0.231025 + 0.557743i
\(404\) 18.5207i 0.921438i
\(405\) 0 0
\(406\) 3.22247 + 3.22247i 0.159928 + 0.159928i
\(407\) 8.01508i 0.397293i
\(408\) −3.68503 6.84717i −0.182436 0.338985i
\(409\) 18.8814 0.933624 0.466812 0.884357i \(-0.345402\pi\)
0.466812 + 0.884357i \(0.345402\pi\)
\(410\) 0 0
\(411\) 4.04156 + 9.75719i 0.199355 + 0.481287i
\(412\) −0.284896 −0.0140358
\(413\) −13.1382 31.7185i −0.646491 1.56077i
\(414\) 0.107479 0.259477i 0.00528231 0.0127526i
\(415\) 0 0
\(416\) 4.44877 4.44877i 0.218119 0.218119i
\(417\) 19.4807 + 19.4807i 0.953975 + 0.953975i
\(418\) −1.17603 + 2.83920i −0.0575217 + 0.138870i
\(419\) 3.53356 8.53078i 0.172626 0.416756i −0.813760 0.581200i \(-0.802583\pi\)
0.986386 + 0.164445i \(0.0525832\pi\)
\(420\) 0 0
\(421\) 34.9204i 1.70192i 0.525232 + 0.850959i \(0.323979\pi\)
−0.525232 + 0.850959i \(0.676021\pi\)
\(422\) −5.12578 + 2.12317i −0.249519 + 0.103354i
\(423\) −0.0876103 + 0.0876103i −0.00425976 + 0.00425976i
\(424\) −6.79072 −0.329787
\(425\) 0 0
\(426\) 7.34380 0.355808
\(427\) 0.161846 0.161846i 0.00783227 0.00783227i
\(428\) −11.2239 + 4.64910i −0.542528 + 0.224723i
\(429\) 14.7167i 0.710529i
\(430\) 0 0
\(431\) −2.87069 + 6.93046i −0.138276 + 0.333829i −0.977815 0.209472i \(-0.932826\pi\)
0.839538 + 0.543300i \(0.182826\pi\)
\(432\) −6.76390 + 16.3295i −0.325428 + 0.785653i
\(433\) −15.7011 15.7011i −0.754548 0.754548i 0.220777 0.975324i \(-0.429141\pi\)
−0.975324 + 0.220777i \(0.929141\pi\)
\(434\) 5.40364 5.40364i 0.259383 0.259383i
\(435\) 0 0
\(436\) 8.41975 20.3271i 0.403233 0.973490i
\(437\) −4.37845 10.5705i −0.209450 0.505657i
\(438\) 4.21875 0.201580
\(439\) 6.43977 + 15.5470i 0.307353 + 0.742017i 0.999789 + 0.0205370i \(0.00653760\pi\)
−0.692436 + 0.721480i \(0.743462\pi\)
\(440\) 0 0
\(441\) −4.72041 −0.224781
\(442\) 2.25557 0.228651i 0.107287 0.0108758i
\(443\) 20.2349i 0.961391i 0.876888 + 0.480696i \(0.159616\pi\)
−0.876888 + 0.480696i \(0.840384\pi\)
\(444\) 5.04193 + 5.04193i 0.239280 + 0.239280i
\(445\) 0 0
\(446\) 5.68437i 0.269163i
\(447\) −14.2780 34.4702i −0.675327 1.63038i
\(448\) 28.9543 + 11.9933i 1.36796 + 0.566628i
\(449\) 26.7110 + 11.0641i 1.26057 + 0.522145i 0.910084 0.414423i \(-0.136017\pi\)
0.350485 + 0.936568i \(0.386017\pi\)
\(450\) 0 0
\(451\) −32.8612 + 32.8612i −1.54738 + 1.54738i
\(452\) 4.73389 11.4286i 0.222664 0.537558i
\(453\) 8.61219 + 3.56729i 0.404636 + 0.167606i
\(454\) 6.54859 2.71252i 0.307341 0.127305i
\(455\) 0 0
\(456\) 2.13060 + 5.14372i 0.0997744 + 0.240877i
\(457\) 12.1223 12.1223i 0.567055 0.567055i −0.364247 0.931302i \(-0.618674\pi\)
0.931302 + 0.364247i \(0.118674\pi\)
\(458\) 1.64472i 0.0768529i
\(459\) −17.9115 + 9.63964i −0.836035 + 0.449940i
\(460\) 0 0
\(461\) 4.21017 + 4.21017i 0.196087 + 0.196087i 0.798320 0.602233i \(-0.205722\pi\)
−0.602233 + 0.798320i \(0.705722\pi\)
\(462\) 8.57345 3.55124i 0.398873 0.165219i
\(463\) −30.6161 −1.42285 −0.711425 0.702762i \(-0.751950\pi\)
−0.711425 + 0.702762i \(0.751950\pi\)
\(464\) 11.5408 4.78036i 0.535769 0.221923i
\(465\) 0 0
\(466\) −5.85762 2.42631i −0.271349 0.112396i
\(467\) 17.6583 + 17.6583i 0.817131 + 0.817131i 0.985691 0.168560i \(-0.0539118\pi\)
−0.168560 + 0.985691i \(0.553912\pi\)
\(468\) 0.772662 + 0.772662i 0.0357163 + 0.0357163i
\(469\) −45.7379 18.9453i −2.11198 0.874811i
\(470\) 0 0
\(471\) 4.30351 1.78257i 0.198295 0.0821366i
\(472\) 7.26303 0.334308
\(473\) 20.0507 8.30527i 0.921932 0.381877i
\(474\) −0.879046 0.879046i −0.0403759 0.0403759i
\(475\) 0 0
\(476\) 18.5785 + 34.5208i 0.851543 + 1.58226i
\(477\) 1.77968i 0.0814858i
\(478\) −2.70001 + 2.70001i −0.123496 + 0.123496i
\(479\) 0.587320 + 1.41792i 0.0268353 + 0.0647862i 0.936729 0.350055i \(-0.113837\pi\)
