Properties

Label 425.4.a.e.1.1
Level $425$
Weight $4$
Character 425.1
Self dual yes
Analytic conductor $25.076$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [425,4,Mod(1,425)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(425, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("425.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 425 = 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 425.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(25.0758117524\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{12})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 85)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.73205\) of defining polynomial
Character \(\chi\) \(=\) 425.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.267949 q^{2} -0.732051 q^{3} -7.92820 q^{4} -0.196152 q^{6} +14.5885 q^{7} -4.26795 q^{8} -26.4641 q^{9} +3.51666 q^{11} +5.80385 q^{12} +88.4974 q^{13} +3.90897 q^{14} +62.2820 q^{16} +17.0000 q^{17} -7.09103 q^{18} -79.6077 q^{19} -10.6795 q^{21} +0.942286 q^{22} -153.937 q^{23} +3.12436 q^{24} +23.7128 q^{26} +39.1384 q^{27} -115.660 q^{28} -28.3257 q^{29} -209.219 q^{31} +50.8320 q^{32} -2.57437 q^{33} +4.55514 q^{34} +209.813 q^{36} -359.597 q^{37} -21.3308 q^{38} -64.7846 q^{39} +417.951 q^{41} -2.86156 q^{42} -243.520 q^{43} -27.8808 q^{44} -41.2473 q^{46} +160.144 q^{47} -45.5936 q^{48} -130.177 q^{49} -12.4449 q^{51} -701.626 q^{52} -28.8513 q^{53} +10.4871 q^{54} -62.2628 q^{56} +58.2769 q^{57} -7.58984 q^{58} -832.315 q^{59} -502.190 q^{61} -56.0601 q^{62} -386.070 q^{63} -484.636 q^{64} -0.689801 q^{66} +555.472 q^{67} -134.779 q^{68} +112.690 q^{69} -961.114 q^{71} +112.947 q^{72} -512.823 q^{73} -96.3538 q^{74} +631.146 q^{76} +51.3027 q^{77} -17.3590 q^{78} +277.906 q^{79} +685.879 q^{81} +111.990 q^{82} +288.228 q^{83} +84.6692 q^{84} -65.2511 q^{86} +20.7358 q^{87} -15.0089 q^{88} -1387.18 q^{89} +1291.04 q^{91} +1220.44 q^{92} +153.159 q^{93} +42.9103 q^{94} -37.2116 q^{96} +249.174 q^{97} -34.8808 q^{98} -93.0653 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 4 q^{2} + 2 q^{3} - 2 q^{4} + 10 q^{6} - 2 q^{7} - 12 q^{8} - 46 q^{9} - 38 q^{11} + 22 q^{12} + 80 q^{13} - 58 q^{14} - 14 q^{16} + 34 q^{17} - 80 q^{18} - 180 q^{19} - 56 q^{21} - 154 q^{22} + 42 q^{23}+ \cdots + 718 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.267949 0.0947343 0.0473672 0.998878i \(-0.484917\pi\)
0.0473672 + 0.998878i \(0.484917\pi\)
\(3\) −0.732051 −0.140883 −0.0704416 0.997516i \(-0.522441\pi\)
−0.0704416 + 0.997516i \(0.522441\pi\)
\(4\) −7.92820 −0.991025
\(5\) 0 0
\(6\) −0.196152 −0.0133465
\(7\) 14.5885 0.787703 0.393851 0.919174i \(-0.371142\pi\)
0.393851 + 0.919174i \(0.371142\pi\)
\(8\) −4.26795 −0.188618
\(9\) −26.4641 −0.980152
\(10\) 0 0
\(11\) 3.51666 0.0963921 0.0481960 0.998838i \(-0.484653\pi\)
0.0481960 + 0.998838i \(0.484653\pi\)
\(12\) 5.80385 0.139619
\(13\) 88.4974 1.88806 0.944030 0.329861i \(-0.107002\pi\)
0.944030 + 0.329861i \(0.107002\pi\)
\(14\) 3.90897 0.0746225
\(15\) 0 0
\(16\) 62.2820 0.973157
\(17\) 17.0000 0.242536
\(18\) −7.09103 −0.0928540
\(19\) −79.6077 −0.961224 −0.480612 0.876933i \(-0.659585\pi\)
−0.480612 + 0.876933i \(0.659585\pi\)
\(20\) 0 0
\(21\) −10.6795 −0.110974
\(22\) 0.942286 0.00913164
\(23\) −153.937 −1.39557 −0.697785 0.716307i \(-0.745831\pi\)
−0.697785 + 0.716307i \(0.745831\pi\)
\(24\) 3.12436 0.0265732
\(25\) 0 0
\(26\) 23.7128 0.178864
\(27\) 39.1384 0.278970
\(28\) −115.660 −0.780633
\(29\) −28.3257 −0.181377 −0.0906887 0.995879i \(-0.528907\pi\)
−0.0906887 + 0.995879i \(0.528907\pi\)
\(30\) 0 0
\(31\) −209.219 −1.21216 −0.606079 0.795405i \(-0.707258\pi\)
−0.606079 + 0.795405i \(0.707258\pi\)
\(32\) 50.8320 0.280810
\(33\) −2.57437 −0.0135800
\(34\) 4.55514 0.0229765
\(35\) 0 0
\(36\) 209.813 0.971355
\(37\) −359.597 −1.59777 −0.798884 0.601485i \(-0.794576\pi\)
−0.798884 + 0.601485i \(0.794576\pi\)
\(38\) −21.3308 −0.0910609
\(39\) −64.7846 −0.265996
\(40\) 0 0
\(41\) 417.951 1.59202 0.796012 0.605280i \(-0.206939\pi\)
0.796012 + 0.605280i \(0.206939\pi\)
\(42\) −2.86156 −0.0105131
\(43\) −243.520 −0.863640 −0.431820 0.901960i \(-0.642128\pi\)
−0.431820 + 0.901960i \(0.642128\pi\)
\(44\) −27.8808 −0.0955270
\(45\) 0 0
\(46\) −41.2473 −0.132208
\(47\) 160.144 0.497007 0.248504 0.968631i \(-0.420061\pi\)
0.248504 + 0.968631i \(0.420061\pi\)
\(48\) −45.5936 −0.137101
\(49\) −130.177 −0.379525
\(50\) 0 0
\(51\) −12.4449 −0.0341692
\(52\) −701.626 −1.87111
\(53\) −28.8513 −0.0747740 −0.0373870 0.999301i \(-0.511903\pi\)
−0.0373870 + 0.999301i \(0.511903\pi\)
\(54\) 10.4871 0.0264281
\(55\) 0 0
\(56\) −62.2628 −0.148575
\(57\) 58.2769 0.135420
\(58\) −7.58984 −0.0171827
\(59\) −832.315 −1.83658 −0.918290 0.395908i \(-0.870430\pi\)
−0.918290 + 0.395908i \(0.870430\pi\)
\(60\) 0 0
\(61\) −502.190 −1.05408 −0.527039 0.849841i \(-0.676698\pi\)
−0.527039 + 0.849841i \(0.676698\pi\)
\(62\) −56.0601 −0.114833
\(63\) −386.070 −0.772068
\(64\) −484.636 −0.946554
\(65\) 0 0
\(66\) −0.689801 −0.00128650
\(67\) 555.472 1.01286 0.506430 0.862281i \(-0.330965\pi\)
0.506430 + 0.862281i \(0.330965\pi\)
\(68\) −134.779 −0.240359
\(69\) 112.690 0.196612
\(70\) 0 0
\(71\) −961.114 −1.60652 −0.803262 0.595625i \(-0.796904\pi\)
−0.803262 + 0.595625i \(0.796904\pi\)
\(72\) 112.947 0.184875
\(73\) −512.823 −0.822211 −0.411105 0.911588i \(-0.634857\pi\)
−0.411105 + 0.911588i \(0.634857\pi\)
\(74\) −96.3538 −0.151364
\(75\) 0 0
\(76\) 631.146 0.952597
\(77\) 51.3027 0.0759283
\(78\) −17.3590 −0.0251989
\(79\) 277.906 0.395783 0.197892 0.980224i \(-0.436591\pi\)
0.197892 + 0.980224i \(0.436591\pi\)
\(80\) 0 0
\(81\) 685.879 0.940850
\(82\) 111.990 0.150819
\(83\) 288.228 0.381170 0.190585 0.981671i \(-0.438961\pi\)
0.190585 + 0.981671i \(0.438961\pi\)
\(84\) 84.6692 0.109978
\(85\) 0 0
\(86\) −65.2511 −0.0818164
\(87\) 20.7358 0.0255530
\(88\) −15.0089 −0.0181813
\(89\) −1387.18 −1.65215 −0.826073 0.563563i \(-0.809430\pi\)
−0.826073 + 0.563563i \(0.809430\pi\)
\(90\) 0 0
\(91\) 1291.04 1.48723
\(92\) 1220.44 1.38305
\(93\) 153.159 0.170773
\(94\) 42.9103 0.0470837
\(95\) 0 0
\(96\) −37.2116 −0.0395614
\(97\) 249.174 0.260823 0.130411 0.991460i \(-0.458370\pi\)
0.130411 + 0.991460i \(0.458370\pi\)
\(98\) −34.8808 −0.0359540
\(99\) −93.0653 −0.0944789
\(100\) 0 0
\(101\) 992.141 0.977443 0.488721 0.872440i \(-0.337463\pi\)
0.488721 + 0.872440i \(0.337463\pi\)
\(102\) −3.33459 −0.00323700
\(103\) −592.144 −0.566463 −0.283231 0.959052i \(-0.591406\pi\)
−0.283231 + 0.959052i \(0.591406\pi\)
\(104\) −377.703 −0.356123
\(105\) 0 0
\(106\) −7.73067 −0.00708367
\(107\) −769.496 −0.695234 −0.347617 0.937637i \(-0.613009\pi\)
−0.347617 + 0.937637i \(0.613009\pi\)
\(108\) −310.297 −0.276467
\(109\) 381.159 0.334940 0.167470 0.985877i \(-0.446440\pi\)
0.167470 + 0.985877i \(0.446440\pi\)
\(110\) 0 0
\(111\) 263.244 0.225099
\(112\) 908.599 0.766558
\(113\) 1081.41 0.900272 0.450136 0.892960i \(-0.351376\pi\)
0.450136 + 0.892960i \(0.351376\pi\)
\(114\) 15.6152 0.0128290
\(115\) 0 0
\(116\) 224.572 0.179750
\(117\) −2342.00 −1.85058
\(118\) −223.018 −0.173987
\(119\) 248.004 0.191046
\(120\) 0 0
\(121\) −1318.63 −0.990709
\(122\) −134.561 −0.0998574
\(123\) −305.962 −0.224290
\(124\) 1658.73 1.20128
\(125\) 0 0
\(126\) −103.447 −0.0731414
\(127\) 451.793 0.315670 0.157835 0.987465i \(-0.449549\pi\)
0.157835 + 0.987465i \(0.449549\pi\)
\(128\) −536.514 −0.370481
\(129\) 178.269 0.121672
\(130\) 0 0
\(131\) −600.540 −0.400530 −0.200265 0.979742i \(-0.564180\pi\)
−0.200265 + 0.979742i \(0.564180\pi\)
\(132\) 20.4102 0.0134582
\(133\) −1161.35 −0.757159
\(134\) 148.838 0.0959527
\(135\) 0 0
\(136\) −72.5551 −0.0457467
\(137\) −1479.37 −0.922562 −0.461281 0.887254i \(-0.652610\pi\)
−0.461281 + 0.887254i \(0.652610\pi\)
\(138\) 30.1951 0.0186260
\(139\) 941.627 0.574588 0.287294 0.957842i \(-0.407244\pi\)
0.287294 + 0.957842i \(0.407244\pi\)
\(140\) 0 0
\(141\) −117.233 −0.0700200
\(142\) −257.530 −0.152193
\(143\) 311.215 0.181994
\(144\) −1648.24 −0.953841
\(145\) 0 0
\(146\) −137.411 −0.0778916
\(147\) 95.2961 0.0534686
\(148\) 2850.96 1.58343
\(149\) 2427.95 1.33493 0.667467 0.744639i \(-0.267378\pi\)
0.667467 + 0.744639i \(0.267378\pi\)
\(150\) 0 0
\(151\) −1927.95 −1.03903 −0.519517 0.854460i \(-0.673888\pi\)
−0.519517 + 0.854460i \(0.673888\pi\)
\(152\) 339.762 0.181305
\(153\) −449.890 −0.237722
\(154\) 13.7465 0.00719302
\(155\) 0 0
\(156\) 513.626 0.263609
\(157\) −3264.27 −1.65935 −0.829673 0.558250i \(-0.811473\pi\)
−0.829673 + 0.558250i \(0.811473\pi\)
\(158\) 74.4647 0.0374943
\(159\) 21.1206 0.0105344
\(160\) 0 0
\(161\) −2245.71 −1.09929
\(162\) 183.781 0.0891308
\(163\) 3232.63 1.55337 0.776684 0.629891i \(-0.216900\pi\)
0.776684 + 0.629891i \(0.216900\pi\)
\(164\) −3313.60 −1.57774
\(165\) 0 0
\(166\) 77.2305 0.0361099
\(167\) 3446.66 1.59707 0.798535 0.601948i \(-0.205609\pi\)
0.798535 + 0.601948i \(0.205609\pi\)
\(168\) 45.5795 0.0209318
\(169\) 5634.79 2.56477
\(170\) 0 0
\(171\) 2106.75 0.942146
\(172\) 1930.68 0.855889
\(173\) 2281.64 1.00272 0.501359 0.865239i \(-0.332834\pi\)
0.501359 + 0.865239i \(0.332834\pi\)
\(174\) 5.55615 0.00242075
\(175\) 0 0
\(176\) 219.025 0.0938046
\(177\) 609.297 0.258743
\(178\) −371.694 −0.156515
\(179\) 202.290 0.0844685 0.0422342 0.999108i \(-0.486552\pi\)
0.0422342 + 0.999108i \(0.486552\pi\)
\(180\) 0 0
\(181\) −3632.57 −1.49175 −0.745874 0.666087i \(-0.767968\pi\)
−0.745874 + 0.666087i \(0.767968\pi\)
\(182\) 345.933 0.140892
\(183\) 367.628 0.148502
\(184\) 656.996 0.263230
\(185\) 0 0
\(186\) 41.0388 0.0161780
\(187\) 59.7832 0.0233785
\(188\) −1269.65 −0.492547
\(189\) 570.969 0.219746