−0.909894 + 0.414841i \(0.863837\pi\)
\(480\) 0 0
\(481\) −3.91144 + 1.62017i −0.178346 + 0.0738734i
\(482\) 0.371949 + 0.154066i 0.0169418 + 0.00701753i
\(483\) −13.2215 + 31.9195i −0.601599 + 1.45239i
\(484\) 6.00318 6.00318i 0.272872 0.272872i
\(485\) 0 0
\(486\) 0.693678 + 0.287331i 0.0314659 + 0.0130336i
\(487\) 20.4082 + 8.45334i 0.924782 + 0.383057i 0.793697 0.608314i \(-0.208154\pi\)
0.131085 + 0.991371i \(0.458154\pi\)
\(488\) 0.0185300 + 0.0447355i 0.000838816 + 0.00202508i
\(489\) 27.9256i 1.26284i
\(490\) 0 0
\(491\) −4.34204 4.34204i −0.195953 0.195953i 0.602309 0.798263i \(-0.294247\pi\)
−0.798263 + 0.602309i \(0.794247\pi\)
\(492\) 41.3431i 1.86389i
\(493\) 13.7685 + 4.13380i 0.620103 + 0.186177i
\(494\) −1.62328 −0.0730348
\(495\) 0 0
\(496\) −8.01602 19.3524i −0.359930 0.868948i
\(497\) −75.3993 −3.38212
\(498\) 0.284427 + 0.686668i 0.0127455 + 0.0307703i
\(499\) −12.7057 + 30.6744i −0.568787 + 1.37317i 0.333792 + 0.942647i \(0.391672\pi\)
−0.902578 + 0.430526i \(0.858328\pi\)
\(500\) 0 0
\(501\) 25.2332 25.2332i 1.12734 1.12734i
\(502\) 5.31398 + 5.31398i 0.237174 + 0.237174i
\(503\) 6.96489 16.8147i 0.310549 0.749732i −0.689136 0.724632i \(-0.742010\pi\)
0.999685 0.0250995i \(-0.00799026\pi\)
\(504\) 0.536972 1.29636i 0.0239186 0.0577446i
\(505\) 0 0
\(506\) 4.03441i 0.179351i
\(507\) 14.5473 6.02570i 0.646069 0.267611i
\(508\) −7.31063 + 7.31063i −0.324357 + 0.324357i
\(509\) −11.9447 −0.529440 −0.264720 0.964325i \(-0.585279\pi\)
−0.264720 + 0.964325i \(0.585279\pi\)
\(510\) 0 0
\(511\) −43.3142 −1.91611
\(512\) −12.9709 + 12.9709i −0.573240 + 0.573240i
\(513\) 13.4554 5.57341i 0.594071 0.246072i
\(514\) 2.23611i 0.0986307i
\(515\) 0 0
\(516\) 7.38853 17.8375i 0.325262 0.785252i
\(517\) −0.681091 + 1.64430i −0.0299544 + 0.0723162i
\(518\) 1.88771 + 1.88771i 0.0829413 + 0.0829413i
\(519\) 15.0341 15.0341i 0.659924 0.659924i
\(520\) 0 0
\(521\) 12.8513 31.0257i 0.563024 1.35926i −0.344313 0.938855i \(-0.611888\pi\)
0.907337 0.420404i \(-0.138112\pi\)
\(522\) −0.0966915 0.233434i −0.00423207 0.0102171i
\(523\) 2.18257 0.0954369 0.0477185 0.998861i \(-0.484805\pi\)
0.0477185 + 0.998861i \(0.484805\pi\)
\(524\) −10.3544 24.9976i −0.452333 1.09203i
\(525\) 0 0
\(526\) −6.27271 −0.273503
\(527\) 6.93182 23.0880i 0.301955 1.00573i
\(528\) 25.4365i 1.10698i
\(529\) −5.64246 5.64246i −0.245324 0.245324i
\(530\) 0 0
\(531\) 1.90346i 0.0826030i
\(532\) −10.7416 25.9326i −0.465709 1.12432i
\(533\) −22.6792 9.39403i −0.982345 0.406901i
\(534\) 4.54574 + 1.88291i 0.196714 + 0.0814814i
\(535\) 0 0
\(536\) 7.40570 7.40570i 0.319877 0.319877i
\(537\) 5.65548 13.6535i 0.244052 0.589194i
\(538\) 0.255391 + 0.105787i 0.0110107 + 0.00456078i
\(539\) −62.6456 + 25.9486i −2.69833 + 1.11769i
\(540\) 0 0
\(541\) −4.78201 11.5448i −0.205595 0.496350i 0.787125 0.616793i \(-0.211568\pi\)
−0.992720 + 0.120443i \(0.961568\pi\)
\(542\) −3.76311 + 3.76311i −0.161639 + 0.161639i
\(543\) 18.3498i 0.787467i
\(544\) −12.4506 + 1.26214i −0.533815 + 0.0541136i
\(545\) 0 0
\(546\) 3.46608 + 3.46608i 0.148335 + 0.148335i
\(547\) 33.8409 14.0173i 1.44693 0.599338i 0.485463 0.874257i \(-0.338651\pi\)
0.961468 + 0.274919i \(0.0886509\pi\)
\(548\) 11.2642 0.481181
\(549\) −0.0117240 + 0.00485626i −0.000500370 + 0.000207260i
\(550\) 0 0
\(551\) −9.50956 3.93899i −0.405121 0.167807i
\(552\) −5.16828 5.16828i −0.219977 0.219977i
\(553\) 9.02522 + 9.02522i 0.383792 + 0.383792i
\(554\) −2.11723 0.876987i −0.0899526 0.0372596i
\(555\) 0 0
\(556\) 27.1472 11.2447i 1.15130 0.476883i
\(557\) −10.2425 −0.433990 −0.216995 0.976173i \(-0.569626\pi\)
−0.216995 + 0.976173i \(0.569626\pi\)
\(558\) −0.391437 + 0.162139i −0.0165708 + 0.00686387i