\(190\) 0 0
\(191\) 578.307 0.219083 0.109541 0.993982i \(-0.465062\pi\)
0.109541 + 0.993982i \(0.465062\pi\)
\(192\) 354.778 0.133354
\(193\) −1538.31 −0.573730 −0.286865 0.957971i \(-0.592613\pi\)
−0.286865 + 0.957971i \(0.592613\pi\)
\(194\) 66.7660 0.0247089
\(195\) 0 0
\(196\) 1032.07 0.376118
\(197\) 788.023 0.284997 0.142498 0.989795i \(-0.454486\pi\)
0.142498 + 0.989795i \(0.454486\pi\)
\(198\) −24.9368 −0.00895040
\(199\) 535.770 0.190853 0.0954265 0.995436i \(-0.469579\pi\)
0.0954265 + 0.995436i \(0.469579\pi\)
\(200\) 0 0
\(201\) −406.633 −0.142695
\(202\) 265.843 0.0925974
\(203\) −413.228 −0.142871
\(204\) 98.6654 0.0338626
\(205\) 0 0
\(206\) −158.664 −0.0536635
\(207\) 4073.81 1.36787
\(208\) 5511.80 1.83738
\(209\) −279.953 −0.0926544
\(210\) 0 0
\(211\) −3662.54 −1.19497 −0.597487 0.801879i \(-0.703834\pi\)
−0.597487 + 0.801879i \(0.703834\pi\)
\(212\) 228.739 0.0741030
\(213\) 703.584 0.226332
\(214\) −206.186 −0.0658625
\(215\) 0 0
\(216\) −167.041 −0.0526189
\(217\) −3052.18 −0.954819
\(218\) 102.131 0.0317303
\(219\) 375.413 0.115836
\(220\) 0 0
\(221\) 1504.46 0.457922
\(222\) 70.5359 0.0213246
\(223\) 2869.99 0.861832 0.430916 0.902392i \(-0.358191\pi\)
0.430916 + 0.902392i \(0.358191\pi\)
\(224\) 741.561 0.221195
\(225\) 0 0
\(226\) 289.764 0.0852867
\(227\) −4512.32 −1.31935 −0.659677 0.751549i \(-0.729307\pi\)
−0.659677 + 0.751549i \(0.729307\pi\)
\(228\) −462.031 −0.134205
\(229\) −422.427 −0.121899 −0.0609493 0.998141i \(-0.519413\pi\)
−0.0609493 + 0.998141i \(0.519413\pi\)
\(230\) 0 0
\(231\) −37.5561 −0.0106970
\(232\) 120.892 0.0342111
\(233\) −1939.48 −0.545319 −0.272660 0.962111i \(-0.587903\pi\)
−0.272660 + 0.962111i \(0.587903\pi\)
\(234\) −627.538 −0.175314
\(235\) 0 0
\(236\) 6598.77 1.82010
\(237\) −203.441 −0.0557593
\(238\) 66.4524 0.0180986
\(239\) 3198.28 0.865605 0.432803 0.901489i \(-0.357525\pi\)
0.432803 + 0.901489i \(0.357525\pi\)
\(240\) 0 0
\(241\) 2855.26 0.763169 0.381584 0.924334i \(-0.375379\pi\)
0.381584 + 0.924334i \(0.375379\pi\)
\(242\) −353.327 −0.0938541
\(243\) −1558.84 −0.411520
\(244\) 3981.46 1.04462
\(245\) 0 0
\(246\) −81.9821 −0.0212479
\(247\) −7045.08 −1.81485
\(248\) 892.937 0.228635
\(249\) −210.998 −0.0537005
\(250\) 0 0
\(251\) −5912.18 −1.48675 −0.743373 0.668877i \(-0.766775\pi\)
−0.743373 + 0.668877i \(0.766775\pi\)
\(252\) 3060.84 0.765139
\(253\) −541.345 −0.134522
\(254\) 121.057 0.0299048
\(255\) 0 0
\(256\) 3733.33 0.911457
\(257\) 2911.01 0.706553 0.353276 0.935519i \(-0.385067\pi\)
0.353276 + 0.935519i \(0.385067\pi\)
\(258\) 47.7671 0.0115266
\(259\) −5245.97 −1.25857
\(260\) 0 0
\(261\) 749.613 0.177777
\(262\) −160.914 −0.0379439
\(263\) 786.792 0.184470 0.0922351 0.995737i \(-0.470599\pi\)
0.0922351 + 0.995737i \(0.470599\pi\)
\(264\) 10.9873 0.00256144
\(265\) 0 0
\(266\) −311.184 −0.0717289
\(267\) 1015.49 0.232760
\(268\) −4403.89 −1.00377
\(269\) 256.876 0.0582231 0.0291115 0.999576i \(-0.490732\pi\)
0.0291115 + 0.999576i \(0.490732\pi\)
\(270\) 0 0
\(271\) −1617.40 −0.362546 −0.181273 0.983433i \(-0.558022\pi\)
−0.181273 + 0.983433i \(0.558022\pi\)
\(272\) 1058.79 0.236025
\(273\) −945.108 −0.209526
\(274\) −396.396 −0.0873983
\(275\) 0 0
\(276\) −893.428 −0.194848
\(277\) −1622.33 −0.351901 −0.175950 0.984399i \(-0.556300\pi\)
−0.175950 + 0.984399i \(0.556300\pi\)
\(278\) 252.308 0.0544332
\(279\) 5536.80 1.18810
\(280\) 0 0
\(281\) −694.753 −0.147493 −0.0737464 0.997277i \(-0.523496\pi\)
−0.0737464 + 0.997277i \(0.523496\pi\)
\(282\) −31.4126 −0.00663330
\(283\) 3564.53 0.748725 0.374363 0.927282i \(-0.377862\pi\)
0.374363 + 0.927282i \(0.377862\pi\)
\(284\) 7619.91 1.59211
\(285\) 0 0
\(286\) 83.3899 0.0172411
\(287\) 6097.26 1.25404
\(288\) −1345.22 −0.275236
\(289\) 289.000 0.0588235
\(290\) 0 0
\(291\) −182.408 −0.0367455
\(292\) 4065.77 0.814832
\(293\) −2382.23 −0.474988 −0.237494 0.971389i \(-0.576326\pi\)
−0.237494 + 0.971389i \(0.576326\pi\)
\(294\) 25.5345 0.00506532
\(295\) 0 0
\(296\) 1534.74 0.301369
\(297\) 137.637 0.0268905
\(298\) 650.567 0.126464
\(299\) −13623.0 −2.63492
\(300\) 0 0
\(301\) −3552.59 −0.680291
\(302\) −516.591 −0.0984321
\(303\) −726.297 −0.137705
\(304\) −4958.13 −0.935422
\(305\) 0 0
\(306\) −120.548 −0.0225204
\(307\) −7795.16 −1.44916 −0.724582 0.689188i \(-0.757967\pi\)
−0.724582 + 0.689188i \(0.757967\pi\)
\(308\) −406.738 −0.0752469
\(309\) 433.479 0.0798051
\(310\) 0 0
\(311\) 595.429 0.108565 0.0542824 0.998526i \(-0.482713\pi\)
0.0542824 + 0.998526i \(0.482713\pi\)
\(312\) 276.497 0.0501717
\(313\) −3297.09 −0.595408 −0.297704 0.954658i \(-0.596221\pi\)
−0.297704 + 0.954658i \(0.596221\pi\)
\(314\) −874.659 −0.157197
\(315\) 0 0
\(316\) −2203.30 −0.392231
\(317\) −3437.55 −0.609060 −0.304530 0.952503i \(-0.598499\pi\)
−0.304530 + 0.952503i \(0.598499\pi\)
\(318\) 5.65924 0.000997970 0