\(559\) 8.10611 + 8.10611i 0.342852 + 0.342852i
\(560\) 0 0
\(561\) 18.5059 22.6811i 0.781321 0.957598i
\(562\) 1.67515i 0.0706619i
\(563\) −25.6813 + 25.6813i −1.08234 + 1.08234i −0.0860471 + 0.996291i \(0.527424\pi\)
−0.996291 + 0.0860471i \(0.972576\pi\)
\(564\) 0.605912 + 1.46280i 0.0255135 + 0.0615950i
\(565\) 0 0
\(566\) 0.461032 0.190966i 0.0193786 0.00802689i
\(567\) −44.3618 18.3753i −1.86302 0.771689i
\(568\) 6.10418 14.7368i 0.256126 0.618342i
\(569\) 9.63858 9.63858i 0.404070 0.404070i −0.475594 0.879665i \(-0.657767\pi\)
0.879665 + 0.475594i \(0.157767\pi\)
\(570\) 0 0
\(571\) −19.4934 8.07442i −0.815773 0.337904i −0.0645180 0.997917i \(-0.520551\pi\)
−0.751255 + 0.660012i \(0.770551\pi\)
\(572\) 14.5016 + 6.00675i 0.606341 + 0.251155i
\(573\) −9.46643 22.8540i −0.395466 0.954739i
\(574\) 15.4790i 0.646080i
\(575\) 0 0
\(576\) −1.22865 1.22865i −0.0511937 0.0511937i
\(577\) 1.55270i 0.0646399i 0.999478 + 0.0323200i \(0.0102896\pi\)
−0.999478 + 0.0323200i \(0.989710\pi\)
\(578\) −3.76377 2.48394i −0.156552 0.103318i
\(579\) 2.71208 0.112710
\(580\) 0 0
\(581\) −2.92023 7.05007i −0.121152 0.292486i
\(582\) −5.10900 −0.211775
\(583\) −9.78309 23.6185i −0.405174 0.978177i
\(584\) 3.50663 8.46576i 0.145106 0.350316i
\(585\) 0 0
\(586\) 0.354930 0.354930i 0.0146620 0.0146620i
\(587\) 12.2371 + 12.2371i 0.505079 + 0.505079i 0.913012 0.407933i \(-0.133750\pi\)
−0.407933 + 0.913012i \(0.633750\pi\)
\(588\) −23.0844 + 55.7307i −0.951985 + 2.29830i
\(589\) −6.60515 + 15.9463i −0.272161 + 0.657054i
\(590\) 0 0
\(591\) 18.1886i 0.748178i
\(592\) 6.76058 2.80032i 0.277858 0.115093i
\(593\) 0.590524 0.590524i 0.0242499 0.0242499i −0.694878 0.719128i \(-0.744542\pi\)
0.719128 + 0.694878i \(0.244542\pi\)
\(594\) 5.13547 0.210711
\(595\) 0 0
\(596\) −39.7940 −1.63003
\(597\) −6.60330 + 6.60330i −0.270255 + 0.270255i
\(598\) 1.96883 0.815516i 0.0805114 0.0333489i
\(599\) 14.4579i 0.590732i −0.955384 0.295366i \(-0.904558\pi\)
0.955384 0.295366i \(-0.0954416\pi\)
\(600\) 0 0
\(601\) −4.16494 + 10.0551i −0.169891 + 0.410154i −0.985777 0.168059i \(-0.946250\pi\)
0.815885 + 0.578214i \(0.196250\pi\)
\(602\) 2.76628 6.67840i 0.112745 0.272191i
\(603\) 1.94085 + 1.94085i 0.0790374 + 0.0790374i
\(604\) 7.03028 7.03028i 0.286058 0.286058i
\(605\) 0 0
\(606\) 1.76275 4.25566i 0.0716068 0.172874i
\(607\) 2.21384 + 5.34469i 0.0898571 + 0.216934i 0.962419 0.271570i \(-0.0875428\pi\)
−0.872562 + 0.488504i \(0.837543\pi\)
\(608\) 8.96039 0.363392
\(609\) 11.8945 + 28.7158i 0.481988 + 1.16362i
\(610\) 0 0
\(611\) −0.940110 −0.0380328
\(612\) −0.219207 2.16242i −0.00886093 0.0874106i
\(613\) 37.2383i 1.50404i 0.659139 + 0.752021i \(0.270921\pi\)
−0.659139 + 0.752021i \(0.729079\pi\)
\(614\) −3.48540 3.48540i −0.140659 0.140659i
\(615\) 0 0
\(616\) 20.1561i 0.812113i
\(617\) 8.97567 + 21.6692i 0.361347 + 0.872369i 0.995104 + 0.0988364i \(0.0315121\pi\)
−0.633757 + 0.773532i \(0.718488\pi\)
\(618\) 0.0654631 + 0.0271157i 0.00263331 + 0.00109075i
\(619\) 8.13185 + 3.36832i 0.326847 + 0.135384i 0.540072 0.841619i \(-0.318397\pi\)
−0.213225 + 0.977003i \(0.568397\pi\)
\(620\) 0 0
\(621\) −13.5197 + 13.5197i −0.542525 + 0.542525i
\(622\) 1.61712 3.90407i 0.0648405 0.156539i
\(623\) −46.6715 19.3320i −1.86985 0.774518i
\(624\) 12.4133 5.14175i 0.496929 0.205835i
\(625\) 0 0
\(626\) −3.21760 7.76796i −0.128601 0.310470i
\(627\) −14.8206 + 14.8206i −0.591880 + 0.591880i
\(628\) 4.96817i 0.198252i
\(629\) 8.06557 + 2.42157i 0.321595 + 0.0965543i
\(630\) 0 0
\(631\) 2.11407 + 2.11407i 0.0841597 + 0.0841597i 0.747933 0.663774i \(-0.231046\pi\)
−0.663774 + 0.747933i \(0.731046\pi\)
\(632\) −2.49464 + 1.03331i −0.0992316 + 0.0411031i
\(633\) −37.8396 −1.50399
\(634\) −1.22635 + 0.507970i −0.0487045 + 0.0201741i
\(635\) 0 0
\(636\) −21.0114 8.70323i −0.833158 0.345105i
\(637\) −25.3264 25.3264i −1.00347 1.00347i
\(638\) −2.56643 2.56643i −0.101606 0.101606i
\(639\) 3.86214 + 1.59975i 0.152784 + 0.0632852i
\(640\) 0 0
\(641\) 0.688309 0.285107i 0.0271866 0.0112610i −0.369049 0.929410i \(-0.620316\pi\)
0.396235 + 0.918149i \(0.370316\pi\)
\(642\) 3.02150 0.119249
\(643\) −3.72024 + 1.54097i −0.146712 + 0.0607700i −0.454831 0.890578i \(-0.650300\pi\)
0.308119 + 0.951348i \(0.400300\pi\)
\(644\) 26.0565 + 26.0565i 1.02677 + 1.02677i
\(645\) 0 0
\(646\) 2.50177 + 2.04124i 0.0984309 + 0.0803115i
\(647\) 18.7850i 0.738513i −0.929328 0.369257i \(-0.879612\pi\)
0.929328 0.369257i \(-0.120388\pi\)
\(648\) 7.18289 7.18289i 0.282171 0.282171i
\(649\) 10.4635 + 25.2612i 0.410729 + 0.991588i
\(650\) 0 0
\(651\) 48.1525 19.9454i 1.88724 0.781722i
\(652\) −27.5174 11.3981i −1.07766 0.446383i
\(653\) −8.02609 + 19.3767i −0.314085 + 0.758268i 0.685460 + 0.728110i \(0.259601\pi\)
−0.999545 + 0.0301582i \(0.990399\pi\)
\(654\) −3.86936 + 3.86936i −0.151304 + 0.151304i
\(655\) 0 0
\(656\) 39.1990 + 16.2368i 1.53046 + 0.633939i
\(657\) 2.21866 + 0.919000i 0.0865583 + 0.0358536i
\(658\) 0.226855 + 0.547676i 0.00884373 + 0.0213506i
\(659\) 0.651672i 0.0253855i 0.999919 + 0.0126928i \(0.00404034\pi\)
−0.999919 + 0.0126928i \(0.995960\pi\)
\(660\) 0 0
\(661\) −20.9013 20.9013i −0.812965 0.812965i 0.172112 0.985077i \(-0.444941\pi\)
−0.985077 + 0.172112i \(0.944941\pi\)
\(662\) 2.68606i 0.104397i
\(663\) 14.8094 + 4.44631i 0.575150 + 0.172680i
\(664\) 1.61435 0.0626490
\(665\) 0 0
\(666\) −0.0566416 0.136745i −0.00219482 0.00529876i
\(667\) 13.5128 0.523217
\(668\) −14.5652 35.1635i −0.563545 1.36052i
\(669\) −14.8362 + 35.8178i −0.573602 + 1.38480i
\(670\) 0 0
\(671\) −0.128897 + 0.128897i −0.00497601 + 0.00497601i
\(672\) −19.1325 19.1325i −0.738053 0.738053i
\(673\) 15.4136 37.2118i 0.594152 1.43441i −0.285307 0.958436i \(-0.592096\pi\)
0.879459 0.475974i \(-0.157904\pi\)
\(674\) −1.62778 + 3.92982i −0.0626999 + 0.151371i
\(675\) 0 0
\(676\) 16.7941i 0.645927i
\(677\) −10.3563 + 4.28972i −0.398025 + 0.164867i −0.572712 0.819757i \(-0.694109\pi\)
0.174687 + 0.984624i \(0.444109\pi\)
\(678\) −2.17550 + 2.17550i −0.0835494 + 0.0835494i
\(679\) 52.4545 2.01302
\(680\) 0 0
\(681\) 48.3431 1.85251
\(682\) −4.30355 + 4.30355i −0.164791 + 0.164791i
\(683\) −4.04798 + 1.67673i −0.154892 + 0.0641583i −0.458782 0.888549i \(-0.651714\pi\)
0.303891 + 0.952707i \(0.401714\pi\)
\(684\) 1.55624i 0.0595043i
\(685\) 0 0
\(686\) −5.14150 + 12.4127i −0.196304 + 0.473919i
\(687\) −4.29274 + 10.3636i −0.163778 + 0.395395i
\(688\) −14.0107 14.0107i −0.534153 0.534153i
\(689\) 9.54849 9.54849i 0.363768 0.363768i
\(690\) 0 0
\(691\) 7.05954 17.0432i 0.268557 0.648355i −0.730858 0.682529i \(-0.760880\pi\)
0.999416 + 0.0341741i \(0.0108801\pi\)
\(692\) −8.67803 20.9506i −0.329889 0.796423i
\(693\) 5.28241 0.200662
\(694\) 1.44276 + 3.48314i 0.0547665 + 0.132218i
\(695\) 0 0
\(696\) −6.57545 −0.249242
\(697\) 23.1400 + 42.9965i 0.876489 + 1.62861i
\(698\) 6.49122i 0.245696i
\(699\) −30.5769 30.5769i −1.15652 1.15652i
\(700\) 0 0
\(701\) 9.86753i 0.372692i −0.982484 0.186346i \(-0.940336\pi\)
0.982484 0.186346i \(-0.0596645\pi\)
\(702\) 1.03809 + 2.50616i 0.0391800 + 0.0945889i
\(703\) −5.57068 2.30745i −0.210102 0.0870271i
\(704\) −23.0597 9.55164i −0.869095 0.359991i
\(705\) 0 0
\(706\) −4.75725 + 4.75725i −0.179041 + 0.179041i
\(707\) −18.0983 + 43.6931i −0.680656 + 1.64325i
\(708\) 22.4728 + 9.30855i 0.844581 + 0.349837i
\(709\) 40.9337 16.9553i 1.53730 0.636769i 0.556333 0.830960i \(-0.312208\pi\)