\(319\) −99.6117 −0.0174833
\(320\) 0 0
\(321\) 563.310 0.0979468
\(322\) −601.735 −0.104141
\(323\) −1353.33 −0.233131
\(324\) −5437.79 −0.932406
\(325\) 0 0
\(326\) 866.180 0.147157
\(327\) −279.028 −0.0471874
\(328\) −1783.79 −0.300285
\(329\) 2336.25 0.391494
\(330\) 0 0
\(331\) −7103.74 −1.17963 −0.589814 0.807539i \(-0.700799\pi\)
−0.589814 + 0.807539i \(0.700799\pi\)
\(332\) −2285.13 −0.377750
\(333\) 9516.42 1.56606
\(334\) 923.530 0.151297
\(335\) 0 0
\(336\) −665.140 −0.107995
\(337\) 7973.12 1.28879 0.644397 0.764691i \(-0.277108\pi\)
0.644397 + 0.764691i \(0.277108\pi\)
\(338\) 1509.84 0.242972
\(339\) −791.649 −0.126833
\(340\) 0 0
\(341\) −735.753 −0.116842
\(342\) 564.501 0.0892536
\(343\) −6902.92 −1.08666
\(344\) 1039.33 0.162898
\(345\) 0 0
\(346\) 611.365 0.0949918
\(347\) −1456.46 −0.225322 −0.112661 0.993633i \(-0.535937\pi\)
−0.112661 + 0.993633i \(0.535937\pi\)
\(348\) −164.398 −0.0253237
\(349\) −3582.83 −0.549526 −0.274763 0.961512i \(-0.588599\pi\)
−0.274763 + 0.961512i \(0.588599\pi\)
\(350\) 0 0
\(351\) 3463.65 0.526712
\(352\) 178.759 0.0270679
\(353\) 173.891 0.0262190 0.0131095 0.999914i \(-0.495827\pi\)
0.0131095 + 0.999914i \(0.495827\pi\)
\(354\) 163.261 0.0245119
\(355\) 0 0
\(356\) 10997.9 1.63732
\(357\) −181.551 −0.0269152
\(358\) 54.2034 0.00800207
\(359\) 4327.95 0.636269 0.318134 0.948046i \(-0.396944\pi\)
0.318134 + 0.948046i \(0.396944\pi\)
\(360\) 0 0
\(361\) −521.615 −0.0760482
\(362\) −973.343 −0.141320
\(363\) 965.306 0.139574
\(364\) −10235.6 −1.47388
\(365\) 0 0
\(366\) 98.5057 0.0140682
\(367\) −8700.38 −1.23748 −0.618741 0.785595i \(-0.712357\pi\)
−0.618741 + 0.785595i \(0.712357\pi\)
\(368\) −9587.52 −1.35811
\(369\) −11060.7 −1.56043
\(370\) 0 0
\(371\) −420.895 −0.0588997
\(372\) −1214.28 −0.169240
\(373\) 7208.52 1.00065 0.500326 0.865837i \(-0.333214\pi\)
0.500326 + 0.865837i \(0.333214\pi\)
\(374\) 16.0189 0.00221475
\(375\) 0 0
\(376\) −683.485 −0.0937448
\(377\) −2506.75 −0.342451
\(378\) 152.991 0.0208175
\(379\) −8226.89 −1.11500 −0.557502 0.830175i \(-0.688240\pi\)
−0.557502 + 0.830175i \(0.688240\pi\)
\(380\) 0 0
\(381\) −330.735 −0.0444726
\(382\) 154.957 0.0207547
\(383\) −6579.76 −0.877833 −0.438916 0.898528i \(-0.644638\pi\)
−0.438916 + 0.898528i \(0.644638\pi\)
\(384\) 392.755 0.0521946
\(385\) 0 0
\(386\) −412.189 −0.0543520
\(387\) 6444.55 0.846498
\(388\) −1975.50 −0.258482
\(389\) 10161.7 1.32446 0.662232 0.749299i \(-0.269610\pi\)
0.662232 + 0.749299i \(0.269610\pi\)
\(390\) 0 0
\(391\) −2616.93 −0.338475
\(392\) 555.588 0.0715853
\(393\) 439.626 0.0564279
\(394\) 211.150 0.0269990
\(395\) 0 0
\(396\) 737.840 0.0936310
\(397\) 5489.07 0.693925 0.346963 0.937879i \(-0.387213\pi\)
0.346963 + 0.937879i \(0.387213\pi\)
\(398\) 143.559 0.0180803
\(399\) 850.170 0.106671
\(400\) 0 0
\(401\) 5892.63 0.733825 0.366912 0.930255i \(-0.380415\pi\)
0.366912 + 0.930255i \(0.380415\pi\)
\(402\) −108.957 −0.0135181
\(403\) −18515.4 −2.28862
\(404\) −7865.89 −0.968670
\(405\) 0 0
\(406\) −110.724 −0.0135348
\(407\) −1264.58 −0.154012
\(408\) 53.1140 0.00644494
\(409\) 4317.28 0.521946 0.260973 0.965346i \(-0.415957\pi\)
0.260973 + 0.965346i \(0.415957\pi\)
\(410\) 0 0
\(411\) 1082.97 0.129974
\(412\) 4694.63 0.561379
\(413\) −12142.2 −1.44668
\(414\) 1091.57 0.129584
\(415\) 0 0
\(416\) 4498.50 0.530186
\(417\) −689.318 −0.0809498
\(418\) −75.0132 −0.00877755
\(419\) −12364.2 −1.44160 −0.720799 0.693144i \(-0.756225\pi\)
−0.720799 + 0.693144i \(0.756225\pi\)
\(420\) 0 0
\(421\) 12077.2 1.39812 0.699059 0.715064i \(-0.253602\pi\)
0.699059 + 0.715064i \(0.253602\pi\)
\(422\) −981.374 −0.113205
\(423\) −4238.06 −0.487143
\(424\) 123.136 0.0141038
\(425\) 0 0
\(426\) 188.525 0.0214415
\(427\) −7326.17 −0.830300
\(428\) 6100.72 0.688994
\(429\) −227.825 −0.0256399
\(430\) 0 0
\(431\) 8966.16 1.00205 0.501026 0.865432i \(-0.332956\pi\)
0.501026 + 0.865432i \(0.332956\pi\)
\(432\) 2437.62 0.271482
\(433\) 294.478 0.0326829 0.0163414 0.999866i \(-0.494798\pi\)
0.0163414 + 0.999866i \(0.494798\pi\)
\(434\) −817.830 −0.0904542
\(435\) 0 0
\(436\) −3021.91 −0.331934
\(437\) 12254.6 1.34146
\(438\) 100.591 0.0109736
\(439\) 6088.60 0.661943 0.330971 0.943641i \(-0.392624\pi\)
0.330971 + 0.943641i \(0.392624\pi\)
\(440\) 0 0
\(441\) 3445.02 0.371992
\(442\) 403.118 0.0433809
\(443\) 11491.1 1.23241 0.616206 0.787585i \(-0.288669\pi\)
0.616206 + 0.787585i \(0.288669\pi\)
\(444\) −2087.05 −0.223079
\(445\) 0 0
\(446\) 769.011 0.0816451
\(447\) −1777.38 −0.188070
\(448\) −7070.09 −0.745603
\(449\) 1292.46 0.135846 0.0679230 0.997691i \(-0.478363\pi\)
0.0679230 + 0.997691i \(0.478363\pi\)
\(450\) 0 0
\(451\) 1469.79 0.153459
\(452\) −8573.66 −0.892192
\(453\) 1411.35 0.146382
\(454\) −1209.07 −0.124988
\(455\) 0 0
\(456\) −248.723 −0.0255428