0.980964 + 0.194190i \(0.0622080\pi\)
\(710\) 0 0
\(711\) −0.270806 0.653783i −0.0101560 0.0245188i
\(712\) 7.55685 7.55685i 0.283205 0.283205i
\(713\) 22.6591i 0.848590i
\(714\) −0.983341 9.70038i −0.0368006 0.363028i
\(715\) 0 0
\(716\) −11.1456 11.1456i −0.416531 0.416531i
\(717\) −24.0601 + 9.96604i −0.898543 + 0.372189i
\(718\) 7.03811 0.262660
\(719\) −3.92218 + 1.62462i −0.146273 + 0.0605882i −0.454619 0.890686i \(-0.650225\pi\)
0.308346 + 0.951274i \(0.400225\pi\)
\(720\) 0 0
\(721\) −0.672114 0.278399i −0.0250308 0.0103681i
\(722\) 1.92913 + 1.92913i 0.0717946 + 0.0717946i
\(723\) 1.94158 + 1.94158i 0.0722081 + 0.0722081i
\(724\) 18.0816 + 7.48965i 0.671998 + 0.278351i
\(725\) 0 0
\(726\) −1.95077 + 0.808036i −0.0723999 + 0.0299890i
\(727\) −18.4022 −0.682501 −0.341251 0.939972i \(-0.610850\pi\)
−0.341251 + 0.939972i \(0.610850\pi\)
\(728\) 9.83639 4.07436i 0.364561 0.151006i
\(729\) −17.0511 17.0511i −0.631523 0.631523i
\(730\) 0 0
\(731\) −2.29974 22.6862i −0.0850588 0.839081i
\(732\) 0.162167i 0.00599385i
\(733\) 0.0568626 0.0568626i 0.00210027 0.00210027i −0.706056 0.708156i \(-0.749527\pi\)
0.708156 + 0.706056i \(0.249527\pi\)
\(734\) 0.381882 + 0.921944i 0.0140955 + 0.0340296i
\(735\) 0 0
\(736\) −10.8678 + 4.50159i −0.400592 + 0.165931i
\(737\) 36.4264 + 15.0883i 1.34179 + 0.555786i
\(738\) 0.328418 0.792871i 0.0120892 0.0291860i
\(739\) −33.6880 + 33.6880i −1.23923 + 1.23923i −0.278919 + 0.960315i \(0.589976\pi\)
−0.960315 + 0.278919i \(0.910024\pi\)
\(740\) 0 0
\(741\) −10.2285 4.23677i −0.375752 0.155642i
\(742\) −7.86674 3.25851i −0.288797 0.119624i
\(743\) 9.24945 + 22.3302i 0.339330 + 0.819214i 0.997780 + 0.0665903i \(0.0212120\pi\)
−0.658451 + 0.752624i \(0.728788\pi\)
\(744\) 11.0261i 0.404238i
\(745\) 0 0
\(746\) 2.03511 + 2.03511i 0.0745108 + 0.0745108i
\(747\) 0.423081i 0.0154797i
\(748\) −14.7962 27.4929i −0.541003 1.00524i
\(749\) −31.0220 −1.13352
\(750\) 0 0
\(751\) 5.28236 + 12.7527i 0.192756 + 0.465354i 0.990478 0.137671i \(-0.0439617\pi\)
−0.797722 + 0.603025i \(0.793962\pi\)
\(752\) 1.62490 0.0592540
\(753\) 19.6145 + 47.3535i 0.714791 + 1.72566i
\(754\) 0.733663 1.77122i 0.0267184 0.0645040i
\(755\) 0 0
\(756\) −33.1678 + 33.1678i −1.20630 + 1.20630i
\(757\) −5.54725 5.54725i −0.201618 0.201618i 0.599075 0.800693i \(-0.295535\pi\)
−0.800693 + 0.599075i \(0.795535\pi\)
\(758\) −3.04523 + 7.35183i −0.110608 + 0.267030i
\(759\) 10.5298 25.4212i 0.382208 0.922733i
\(760\) 0 0
\(761\) 2.34626i 0.0850518i −0.999095 0.0425259i \(-0.986460\pi\)
0.999095 0.0425259i \(-0.0135405\pi\)
\(762\) 2.37563 0.984019i 0.0860601 0.0356473i
\(763\) 39.7269 39.7269i 1.43821 1.43821i
\(764\) −26.3837 −0.954529
\(765\) 0 0
\(766\) 3.59076 0.129739
\(767\) −10.2126 + 10.2126i −0.368756 + 0.368756i
\(768\) −17.8228 + 7.38245i −0.643125 + 0.266391i
\(769\) 7.42438i 0.267730i −0.991000 0.133865i \(-0.957261\pi\)
0.991000 0.133865i \(-0.0427389\pi\)
\(770\) 0 0
\(771\) 5.83627 14.0900i 0.210188 0.507439i
\(772\) 1.10696 2.67244i 0.0398404 0.0961832i
\(773\) −4.40565 4.40565i −0.158460 0.158460i 0.623424 0.781884i \(-0.285741\pi\)
−0.781884 + 0.623424i \(0.785741\pi\)
\(774\) −0.283392 + 0.283392i −0.0101863 + 0.0101863i
\(775\) 0 0
\(776\) −4.24661 + 10.2522i −0.152444 + 0.368033i
\(777\) 6.96775 + 16.8216i 0.249967 + 0.603473i
\(778\) −5.46875 −0.196064
\(779\) −13.3790 32.2998i −0.479352 1.15726i
\(780\) 0 0
\(781\) 60.0493 2.14873
\(782\) −4.05982 1.21890i −0.145179 0.0435878i
\(783\) 17.2007i 0.614701i
\(784\) 43.7744 + 43.7744i 1.56337 + 1.56337i
\(785\) 0 0
\(786\) 6.72943i 0.240031i
\(787\) −0.606819 1.46499i −0.0216308 0.0522213i 0.912695 0.408641i \(-0.133997\pi\)
−0.934326 + 0.356420i \(0.883997\pi\)
\(788\) 17.9227 + 7.42382i 0.638469 + 0.264463i
\(789\) −39.5251 16.3718i −1.40713 0.582852i
\(790\) 0 0
\(791\) 22.3360 22.3360i 0.794175 0.794175i
\(792\) −0.427653 + 1.03245i −0.0151960 + 0.0366864i
\(793\) −0.0889582 0.0368477i −0.00315900 0.00130850i
\(794\) −3.13153 + 1.29712i −0.111134 + 0.0460332i
\(795\) 0 0
\(796\) 3.81158 + 9.20197i 0.135098 + 0.326155i
\(797\) 13.0147 13.0147i 0.461004 0.461004i −0.437981 0.898984i \(-0.644306\pi\)
0.898984 + 0.437981i \(0.144306\pi\)
\(798\) 6.98112i 0.247129i
\(799\) 1.44888 + 1.18217i 0.0512577 + 0.0418221i
\(800\) 0 0
\(801\) 1.98046 + 1.98046i 0.0699761 + 0.0699761i
\(802\) 0.000214754 0 8.89540e-5i 7.58323e−6 0 3.14108e-6i
\(803\) 34.4962 1.21734
\(804\) 32.4057 13.4229i 1.14286 0.473388i
\(805\) 0 0
\(806\) −2.97010 1.23025i −0.104617 0.0433338i
\(807\) 1.33315 + 1.33315i 0.0469290 + 0.0469290i
\(808\) −7.07461 7.07461i −0.248884 0.248884i
\(809\) −1.66359 0.689080i −0.0584886 0.0242268i 0.353247 0.935530i \(-0.385077\pi\)
−0.411736 + 0.911303i \(0.635077\pi\)
\(810\) 0 0
\(811\) 1.60465 0.664668i 0.0563469 0.0233397i −0.354332 0.935120i \(-0.615292\pi\)
0.410679 + 0.911780i \(0.365292\pi\)
\(812\) 33.1508 1.16337
\(813\) −33.5335 + 13.8900i −1.17607 + 0.487144i
\(814\) −1.50341 1.50341i −0.0526944 0.0526944i
\(815\) 0 0
\(816\) −25.5968 7.68506i −0.896066 0.269031i
\(817\) 16.3267i 0.571200i
\(818\) −3.54162 + 3.54162i −0.123830 + 0.123830i
\(819\) 1.06779 + 2.57787i 0.0373115 + 0.0900780i
\(820\) 0 0
\(821\) −42.6963 + 17.6854i −1.49011 + 0.617225i −0.971341 0.237689i \(-0.923610\pi\)
−0.518771 + 0.854913i \(0.673610\pi\)
\(822\) −2.58826 1.07209i −0.0902760 0.0373936i
\(823\) 13.7041 33.0846i 0.477695 1.15326i −0.482992 0.875625i \(-0.660450\pi\)
0.960687 0.277633i \(-0.0895500\pi\)
\(824\) 0.108826 0.108826i 0.00379113 0.00379113i
\(825\) 0 0
\(826\) 8.41389 + 3.48515i 0.292757 + 0.121264i
\(827\) −18.8645 7.81395i −0.655984 0.271718i 0.0297634 0.999557i \(-0.490525\pi\)
−0.685748 + 0.727839i \(0.740525\pi\)
\(828\) −0.781835 1.88752i −0.0271706 0.0655957i
\(829\) 34.9581i 1.21414i −0.794647 0.607072i \(-0.792344\pi\)
0.794647 0.607072i \(-0.207656\pi\)
\(830\) 0 0
\(831\) −11.0520 11.0520i −0.383389 0.383389i
\(832\) 13.1841i 0.457077i
\(833\) 7.18520 + 70.8799i 0.248952 + 2.45584i
\(834\) −7.30809 −0.253058
\(835\) 0 0
\(836\) 8.55483 + 20.6532i 0.295875 + 0.714305i
\(837\) 28.8432 0.996966
\(838\) 0.937338 + 2.26294i 0.0323798 + 0.0781718i
\(839\) −2.98719 + 7.21171i −0.103129 + 0.248976i −0.967019 0.254705i \(-0.918021\pi\)
0.863889 + 0.503681i \(0.168021\pi\)
\(840\) 0 0
\(841\) −11.9102 + 11.9102i −0.410695 + 0.410695i
\(842\) −6.55011 6.55011i −0.225732 0.225732i
\(843\) −4.37215 + 10.5553i −0.150585 + 0.363544i
\(844\) −15.4446 + 37.2864i −0.531623 + 1.28345i
\(845\) 0 0
\(846\) 0.0328665i 0.00112997i
\(847\) 20.0287 8.29616i 0.688194 0.285059i
\(848\) −16.5037 + 16.5037i −0.566740 + 0.566740i
\(849\) 3.40344 0.116806
\(850\) 0 0
\(851\) 7.91575 0.271348
\(852\) 37.7744 37.7744i 1.29413 1.29413i
\(853\) −24.7835 + 10.2657i −0.848571 + 0.351490i −0.764227 0.644947i \(-0.776879\pi\)
−0.0843438 + 0.996437i \(0.526879\pi\)
\(854\) 0.0607156i 0.00207765i
\(855\) 0 0
\(856\) 2.51148 6.06324i 0.0858406 0.207237i
\(857\) −0.111900 + 0.270150i −0.00382243 + 0.00922815i −0.925779 0.378065i \(-0.876590\pi\)
0.921957 + 0.387293i \(0.126590\pi\)
\(858\) −2.76044 2.76044i −0.0942400 0.0942400i
\(859\) −20.5174 + 20.5174i −0.700046 + 0.700046i −0.964420 0.264374i \(-0.914835\pi\)
0.264374 + 0.964420i \(0.414835\pi\)
\(860\) 0 0
\(861\) −40.4002 + 97.5348i −1.37684 + 3.32398i
\(862\) −0.761500 1.83842i −0.0259368 0.0626170i