\(457\) −8532.20 −0.873346 −0.436673 0.899620i \(-0.643843\pi\)
−0.436673 + 0.899620i \(0.643843\pi\)
\(458\) −113.189 −0.0115480
\(459\) 665.353 0.0676602
\(460\) 0 0
\(461\) 11874.1 1.19964 0.599818 0.800136i \(-0.295240\pi\)
0.599818 + 0.800136i \(0.295240\pi\)
\(462\) −10.0631 −0.00101338
\(463\) 4687.65 0.470526 0.235263 0.971932i \(-0.424405\pi\)
0.235263 + 0.971932i \(0.424405\pi\)
\(464\) −1764.18 −0.176509
\(465\) 0 0
\(466\) −519.681 −0.0516605
\(467\) 9989.29 0.989827 0.494914 0.868942i \(-0.335200\pi\)
0.494914 + 0.868942i \(0.335200\pi\)
\(468\) 18567.9 1.83398
\(469\) 8103.47 0.797833
\(470\) 0 0
\(471\) 2389.61 0.233774
\(472\) 3552.28 0.346413
\(473\) −856.379 −0.0832481
\(474\) −54.5120 −0.00528232
\(475\) 0 0
\(476\) −1966.22 −0.189331
\(477\) 763.522 0.0732899
\(478\) 856.977 0.0820026
\(479\) 5516.08 0.526171 0.263086 0.964772i \(-0.415260\pi\)
0.263086 + 0.964772i \(0.415260\pi\)
\(480\) 0 0
\(481\) −31823.4 −3.01668
\(482\) 765.066 0.0722983
\(483\) 1643.97 0.154872
\(484\) 10454.4 0.981817
\(485\) 0 0
\(486\) −417.689 −0.0389851
\(487\) −4386.22 −0.408129 −0.204064 0.978957i \(-0.565415\pi\)
−0.204064 + 0.978957i \(0.565415\pi\)
\(488\) 2143.32 0.198819
\(489\) −2366.45 −0.218843
\(490\) 0 0
\(491\) −13513.6 −1.24208 −0.621041 0.783778i \(-0.713290\pi\)
−0.621041 + 0.783778i \(0.713290\pi\)
\(492\) 2425.73 0.222277
\(493\) −481.536 −0.0439905
\(494\) −1887.72 −0.171928
\(495\) 0 0
\(496\) −13030.6 −1.17962
\(497\) −14021.2 −1.26546
\(498\) −56.5366 −0.00508728
\(499\) −9724.59 −0.872410 −0.436205 0.899847i \(-0.643678\pi\)
−0.436205 + 0.899847i \(0.643678\pi\)
\(500\) 0 0
\(501\) −2523.13 −0.225000
\(502\) −1584.16 −0.140846
\(503\) −12490.0 −1.10716 −0.553582 0.832795i \(-0.686739\pi\)
−0.553582 + 0.832795i \(0.686739\pi\)
\(504\) 1647.73 0.145626
\(505\) 0 0
\(506\) −145.053 −0.0127438
\(507\) −4124.96 −0.361333
\(508\) −3581.90 −0.312837
\(509\) −10366.0 −0.902682 −0.451341 0.892351i \(-0.649054\pi\)
−0.451341 + 0.892351i \(0.649054\pi\)
\(510\) 0 0
\(511\) −7481.30 −0.647658
\(512\) 5292.45 0.456827
\(513\) −3115.72 −0.268153
\(514\) 780.004 0.0669348
\(515\) 0 0
\(516\) −1413.36 −0.120580
\(517\) 563.171 0.0479076
\(518\) −1405.65 −0.119229
\(519\) −1670.28 −0.141266
\(520\) 0 0
\(521\) −10787.8 −0.907144 −0.453572 0.891220i \(-0.649850\pi\)
−0.453572 + 0.891220i \(0.649850\pi\)
\(522\) 200.858 0.0168416
\(523\) −19147.5 −1.60088 −0.800442 0.599410i \(-0.795402\pi\)
−0.800442 + 0.599410i \(0.795402\pi\)
\(524\) 4761.20 0.396935
\(525\) 0 0
\(526\) 210.820 0.0174757
\(527\) −3556.73 −0.293991
\(528\) −160.337 −0.0132155
\(529\) 11529.6 0.947616
\(530\) 0 0
\(531\) 22026.5 1.80013
\(532\) 9207.45 0.750364
\(533\) 36987.6 3.00584
\(534\) 272.099 0.0220503
\(535\) 0 0
\(536\) −2370.72 −0.191044
\(537\) −148.087 −0.0119002
\(538\) 68.8297 0.00551572
\(539\) −457.788 −0.0365832
\(540\) 0 0
\(541\) −5507.20 −0.437658 −0.218829 0.975763i \(-0.570224\pi\)
−0.218829 + 0.975763i \(0.570224\pi\)
\(542\) −433.381 −0.0343456
\(543\) 2659.22 0.210162
\(544\) 864.144 0.0681064
\(545\) 0 0
\(546\) −253.241 −0.0198493
\(547\) −17254.5 −1.34872 −0.674359 0.738404i \(-0.735580\pi\)
−0.674359 + 0.738404i \(0.735580\pi\)
\(548\) 11728.7 0.914283
\(549\) 13290.0 1.03316
\(550\) 0 0
\(551\) 2254.94 0.174344
\(552\) −480.954 −0.0370847
\(553\) 4054.22 0.311760
\(554\) −434.703 −0.0333371
\(555\) 0 0
\(556\) −7465.41 −0.569431
\(557\) 11671.0 0.887824 0.443912 0.896071i \(-0.353590\pi\)
0.443912 + 0.896071i \(0.353590\pi\)
\(558\) 1483.58 0.112554
\(559\) −21550.9 −1.63060
\(560\) 0 0
\(561\) −43.7644 −0.00329364
\(562\) −186.158 −0.0139726
\(563\) 15361.6 1.14994 0.574968 0.818176i \(-0.305014\pi\)
0.574968 + 0.818176i \(0.305014\pi\)
\(564\) 929.449 0.0693916
\(565\) 0 0
\(566\) 955.112 0.0709300
\(567\) 10005.9 0.741110
\(568\) 4101.99 0.303020
\(569\) 11898.7 0.876659 0.438330 0.898814i \(-0.355570\pi\)
0.438330 + 0.898814i \(0.355570\pi\)
\(570\) 0 0
\(571\) 11971.8 0.877415 0.438707 0.898630i \(-0.355437\pi\)
0.438707 + 0.898630i \(0.355437\pi\)
\(572\) −2467.38 −0.180361
\(573\) −423.350 −0.0308651
\(574\) 1633.76 0.118801
\(575\) 0 0
\(576\) 12825.5 0.927767
\(577\) 1260.22 0.0909248 0.0454624 0.998966i \(-0.485524\pi\)
0.0454624 + 0.998966i \(0.485524\pi\)
\(578\) 77.4373 0.00557261
\(579\) 1126.12 0.0808290
\(580\) 0 0
\(581\) 4204.80 0.300249
\(582\) −48.8761 −0.00348107
\(583\) −101.460 −0.00720763
\(584\) 2188.70 0.155084
\(585\) 0 0
\(586\) −638.317 −0.0449977
\(587\) 26168.6 1.84002 0.920012 0.391890i \(-0.128179\pi\)
0.920012 + 0.391890i \(0.128179\pi\)
\(588\) −755.527 −0.0529888
\(589\) 16655.5 1.16515
\(590\) 0 0
\(591\) −576.873 −0.0401513
\(592\) −22396.5 −1.55488
\(593\) 18065.1 1.25100 0.625502 0.780222i \(-0.284894\pi\)
0.625502 + 0.780222i \(0.284894\pi\)
\(594\) 36.8796 0.00254746
\(595\) 0 0
\(596\) −19249.3 −1.32295