\(863\) 6.90380 0.235008 0.117504 0.993072i \(-0.462511\pi\)
0.117504 + 0.993072i \(0.462511\pi\)
\(864\) −5.73016 13.8338i −0.194944 0.470636i
\(865\) 0 0
\(866\) 5.89019 0.200157
\(867\) −17.2329 25.4751i −0.585259 0.865179i
\(868\) 55.5895i 1.88683i
\(869\) −7.18784 7.18784i −0.243831 0.243831i
\(870\) 0 0
\(871\) 20.8264i 0.705676i
\(872\) 4.54841 + 10.9808i 0.154029 + 0.371858i
\(873\) −2.68685 1.11293i −0.0909360 0.0376669i
\(874\) 2.80401 + 1.16146i 0.0948471 + 0.0392870i
\(875\) 0 0
\(876\) 21.7000 21.7000i 0.733176 0.733176i
\(877\) 11.9103 28.7539i 0.402181 0.970950i −0.584955 0.811066i \(-0.698888\pi\)
0.987136 0.159885i \(-0.0511122\pi\)
\(878\) −4.12410 1.70826i −0.139182 0.0576509i
\(879\) 3.16282 1.31008i 0.106679 0.0441880i
\(880\) 0 0
\(881\) 12.9485 + 31.2604i 0.436246 + 1.05319i 0.977235 + 0.212161i \(0.0680502\pi\)
−0.540989 + 0.841030i \(0.681950\pi\)
\(882\) 0.885417 0.885417i 0.0298136 0.0298136i
\(883\) 17.2493i 0.580484i 0.956953 + 0.290242i \(0.0937359\pi\)
−0.956953 + 0.290242i \(0.906264\pi\)
\(884\) 10.4259 12.7781i 0.350661 0.429775i
\(885\) 0 0
\(886\) −3.79551 3.79551i −0.127513 0.127513i
\(887\) −5.50312 + 2.27947i −0.184777 + 0.0765370i −0.473153 0.880980i \(-0.656884\pi\)
0.288377 + 0.957517i \(0.406884\pi\)
\(888\) −3.85188 −0.129261
\(889\) −24.3908 + 10.1030i −0.818041 + 0.338844i
\(890\) 0 0
\(891\) 35.3305 + 14.6344i 1.18362 + 0.490270i
\(892\) 29.2387 + 29.2387i 0.978985 + 0.978985i
\(893\) −0.946750 0.946750i −0.0316818 0.0316818i
\(894\) 9.14381 + 3.78749i 0.305815 + 0.126673i
\(895\) 0 0
\(896\) −35.3148 + 14.6279i −1.17979 + 0.488683i
\(897\) 14.5343 0.485287
\(898\) −7.08555 + 2.93493i −0.236448 + 0.0979399i
\(899\) −14.4142 14.4142i −0.480742 0.480742i
\(900\) 0 0
\(901\) −26.7230 + 2.70894i −0.890271 + 0.0902480i
\(902\) 12.3277i 0.410468i
\(903\) 34.8613 34.8613i 1.16011 1.16011i
\(904\) 2.55729 + 6.17384i 0.0850541 + 0.205339i
\(905\) 0 0
\(906\) −2.28453 + 0.946284i −0.0758985 + 0.0314382i
\(907\) 28.6501 + 11.8673i 0.951312 + 0.394046i 0.803724 0.595003i \(-0.202849\pi\)
0.147588 + 0.989049i \(0.452849\pi\)
\(908\) 19.7317 47.6364i 0.654818 1.58087i
\(909\) 1.85408 1.85408i 0.0614958 0.0614958i
\(910\) 0 0
\(911\) −11.0101 4.56054i −0.364782 0.151098i 0.192761 0.981246i \(-0.438256\pi\)
−0.557543 + 0.830148i \(0.688256\pi\)
\(912\) 17.6790 + 7.32289i 0.585411 + 0.242485i
\(913\) 2.32572 + 5.61480i 0.0769702 + 0.185823i
\(914\) 4.54759i 0.150421i
\(915\) 0 0
\(916\) 8.45998 + 8.45998i 0.279525 + 0.279525i
\(917\) 69.0915i 2.28160i
\(918\) 1.55156 5.16782i 0.0512092 0.170563i
\(919\) 6.38966 0.210776 0.105388 0.994431i \(-0.466392\pi\)
0.105388 + 0.994431i \(0.466392\pi\)
\(920\) 0 0
\(921\) −12.8650 31.0588i −0.423916 1.02342i
\(922\) −1.57942 −0.0520155
\(923\) 12.1384 + 29.3047i 0.399540 + 0.964574i
\(924\) 25.8328 62.3659i 0.849836 2.05169i
\(925\) 0 0
\(926\) 5.74273 5.74273i 0.188718 0.188718i
\(927\) 0.0285205 + 0.0285205i 0.000936738 + 0.000936738i
\(928\) −4.04977 + 9.77700i −0.132940 + 0.320946i
\(929\) −3.79175 + 9.15410i −0.124403 + 0.300336i −0.973795 0.227426i \(-0.926969\pi\)
0.849392 + 0.527763i \(0.176969\pi\)
\(930\) 0 0
\(931\) 51.0105i 1.67180i
\(932\) −42.6101 + 17.6497i −1.39574 + 0.578135i
\(933\) 20.3793 20.3793i 0.667188 0.667188i
\(934\) −6.62443 −0.216758
\(935\) 0 0
\(936\) −0.590290 −0.0192942
\(937\) 8.28441 8.28441i 0.270640 0.270640i −0.558718 0.829358i \(-0.688707\pi\)
0.829358 + 0.558718i \(0.188707\pi\)
\(938\) 12.1328 5.02556i 0.396149 0.164090i
\(939\) 57.3448i 1.87138i
\(940\) 0 0
\(941\) −5.08066 + 12.2658i −0.165625 + 0.399853i −0.984801 0.173689i \(-0.944431\pi\)
0.819176 + 0.573542i \(0.194431\pi\)