\(597\) −392.211 −0.0268880
\(598\) −3650.28 −0.249617
\(599\) 19324.5 1.31816 0.659079 0.752074i \(-0.270946\pi\)
0.659079 + 0.752074i \(0.270946\pi\)
\(600\) 0 0
\(601\) 468.279 0.0317829 0.0158914 0.999874i \(-0.494941\pi\)
0.0158914 + 0.999874i \(0.494941\pi\)
\(602\) −951.913 −0.0644470
\(603\) −14700.1 −0.992757
\(604\) 15285.1 1.02971
\(605\) 0 0
\(606\) −194.611 −0.0130454
\(607\) −14125.2 −0.944523 −0.472261 0.881459i \(-0.656562\pi\)
−0.472261 + 0.881459i \(0.656562\pi\)
\(608\) −4046.62 −0.269921
\(609\) 302.504 0.0201282
\(610\) 0 0
\(611\) 14172.3 0.938379
\(612\) 3566.82 0.235588
\(613\) 11132.7 0.733515 0.366757 0.930317i \(-0.380468\pi\)
0.366757 + 0.930317i \(0.380468\pi\)
\(614\) −2088.71 −0.137286
\(615\) 0 0
\(616\) −218.957 −0.0143215
\(617\) 20287.0 1.32370 0.661852 0.749635i \(-0.269771\pi\)
0.661852 + 0.749635i \(0.269771\pi\)
\(618\) 116.150 0.00756028
\(619\) 7693.25 0.499544 0.249772 0.968305i \(-0.419644\pi\)
0.249772 + 0.968305i \(0.419644\pi\)
\(620\) 0 0
\(621\) −6024.86 −0.389322
\(622\) 159.545 0.0102848
\(623\) −20236.8 −1.30140
\(624\) −4034.92 −0.258856
\(625\) 0 0
\(626\) −883.454 −0.0564056
\(627\) 204.940 0.0130535
\(628\) 25879.8 1.64445
\(629\) −6113.16 −0.387516
\(630\) 0 0
\(631\) 2944.36 0.185758 0.0928788 0.995677i \(-0.470393\pi\)
0.0928788 + 0.995677i \(0.470393\pi\)
\(632\) −1186.09 −0.0746521
\(633\) 2681.16 0.168352
\(634\) −921.089 −0.0576989
\(635\) 0 0
\(636\) −167.448 −0.0104399
\(637\) −11520.3 −0.716565
\(638\) −26.6909 −0.00165627
\(639\) 25435.0 1.57464
\(640\) 0 0
\(641\) 3174.60 0.195615 0.0978075 0.995205i \(-0.468817\pi\)
0.0978075 + 0.995205i \(0.468817\pi\)
\(642\) 150.939 0.00927892
\(643\) −13368.1 −0.819888 −0.409944 0.912111i \(-0.634452\pi\)
−0.409944 + 0.912111i \(0.634452\pi\)
\(644\) 17804.4 1.08943
\(645\) 0 0
\(646\) −362.624 −0.0220855
\(647\) 27235.3 1.65492 0.827458 0.561527i \(-0.189786\pi\)
0.827458 + 0.561527i \(0.189786\pi\)
\(648\) −2927.30 −0.177462
\(649\) −2926.97 −0.177032
\(650\) 0 0
\(651\) 2234.35 0.134518
\(652\) −25628.9 −1.53943
\(653\) −23322.4 −1.39767 −0.698833 0.715285i \(-0.746297\pi\)
−0.698833 + 0.715285i \(0.746297\pi\)
\(654\) −74.7653 −0.00447027
\(655\) 0 0
\(656\) 26030.9 1.54929
\(657\) 13571.4 0.805892
\(658\) 625.996 0.0370879
\(659\) −3387.03 −0.200213 −0.100106 0.994977i \(-0.531918\pi\)
−0.100106 + 0.994977i \(0.531918\pi\)
\(660\) 0 0
\(661\) 3070.54 0.180681 0.0903406 0.995911i \(-0.471204\pi\)
0.0903406 + 0.995911i \(0.471204\pi\)
\(662\) −1903.44 −0.111751
\(663\) −1101.34 −0.0645135
\(664\) −1230.14 −0.0718958
\(665\) 0 0
\(666\) 2549.92 0.148359
\(667\) 4360.37 0.253125
\(668\) −27325.8 −1.58274
\(669\) −2100.98 −0.121418
\(670\) 0 0
\(671\) −1766.03 −0.101605
\(672\) −542.860 −0.0311626
\(673\) 22497.5 1.28858 0.644290 0.764781i \(-0.277153\pi\)
0.644290 + 0.764781i \(0.277153\pi\)
\(674\) 2136.39 0.122093
\(675\) 0 0
\(676\) −44673.8 −2.54175
\(677\) 7304.72 0.414687 0.207344 0.978268i \(-0.433518\pi\)
0.207344 + 0.978268i \(0.433518\pi\)
\(678\) −212.122 −0.0120155
\(679\) 3635.07 0.205451
\(680\) 0 0
\(681\) 3303.25 0.185875
\(682\) −197.144 −0.0110690
\(683\) 35085.9 1.96563 0.982814 0.184600i \(-0.0590989\pi\)
0.982814 + 0.184600i \(0.0590989\pi\)
\(684\) −16702.7 −0.933690
\(685\) 0 0
\(686\) −1849.63 −0.102944
\(687\) 309.238 0.0171735
\(688\) −15166.9 −0.840457
\(689\) −2553.26 −0.141178
\(690\) 0 0
\(691\) 10233.0 0.563362 0.281681 0.959508i \(-0.409108\pi\)
0.281681 + 0.959508i \(0.409108\pi\)
\(692\) −18089.3 −0.993719
\(693\) −1357.68 −0.0744213
\(694\) −390.257 −0.0213458
\(695\) 0 0
\(696\) −88.4994 −0.00481977
\(697\) 7105.17 0.386123
\(698\) −960.017 −0.0520590
\(699\) 1419.80 0.0768263
\(700\) 0 0
\(701\) −1521.72 −0.0819892 −0.0409946 0.999159i \(-0.513053\pi\)
−0.0409946 + 0.999159i \(0.513053\pi\)
\(702\) 928.082 0.0498977
\(703\) 28626.7 1.53581
\(704\) −1704.30 −0.0912404
\(705\) 0 0
\(706\) 46.5941 0.00248384
\(707\) 14473.8 0.769934
\(708\) −4830.63 −0.256421
\(709\) 3525.10 0.186725 0.0933624 0.995632i \(-0.470238\pi\)
0.0933624 + 0.995632i \(0.470238\pi\)
\(710\) 0 0
\(711\) −7354.54 −0.387928
\(712\) 5920.42 0.311625
\(713\) 32206.6 1.69165
\(714\) −48.6465 −0.00254979
\(715\) 0 0
\(716\) −1603.80 −0.0837104
\(717\) −2341.31 −0.121949
\(718\) 1159.67 0.0602765
\(719\) −19858.2 −1.03002 −0.515011 0.857184i \(-0.672212\pi\)
−0.515011 + 0.857184i \(0.672212\pi\)
\(720\) 0 0
\(721\) −8638.46 −0.446204
\(722\) −139.766 −0.00720438
\(723\) −2090.20 −0.107518
\(724\) 28799.7 1.47836
\(725\) 0 0
\(726\) 258.653 0.0132225
\(727\) −1726.71 −0.0880880 −0.0440440 0.999030i \(-0.514024\pi\)
−0.0440440 + 0.999030i \(0.514024\pi\)
\(728\) −5510.10 −0.280519
\(729\) −17377.6 −0.882873
\(730\) 0 0
\(731\) −4139.85 −0.209463
\(732\) −2914.63 −0.147169
\(733\) 785.389 0.0395757 0.0197879 0.999804i \(-0.493701\pi\)
0.0197879 + 0.999804i \(0.493701\pi\)
\(734\) −2331.26 −0.117232
\(735\) 0 0
\(736\) −7824.93 −0.391890
\(737\) 1953.41 0.0976318
\(738\) −2963.71 −0.147826
\(739\) −16332.6 −0.812999 −0.406499 0.913651i \(-0.633251\pi\)
−0.406499 + 0.913651i \(0.633251\pi\)
\(740\) 0 0
\(741\) 5157.35 0.255682
\(742\) −112.779 −0.00557983
\(743\) −872.429 −0.0430772 −0.0215386 0.999768i \(-0.506856\pi\)
−0.0215386 + 0.999768i \(0.506856\pi\)
\(744\) −653.675 −0.0322109
\(745\) 0 0
\(746\) 1931.52 0.0947960
\(747\) −7627.70 −0.373605
\(748\) −473.974 −0.0231687
\(749\) −11225.8 −0.547637
\(750\) 0 0
\(751\) 38661.9 1.87855 0.939275 0.343165i \(-0.111499\pi\)
0.939275 + 0.343165i \(0.111499\pi\)
\(752\) 9974.07 0.483666
\(753\) 4328.02 0.209458
\(754\) −671.681 −0.0324419
\(755\) 0 0
\(756\) −4526.76 −0.217773
\(757\) −8857.80 −0.425287 −0.212644 0.977130i \(-0.568207\pi\)
−0.212644 + 0.977130i \(0.568207\pi\)
\(758\) −2204.39 −0.105629
\(759\) 396.292 0.0189519
\(760\) 0 0
\(761\) −38965.2 −1.85609 −0.928047 0.372464i \(-0.878513\pi\)
−0.928047 + 0.372464i \(0.878513\pi\)
\(762\) −88.6202 −0.00421309
\(763\) 5560.52 0.263833
\(764\) −4584.94 −0.217117
\(765\) 0 0
\(766\) −1763.04 −0.0831609
\(767\) −73657.8 −3.46757
\(768\) −2732.99 −0.128409
\(769\) 27086.5 1.27017 0.635086 0.772441i \(-0.280965\pi\)
0.635086 + 0.772441i \(0.280965\pi\)
\(770\) 0 0
\(771\) −2131.01 −0.0995415
\(772\) 12196.0 0.568581
\(773\) 1285.94 0.0598346 0.0299173 0.999552i \(-0.490476\pi\)
0.0299173 + 0.999552i \(0.490476\pi\)
\(774\) 1726.81 0.0801925
\(775\) 0 0
\(776\) −1063.46 −0.0491960
\(777\) 3840.32 0.177311
\(778\) 2722.81 0.125472
\(779\) −33272.1 −1.53029
\(780\) 0 0
\(781\) −3379.91 −0.154856
\(782\) −701.205 −0.0320653
\(783\) −1108.62 −0.0505989
\(784\) −8107.68 −0.369337
\(785\) 0 0
\(786\) 117.797 0.00534566
\(787\) 32037.1 1.45108 0.725541 0.688179i \(-0.241590\pi\)
0.725541 + 0.688179i \(0.241590\pi\)
\(788\) −6247.61 −0.282439
\(789\) −575.972 −0.0259888
\(790\) 0 0
\(791\) 15776.1 0.709147
\(792\) 397.198 0.0178205
\(793\) −44442.5 −1.99016
\(794\) 1470.79 0.0657385
\(795\) 0 0
\(796\) −4247.69 −0.189140
\(797\) 9820.04 0.436441 0.218221 0.975899i \(-0.429975\pi\)
0.218221 + 0.975899i \(0.429975\pi\)
\(798\) 227.802 0.0101054
\(799\) 2722.44 0.120542
\(800\) 0 0
\(801\) 36710.5 1.61935
\(802\) 1578.93 0.0695184
\(803\) −1803.42 −0.0792546
\(804\) 3223.87 0.141414
\(805\) 0 0
\(806\) −4961.17 −0.216811
\(807\) −188.046 −0.00820265
\(808\) −4234.41 −0.184364
\(809\) −11298.4 −0.491013 −0.245506 0.969395i \(-0.578954\pi\)
−0.245506 + 0.969395i \(0.578954\pi\)
\(810\) 0 0
\(811\) −33456.5 −1.44860 −0.724302 0.689483i \(-0.757838\pi\)
−0.724302 + 0.689483i \(0.757838\pi\)
\(812\) 3276.15 0.141589
\(813\) 1184.02 0.0510767
\(814\) −338.844 −0.0145903
\(815\) 0 0
\(816\) −775.091 −0.0332520
\(817\) 19386.1 0.830152
\(818\) 1156.81 0.0494462
\(819\) −34166.2 −1.45771
\(820\) 0 0
\(821\) −42691.4 −1.81479 −0.907394 0.420280i \(-0.861932\pi\)
−0.907394 + 0.420280i \(0.861932\pi\)
\(822\) 290.182 0.0123130
\(823\) −19073.6 −0.807854 −0.403927 0.914791i \(-0.632355\pi\)
−0.403927 + 0.914791i \(0.632355\pi\)
\(824\) 2527.24 0.106845
\(825\) 0 0
\(826\) −3253.49 −0.137050
\(827\) 36029.9 1.51497 0.757486 0.652852i \(-0.226427\pi\)
0.757486 + 0.652852i \(0.226427\pi\)
\(828\) −32298.0 −1.35559
\(829\) 15725.4 0.658827 0.329413 0.944186i \(-0.393149\pi\)
0.329413 + 0.944186i \(0.393149\pi\)
\(830\) 0 0
\(831\) 1187.63 0.0495769
\(832\) −42889.0 −1.78715
\(833\) −2213.01 −0.0920482
\(834\) −184.702 −0.00766873
\(835\) 0 0
\(836\) 2219.53 0.0918229
\(837\) −8188.51 −0.338156
\(838\) −3312.97 −0.136569
\(839\) −31204.9 −1.28404 −0.642021 0.766687i \(-0.721904\pi\)
−0.642021 + 0.766687i \(0.721904\pi\)
\(840\) 0 0
\(841\) −23586.7 −0.967102
\(842\) 3236.08 0.132450
\(843\) 508.594 0.0207793
\(844\) 29037.3 1.18425
\(845\) 0 0
\(846\) −1135.58 −0.0461491
\(847\) −19236.8 −0.780384
\(848\) −1796.91 −0.0727669
\(849\) −2609.42 −0.105483
\(850\) 0 0
\(851\) 55355.4 2.22980
\(852\) −5578.16 −0.224301
\(853\) 5921.82 0.237701 0.118851 0.992912i \(-0.462079\pi\)
0.118851 + 0.992912i \(0.462079\pi\)
\(854\) −1963.04 −0.0786580
\(855\) 0 0
\(856\) 3284.17 0.131134
\(857\) −41898.6 −1.67004 −0.835022 0.550216i \(-0.814545\pi\)
−0.835022 + 0.550216i \(0.814545\pi\)
\(858\) −61.0457 −0.00242898
\(859\) 26802.0 1.06458 0.532289 0.846563i \(-0.321332\pi\)
0.532289 + 0.846563i \(0.321332\pi\)
\(860\) 0 0
\(861\) −4463.51 −0.176674
\(862\) 2402.47 0.0949288
\(863\) −30601.3 −1.20704 −0.603522 0.797346i \(-0.706236\pi\)
−0.603522 + 0.797346i \(0.706236\pi\)
\(864\) 1989.49 0.0783376
\(865\) 0 0
\(866\) 78.9050 0.00309619
\(867\) −211.563 −0.00828725
\(868\) 24198.3 0.946250
\(869\) 977.302 0.0381504
\(870\) 0 0
\(871\) 49157.8 1.91234