\(942\) −0.472858 + 1.14158i −0.0154065 + 0.0371947i
\(943\) 32.4540 + 32.4540i 1.05685 + 1.05685i
\(944\) 17.6516 17.6516i 0.574510 0.574510i
\(945\) 0 0
\(946\) −2.20312 + 5.31879i −0.0716295 + 0.172929i
\(947\) 12.6459 + 30.5299i 0.410936 + 0.992087i 0.984887 + 0.173197i \(0.0554099\pi\)
−0.573951 + 0.818889i \(0.694590\pi\)
\(948\) −9.04311 −0.293706
\(949\) 6.97307 + 16.8345i 0.226355 + 0.546470i
\(950\) 0 0
\(951\) −9.05317 −0.293569
\(952\) −20.2831 6.08970i −0.657379 0.197368i
\(953\) 15.7853i 0.511335i −0.966765 0.255668i \(-0.917705\pi\)
0.966765 0.255668i \(-0.0822953\pi\)
\(954\) 0.333818 + 0.333818i 0.0108077 + 0.0108077i
\(955\) 0 0
\(956\) 27.7762i 0.898345i
\(957\) −9.47295 22.8697i −0.306217 0.739273i
\(958\) −0.376126 0.155797i −0.0121521 0.00503356i
\(959\) 26.5739 + 11.0073i 0.858115 + 0.355443i
\(960\) 0 0
\(961\) −2.25043 + 2.25043i −0.0725944 + 0.0725944i
\(962\) 0.429778 1.03758i 0.0138566 0.0334528i
\(963\) 1.58902 + 0.658195i 0.0512055 + 0.0212100i
\(964\) 2.70567 1.12072i 0.0871437 0.0360961i
\(965\) 0 0
\(966\) −3.50723 8.46720i −0.112843 0.272428i
\(967\) −34.4173 + 34.4173i −1.10679 + 1.10679i −0.113215 + 0.993571i \(0.536115\pi\)
−0.993571 + 0.113215i \(0.963885\pi\)
\(968\) 4.58625i 0.147408i
\(969\) 10.4363 + 19.3917i 0.335262 + 0.622952i
\(970\) 0 0
\(971\) 0.0626140 + 0.0626140i 0.00200938 + 0.00200938i 0.708111 0.706101i \(-0.249548\pi\)
−0.706101 + 0.708111i \(0.749548\pi\)
\(972\) 5.04602 2.09013i 0.161851 0.0670410i
\(973\) 75.0326 2.40544
\(974\) −5.41361 + 2.24239i −0.173463 + 0.0718509i
\(975\) 0 0
\(976\) 0.153756 + 0.0636880i 0.00492162 + 0.00203860i
\(977\) 37.1283 + 37.1283i 1.18784 + 1.18784i 0.977663 + 0.210177i \(0.0674040\pi\)
0.210177 + 0.977663i \(0.432596\pi\)
\(978\) 5.23806 + 5.23806i 0.167495 + 0.167495i
\(979\) 37.1699 + 15.3963i 1.18796 + 0.492068i
\(980\) 0 0
\(981\) −2.87780 + 1.19202i −0.0918811 + 0.0380584i
\(982\) 1.62889 0.0519800
\(983\) 25.0939 10.3942i 0.800372 0.331525i 0.0552663 0.998472i \(-0.482399\pi\)
0.745105 + 0.666947i \(0.232399\pi\)
\(984\) −15.7924 15.7924i −0.503444 0.503444i
\(985\) 0 0
\(986\) −3.35798 + 1.80721i −0.106940 + 0.0575532i
\(987\) 4.04306i 0.128692i
\(988\) −8.34968 + 8.34968i −0.265639 + 0.265639i
\(989\) −8.20234 19.8022i −0.260819 0.629674i
\(990\) 0 0
\(991\) 1.25144 0.518363i 0.0397533 0.0164663i −0.362718 0.931899i \(-0.618151\pi\)
0.402471 + 0.915433i \(0.368151\pi\)
\(992\) 16.3947 + 6.79091i 0.520533 + 0.215612i
\(993\) 7.01064 16.9252i 0.222476 0.537105i
\(994\) 14.1428 14.1428i 0.448583 0.448583i
\(995\) 0 0
\(996\) 4.99503 + 2.06901i 0.158274 + 0.0655591i
\(997\) −5.92470 2.45409i −0.187637 0.0777219i 0.286887 0.957965i \(-0.407380\pi\)
−0.474524 + 0.880243i \(0.657380\pi\)
\(998\) −3.37041 8.13690i −0.106689 0.257569i
\(999\) 10.0761i 0.318794i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 425.2.n.e.49.4 24
5.2 odd 4 425.2.m.d.151.4 yes 24
5.3 odd 4 425.2.m.c.151.3 yes 24
5.4 even 2 425.2.n.d.49.3 24
17.8 even 8 425.2.n.d.399.3 24
85.8 odd 8 425.2.m.c.76.3 24
85.12 even 16 7225.2.a.cb.1.12 24
85.22 even 16 7225.2.a.cb.1.11 24
85.42 odd 8 425.2.m.d.76.4 yes 24
85.59 even 8 inner 425.2.n.e.399.4 24
85.63 even 16 7225.2.a.bx.1.13 24
85.73 even 16 7225.2.a.bx.1.14 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
425.2.m.c.76.3 24 85.8 odd 8
425.2.m.c.151.3 yes 24 5.3 odd 4
425.2.m.d.76.4 yes 24 85.42 odd 8
425.2.m.d.151.4 yes 24 5.2 odd 4
425.2.n.d.49.3 24 5.4 even 2
425.2.n.d.399.3 24 17.8 even 8
425.2.n.e.49.4 24 1.1 even 1 trivial
425.2.n.e.399.4 24 85.59 even 8 inner
7225.2.a.bx.1.13 24 85.63 even 16
7225.2.a.bx.1.14 24 85.73 even 16
7225.2.a.cb.1.11 24 85.22 even 16
7225.2.a.cb.1.12 24 85.12 even 16