\(872\) −1626.77 −0.0631758
\(873\) −6594.17 −0.255646
\(874\) 3283.60 0.127082
\(875\) 0 0
\(876\) −2976.35 −0.114796
\(877\) 9324.64 0.359031 0.179516 0.983755i \(-0.442547\pi\)
0.179516 + 0.983755i \(0.442547\pi\)
\(878\) 1631.43 0.0627087
\(879\) 1743.91 0.0669178
\(880\) 0 0
\(881\) 41605.3 1.59106 0.795528 0.605917i \(-0.207194\pi\)
0.795528 + 0.605917i \(0.207194\pi\)
\(882\) 923.089 0.0352404
\(883\) 27653.1 1.05391 0.526953 0.849894i \(-0.323334\pi\)
0.526953 + 0.849894i \(0.323334\pi\)
\(884\) −11927.6 −0.453812
\(885\) 0 0
\(886\) 3079.03 0.116752
\(887\) −9467.39 −0.358381 −0.179191 0.983814i \(-0.557348\pi\)
−0.179191 + 0.983814i \(0.557348\pi\)
\(888\) −1123.51 −0.0424578
\(889\) 6590.96 0.248654
\(890\) 0 0
\(891\) 2412.01 0.0906905
\(892\) −22753.8 −0.854097
\(893\) −12748.7 −0.477735
\(894\) −476.248 −0.0178167
\(895\) 0 0
\(896\) −7826.91 −0.291829
\(897\) 9972.76 0.371216
\(898\) 346.313 0.0128693
\(899\) 5926.27 0.219858
\(900\) 0 0
\(901\) −490.471 −0.0181354
\(902\) 393.830 0.0145378
\(903\) 2600.67 0.0958417
\(904\) −4615.41 −0.169808
\(905\) 0 0
\(906\) 378.171 0.0138674
\(907\) −13047.1 −0.477642 −0.238821 0.971064i \(-0.576761\pi\)
−0.238821 + 0.971064i \(0.576761\pi\)
\(908\) 35774.6 1.30751
\(909\) −26256.1 −0.958042
\(910\) 0 0
\(911\) 39715.3 1.44437 0.722187 0.691697i \(-0.243137\pi\)
0.722187 + 0.691697i \(0.243137\pi\)
\(912\) 3629.60 0.131785
\(913\) 1013.60 0.0367418
\(914\) −2286.19 −0.0827359
\(915\) 0 0
\(916\) 3349.09 0.120805
\(917\) −8760.95 −0.315498
\(918\) 178.281 0.00640975
\(919\) −32719.0 −1.17443 −0.587215 0.809431i \(-0.699776\pi\)
−0.587215 + 0.809431i \(0.699776\pi\)
\(920\) 0 0
\(921\) 5706.45 0.204163
\(922\) 3181.66 0.113647
\(923\) −85056.1 −3.03321
\(924\) 297.753 0.0106010
\(925\) 0 0
\(926\) 1256.05 0.0445750
\(927\) 15670.5 0.555219
\(928\) −1439.85 −0.0509326
\(929\) −7793.81 −0.275249 −0.137625 0.990484i \(-0.543947\pi\)
−0.137625 + 0.990484i \(0.543947\pi\)
\(930\) 0 0
\(931\) 10363.1 0.364808
\(932\) 15376.6 0.540425
\(933\) −435.884 −0.0152950
\(934\) 2676.62 0.0937706
\(935\) 0 0
\(936\) 9995.56 0.349055
\(937\) 36379.6 1.26838 0.634189 0.773178i \(-0.281334\pi\)
0.634189 + 0.773178i \(0.281334\pi\)
\(938\) 2171.32 0.0755822
\(939\) 2413.64 0.0838830
\(940\) 0 0
\(941\) 40703.7 1.41010 0.705049 0.709159i \(-0.250925\pi\)
0.705049 + 0.709159i \(0.250925\pi\)
\(942\) 640.295 0.0221464
\(943\) −64338.2 −2.22178
\(944\) −51838.3 −1.78728
\(945\) 0 0
\(946\) −229.466 −0.00788645
\(947\) 37956.0 1.30243 0.651216 0.758893i \(-0.274259\pi\)
0.651216 + 0.758893i \(0.274259\pi\)
\(948\) 1612.93 0.0552588
\(949\) −45383.5 −1.55238
\(950\) 0 0
\(951\) 2516.46 0.0858064
\(952\) −1058.47 −0.0360348
\(953\) 6618.25 0.224959 0.112480 0.993654i \(-0.464121\pi\)
0.112480 + 0.993654i \(0.464121\pi\)
\(954\) 204.585 0.00694307
\(955\) 0 0
\(956\) −25356.6 −0.857837
\(957\) 72.9209 0.00246311
\(958\) 1478.03 0.0498465
\(959\) −21581.7 −0.726705
\(960\) 0 0
\(961\) 13981.7 0.469325
\(962\) −8527.07 −0.285783
\(963\) 20364.0 0.681434
\(964\) −22637.1 −0.756320
\(965\) 0 0
\(966\) 440.501 0.0146717
\(967\) −23783.2 −0.790916 −0.395458 0.918484i \(-0.629414\pi\)
−0.395458 + 0.918484i \(0.629414\pi\)
\(968\) 5627.86 0.186866
\(969\) 990.707 0.0328443
\(970\) 0 0
\(971\) −17994.7 −0.594723 −0.297362 0.954765i \(-0.596107\pi\)
−0.297362 + 0.954765i \(0.596107\pi\)
\(972\) 12358.8 0.407827
\(973\) 13736.9 0.452604
\(974\) −1175.28 −0.0386638
\(975\) 0 0
\(976\) −31277.4 −1.02578
\(977\) 38188.8 1.25053 0.625266 0.780412i \(-0.284991\pi\)
0.625266 + 0.780412i \(0.284991\pi\)
\(978\) −634.088 −0.0207320
\(979\) −4878.25 −0.159254
\(980\) 0 0
\(981\) −10087.0 −0.328292
\(982\) −3620.97 −0.117668
\(983\) −38392.9 −1.24572 −0.622860 0.782333i \(-0.714030\pi\)
−0.622860 + 0.782333i \(0.714030\pi\)
\(984\) 1305.83 0.0423052
\(985\) 0 0
\(986\) −129.027 −0.00416741
\(987\) −1710.25 −0.0551549
\(988\) 55854.8 1.79856
\(989\) 37486.8 1.20527
\(990\) 0 0
\(991\) −51686.4 −1.65678 −0.828392 0.560148i \(-0.810744\pi\)
−0.828392 + 0.560148i \(0.810744\pi\)
\(992\) −10635.0 −0.340386
\(993\) 5200.30 0.166190
\(994\) −3756.96 −0.119883
\(995\) 0 0
\(996\) 1672.83 0.0532186
\(997\) −4420.86 −0.140431 −0.0702156 0.997532i \(-0.522369\pi\)
−0.0702156 + 0.997532i \(0.522369\pi\)
\(998\) −2605.70 −0.0826472
\(999\) −14074.1 −0.445730
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 425.4.a.e.1.1 2
5.2 odd 4 425.4.b.e.324.3 4
5.3 odd 4 425.4.b.e.324.2 4
5.4 even 2 85.4.a.d.1.2 2
15.14 odd 2 765.4.a.i.1.1 2
20.19 odd 2 1360.4.a.m.1.1 2
85.84 even 2 1445.4.a.i.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.4.a.d.1.2 2 5.4 even 2
425.4.a.e.1.1 2 1.1 even 1 trivial
425.4.b.e.324.2 4 5.3 odd 4
425.4.b.e.324.3 4 5.2 odd 4
765.4.a.i.1.1 2 15.14 odd 2
1360.4.a.m.1.1 2 20.19 odd 2
1445.4.a.i.1.2 2 85.84 even 2